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Abstract
Missing data is a common problem in longitudinal datasets which include multiple 
instances of the same individual observed at different points in time. We introduce a new 
approach, MedImpute, for imputing missing clinical covariates in multivariate panel data. 
This approach integrates patient specific information into an optimization formulation 
that can be adjusted for different imputation algorithms. We present the formulation for a 
K-nearest neighbors model and derive a corresponding scalable first-order method med.
knn. Our algorithm provides imputations for datasets with both continuous and categorical 
features and observations occurring at arbitrary points in time. In computational experi-
ments on three real-world clinical datasets, we test its performance on imputation and 
downstream predictive tasks, varying the percentage of missing data, the number of obser-
vations per patient, and the mechanism of missing data. The proposed method improves 
upon both the imputation accuracy and downstream predictive performance relative to the 
best of the benchmark imputation methods considered. We show that this edge is consist-
ently present both in longitudinal and electronic health records datasets as well as in binary 
classification and regression settings. On computational experiments on synthetic data, we 
test the scalability of this algorithm on large datasets, and we show that an efficient method 
for hyperparameter tuning scales to datasets with 10,000’s of observations and 100’s of 
covariates while maintaining high imputation accuracy.
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1 Introduction

Machine learning applied to healthcare data can generate actionable insights ranging from 
predicting the onset of disease to streamlining hospital operations. Statistical models that 
leverage the variety and richness of clinical data are still relatively rare and offer an excit-
ing avenue for further research (Callahan and Shah 2017). As an increasing amount of 
information becomes available the medical field expects machine learning to become an 
indispensable tool for clinicians (Obermeyer and Emanuel 2016).

This information will come from various clinical and epidemiological sources. Claims 
records, clinical trials, and data from longitudinal studies have been an invaluable resource 
for medical research over the past decades. In many of these datasets, data from individ-
ual subjects is gathered over time via continuous or repeated monitoring of both risk fac-
tors and health outcomes. For example, longitudinal cohort studies are used to discover 
relationships between exposures of interest and long term health effects including adverse 
events and chronic disease. By design, these studies mitigate recall bias in participants by 
collecting data prospectively and prior to knowledge of a possible subsequent event (Caru-
ana et al. 2015).

Another valuable source of clinical data are Electronic Health Records (EHR). Over 
the past years, widespread uptake of EHR has generated massive datasets that contain 
quantitative, qualitative, and transactional data (Murdoch and Detsky 2013). Their hospital 
adoption has skyrocketed in part due to the Health Information Technology for Economic 
and Clinical Health (HITECH) Act of 2009, which provided $30 billion in incentives for 
hospitals and physician practices to adopt EHR systems (Birkhead et al. 2015). While pri-
marily designed for archiving patient information and performing administrative health-
care tasks, many researchers have found secondary use of these records for various clinical 
informatics applications (Shickel et al. 2018). Because heterogeneous labs, measurements, 
and notes are recorded for patients during each visit, EHR data has a rich and complex 
structure with time series information.

However, it is algorithms and not merely datasets that will prove transformative for the 
medical field (Obermeyer and Emanuel 2016). To make progress, we need to develop new 
statistical tools tailored to clinical applications which address the challenges and leverage 
common structure encountered in healthcare data. One of the most important issues is the 
ubiquitous presence of missing time series data (Pedersen et al. 2017), particularly for vari-
ables requiring complex, time-sensitive, or resource-intensive procedures to collect. There 
are many reasons for “missingness”, including missed study visits, patients lost to follow-
up, missing information in source documents, lack of availability (e.g., laboratory tests that 
were not performed), and clinical scenarios preventing collection of certain variables (e.g., 
missing coma scale data in sedated patients) (Newgard and Lewis 2015). Thus, creating a 
consistent dataset for individuals over multiple visits even at the same healthcare organiza-
tion for a fixed set of covariates remains a challenge. Even in longitudinal studies, where a 
set of covariates is collected over time, missing data are pervasive and complete ascertain-
ment of all variables is rare (Landrum and Becker 2001).

The presence of missing data poses considerable challenges in the analyses and inter-
pretation of clinical investigations’ results (Wood et  al. 2004), potentially weakening 
their validity and leading to biased inferences. Their presence may complicate interpreta-
tion or even invalidate an otherwise important study (Ware et  al. 2012). Many methods 
commonly used for handling missing values during data analysis can yield biased results, 
decrease study power, or lead to underestimates of uncertainty, all reducing the chance 
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of drawing valid conclusions (Newgard and Lewis 2015). As many statistical models and 
machine learning algorithms rely on complete datasets, it is key to handle the missing data 
appropriately.

1.1  Review of methods for handling missing values

In this section, we present some of the most common approaches for missing data imputa-
tion. First, we introduce fairly simple and intuitive techniques that do not require the use of 
sophisticated machine learning methods. We then provide brief descriptions of advanced 
missing data imputation algorithms, both general purpose methods as well as approaches 
tailored to medical records and time series.

Excluding observations that contain missing values has been a standard practice for 
clinical research, primarily due to the lack of interpretable, accurate machine learning 
methods that can be easily applied by medical researchers (Sterne et al. 2009; Janssen et al. 
2010). Unsurprisingly, complete case analysis may suffer from severe bias and the reduced 
sample size results in lower study power (Newgard and Lewis 2015). Recent advances in 
machine learning have allowed missing values to be accurately imputed prior to running 
statistical analyses on the complete dataset. The benefit of the latter approach is that once 
a set (or multiple sets) of complete data has been generated, practitioners can easily apply 
their own learning algorithms to the imputed dataset. In healthcare settings, often times 
those datasets contain numerous visits of the same person corresponding to various pat-
terns of missing data. This special structure challenges state-of-the-art missing data meth-
ods which do not consider the connection of multiple observations to the same individual 
(Che et al. 2018).

A variety of machine learning approaches have been introduced in the literature to 
impute missing values ignoring the potential dependency between observations of the 
same individual. The simplest approach is the mean imputation that uses the mean of the 
observed values to replace those missing for the same covariate (Little and Rubin 2019). 
However, mean imputation underestimates the variance, ignores the correlation between 
the features leading to poor imputation outcomes.

Another common method called bpca uses the singular value decomposition (SVD) 
of the data matrix and information from a Bayesian prior distribution on the model param-
eters to impute missing values. This method outperforms basic SVD methods (Oba et al. 
2003). In cases where the level of missing data is above 30%, we have found that this 
method reduces to mean imputation, leading to similar biases (Faria et al. 2018).

Joint modeling assumes the existence of a joint distribution on the entire dataset and a 
parametric density function on the data given model parameters. Current implementations 
of the method estimate the model parameters using an Expectation-Maximization (EM) 
approach in order to maximize the likelihood function. One widely used software package 
which implements this approach, Amelia I, assumes that data are drawn from a mul-
tivariate normal distribution (Honaker et  al. 1999). In practice, healthcare data typically 
violate this condition (Sterne et al. 2009).

Recent review articles indicate that single imputation methods can lead to seriously 
misleading results and advise us to consider multiple imputation (Janssen et al. 2010; Little 
and Rubin 2019). This approach, implemented in the software package mice, allows for 
uncertainty about the missing data by creating several different plausible imputed data-
sets and appropriately combining results obtained from each of them (Schafer and Olsen 
1998). The Amelia I package was extended to multiple imputation in the Amelia II 
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algorithm (Honaker et  al. 2011). Multiple imputation entails two stages: (1) generating 
replacement values for missing data and repeating this procedure many times, resulting 
in many datasets with replaced missing information, and (2) analyzing the many imputed 
datasets and combining the results (Li et al. 2015). As a result, multiple imputation meth-
ods are slower and require pooling results, which may not be appropriate for certain appli-
cations. For example, in clinical applications, where the interpretability of the underlying 
model matters, a single imputed dataset and simple predictive model may be preferred.

Most recently, Bertsimas et al. (Bertsimas et al. 2018b) proposed a general optimization 
framework with a predictive model-based cost function that can explicitly handle both con-
tinuous and categorical variables and can be used to generate single, as well as multiple, 
imputations. This optimization perspective has led to new scalable algorithms for more 
accurate data imputation. We describe this method OptImpute in more detail in Sect. 2.2, 
which we use as a foundation for the imputation method proposed in this paper.

The algorithms above are not tailored to multivariate time series datasets despite the 
fact that covariates may be strongly correlated over time (Lipton et al. 2016). Preliminary 
work has been done demonstrating their performance in that setting (Zhang 2016). Recur-
rent Neural Network approaches have also been employed to handle missing values in time 
series among the covariates for a particular prediction task (Lipton et al. 2016; Che et al. 
2018). However, these approaches differ from traditional imputation methods because they 
also use features derived from the missing pattern itself, and they require that the down-
stream learning method is a neural network. In contrast, our method produces a single 
imputed dataset that can be used as training data for any supervised learning method which 
is preferred for the downstream task.

In practice, simpler techniques are more commonly applied in the panel data setting. 
Researchers often opt for a moving average approach with a fixed time window using pre-
vious observations from the same individual (Flores et  al. 2019). For example, the last-
observation-carried-forward method is used to impute a present missing value by carrying 
only the last non-missing value forward for a defined time period (Siddiqui and Ali 1998). 
However, these techniques ignore the correlation between covariates which is leveraged 
by other more advanced imputation methods. There have been a few methods that give 
weights to instances of the same patient in temporal data. For example, this approach has 
been applied to adverse drug events monitoring (Zhao and Henriksson 2016). In addition, 
similar methods have been applied in the political science and economics fields where 
time-series cross-sectional data are quite common (Shor et al. 2007).

1.2  Contributions

Given multivariate time series data, we develop a novel imputation method that utilizes 
optimization and machine learning techniques and outperforms state-of-the-art algorithms. 
Our contributions are as follows: 

1. We formulate the problem of missing data imputation with time series information under 
the MedImpute framework, extending the OptImpute framework proposed by Bertsimas 
et al. (2018b). Our approach can be adjusted to account for different imputation mod-
els based on predictive methods such as K-NN, SVM, and trees. We focus on a K-NN 
formulation to solve the problem and derive a corresponding fast first-order algorithm 
med.knn. This method provides imputations for datasets with both continuous and 
categorical features and observations occurring at arbitrary points in time.
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2. We design a series of computational experiments on three real-world sets of data with 
direct clinical implications. We consider the Framingham Heart Study (FHS) and the 
Parkinson’s Progression Markers Initiative (PPMI), two longitudinal datasets with rich 
time series data recorded at regular time intervals, and Electronic Health Record (EHR) 
data from the Dana Farber Cancer Institute (DFCI), which is less structured and more 
sparse time series data. We provide a comprehensive framework for our experiments 
that tests the performance of our method across a diverse range of scenarios, varying 
parameters including: (1) the percentage of missing data, (2) the number of observations 
per individual, and (3) the mechanism of missing data. For the latter, we consider dif-
ferent mechanisms for the longitudinal and EHR datasets corresponding to the different 
patterns of missing data which are typically observed in real-world datasets. We dem-
onstrate that med.knn obtains the best predictive performance and lowest imputation 
error as we vary the missing percentage from 10% to 50%. In addition, we show that for 
all datasets, the relative performance of med.knn improves as we increase the number 
of observations per individual. Finally, we demonstrate that med.knn performs well 
on missing patterns commonly encountered in practice for both longitudinal studies 
and EHR data. These improvements are relative to the best of the comparator methods 
among amelia, moving average, mean, bpca, mice, and opt.knn, which 
are described in Sect. 3.

3. We propose a new custom tuning procedure to efficiently learn the hyperparameters in 
the optimization problem avoiding the use of traditional approaches such as Grid Search. 
Our methodology allows for decoupling the problem into multiple parts, enabling paral-
lel computation that can decrease the run time. We create synthetic EHR data to test the 
scaling performance of the algorithm as we increase the number of observations and 
features. Our results show that the custom tuning approach leads to both superior scaling 
performance and better imputation accuracy compared to standard cross-validation. The 
tuning procedure is described in Sect. 2.4 and the scaling experiments with synthetic 
data are provided in Sect. 4.

The structure of the paper is as follows. In Sect. 2, we describe our framework for imputa-
tion of clinical covariates in time series and proposed method med.knn. In Sect. 3, we 
describe computational experiments on three real-world datasets evaluating both imputa-
tion and prediction accuracy. In Sect. 4, we present scaling experiments on simulated clini-
cal datasets. In Sect. 5, we discuss properties of our algorithm and key insights from our 
experiments. We conclude our work in Sect. 6.

2  Methods

In this section, we describe our proposed method for imputation. In Sect. 2.1, we define 
variables and notation that we use in this paper. In Sect.  2.2, we review the OptImpute 
framework for missing data imputation. In Sect. 2.3, we introduce our new framework for 
imputation MedImpute which directly models clinical covariates in time series, and we 
present the K-Nearest Neighbors (K-NN) based formulation. In Sect.  2.4, we describe a 
custom tuning procedure to efficiently learn the hyperparameters in the optimization prob-
lem. Finally, in Sect. 2.5 we provide the detailed steps of the first-order method med.knn 
that can be used to find high-quality solutions.
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2.1  Variables and notation

In this paper, we consider the single imputation problem for which our task is to fill in 
the missing values of dataset � ∈ ℝ

n×p with n observations (rows) and p features (col-
umns). Without loss of generality, we assume that the first p0 features are continuous 
and that the next p1 = p − p0 features are categorical, and the missing and known indi-
ces are specified by the following sets:

Here, M0 , M1 are the sets of indices of the missing values in the continuous and categori-
cal variables, respectively. Similarly, N0 , N1 are the sets of indices of the known values in 
the continuous and categorical variables, respectively. I  is the set of rows which contains 
at least one missing value.

We suppose that all of the continuous variables are normalized with unit SD and 
that the dth categorical variable takes value among kd classes. Given this data, we 
introduce the decision variables � ∈ ℝ

n×p0 , � ∈ {1,… , kp0+1} ×… × {1,… , kp0+p1} 
to be the matrices of imputed continuous and categorical variables, respectively. For 
each entry xid , wid is the imputed value if d ∈ {1,… , p0} , and vid is the imputed value 
if d ∈ {p0 + 1,… , p0 + p1} . We refer to the full imputation for observation �i as (�i, �i) . 
For the MedImpute method, we also assume that each observation �i corresponds to a 
particular patient with the unique ID yi observed at time-stamp ti.

2.2  Review of OptImpute

Next, we review the OptImpute framework for general imputation which we use as a 
foundation for our method. In this approach, we formulate the missing data problem as 
an optimization problem in which all entries are simultaneously filled in and used as 
covariates to predict the other entries. Our key decision variables are the imputed values 
{wid ∶ (i, d) ∈ M0} and {vid ∶ (i, d) ∈ M1} . We will also introduce auxiliary decision 
variables � . For any given set of imputed values and a corresponding data � , we associ-
ate a cost function c(⋅) to it. Thus, our objective is to solve the following optimization 
problem:

where Z is the set of all feasible combinations (�,�,�) of auxiliary vectors and impu-
tations. In this paper, we only consider an OptImpute formulation based upon K-Nearest 
Neighbors (K-NN), however it is also possible to consider formulations based upon SVM 
and trees (Bertsimas et al. 2018b).

(1)

M0 = {(i, d) ∶ entry xid is missing, 1 ≤ d ≤ p0, 1 ≤ i ≤ n},

N0 = {(i, d) ∶ entry xid is known, 1 ≤ d ≤ p0, 1 ≤ i ≤ n},

M1 = {(i, d) ∶ entry xid is missing, p0 + 1 ≤ d ≤ p0 + p1, 1 ≤ i ≤ n},

N1 = {(i, d) ∶ entry xid is known, p0 + 1 ≤ d ≤ p0 + p1, 1 ≤ i ≤ n},

I = {i ∶ �i has one or more missing values}.

(2)

min c(�,�,�;�)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(�,�,�) ∈ Z,
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In the K-NN formulation, the objective is to impute the missing values so that each 
point is as close to its K-nearest neighbors as possible. First, we define a distance metric 
on the dataset. Given two observations i and j, we say that the distance between them is:

In this distance metric, we weight the contributions from the continuous and categorical 
variables equally, but it is also possible to introduce a scaling factor to weight these terms 
differently. Given this distance metric, we introduce the binary variables � ∈ {0, 1}|I|×n , 
where

The OptImpute formulation with the K-NN objective function is

where I = {i ∶ �i has one or more missing values} . Problem (5) is non-convex with integer 
constraints for the categorical variables. In order to solve this problem, the authors find 
near optimal feasible solutions using first-order methods with random and targeted warm 
starts, resulting in a new imputation algorithm called opt.knn (Bertsimas et al. 2018b).

At a high level, the opt.knn algorithm works as follows. The user provides as input 
an incomplete data matrix � , a convergence threshold 𝛿0 > 0 , and a warm start imputa-
tion (�0,�0) . The output of the algorithm is the full matrix �imp with the imputed vari-
ables. In each iteration, we alternate updating the auxiliary variables � and the imputa-
tion (�,�) using either Coordinate Descent (CD) or Block Coordinate Descent (BCD). 
The problem of updating � given an imputation reduces to a simple sorting procedure 
on the distances. To update (�,�) in CD, we locally optimize each imputed value ( wid 
or vid ) one at a time. To update (�,�) in BCD, for each continuous or categorical fea-
ture we solve a Quadratic Optimization problem or a Mixed-Integer Optimization prob-
lem, respectively. We continue updating these values until the objective value stops 
improving by a sufficiently large amount �0 . Notice that the objective function value is 
strictly decreasing by at least �0 at every iteration until the algorithm terminates. As a 
result, the number of steps required for the algorithm termination is:

(3)dij ∶=

p
0

∑

d=1

(wid − wjd)
2 +

p
0
+p

1
∑

d=p
0
+1

1{vid≠vjd}
.

(4)zij =

⎧

⎪

⎨

⎪

⎩

1, if j is among theK − nearest neighbors of i

with respect to distance metric (3),

0, otherwise.

(5)

min
∑

i∈I

n
∑

j=1

zij

(

p0
∑

d=1

(wid − wjd)
2 +

p0+p1
∑

d=p0+1

1{vid≠vjd}

)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

zii = 0 i ∈ I,

n
∑

j=1

zij = K i ∈ I,

� ∈ {0, 1}|I|×n,
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where �0,�0 are the warmstart values, � is data, and �0 is the initialized auxiliary vari-
ables. There are no analytical guarantees that the algorithm will find the globaly optimal 
solution (Wright 2015). We repeat this process for multiple warm starts and take the solu-
tion with the best objective value to be the final imputation. The algorithm for a single 
warm start is summarized in Algorithm 1. 

2.3  MedImpute

In this section, we present the MedImpute framework for imputation of clinical covariates 
in time series. We extend the general OptImpute framework by weighting instances of the 
same person in the imputation model. We focus on the K-NN classifier and provide the 
specific formulation to solve this problem. Our new framework takes into account the time 
series structure frequently encountered in healthcare data. In addition, unlike univariate 
time series methods, this approach leverages statistical correlations between multiple clini-
cal covariates.

Suppose that we are given the same problem setup for single imputation as described in 
Sect. 2.2. In addition, assume that each observation i corresponds to an individual patient 
with unique identifier yi ∈ {1,… ,M} recorded at a particular time point. For datasets with 
multiple observations of individuals over time, we have M < n . Define ti ∈ ℝ

+ as the num-
ber of (days/months/years) after a reference date that observation i was recorded. It follows 
that |ti − tj| is the time difference in (days/months/years) between observations i and j. Note 
that this framework captures the common structure of many clinical datasets collected over 
time, including longitudinal studies, insurance claims, and EHR data.

For each clinical covariate d = 1,… , p , we introduce the parameters �d , hd . We learn 
�d and hd via a custom tuning procedure which we describe in Sect. 2.4. The first learned 
parameter �d ∈ [0, 1] is the relative weight given to the time series component of the objec-
tive function for variable d. At the extremes, �d = 0 corresponds to imputing covariate 
d under the OptImpute objective, and �d = 1 corresponds to imputing covariate d using 
each individual’s time series information independently. The second learned parame-
ter hd ∈ (0,∞) is the halflife parameter for the covariate d. This parameter is called the 

(6)T =
1

�0
c(�0,�0,�0;�),
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“halflife” parameter because it is the halflife of an exponential decay function f (x) = 2−x∕hd 
that we use to determine the relative weights for multiple observations of the same patient.

We introduce this parameter hd so that observations from the same individual at nearby 
points in time will be weighted most heavily in the imputation. We make this design deci-
sion under the assumption that each clinical covariate can be approximated as a continu-
ous function which is relatively smooth over time. For example, Body Mass Index (BMI) 
is a clinical covariate with values that are relatively smooth over time. Under this model, 
we assume that a BMI measurement from one week ago is more predictive of a patient’s 
current BMI than a BMI measurement from one year ago. However, we do not make any 
assumptions about how much more/less predictive these different measurements are, only 
that their relative weights follow an exponential distribution. The halflife of this exponen-
tial distribution for covariate d is the modelling parameter that we refer to as hd.

For each pair of observations i, j, covariate d, and corresponding halflife parameter hd , 
define the two derived parameters:

The first derived parameter Cijd is the relative weight that observation j is given for time-
series based imputation of observation i in covariate d. Note that this parameters is only 
non-zero when yi = yj , i.e. i and j are observations from the same patient. For example, if 
hd = 7 days, then past observations of covariate d from one week and two weeks ago from 
the same patient would be given relative weights 0.5 and 0.25, respectively. The second 
derived parameter, Cijd , is the normalized variation of Cijd . In particular, Cijd is the relative 
weight that observation j is given to impute observation i in covariate d, divided by the sum 
of all relative weights of observations from the same patient in covariate d.

The MedImpute formulation with the K-NN objective function is

where I = {i ∶ �i has one or more missing values} and �d,Cijd are constants. This prob-
lem is equivalent to (5) plus a penalty term in the objective for each feature d with differ-
ent weights �d in order to account for instances of the same person in the dataset. At the 
optimal solution, the objective function is the sum of the distances from each point to its 

(7)

Cijd =

{

2−|ti−tj|∕hd , if yi = yj,

0, otherwise,

Cijd =
Cijd

∑

{j�∶yi=yj� ,j
�≠i}

Cijd

.

(8)

min
1

K

∑

i∈I

n
∑

j=1

zij

(

p0
∑

d=1

(1 − �d)(wid − wjd)
2 +

p0+p1
∑

d=p0+1

(1 − �d)1{vid≠vjd}

)

+
∑

i∈I

n
∑

j=1

(

p0
∑

d=1

�dCijd(wid − wjd)
2 +

p0+p1
∑

d=p0+1

�dCijd1{vid≠vjd}

)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

zii = 0 i ∈ I,

n
∑

j=1

zij = K i ∈ I,

� ∈ {0, 1}|I|×n,
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K-nearest neighbors with respect to distance metric (3), plus the sum of the distances from 
each point to other observations from the same individual.

We derive a fast algorithm to provide high quality solutions to this problem using first 
order methods with random restarts, alternatively updating the binary variables and the 
imputed values as in opt.knn (Bertsekas 1999). In Algorithm  2, we summarize the 
med.knn method for a single warm start. In the next section, we describe the steps of this 
algorithm in detail.

MedImpute provides a flexible framework that can be easily extended as well. For 
example, we may consider other predictive models besides K-NN such as support vector 
machines and decision tree based methods by adjusting the objective functions of the cor-
responding OptImpute formulations appropriately. We refer the reader to (Bertsimas et al. 
2018b) for more discussion on these alternate formulations, which is a possible area of 
future work. In these cases, we add the same penalty term to the objective functions that we 
added in formulation (8), and we solve using first-order methods with random starts. In this 
manuscript, we focus on the K-NN formulation due to the method’s simplicity that is close 
to the medical practice. The idea of imputing a patient’s missing values using the mean or 
the mode of the covariates from the most similar individuals to that observation is intui-
tive. Various implementations of the heuristic K-NN approach are already widely accepted 
and used in practice (Crookston and Finley 2008). For these reasons, we decided to extend 
upon those combining the time series component and an optimization framework.

The method can also be adapted to a multiple imputation setting. However, while mul-
tiple imputation has been considered for several years to be the most accurate method for 
dealing with missing data (Rubin 1996), there is a tradeoff because single imputation is 
more interpretable. In particular, with single imputation we obtain one downstream predic-
tive model that can be easily presented and explained to an entire clinical team, which is a 
critical step in the process of data-driven medical research (Shrive et al. 2006).

2.4  Learning ̨
d

 and hd

In this section, we describe a custom tuning procedure to efficiently learn �d and hd , which 
are hyperparameters in the optimization problem (8). We run this custom tuning procedure 
as a pre-processing step before the med.knn algorithm, which allows us to learn these 
parameters without using cross-validation. This is a heuristic procedure which decouples 
the problem into multiple parts, first learning hd for each covariate, and then learning �d for 
each covariate. As a result, this custom tuning procedure is more computationally efficient 
and scales to larger problem sizes than cross-validation. In Sect. 4, we present the results 
from computational experiments comparing the speed and imputation accuracy of this cus-
tom tuning procedure against a traditional cross-validation method for selecting �d and hd.

In the first step of the custom tuning procedure, we learn the halflife parameter hd for 
each covariate. As in cross-validation, we tune the halflife parameters over a discrete 
range of values, denoted as H . For example, in the computational experiments, we set 
H = {1, 7, 30, 90, 365, 1000} , representing halflife values of 1 day, 1 week, 1 month, etc. 
For each covariate d, we compute the leave-one-out error for each halflife value hd ∈ H . 
In particular, to compute the leave-one-out error for the halflife value hd , first we derive 
the weights Cijd , then we impute the known values in covariate d using these weights, and 
finally we compute the sum-of-squared errors. Afterwards, we select the halflife parameter 
hd which yields the lowest leave-one-out error.

For each continuous covariate d ∈ {1,… , p0} , the leave-one-out error is defined as:
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where:

Here, ŵid is equivalent to the MedImpute imputation of a continuous covariate xid when 
�d = 1 . For each categorical covariate d ∈ {p0 + 1,… , p0 + p1} , the leave-one-out error is 
defined as:

where:

Intuitively, v̂id is the weighted mode of covariate d, where the weights are Cijd . This is 
equivalent to the MedImpute imputation of the categorical covariate xid when �d = 1.

Note that we are able to learn hd independently from �d because the selection of Cijd 
which minimizes the objective function (8) for any fixed value of �d also minimizes 
the objective function for any choice of �d ∈ [0, 1] . Similarly, we can learn the halflife 
parameters {h1, h2,… , hp} independently from one another, because the optimal choice 
of hd which minimizes the objective function (8) does not depend upon the values of 
{h1,… , hd−1, hd+1,… , hp} . Therefore, in this custom tuning procedure, we take advantage of 
this fact, and tune each of the halflife parameters as an initial step.

In the second step of the custom tuning procedure, we learn the MedImpute weight param-
eter �d for each covariate. As in cross-validation, we tune the MedImpute weight parameters 
over a discrete range of values, denoted as A . For example, in the computational experiments, 
we set A = {0, 0.05,… , 0.95, 1.0} , denoting relative MedImpute weights of 0%, 5%, ..., 
100%, respectively. For each covariate d, we compute the k-fold error for each MedImpute 
weight value �d ∈ A . In particular, to compute the k-fold error for the MedImpute weight 
value �d , first we split the dataset into k subsets (aka “folds”), next we impute each data subset 
using the rest of the subsets as training data, and finally we compute the total sum-of-squared 
errors across all of the folds. We select the MedImpute weight parameter �d which yields the 
lowest k-fold error. For continuous covariates, the k-fold error is defined as:

where N�

0
 are the known continuous values in the � th fold. The imputed values ŵ�

id
 are 

given by:

(9)
∑

{i∶(i,d)∈N0}
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2,
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Cijdxjd.

(11)
∑

{i∶(i,d)∈N
1
}

1{x
id
≠v̂

id
},
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id
)2,

(14)ŵ�
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where wOPT�

id
 is the OptImpute imputation of xid using the data from the other k − 1 folds, 

and N0 ⧵N
�

0
 are the known continuous values not in the � th fold. For categorical covari-

ates, the k-fold error is defined as:

where N�

1
 are the known categorical values in the � th fold. The imputed values v̂�

id
 are 

given by:

where vOPT�

id
 is the OptImpute imputation of xid using the data from the other k − 1 folds, 

and N1 ⧵N
�

1
 are the known categorical values not in the � th fold. Intuitively, v̂�

id
 is the 

weighted mode of the OptImpute value and the other known values of the same covariate, 
where the weights are (1 − �d) and �dCijd , respectively.

Finally, we note that there is another hyperparameter that we may tune for the med.
knn algorithm, K, which is the number of nearest-neighbors. In the computational experi-
ments, we fix K = 10 , which works well for the datasets that we consider here. Previously, 
it has been shown that the OptImpute methods are relatively robust even if their hyperpa-
rameters are misspecified (Bertsimas et al. 2018b). Thus, while the accuracy of the med.
knn algorithm can be improved slightly by tuning over K, the relative improvement in 
imputation accuracy is outweighed by the increased computational costs. 

2.5  The med.knn algorithm

In this section, we provide details for the updates in the med.knn imputation algorithm. This 
is a first-order method to find locally optimal solutions to Problem (5). As in the opt.knn 
algorithm, in this algorithm we alternatively update � and (�,�) until the solution converges. 

(15)
k
∑

�=1

∑

{i∶(i,d)∈N�

1
}

1{x
id
≠v̂�

id
},

(16)v̂�
id
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⎡

⎢

⎢

⎣

(1 − 𝛼d)1{v
OPT�

id
=vid}

+ 𝛼d
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0
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⎤

⎥

⎥

⎦

.
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The update for � is identical to the one for opt.knn, and is computed with a simple sorting 
procedure on the distances. However, the update for (�,�) is modified and depends upon the 
MedImpute parameters �d , Cijd . As in opt.knn, we can update the values of (�,�) either 
with Block Coordinate Descent (BCD) or Coordinate Descent (CD) which are described in 
the following subsections. The opt.knn updates for both BCD and CD are equivalent to the 
corresponding med.knn updates when �d = 0 for all d = 1,… , p.

2.5.1  Block coordinate descent

In this approach, we update all of the imputed values at once. We call this approach BCD 
because we update the variables (�,�) as an entire block, keeping � fixed. Our formulation 
Problem (8) decomposes by dimension into p0 Quadratic Optimization problems for the con-
tinuous features and p1 Mixed Integer Optimization problems for the categorical features. To 
update the imputed values �d for continuous feature d = 1,… , p0 , we solve:

Taking the partial derivative of the objective function with respect to wid for some missing 
entry (i, d) ∈ M0 and setting it to zero, we obtain after some simplifications:

This follows directly from equation (9) in (Bertsimas et  al. 2018b). For each feature 
d = 1,… , p0 , we have a system of equations of the above form which we can solve to 
determine the optimal imputed values wid, (i, d) ∈ M0 . Simplifying the notation, suppose 
that the missing values for the dimension d are �̃d ∶= (w1d,… ,wad) and the known values 
are �d ∶= (x(a+1)d,… , xnd) . Then the set of optimal imputed values wd

id
, (i, d) ∈ M0 is the 

solution to the linear system

where the matrices Q , � , R , and � are defined as

(17)
min
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n
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Without loss of generality, there exists a closed-form solution

to this system of equations for each feature d = 1,… , p0 . To update the imputed values �d 
for each categorical feature d = (p0 + 1),… , p , we solve the following mixed-integer opti-
mization problem:

This is a Mixed Integer Optimization problem, which is practically solvable as the BCD 
update for opt.knn. Since the BCD update step requires inverting a matrix with O(n2) 
entries and solving an optimization problem with O(n2) binary variables, this method 
works best for smaller problem sizes n ≤ 10, 000.

2.5.2  Coordinate descent

In CD, we update the imputed values one at a time. In order to update the imputed value for 
xid , we fix all of the variables in Problem (8) except for wid or vid and solve the corresponding 
one-dimensional optimization problem. This results in fast, closed-form updates for both the 
continuous and categorical variables. Each wid, (i, d) ∈ M0 is imputed as the minimizer of the 
following:

Solving the above gives the closed-form solution for every (i, d) ∈ M0:
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Similarly, each categorical variable vid, (i, d) ∈ M1 is imputed as the minimizer of the 
following:

Suppose that the value of categorical variable vid is one of kd distinct categories 
{1, 2,… , kd} . Then, the solution to problem (28) is

Here, we set the imputed variable to be the value with the highest frequency in the neigh-
borhood, with instances of the same person i receiving additional weight calibrated by the 
parameters {Cijd}

n
j=1

 and �d.
This approach scales to large problem sizes (n in the 100,000’s), and it is the method 

that we implement for the computational experiments.

3  Computational experiments on real‑world clinical datasets

In this section, we run a series of computational experiments testing the performance of 
med.knn imputing missing values in real-world clinical datasets. In Sect.  3.1, we pro-
vide an overview of the three datasets and their baseline characteristics. In Sect. 3.2, we 
describe the mechanisms for generating Missing Not at Random (MNAR) data that are 
used in some of the experiments. In Sect. 3.3, we describe the setup of the computational 
experiments, and we describe the imputation methods that we run for comparison across 
all of the computational experiments. In Sect. 3.4, we report the results of the experiments 
on the imputation tasks. In Sect. 3.5, we report the results of the experiments on the down-
stream predictive tasks. In Sect. 3.6 we discuss the results and major takeaways from the 
computational experiments.

3.1  Description of real‑world clinical datasets

In this section we describe the three real-world clinical datasets used in the computational 
experiments. In Sect. 3.1.1, we describe the FHS dataset. In Sect. 3.1.2, we describe the 
DFCI dataset. Finally, in Sect. 3.1.3, we describe the PPMI dataset.

3.1.1  Framingham heart study (FHS) dataset

The FHS was started in 1948 with the goal of observing a large population of healthy 
adults over time to better understand the factors that lead to cardiovascular disease. Over 
80 variables were collected from 5209 people at a time for more than 40  years. The 
FHS is arguably the most influential longitudinal study in the field of cardiovascular and 
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cerebrovascular research. This data has now been used in more than 2400 studies and is 
considered one of the top 10 cardiology advances of the twentieth century alongside the 
electrocardiogram and open-heart surgery (Daniel Levy 2006).

In our computational experiments, we consider all individuals from the FHS Original 
Cohort (National Heart, Lung, and Blood Institute, Boston University 2012) with 10 or 
more observations, which includes M = 1107 unique patients. For each patient, we take the 
10 most recent observations, so the dataset has n = 11,070 observations total. We include 
p = 13 continuous (Age, Body Mass Index, Systolic Blood Pressure, High-Density Lipo-
proteins, Hematocrit, Blood Glucose levels) and categorical covariates (Gender, Smoking, 
presence of Cardiovascular Disease, presence of Atrial Fibrillation, presence of diabetes, 
currently under prescription of antihypertensive medication, presence of Left Ventricular 
Hypertrophy from ECG results).

Overall, there are 12.56% missing values in the FHS dataset. The percentage of miss-
ing values in each covariate is shown in Table 5 in Appendix 7.1. Due to the design of the 
longitudinal study, the 10 observations for each patient occur at regular intervals spaced 
2 years apart, for a total span of 18 years. For the imputation tasks, we add in additional 
missing values to the FHS dataset, and evaluate the accuracy of med.knn and comparison 
methods against the ground-truth values. For the downstream tasks, we evaluate classifica-
tion models which predict 10-year risk of stroke given the imputed training data.

3.1.2  Dana farber cancer institute (DFCI) dataset

The DFCI dataset was obtained from a recently published work on predicting mortality in 
late-stage cancer patients (Bertsimas et al. 2018a). In this study, the authors retrospectively 
obtained patient data from EHR and linked Social Security Administration mortality data 
for cancer patients at the Dana Farber Cancer Institute / Brigham and Women’s Cancer 
Center from 2004 through 2014. Predictive models were fit for the entire population and 
individual cancers, including breast, lung, colorectal, kidney, and prostate cancer. Study 
eligibility required adult patients that have received at least one anticancer treatment over 
the course of their care, including chemotherapy, immunotherapy, and targeted therapy.

In our computational experiments, we consider all patients with late-stage breast cancer 
from the DFCI dataset. Each observation corresponds to a patient initiating an antican-
cer regimen which was systematically recorded in the hospital’s database. As a result, for 
every patient who followed more than one regimen, multiple observations were collected. 
For each patient, we include all of their observations in either the training set or testing set, 
respectively. In total, we have 12,206 observations that correspond to 5987 unique patients. 
This includes 3228 individuals who have just one line of therapy and therefore only appear 
once in this dataset. For each observation, there are 106 covariates which describe the 
patient at that point in time, including demographics, lab tests, vital signs, current medica-
tions, medical history, biomarkers, and variables derived from the patient’s temporal EHR 
history.

Overall, there are 10.79% missing values in the DFCI dataset. The percentage of miss-
ing values in each covariate is shown in Table 6 in Appendix 7.1. Due to the nature of this 
observational study, the observations for each patient occur at irregular intervals, which 
correspond to hospital visits. In addition, in the dataset each patient has anywhere from 1 
to 12 observations. In Appendix 7.1, we provide some more details on the DFCI dataset, 
including the distribution of observations per patient (see Fig. 13) and summary statistics 
of the time intervals between each visit (see Table 8). For the imputation tasks, we add in 
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additional missing values to the DFCI dataset, and evaluate the accuracy of med.knn and 
comparison methods against the ground-truth values. For the downstream tasks, we evalu-
ate classification models which predict 60-day risk of mortality given the imputed training 
data.

3.1.3  Parkinson’s progression markers initiative (PPMI) dataset

The PPMI (Marek et al. 2011) was a landmark observational clinical study with the aim 
to comprehensively evaluate patient cohorts using imaging, biologic sampling as well as 
clinical and behavioral data to identify biomarkers of Parkinson’s disease progression.

In our computational experiments, we consider data from the PPMI baseline examina-
tion as well as the following three years of follow-up. In this longitudinal study, 20 patients 
appeared only in one follow-up examination, 33 in two while the rest of the population 
participated in all 352 clinical evaluations. As a result, in total we have 1547 observa-
tions corresponding to 405 distinct patients. For each observation, there are 116 covariates 
which describe the demographic characteristics, the results of behavioral tests, clinical test 
results, as well as the presence or absence of genetic mutations related to the disease.

Overall, there are 2.61% missing values in the PPMI dataset. The percentage of miss-
ing values in each covariate is shown in Table 7 in Appendix 7.1. Due to the design of the 
longitudinal study, the 4 observations for each patient occur at regular intervals spaced 1 
year apart, for a total span of 4 years. For the imputation tasks, we add in additional miss-
ing values to the PPMI dataset, and evaluate the accuracy of med.knn and comparison 
methods against the ground-truth values. For the downstream tasks, we evaluate regres-
sion models which predict the Montreal Cognitive Assessment (MoCA) score one year in 
advance. The MoCA score is a rapid screening instrument for mild cognitive dysfunction, a 
clinical state that often progresses to dementia (Nasreddine et al. 2005).

3.2  Mechanisms for generating missing not at random (MNAR) data

Missing data can either be Missing Completely At Random (MCAR), Missing At Ran-
dom (MAR), or Missing Not At Random (MNAR) (Little and Rubin 2019). The type of 
missingness can be determined through an understanding of the specific feature and what 
systematic biases may exist in its collection process. Different types of missingness must 
be treated differently for meaningful analysis. In reality, missing data are most commonly 
associated with the MNAR category where the presence of unknown values is systemati-
cally related to unobserved factors.

In this section, we describe mechanisms for generating Missing Not at Random 
(MNAR) data for our computational experiments. We consider different mechanisms for 
the longitudinal and EHR datasets corresponding to the different patterns of missing data 
which are typically observed in real-world datasets. In Sect. 3.2.1, we describe the missing 
data mechanism that we use for the MNAR experiments on the two longitudinal datasets: 
FHS and PPMI. In Sect. 3.2.2, we describe the missing data mechanism that we use for the 
MNAR experiments on the EHR dataset: DFCI.

For all MNAR experiments, the total percentage of missing data is fixed to 30% . For 
each individual experiment, we assume that the dataset is ( �30 % MNAR, (1 − �)30% 
MCAR), where � is a constant that we select between 0 and 1. To generate the missing 
data patterns, first we generate the �30% MNAR patterns, and then we randomly select an 
additional (1 − �)30% subset of the data to be Missing Completely at Random (MCAR). 
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In the following two sections, we describe the specific ways that we generate MNAR data 
for longitudinal studies and EHR data, which are influenced by real-world missing data 
mechanisms.

3.2.1  MNAR mechanism for data from longitudinal studies

In longitudinal studies, missing data patterns often result from changes in the experiment 
design. Researchers may decide to include an additional set of variables as the study pro-
gresses over time due to new information from other investigations. Thus, it is common for 
feature d to be missing for the first td rounds of long-term longitudinal studies. For exam-
ple, ECG results were only first recorded in the FHS study 14 years after the study began 
(D’Agostino et al. 2013; Mahmood et al. 2014).

To generate �30% MNAR patterns under this mechanism, we use the following pro-
cess. First, we randomly select a covariate d and a discrete uniform random variable 
td ∈ {1, 2,… ,N} , where N = 10 for the FHS dataset and N = 4 for the PPMI dataset. The 
value td corresponds to the last round of the longitudinal study that covariate d is missing. 
For example, if td = 2 for the covariate “Left Ventricular Hypertrophy” (LVH), then the 
value for LVC will be missing for all observations in the two first clinical examinations. We 
continue this process until we have introduced �30% MNAR missing values. Afterwards, 
we introduce additional MCAR missing values to the remaining dataset in order to obtain 
the final dataset with 30% missing values.

3.2.2  MNAR mechanism for data from EHR

In EHR data, missing data patterns may be correlated with the severity of patient’s con-
dition. Consider the case of a patient whose physician suspects the existence of chronic 
kidney disease. The associated record is more likely to have a recorded value for Glomeru-
lar Filtration Rate since it is a direct indication of the kidney’s functional status (Levey 
et  al. 2005). Therefore, observed values are more likely to be below the threshold of 
60mL/min/1.73 m2 since they correspond to sicker patients.

To generate �30% MNAR patterns under this mechanism, we suppose that missing indi-
cators are independent Bernoulli random variables where the probability that entry xid is 
missing equals the probability that a normal random variable N(xid, �) is greater than a 
particular threshold for covariate d. The threshold for each covariate d is the quantile of �d 
which corresponds to the desired missing percentage level �30% . Then, we introduce addi-
tional MCAR missing values to the remaining dataset in order to obtain the final dataset 
with 30% missing values total for this experiment.

3.3  Experimental setup

In this section, we describe the setup of computational experiments that compare med.
knn to other state-of-the-art imputation methods. We use data from three distinct sources 
to test the performance of our algorithm on both longitudinal cohort study and EHR data-
sets. The codebase for the computational experiments is publicly available at https ://githu 
b.com/colin 78/medim pute_compu tatio nal_exper iment s.

In our experiments, we take the full dataset to be the ground truth. First, we normal-
ize the data so that each continuous covariate has mean zero and SD equal to one. Then, 

https://github.com/colin78/medimpute_computational_experiments
https://github.com/colin78/medimpute_computational_experiments
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we run some of the most commonly-used and state-of-the-art methods for imputation to 
predict the missing values and compare against med.knn. The methods that we com-
pare are as follows: 

1. Mean (mean) This is the simplest method. For each continuous feature, we impute the 
mean of the observed values and, for each categorical feature, we impute the mode of 
the observed values (Little and Rubin 2019).

2. Moving average (moving.avg) This method takes into account only observations of 
the same entity (i.e., patient) and imputes their averages under a given time window. 
In cases where only one observation per entity is available, the method reduces to the 
mean. For each dataset, we consider a different time horizon depending on the relative 
scale of the data (i.e, years, months, or days). Implemented in the Julia programming 
language.

3. Bayesian principal component analysis (bpca) This method takes a singular value 
decomposition (SVD) of the data matrix and information from a Bayesian prior distribu-
tion on the model parameters to impute missing values (Oba et al. 2003). Implemented 
using the pcaMethods package in the R programming language.

4. Multivariate imputation via chained equations (mice) In this multiple imputation 
method, we begin from m random starts and iteratively update each one to produce 
m independent imputations. In each iteration, we update the imputed values in feature 
d by drawing from a distribution conditional on all other features (van Buuren and 
Groothuis-Oudshoorn 2011). We use Classification Trees for the categorical features 
and Regression Trees for the continuous features. Implemented using the mice package 
in in the R programming language.

5. Multiple imputation with boostrap expectation maximization (Amelia II) This 
is another multiple imputation method that builds upon the Amelia I framework, 
which assumes that the data is jointly distributed as multivariate normal and uses an 
expectation-maximization (EM) algorithm with bootstrapping (Honaker et al. 2011; 
King et al. 2001). In addition, a newer version of the method allows for the imputation 
of cross-sectional time series data. It can build a general model of patterns within vari-
ables across time by creating a sequence of polynomials of the time index. Thus, it is 
able to capture variables that are recorded over time within a cross-sectional unit and 
are observed to vary smoothly over time. Implemented using the amelia package in 
the R programming language.

6. OptImpute under K-NN objective (opt.knn) This method finds a high quality solution 
to Problem (5) minimizing the sum of distances from each point to its K-Nearest Neigh-
bors (Bertsimas et al. 2018b). We find solutions to this problem using Algorithm 1 with 
the CD update. Fixing K = 10 , we use several warm and random restarts and select the 
imputation with the best objective value. Implemented using the OptImpute package 
in the Julia programming language.

7. MedImpute under K-NN objective (med.knn) This method finds a high quality solu-
tion to Problem (8) minimizing the sum of distances from each point to its K-Nearest 
Neighbors and other instances of the same individual. We find solutions to this problem 
using Algorithm 2 with the CD update. For each feature d, we perform cross-validation 
to tune the parameters �d, hd with the rest of the MedImpute parameters set equal to zero. 
Fixing K = 10 , we use several warm and random restarts and select the imputation with 
the best objective value. Implemented in the Julia programming language.
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For each experiment, we evaluate the imputation accuracy of each method using the Mean 
Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics, which are extended 
to accommodate both continuous and categorical covariates. Let Mtest

0
 , Mtest

1
 be the hold-

out sets for the missing continuous and categorical covariates, respectively. We define the 
MAE and RMSE metrics to be:

In addition to comparing the accuracy of each method on the imputation task, we also 
compare their performance on downstream predictive tasks which are tailored for each 
dataset. In these experiments, we use the imputation methods to fill in the missing values 
of the datasets, and then we train machine learning models with the data from completed 
datasets. By comparing the accuracy of the predictive models on the downstream tasks, we 
can see the relative impact of using one imputation method versus another in a machine 
learning pipeline. For the FHS dataset, the downstream task is to predict 10-year risk of 
stroke, a classification task. For the DFCI dataset, the downstream task is to predict 60-day 
risk of mortality, which is also a classification task. For the PPMI dataset, the downstream 
task is to predict the Montreal Cognitive Assessment (MoCA) score for next year, which is 
a regression task.

To evaluate the accuracy on the downstream predictive task, first we split the patients 
from the completed dataset into a training and testing set using a 75%/25% ratio. For the 
longitudinal datasets (FHS and PPMI) we include only one visit per patient, the most 
recent one. Thus, the time series component of the dataset is only present in the missing 
data imputation process but not in the supervised learning part of the experiment. This 
setup allows us to quantify the relative benefit of med.knn per individual. For the EHR 
dataset (DFCI), we include all of the observations from each patient in either the training 
or testing set for the supervised learning task.

Next, we train predictive models on the training set and report the out-of-sample accu-
racy on the testing set. For the classification tasks, we train �1-regularized logistic regres-
sion models and report the out-of-sample Area Under the Receiver Operator Characteristic 
Curve (AUC). For the regression task, we train �1-regularized linear regression models and 
report the out-of-sample Mean Absolute Error (MAE). These two metrics are commonly 
used evaluation criteria in machine learning (Hastie et al. 2009). We repeat all experiments 
for 25 random seeds and average the results. Each iteration corresponds to a different ran-
dom split of the patients into the training and testing sets, a random warmstart, and a ran-
domly generated missing data pattern. In particular, we note that the patient IDs and the 
time stamps corresponding to each row of the dataset are maintained across the different 
random seeds, so that the temporal sequence of the records remains the same as the origi-
nal dataset.

We artificially created missing data under different mechanisms and random patterns 
to compare the imputation accuracy of the proposed method. The missing data genera-
tion process was independently applied to each column. For a fixed missing percentage 
f% , we remove the necessary number of known values for each feature to reach the f% 
target. The patient ID yi was not factored in the missing data generation process and all 
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rows were considered independent observations. If the existing percent of missing data 
for a column was higher than the target f% , we do not generate any artificial missing 
values for the covariate, and thus the feature does not contribute to the estimation of the 
imputation accuracy metrics.

Given this framework for evaluating imputation methods on both imputation and 
downstream tasks, we conduct a variety of experiments which vary the pattern of the 
missing data. In particular, we conduct three different types of experiments that corre-
spond to variations in the form of missing data that we frequently encounter in medical 
datasets: 

1. Percentage of missing data We generate patterns of missing data for various percentages 
ranging from 10 to 50% under the missing completely at random (MCAR) mechanism. 
Given a target proportion of missing data f (i.e., f = 20% ), we generate among all 
observed data f missing values at each column independently from the rest completely 
at random.

2. Number of observations per patient With the missing percentage fixed at 50% MCAR, 
we vary the time frame during which patient observations are included in the imputa-
tion task. Our goal is to quantify the effect of the time series component as we vary its 
intensity.

3. Mechanism of missing data With the missing percentage fixed at 30%, we vary the miss-
ing data mechanism from Missing Completely At Random (MCAR) to Missing Not At 
Random (MNAR) on a gradient scale. In particular, we suppose that the missing pattern 
is ( �30% MNAR, ( 1 − �)30% MCAR), where � varies from 0 to 1. We consider two dif-
ferent MNAR mechanisms that correspond to distinct missing data patterns observed 
in longitudinal studies and EHR.

The objective of the first set of experiments is to determine which imputation methods 
perform best at high and low levels of missing data. For these experiments, we also report 
the results from statistical hypothesis tests (Friedman Rank and pairwise t-tests) to evalu-
ate whether the rankings and differences between the imputation algorithms are statisti-
cally significant. The objective of the second set of experiments is to determine how the 
performance of med.knn and other imputation methods varies as the amount of time 
series information available on each patient fluctuates. Finally, the objective of the third set 
of experiments is to determine how robust each imputation method is with respect to the 
missing data mechanism. In the previous section, we describe the two mechanisms for gen-
erating MNAR data for the third set of experiments. Below, we summarize all of the steps 
required to run one of the computational experiments for a single random seed: 

1. Fix a random seed s, a dataset, a desired missingness percentage level f% , a missing 
data imputation method, and a value for the � parameter.

2. Generate a random missing data pattern in the given dataset using the targeted percent-
age of missing values f% , the random seed s, and the value of the � parameter.

3. Impute the missing values in the provided dataset using the specified algorithm (i.e. 
med.knn, mean, bpca).

4. Calculate the imputation error using the MAE and RMSE metrics (see Eqs. 30, 31) on 
the artificially generated missing data.

5. Split the patients in the dataset into a training and testing set using a 75%/25% ratio. For 
the longitudinal datasets, only include the most recent observation from each individual 
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in the training and testing sets. For the EHR (DFCI) dataset, include all of the observa-
tions from each individual in the training or testing set.

6. Train a downstream predictive model on the training set using the cv.glmnet function 
from the R glmnet package (Friedman et al. 2009). For the FHS and DFCI datasets 
which have binary outcomes variables, train a logistic regression model with l1 regu-
larization. For the PPMI dataset which has a continuous outcome variable, train a linear 
regression model with l1 regularization.

7. Report the out-of-sample performance of the trained model on the testing set. For the 
classification tasks, report the out-of-sample AUC, and for the regression task, report 
the out-of-sample MAE.

3.4  Imputation results

In this section, we provide the results from all experiments on the imputation tasks. In 
particular, we present the imputation results from the (1) percentage of missing data, (2) 
number of observations per patient, and (3) mechanism of missing data experiments.

Percentage of missing data In Fig.  1, we show the MAE imputation accuracy results 
from the first set of experiments in which we vary the percentage of missing data from 10 
to 50%, and the missing data mechanism is fixed to MCAR. We present the exact values 
and standard errors in this plot in the Appendix in Table 9. Across all of the datasets, med.
knn achieves the lowest average MAE for all of the missing percentages tested. On the 
FHS longitudinal dataset with 50% MCAR data, med.knn has an average MAE of 0.289 
compared to the next best method opt.knn with an average MAE of 0.503, a 42.54% 
reduction. Similarly, on the PPMI longitudinal dataset with 50% MCAR data, med.knn 
has an average MAE of 1.286 compared to the next best method opt.knn with an average 
MAE of 1.99, a 35.37% reduction. On the DFCI dataset with 50% MCAR data, med.knn 
has an average MAE of 3.568 compared to the next best method mean with an average 
MAE of 4.367, a 22.39% reduction.

In Fig.  2, we present the RMSE imputation accuracy results. In general, the results 
are similar to the MAE imputation accuracy results, and med.knn produces the imputa-
tion with the lowest RMSE across all experiments. One notable difference is on the DFCI 
dataset, the relative improvement of med.knn compared to bpca, moving.avg, and 
mean is much smaller. Because the mean imputation method performs relatively well, this 
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Fig. 1  Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets, 
varying the percentage of missing data from 10 to 50%. The missing data mechanism is fixed to MCAR 
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suggests that there are some difficult-to-impute covariates in the DFCI dataset which are 
resulting in large RMSE values for all of the more complex methods.

In Table 1, we present the results from the Friedman Rank test for each of the Missing 
Data imputation experiments. In this statistical test, we compare the relative rank of med.
knn against the relative ranks of the comparator methods for each of the 25 random seeds. 
These results demonstrate that the med.knn method is consistently ranked higher than the 
others across each of the experiments.

In Table 2, we present the results from the pairwise t-test for each of the experiments. 
In this statistical test, we evaluate the differences in MAE between med.knn and each of 
the comparison methods. In all of the experiments, we observe that the differences in MAE 
are statistically significant with p-values less than 0.001. In most cases, we observe that the 
relative improvement of med.knn decreases as the percentage of missing data increases. 
This is because the comparator methods perform similarly across all levels of missing data 
from 10-50%, while the med.knn performs best at the lowest missing percentages. One 
exception is mice on the PPMI dataset, which declines in performance rapidly as the per-
centage of missing data increases. Another exception is the bpca method, which surpris-
ingly improves in performance as the percentage of missing data increases for the DFCI 
and PPMI datasets. One explanation for these results could be that bpca is overfitting on 
the datasets which have few missing values.

In the “Appendix”, we present the MedImpute hyperparameters which were selected 
in Missing Percentage experiments for the FHS dataset. In Table 15, we show the median 
halflife parameters that were selected for each covariate at each missing percentage. We 
observe that most of the halflife parameters are consistent across different levels of miss-
ing data, and for many of the covariates the highest halflife parameter of 1000 days was 
selected. This suggests that for these covariates, a measurement from 1000 days ago may 
be used to significantly inform the measurement for the same patient today. In addition, we 
may be able to improve the performance of this method by considering even longer hal-
flife values. In Table 16, we show the median alpha parameters that were selected for each 
covariate at each missing percentage, from the validation. In all cases, the alpha parameter 
is at least 0.5, and in many cases equals 1. This suggests that for these covariates, the time 
series part of the objective function is more important for the imputation than the K-near-
est neighbors part of the objective function. In addition, we observe that the alpha param-
eter selected generally decreases or remains the same as the percentage of missing data 
increases. This suggests that as the percentage of missing data increases, the time series 
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Fig. 2  Imputation errors for each method using the RMSE metric on the FHS, DFCI, and PPMI datasets, 
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208 Machine Learning (2021) 110:185–248

1 3

Ta
bl

e 
1 

 T
he

 F
rie

dm
an

 ra
nk

 te
st 

re
su

lts
 fo

r t
he

 im
pu

ta
tio

n 
ta

sk
s 

va
ry

in
g 

th
e 

pe
rc

en
ta

ge
 o

f m
is

si
ng

 d
at

a 
fro

m
 1

0 
to

 5
0%

 M
CA

R
, u

si
ng

 e
ith

er
 th

e 
M

A
E 

or
 R

M
SE

 m
et

ric
 fo

r 
co

m
pa

ris
on

Ea
ch

 ta
bl

e 
sh

ow
s t

he
 v

al
ue

 o
f F

rie
dm

an
’s

 C
hi

-s
qu

ar
ed

 st
at

ist
ic

 a
nd

 p
-v

al
ue

 fo
r t

he
 h

yp
ot

he
si

s t
es

t c
om

pa
rin

g 
m
e
d
.
k
n
n

 a
ga

in
st 

th
e 

be
nc

hm
ar

k 
m

et
ho

ds
 fo

r e
ac

h 
ex

pe
rim

en
t

*p
 <

 0
.1

, *
*p

 <
 0

.0
5,

 *
**

p 
<

 0
.0

01

(a
) M

A
E

(b
) R

M
SE

%
�
2
 st

at
ist

ic
 (a

dj
us

te
d 

p-
va

lu
e)

%
�
2
 st

at
ist

ic
 (a

dj
us

te
d 

p-
va

lu
e)

FH
S

D
FC

I
PP

M
I

FH
S

D
FC

I
PP

M
I

10
13

0 
(<

 0
.0

01
**

*)
21

0 
(<

 0
.0

01
**

*)
75

 (<
 0

.0
01

**
*)

10
13

0 
(<

 0
.0

01
**

*)
21

0 
(<

 0
.0

01
**

*)
75

 (<
 0

.0
01

**
*)

20
13

0 
(<

 0
.0

01
**

*)
22

0 
(<

 0
.0

01
**

*)
53

 (<
 0

.0
01

**
*)

20
13

0 
(<

 0
.0

01
**

*)
22

0 
(<

 0
.0

01
**

*)
53

 (<
 0

.0
01

**
*)

30
13

0 
(<

 0
.0

01
**

*)
26

0 
(<

 0
.0

01
**

*)
74

 (<
 0

.0
01

**
*)

30
13

0 
(<

 0
.0

01
**

*)
26

0 
(<

 0
.0

01
**

*)
74

 (<
 0

.0
01

**
*)

40
11

0 
(<

 0
.0

01
**

*)
23

0 
(<

 0
.0

01
**

*)
58

 (<
 0

.0
01

**
*)

40
11

0 
(<

 0
.0

01
**

*)
23

0 
(<

 0
.0

01
**

*)
58

 (<
 0

.0
01

**
*)

50
14

0 
(<

 0
.0

01
**

*)
27

0 
(<

 0
.0

01
**

*)
71

 (<
 0

.0
01

**
*)

50
14

0 
(<

 0
.0

01
**

*)
27

0 
(<

 0
.0

01
**

*)
71

 (<
 0

.0
01

**
*)



209Machine Learning (2021) 110:185–248 

1 3

Ta
bl

e 
2 

 P
ai

rw
is

e 
t-t

es
ts

 b
et

w
ee

n 
m
e
d
.
k
n
n

 a
nd

 b
en

ch
m

ar
k 

m
et

ho
ds

 fo
r i

m
pu

ta
tio

n 
ta

sk
s v

ar
yi

ng
 th

e 
pe

rc
en

ta
ge

 o
f m

is
si

ng
 d

at
a 

fro
m

 1
0-

50
%

 M
CA

R
, u

si
ng

 th
e 

M
A

E 
m

et
ric

 
fo

r c
om

pa
ris

on

Th
e 

p-
va

lu
es

 a
re

 a
dj

us
te

d 
fo

r m
ul

tip
le

 c
om

pa
ris

on
s

*p
 <

 0
.1

, *
*p

 <
 0

.0
5,

 *
**

p 
<

 0
.0

01

M
is

si
ng

 %
Δ

 M
A

E 
(a

dj
us

te
d 

p-
va

lu
e)

m
i
c
e

m
o
v
i
n
g
.
a
v
g

a
m
e
l
i
a

b
p
c
a

m
e
a
n

o
p
t
.
k
n
n

FH
S

10
−

 0
.3

3 
(<

 0
.0

01
**

*)
−

 0
.3

3 
(<

 0
.0

01
**

*)
−

 0
.4

1 
(<

 0
.0

01
**

*)
−

 0
.3

0 
(<

 0
.0

01
**

*)
−

 0
.2

9 
(<

 0
.0

01
**

*)
−

 0
.2

5 
(<

 0
.0

01
**

*)
20

−
 0

.3
3 

(<
 0

.0
01

**
*)

−
 0

.3
2 

(<
 0

.0
01

**
*)

−
 0

.4
0 

(<
 0

.0
01

**
*)

−
 0

.3
0 

(<
 0

.0
01

**
*)

−
 0

.2
8 

(<
 0

.0
01

**
*)

−
 0

.2
6 

(<
 0

.0
01

**
*)

30
−

 0
.3

3 
(<

 0
.0

01
**

*)
−

 0
.3

1 
(<

 0
.0

01
**

*)
−

 0
.3

9 
(<

 0
.0

01
**

*)
−

 0
.2

9 
(<

 0
.0

01
**

*)
−

 0
.2

7 
(<

 0
.0

01
**

*)
−

 0
.2

5 
(<

 0
.0

01
**

*)
40

−
 0

.3
3 

(<
 0

.0
01

**
*)

−
 0

.3
1 

(<
 0

.0
01

**
*)

−
 0

.3
9 

(<
 0

.0
01

**
*)

−
 0

.2
7 

(<
 0

.0
01

**
*)

−
 0

.2
6 

(<
 0

.0
01

**
*)

−
 0

.2
3 

(<
 0

.0
01

**
*)

50
−

 0
.3

3 
(<

 0
.0

01
**

*)
−

 0
.2

9 
(<

 0
.0

01
**

*)
−

 0
.3

8 
(<

 0
.0

01
**

*)
−

 0
.2

5 
(<

 0
.0

01
**

*)
−

 0
.2

5 
(<

 0
.0

01
**

*)
−

 0
.2

1 
(<

 0
.0

01
**

*)

 M
is

si
ng

 %
m
i
c
e

a
m
e
l
i
a

m
o
v
i
n
g
.
a
v
g

b
p
c
a

m
e
a
n

o
p
t
.
k
n
n

D
FC

I
10

−
 1

.6
4 

(<
 0

.0
01

**
*)

−
 6

.5
5 

(<
 0

.0
01

**
*)

−
 1

.9
2 

(<
 0

.0
01

**
*)

−
 6

.9
2 

(<
 0

.0
01

**
*)

−
 1

.1
7 

(<
 0

.0
01

**
*)

−
 1

.8
1 

(<
 0

.0
01

**
*)

20
−

 1
.5

8 
(<

 0
.0

01
**

*)
−

 6
.8

9 
(<

 0
.0

01
**

*)
−

 1
.8

6 
(<

 0
.0

01
**

*)
−

 3
.1

2 
(<

 0
.0

01
**

*)
−

 1
.0

8 
(<

 0
.0

01
**

*)
−

 1
.6

9 
(<

 0
.0

01
**

*)
30

−
 1

.6
7 

(<
 0

.0
01

**
*)

−
 7

.0
9 

(<
 0

.0
01

**
*)

−
 1

.8
4 

(<
 0

.0
01

**
*)

−
 1

.0
2 

(<
 0

.0
01

**
*)

−
 1

.0
2 

(<
 0

.0
01

**
*)

−
 1

.5
4 

(<
 0

.0
01

**
*)

40
−

 1
.4

6 
(<

 0
.0

01
**

*)
−

 6
.7

1 
(<

 0
.0

01
**

*)
−

 1
.8

1 
(<

 0
.0

01
**

*)
−

 1
.2

6 
(<

 0
.0

01
**

*)
−

 0
.9

3 
(<

 0
.0

01
**

*)
−

 1
.6

2 
(<

 0
.0

01
**

*)
50

−
 1

.5
7 

(<
 0

.0
01

**
*)

−
 6

.5
6 

(<
 0

.0
01

**
*)

−
 1

.7
7 

(<
 0

.0
01

**
*)

−
 1

.1
1 

(<
 0

.0
01

**
*)

−
 0

.8
0 

(<
 0

.0
01

**
*)

−
 1

.4
8 

(<
 0

.0
01

**
*)

 M
is

si
ng

 %
m
i
c
e

a
m
e
l
i
a

m
o
v
i
n
g
.
a
v
g

b
p
c
a

m
e
a
n

o
p
t
.
k
n
n

PP
M

I
10

−
 0

.3
2 

(<
 0

.0
01

**
*)

−
 1

.5
5 

(<
 0

.0
01

**
*)

−
 1

.1
0 

(<
 0

.0
01

**
*)

−
 1

.8
6 

(<
 0

.0
01

**
*)

−
 1

.2
1 

(<
 0

.0
01

**
*)

−
 1

.0
0 

(<
 0

.0
01

**
*)

20
−

 0
.4

8 
(<

 0
.0

01
**

*)
−

 1
.4

4 
(<

 0
.0

01
**

*)
−

 1
.1

0 
(<

 0
.0

01
**

*)
−

 1
.6

1 
(<

 0
.0

01
**

*)
−

 1
.1

4 
(<

 0
.0

01
**

*)
−

 0
.7

8 
(<

 0
.0

01
**

*)
30

−
 0

.6
7 

(<
 0

.0
01

**
*)

−
 1

.3
6 

(<
 0

.0
01

**
*)

−
 1

.0
9 

(<
 0

.0
01

**
*)

−
 1

.4
9 

(<
 0

.0
01

**
*)

−
 1

.1
0 

(<
 0

.0
01

**
*)

−
 0

.7
2 

(<
 0

.0
01

**
*)

40
−

 0
.7

5 
(<

 0
.0

01
**

*)
−

 1
.3

7 
(<

 0
.0

01
**

*)
−

 1
.0

8 
(<

 0
.0

01
**

*)
−

 1
.2

4 
(<

 0
.0

01
**

*)
−

 1
.0

2 
(<

 0
.0

01
**

*)
−

 0
.6

7 
(<

 0
.0

01
**

*)
50

−
 0

.9
0 

(<
 0

.0
01

**
*)

−
 1

.4
0 

(<
 0

.0
01

**
*)

−
 1

.0
7 

(<
 0

.0
01

**
*)

−
 1

.1
4 

(<
 0

.0
01

**
*)

−
 0

.9
4 

(<
 0

.0
01

**
*)

−
 0

.7
0 

(<
 0

.0
01

**
*)



210 Machine Learning (2021) 110:185–248

1 3

part of the objective function should be weighted less heavily in the imputation because 
there is less time series information available for each observation in the dataset.

Number of observations per patient In Fig. 3, we present the MAE imputation accuracy 
results from the experiments in which we vary the number of observations per patient. We 
present the exact values and standard errors in this plot in the Appendix in Table 11. Across 
all of the experiments, we observe that as the time horizon increases, the performance of 
med.knn generally improves. This is expected, because as the time horizon increases, we 
include more observations per patient in the dataset, so there is more time series informa-
tion that can be leveraged during the imputation process.

Similarly, the imputation accuracy of the moving.avg method generally improves as 
the time horizon increases. One notable exception is in the FHS dataset, the MAE of the 
moving.avg method increases as the time horizon increases from 10 to 20 years, while 
the MAE of med.knn remains relatively constant. From this, we can deduce that past 
observations of patients in the FHS dataset from 10 to 20 years prior have little predic-
tive power for the other imputed values, which causes simple time series methods such as 
moving.avg to perform worse with more data. In contrast, the med.knn method has an 
exponential halflife parameter that we can tune so that observations from 10+ years ago are 
weighted less heavily in the imputation, so the performance remains about the same with 
the additional data.

One surprising trend that we observe in these graphs is the performance of amelia, 
which is another imputation method that takes into account time series information. On the 
DFCI dataset, as the time horizon increases, the imputation error increases. In addition, on 
the FHS dataset, as time horizon increases, the imputation error remains about the same. 
Only in the PPMI dataset does the performance of amelia noticeably improve as the time 
horizon increases.

In Fig. 4, we present the RMSE imputation accuracy results for the Observations Per 
Patient experiments. The results are similar to the MAE imputation accuracy results, and 
med.knn produces the imputation with the lowest RMSE across all experiments. One 
characteristic of the RMSE results is that they are much noisier, and in particular on the 
DFCI dataset the RMSE values do not decrease monotonically in a smooth fashion. Since 
the RMSE metric is more sensitive to outliers than the MAE metric, this suggests that there 
may be some outliers in the DFCI data which are added into the dataset at different time 
horizons.
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Fig. 3  Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets, 
varying the time horizon which determines the number of observations per patient. The missing data mech-
anism is fixed to MCAR, and the total percentage of missing data is fixed to 50%
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In addition to evaluating the imputation accuracy of med.knn on datasets with vary-
ing numbers of observations per patient, we can also evaluate the imputation accuracy on 
subsets of patients within the DFCI dataset which have varying numbers of observations. 
In Fig. 5, we present the imputation errors for med.knn on the DFCI dataset with 30% 
MCAR missing data, for subgroups of patients which have 1, 2,… , 12 observations per 
patient in the dataset. Overall, the MAE for the entire dataset is 3.331. For patients with 
one visit, and therefore one observation in the dataset, the average MAE is almost 3.5. In 
contrast, for patients with 10 or more visits, the average MAE is below 2.5. This suggests 
that in datasets with heterogeneous numbers of observations per patient, the med.knn 
imputation may be most accurate for the patients with the most observations in the dataset.

Overall, from the Observations Per Patient experiments, we can conclude that med.
knn method performs best with the additional time series information. As the time horizon 
increases, the imputation accuracy of med.knn generally improves or remains the same, 
while in a few cases the other time series methods moving.avg and amelia perform 
significantly worse with additional time series data. In addition, the imputation accuracy of 
the methods which do not take into account time series information (bpca, mean, mice, 
opt.knn) remains relatively constant as the time horizon varies. Furthermore, within a 
dataset that has heterogeneous numbers of observations per patient, such as EHR datasets, 
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we may expect med.knn to most accurately impute values for the patients with the most 
observations in the dataset.

In the “Appendix”, we present the MedImpute hyperparameters which were selected 
in Observations Per Patient experiments for the FHS dataset. First, in Table 17, we show 
the median halflife parameters that were selected for each covariate for each experiment. 
For OPP ≤ 2 , the selection of the halflife parameter does not impact the imputation, so the 
halflife parameter is set to 1 for each covariate. For OPP ≥ 3 , the halflife parameters remain 
relatively constant for each covariate as the observations per patient varies. In Table 18, we 
show the median alpha parameters that were selected for each covariate. When the OPP 
= 1 , there is no time series information in the dataset, so the alpha parameter is set to 0 for 
each covariate. For OPP ≥ 2 , the alpha parameters selected remain relatively constant for 
each covariate, with a few gradual trends for some of the covariates. For some covariates 
such as Age, Body Mass Index, and Systolic Blood Pressure, the selected alpha param-
eter gradually increases as OPP increases, and for other covariates such as Blood Glucose 
and High-Density Lipoproteins, the selected alpha parameter gradually decreases as OPP 
increases. This suggests that the addition of more time series data may change the med.
knn imputation of each covariate differently.

Mechanism of missing data In Fig. 6, we present the MAE imputation accuracy results 
from the experiments in which we vary the mechanism of missing data. We present the 
exact values and standard errors in this plot in the Appendix in Table 13. Across all of 
these experiments, we observe that med.knn has the best average MAE values by a sig-
nificant margin.

In general, the imputation accuracy of all of the imputation methods increases or 
remains the same as the proportion of MNAR data increases. Two exceptions are the mov-
ing.avg method on the FHS dataset and the amelia method on the DFCI experiments, 
which both improve in performance at first as a small proportion of MNAR data is added. 
One possible explanation for this is that the MNAR data acts as a regularizer which helps 
these methods avoids overfitting to the dataset. However, in most cases the imputation error 
increases or remains constant as the percentage of MNAR data increases.

In the FHS MNAR experiments, the performance of all of the methods remains rel-
atively constant, however the imputation error of moving.avg improves at � = 0.1 . 
Because moving.avg is the second-best performing method in these experiments, this 
means that the edge of the med.knn method slightly decreases in these experiments. In 
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Fig. 6  Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets, 
varying the ratio of the missing data mechanism from � = 0 (30% MCAR, 0% MNAR) to � = 1 (0% 
MCAR, 30% MNAR). The total percentage of missing data is fixed to 30%
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the PPMI MNAR experiments, the imputation error of all methods increases approximately 
linearly as the proportion of MNAR data increases. In the DFCI MNAR experiments, the 
imputation error for all methods except for amelia increases sharply at � = 0.1 , and then 
increases linearly afterwards as � increases. As a result, for the experiments on the DFCI 
and PPMI datasets, the absolute improvement of med.knn over the comparator methods 
remains about the same as the proportion of MNAR data increases.

In Fig. 7, we present the RMSE imputation accuracy results for the missing data mecha-
nism experiments. The results are largely consistent with the MAE imputation accuracy 
results. In particular, med.knn produces the imputation with the lowest RMSE by a sig-
nificant margin across all experiments.

Overall, these experiments demonstrate that the med.knn method performs well rela-
tive to the other imputation methods even as the mechanism of missing data changes. In the 
MNAR experiments for the longitudinal datasets, FHS and PPMI, the relative imputation 
accuracy of the comparator methods remains approximately the same with the med.knn 
method performing best, with the exception of the moving.avg method which performs 
significantly worse. Thus, we can conclude that the med.knn method is well suited for 
imputing missing values according to the particular MNAR mechanism designed for longi-
tudinal datasets which is described in Sect. 3.2.1. In the MNAR experiments for the EHR 
dataset DFCI, the relative imputation accuracy of the comparator methods remains approx-
imately the same with the med.knn method performing best, with the exception of the 
amelia method which performs significantly better. Therefore, we can also conclude that 
the med.knn is suitable for imputing missing values according to the MNAR mechanism 
for EHR datasets which is described in Sect. 3.2.2.

In the “Appendix”, we present the MedImpute hyperparameters which were selected 
in Mechanism of Missing Data experiments for the FHS dataset. In Tables 19 and 20, we 
show the median halflife and alpha parameters that were selected for each covariate for 
each experiment, respectively. Across all of the experiments, we observe that the param-
eters selected during the validation procedure remain almost exactly constant. We conclude 
that varying the missing data mechanism for the FHS dataset according to the approach 
outlined in Sect. 3.2.1 has little impact on the med.knn imputation for this dataset.
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3.5  Prediction results

In this section, we provide the results from all experiments on the downstream prediction 
tasks. In particular, we present the downstream prediction results from the 1) Percentage of 
Missing Data, 2) Number of Observations Per Patient, and 3) Mechanism of Missing Data 
experiments. For the FHS and DFCI datasets, in which we train and evaluate classification 
models, we report the average out-of-sample AUC results. For the PPMI dataset, in which 
we train and evaluate regression models, we report the average out-of-sample MAE results.

Percentage of missing data In Fig.  6, we present the performance on the downstream 
tasks from the experiments in which we vary the percentage of missing data. We present 
the exact values and standard errors in this plot in the Appendix in Table 10. Across all of 
the datasets, the med.knn method performs best, and the downstream performance of all 
methods generally declines as the missing level increases. In particular, the AUC values 
generally decrease for the classification tasks and the MAE values generally increase for 
the regression tasks as the percentage of missing data increases.

For the FHS dataset, while the downstream performance of all methods declines as the 
percentage of missing data increases, the downstream performance of med.knn declines 
least rapidly. In particular, with 20% missing data, the downstream AUC of med.knn is 
0.897, compared to downstream AUC of 0.861 from the second-best method bpca and 
the baseline AUC of 0.901 with no additional missing data. With 50% missing data, the 
downstream AUC of med.knn is 0.864, compared to 0.826 for the second-best method 
moving.avg.

Similarly, for the DFCI dataset, the med.knn method performs best across all lev-
els of missing data, and the downstream AUC values generally decrease as the missing 
level increases. The only exception is for the amelia method, where we do not observe a 
smooth trend because this method does not converge in some cases. In addition, the rela-
tive improvement of med.knn compared to the other imputation methods is lower for this 
dataset. At 50% missing data, the downstream AUC of med.knn is 0.889, compared to 
0.884 for the second-best method bpca and the baseline AUC of 0.92 with no additional 
missing data.

Lastly, in the PPMI dataset, we observe the same trends that the med.knn method per-
forms best, and the performance of all methods declines as the missing level increases. 
In this case, the downstream MAE for each method increases as the percentage of miss-
ing data increases. Across all levels of missing data, med.knn achieves the lowest down-
stream MAE. At 50% missing data, the downstream MAE of med.knn is 1.917, compared 
to 2.092 for the second-best method opt.knn and the baseline MAE of 1.170 with no 
additional missing data.

In Table 3, we present the results from the Friedman Rank tests for each of the down-
stream predictive tasks varying the percentage of missing data. Similar to Friedman Rank 
tests for the imputation tasks, each test is significant with a p-value less than 0.001. These 
results demonstrate that the med.knn method is consistently ranked higher than the others 
for each of the downstream predictive tasks.

In Table 4, we present the results from the pairwise t-tests for each of the experiments. 
In this statistical test, we evaluate the differences in downstream predictive performance 
between med.knn and each of the comparison methods. We consider the differences in 
downstream AUC for the classification tasks, and we consider the differences in down-
stream MAE for the regression tasks. In most of the experiments, we observe that the 
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differences in downstream AUC/MAE are statistically significant with p-values less than 
0.001. These results demonstrate that the relative improvement in imputation accuracy for 
the med.knn method carries over to a relative improvement in performance on the down-
stream predictive tasks with different levels of MCAR data. Between the two classification 
tasks, we observe that the med.knn gives larger improvements in AUC on the FHS data-
set than the DFCI dataset. In addition, we observe that as the percentage of missing data 
increases, the relative improvement of med.knn increases in general. These results are 
expected because as the percentage of missing data increases, the impact of the imputation 
method on the training data and the final prediction task increases as well. Since med.knn 
provides substantial improvements in imputation accuracy for all levels of missing data, 
having larger amounts of missing data generally leads to larger gains in downstream pre-
dictive accuracy. There are a few exceptions to this, for example amelia, bpca, mean, 
and opt.knn on the PPMI dataset, and moving.avg on the DFCI dataset. In these 
cases, the largest improvement for med.knn occurs at the 10% missing level. For these 
several examples, it follows that med.knn does a much better job at simulating the train-
ing dataset with 10% missing data, but the other methods begin to catch up as the percent-
age of missing data increases.

Number of observations per patient In Fig. 9, we present the performance on the down-
stream tasks from the experiments in which we vary the time horizon which determines 
the number of observations per patient. We present the exact values and standard errors in 
this plot in the Appendix in Table 12. Across all of the experiments, we observe that the 
downstream performance of med.knn tends to improve as the time horizon increases, so 
that the dataset includes more observations per patient. However, for each dataset, after a 
certain point there are diminishing returns, so that adding more observations per patient to 
the dataset does not improve the performance on the downstream task.

For the FHS dataset, in which the task is to predict 10-year risk of stroke, the down-
stream AUC of med.knn plateau starts to plateau at a time horizon of 6 years. For the 
DFCI dataset, in which the task is to predict 60-day risk of mortality, the downstream AUC 
of med.knn starts to plateau around 3 years. Similarly, for the PPMI dataset, in which the 
task is to predict the next year MoCA score, the downstream MAE reaches a minimum 
value at 3 years.

In comparison to the other methods, we observe that med.knn tends to perform rel-
atively better with more observations per patient in the dataset. This indicates that the 
med.knn method is able to leverage the additional time series information more effi-
ciently than the other methods. The only exception to this is amelia on the DFCI dataset, 
which outperforms med.knn with time horizons of 3 and 5 years, respectively. However, 
we observe that the amelia method is more unstable, and med.knn outperforms this 
method for the longest time horizon of 10 years.

Mechanism of missing data In Fig. 10, we present the performance on the downstream 
tasks from the experiments in which we vary the mechanism of missing data. We present 
the exact values and standard errors in this plot in the Appendix in Table 14. In all of the 
experiments, we observe that the med.knn acheives the best downstream accuracy, typi-
cally by a substantial margin.

In the FHS dataset, the average AUC for med.knn remains around 0.89 and above 
across all proportions of MNAR data, while the second-best performing method mov-
ing.avg has an average AUC below 0.87. In the PPMI dataset, the downstream MAE 
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values for all of the methods increases approximately linearly as the ratio of MNAR data 
increases. As a result, the relative improvement of med.knn on downstream tasks remains 
large for all of the MNAR experiments on longitudinal datasets.

On the other hand, the relative improvement of med.knn on downstream tasks is more 
varied for the MNAR experiments on EHR data. In the DFCI dataset, the downstream 
AUC values for each of the methods increases significantly when gamma = 0.1, and then 
decreases gradually as gamma increases further. These results are somewhat counterin-
tuitive because the imputation errors for most of these methods increase significantly at 
gamma = 0.1, and then increase gradually afterwards. One possible explanation is that the 
DFCI dataset has some outlier values that tend to be missing under the MNAR mecha-
nism for electronic health record data (described in Sect. 3.2.2), which typically skew the 
downstream prediction results. At the peak when gamma = 0.1, the relative improvement 
of med.knn is very small, with a downstream AUC of 0.916 compared to the next best 
method mice which has a downstream AUC of 0.915. At the extreme when gamma = 1, 
the downstream AUC of med.knn is 0.912 compared to 0.904 for the next best methods 
(mice and bpca).

3.6  Discussion of the computational experiments on real‑world clinical datasets

In this section, we discuss the major takeaways from the computational experiments on 
real-world clinical datasets. For each dataset, we consider downstream models to predict 
patient outcomes that are clinically relevant, in order to simulate the performance of med.
knn in practical applications. For the FHS and PPMI datasets, which are longitudinal 
studies, the clinical outcomes of interest are 10-year risk of stroke and next year MoCA 
score, which can be predicted using the most recent observation for each patient. For the 
DFCI dataset, which is an EHR dataset, the clinical outcome of interest is 60-day risk of 
mortality for late-stage cancer patients, which requires us to train models using all of the 
observations from each patient (using the latest observation for each patient would bias the 
results). As a result, the evaluation of the downstream models is different between the data-
sets. Furthermore, we conduct non-identical experiments on each dataset due to inherent 
dissimilarities in the time series structure.

Due to the significant differences between each dataset, we can draw separate conclu-
sions from each one as a separate case study. The FHS dataset is a long term longitudinal 
study with many patients, few covariates, and a downstream classification task. In contrast, 
the PPMI dataset is a shorter longitudinal study with fewer patients, more covariates, and 
a downstream regression task. Finally, the DFCI dataset is an EHR dataset with irregularly 
recorded observations, the most patients, the most covariates, and a downstream classifica-
tion task. The results from the computational experiments demonstrate that med.knn per-
forms well across this range of diverse case studies. In particular, we show that this method 
performs well on datasets with: (1) large or small numbers of patients, (2) large or small 
numbers of covariates, and (3) regularly or irregularly recorded observations. Moreover, 
the application of med.knn for imputation led to improved downstream predictive perfor-
mance on two binary classification tasks and one regression task.

Prior to training the downstream models, we do not perform any further preprocess-
ing on the imputed data, so we preserve the correlation structure of the original dataset. 
As a result, since these are real-world datasets, there may be unexpected correlations 
between the predictors which impact the accuracy of the downstream models. One could 
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apply PCA or another dimensionality-reduction method to transform the feature space 
prior to training downstream models on the imputed datasets. However, this analysis is 
outside of the scope of this set of computational experiments.

In the Percentage of Missing Data experiments, we observe that increased imputa-
tion accuracy does not always translate into increased downstream model accuracy. 
For example, on the DFCI dataset, bpca performs poorly on the imputation task (see 
Fig.  1), but is one of the top-performing methods on the downstream predictive task 
(see Fig. 8). This is possible because in the downstream predictive task, some features 
are more significant than others, so having a large imputation error on the insignificant 
features may only result in a small decline in downstream model accuracy. However, 
we also observed that in all datasets, med.knn consistently performed best on both the 
imputation and downstream tasks, by a significant margin in most cases. These results 
suggest that for all three of the real-world datasets considered here, med.knn leads 
to improvements in imputation accuracy on the clinically significant covariates in each 
downstream model.

In the OPP experiments, the major trend that we observe is that the med.knn method 
performs significantly better with more time series data. For example, in the FHS dataset, 
the imputation accuracy and downstream performance of med.knn improves dramatically 
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Table 3  The Friedman Rank 
test results for the downstream 
predictive tasks varying the 
percentage of missing data from 
10 to 50% MCAR 

The table shows the value of Friedman’s Chi-squared statistic and 
p-value for the hypothesis test comparing med.knn against the 
benchmark methods for each experiment. The p-values are adjusted 
for multiple comparisons
*p < 0.1, **p < 0.05, ***p < 0.001

 % �2 statistic (adjusted p-value)

FHS DFCI PPMI

10 130 (< 0.001***) 210 (< 0.001***) 75 (< 0.001***)
20 130 (< 0.001***) 220 (< 0.001***) 53 (< 0.001***)
30 130 (< 0.001***) 260 (< 0.001***) 74 (< 0.001***)
40 110 (< 0.001***) 230 (< 0.001***) 58 (< 0.001***)
50 140 (< 0.001***) 270 (< 0.001***) 71 (< 0.001***)
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as OPP increases from one to four. This makes sense because as we include more observa-
tions per patient in the dataset, there is more relevant information available to impute the 
missing covariates for each patient. We expect that this explains why the relative improve-
ment of med.knn is less significant on the DFCI dataset for several of the experiments. 
In this dataset, over half of the patients have a single observation, so there is limited time 
series available to fill in the missing values for these patients. In contrast, in the FHS data-
set, every patient has 10 observations in the full dataset, so there is more data available to 
aid the imputation.

In the MNAR experiments, we demonstrate that med.knn works under missing data 
mechanisms that are frequently encountered in practice. Longitudinal studies often contain 
systematic missing information on some clinical examinations based on decisions made by 
the designers of the study. For example, the Framingham Heart Study dataset has expanded 
over time as clinicians have incorporated more and more variables that are suspected to 
be correlated with heart disease (Mahmood et  al. 2014). However, since some of these 
variables were not recorded initially, they are systematically missing from this dataset. In 
EHR datasets, clinical covariates recorded for each visit typically vary based the health 
condition of the patient. Patients at higher risk are likely to undergo more detailed medical 
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examinations, resulting in fewer missing values. Through the MNAR experiments for each 
case study, we show that med.knn is an effective method for imputing missing values 
under these specific mechanisms of missing data for longitudinal studies and EHR datasets.

4  Scaling experiments on simulated clinical datasets

In this section, we present scaling experiments on simulated clinical datasets. In Sect. 4.1, 
we describe the data generation process which allows us to construct simulated longitudi-
nal clinical datasets with 10,000’s of observations and 100’s of features. In Sect. 4.2, we 
describe the experimental setup of the scaling experiments, which considers two variations 
of the med.knn method. In Sect.  4.3, we report the results of the scaling experiments, 
including the imputation accuracy and timing results.

4.1  Simulated data: Synthea

We create synthetic EHR to test the performance of the algorithm in higher instances of 
both the number of observations and the number of features using the Synthea synthetic 
patient population simulator. It constitutes an open-source, synthetic patient generator 
that aims to model the medical history of patients using specific demographic informa-
tion (Walonoski et al. 2018). Patient records are generated using simulation processes that 
follow disease progression patterns published in the medical literature. For each synthetic 
patient, Synthea data contains a complete medical history, including medications, allergies, 
medical encounters, and social determinants of health. We pre-processed the records com-
bining them into a single dataset that contains a summary of all the information available 
at each visit.

Since we leverage this data source for experiments testing the scalability of the algo-
rithm, we do not limit the amount of observations to a specific number. Each patient in the 
data is associated on average with 20 distinct visits (observations). We aggregate the EHR 
into 344 distinct features. Each experiment randomly samples a subset of these features to 
compare the computational time needed by the algorithm. The covariates that comprise 
the data include demographic characteristics, diagnosis and procedure codes, medical pre-
scriptions, and lab test results. We do not include any downstream prediction task.

4.2  Experimental setup for the scaling experiments

In this section, we go over the experimental setup for the scaling experiments. We use 
synthetically generated data for EHR varying both the number of observations n and the 
number of features p. Our goal is to evaluate the scaling performance and accuracy of the 
algorithm comparing the two proposed methods for tuning the hyperparameters �d and hd.

One of the most well-established approach for hyperparameter tuning in machine 
learning is K-fold cross-validation (Kohavi et al. 1995). In the time series setting, Berg-
meir et  al. (2018) showed that this technique is applicable for time series models, in 
particular for the case of autoregression models. However, due to the large number of 
combinations of different values for �d and hd , in the case of med.knn, the computa-
tion time for the K-fold cross-validation scales at an quadratic rate as the number of 
covariates increases. For this reason, we propose a custom tuning procedure to select 
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the hyperparameters. We conduct a series of experiments comparing the following 
hyperparameter selection processes: 

1. Grid search This approach uses the well-established ten-fold cross-validation process 
to determine the hyperparameters hd and �d for every variable. Prior to solving the 
algorithm, 10% of the values of each feature are artificially removed. A set of values 
is defined and all their combinations are evaluated for each feature individually when 
solving the reduced version of the dataset. The grid for �d was set to [0.0, 0.1,… , 1.0] 
and for hd to [90, 180, 365, 1000].

2. Custom tuning The custom tuning procedure proposed in Sect. 2.4. This is a heuristic 
method to decompose the problem into multiple parts, first learning hd for each covari-
ate, and then learning �d for each covariate. This approach does not involve cross-vali-
dation and allows for parallel computations as the problem is fully decoupled.

For each experiment, we evaluate the imputation accuracy of each approach using the 
MAE and RMSE metrics, as defined in Equations 30 and 31. In addition, we also com-
pare their scaling performance by measuring the average time needed for completion. In 
these experiments, we did not consider the prediction task as in Sect. 3. Here, we limit 
the types of experiments only to Percentage of Missing Data following the experimental 
set up of Sect. 3.3.

We vary the number of features between [50,  100,  200,  300] and the number of 
observations between [1000,  12,  500,  25,  000,  50,  000,  75,  000]. These bounds were 
chosen as they represent the most common spectra of problem sizes that we encounter 
in healthcare applications. We repeat all experiments for five random seeds and average 
the results.
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Fig. 11  Average time for MedImpute methods to complete imputation tasks on the Synthea dataset using 
different procedures for hyperparameter tuning, with varying numbers of observations n and features p in 
the dataset
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4.3  Results of the scaling experiments

In this section, we present the results from the scaling experiments. In Fig. 11, we dem-
onstrate the timing results. While both the methods scale to the largest problem size 
with n = 75,000 observations and p = 300 features, the Custom Tuning procedure is 
−  60.42%  faster than Grid Search; the traditional cross-validation procedure. Across all 
experiments, Custom Tuning is on average − 87.05% faster than Grid Search. We notice 
that for the lower problem sizes, the Custom Tuning approach leads almost instantaneous 
algorithm completion while Gridsearch requires up to 12 h to solve.

Figure 12 presents the results referring to imputation accuracy. The two procedures lead 
to minimal differences in imputation performance. Across all experiments, the Custom 
Tuning procedure is slightly more accurate than the GridSearch procedure, with an aver-
age improvement of − 4.36% in MAE. The gap between the two processes is larger when 
n ∈ [25,000, 50,000] leading to an average reduction of − 8.81% of the imputation error. 
We also note that only when n = 1000 , GridSearch as the MAE is increased on average by 
2.82% by the new method. In all other combinations, Custom Tuning leads to more accu-
rate results with the maximum improvement reaching a reduction of 10.48% (n = 50,000 , 
p = 100 ). Detailed results for the RMSE metric are provided in Fig. 14 at the “Appendix”.

4.4  Discussion of the scaling experiments on simulated clinical datasets

The results from the scaling experiments demonstrate that the custom tuning procedure 
for the MedImpute hyperparameters �d and hd is highly effective and efficient. In particu-
lar, the proposed method significantly reduces the computational time required, while also 
giving a slight improvement in imputation accuracy as well compared to traditional cross-
validation. Using the methodology, we are able to scale the algorithm to higher problem 
instances without sacrificing its imputation performance.

An analysis of the runtime complexity of the two hyperparameter selection methods 
provides further insights into these results. The key bottleneck of the med.knn algo-
rithm is computing the K-NN assignment on � to update � in each coordinate descent 
step, which requires O(n log n) operations. The Grid Search procedure requires O(p2) 
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procedures for hyperparameter tuning, with varying numbers of observations n and features p in the dataset
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iterations to identify the best values for �d and hd , so the complete runtime for this method 
is O(np2 log n) . On the other hand, the Custom tuning procedure only requires O(p) itera-
tions because each hyperparameter for each covariate can be computed independently of 
the remaining covariates. As a result, this method scales in a linear fashion with respect to 
the number of covariates, and the full runtime is O(np log n).

Despite these theoretical asymptotic runtime guarantees, we recognize that the med.
knn method with the Custom Tuning procedure for hyperparameter tuning still takes up 
to 16 h in datasets with n ∼ 50,000 observations. However, given that the imputation task 
usually takes place once in the pre-processing part of the data analysis, we believe that the 
time cost is not significantly high. Moreover, the Custom tuning process allows for decou-
pling the problem in smaller instances. Thus, the application of parallel computing tech-
niques can further improve the scaling performance of the algorithm.

5  Discussion

MedImpute is an extension of the OptImpute framework introduced by Bertsimas et  al. 
(2018b). MedImpute uses the same optimization approach to solving the missing data 
problem. However, the optimization formulation is significantly different and more general 
than the OptImpute formulations in order to incorporate additional time series information 
present in cross-sectional data. The new formulation provides a structured way of account-
ing for observations from the same entity and re-weighting the objective function to incor-
porate time series information. As a result, the resulting imputation algorithm med.knn 
from the MedImpute framework outperforms opt.knn from the OptImpute framework 
and other benchmark imputation methods on real-world clinical datasets with patients 
observed over time.

In the MedImpute formulation, two new parameters are introduced, �d, hd , that are spe-
cific to each covariate d. The proposed Custom Tuning procedure allows for learning the 
values of these parameters more efficiently compared to a traditional Grid Search approach. 
In addition, these parameters are interpretable in a clinical context, yielding insights 
regarding the significance of time in their determination. For example, in the FHS dataset, 
we learn different values of �d for chronic disease indicators such as Type 2 Diabetes Mel-
litus (T2DM) and lab values such as Systolic Blood Pressure (SBP). It is likely that an indi-
vidual diagnosed with T2DM will continue to have this diagnosis regardless of the other 
covariates (American 2010), so MedImpute finds �d relatively close to 1 for this feature. 
On the other hand, the lab measurement of SBP may vary significantly during a single day 
(Millar-Craig et al. 1978), so previous observations of this covariate from the same individ-
ual provide relatively less information. For this feature, MedImpute finds �d closer to 0 so 
that the K-nearest neighbors are weighted more heavily in the imputation. In addition, we 
learn hd to determine the relative weights that we give to observations of feature d from the 
same individual based on time elapsed. MedImpute selects higher values of hd for features 
that change slowly over time such as the Body Mass Index and lower values for features 
that change rapidly over time such as SBP.

Beyond the healthcare setting, cross-sectional datasets are also quite common in other 
areas such as finance and economics. Our algorithm can be generalized and applied to any 
data where there is a time series component and multiple observations are tied to the same 
entity. The entity may represent a patient, as we portray in this work, or something else that 
is observed over time such as a financial organization, region, or country. Therefore, the 
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MedImpute imputation framework and the associated med.knn algorithm may be applied to 
impute missing values in other domains as well.

6  Conclusions

In this paper, we propose the optimization framework MedImpute that addresses the miss-
ing data problem for multivariate data in time series encountered in medical applications. We 
introduce a new imputation algorithm med.knn that yields high quality solutions using opti-
mization techniques combined with fast first-order methods. Through computational experi-
ments on three real-world clinical datasets, including two longitudinal studies and one EHR 
dataset, we show that med.knn offers statistically significant gains in imputation quality over 
state-of-the-art imputation methods, which leads to improved out-of-sample performance on 
downstream tasks. Through scaling experiments on a synthetic EHR dataset, we demonstrate 
that med.knn can be applied to complete datasets with 10,000’s of observations and 100’s 
of features. As a flexible, accurate, and intuitive approach, MedImpute has the potential to 
become an indispensable tool for applications with longitudinal missing data. Promising areas 
for future work include: (1) applications of this method to longitudinal datasets that are not 
related to healthcare, (2) additional experiments to assess the performance on downstream 
predictive tasks with transformed feature spaces, (3) extensions of the optimization framework 
to incorporate more specialized structure that is present in longitudinal healthcare datasets.
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Appendix

Detailed properties of real‑world clinical datasets

In this section, we provide additional details regarding the real-world clinical datasets 
which are used in the computational experiments. In Tables  5,  7, and  6, we show the 
percentage of missing data in each covariate for the FHS, PPMI, and the DFCI datasets, 
respectively. In Fig. 13, we show a histogram of the number of observations per patient in 
the DFCI dataset. Table 8 shows summary statistics of inter-visit time intervals (in days) 
for the DFCI dataset.

Supplemental experimental results

This section provides detailed results from the computational experiments on the real-
world datasets. Each table refers to either the imputation accuracy or downstream pre-
dictive performance for all FHS, DFCI, and PPMI. Tables 9 and 10 refer to the MCAR 
experiments when we vary the percentage of missing data from 10 to 50%. Tables  11 
and 12 show the performance of all methods when we vary the number of observations per 
patient. Tables 13 and 14 focus on the experiments where we vary the ratio of the missing 
data mechanism from � = 0 (30% MCAR, 0% MNAR) to � = 1 (0% MCAR, 30% MNAR).
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Medimpute hyperparameter tuning results for FHS experiments

In this section, we present the MedImpute hyperparameters which were selected for the 
FHS experiments. These hyperparameters were tuned via the custom procedure described 
in Sect. 2.4. The covariates in the FHS dataset are: 

 1. Afib Boolean whether or not the patient has a diagnosis of Atrial Fibrillation.
 2. Age Age of the patient (in years).
 3. AHT Boolean whether or not the patient has a diagnosis of Arterial Hypertension.
 4. BMI Body mass index of the patient.
 5. CVD Boolean whether or not the patient has a diagnosis of cardiovascular disease.
 6. Diabetes Boolean whether or not the patient has a diagnosis of Diabetes.
 7. Gender Gender of the patient.
 8. Glucose_bl Blood glucose level of the patient.
 9. HDL High-density lipoproteins level of the patient.
 10. LVH Boolean whether or not the patient has a diagnosis of left ventricular hypertrophy.
 11. SBP Systolic blood pressure of the patient.
 12. Smoking Categorical variable describing the smoking behavior of the patient.

Table 5  Percentage of missing 
data in each covariate in the 
original FHS dataset

Feature % Missing

HDL cholesterol levels 70.54
Hematocrit levels 30.53
History of diabetes 21.14
Blood glucose levels 14.91
Smoking 10.5
BMI 7.18
History of cardiovascular disease (CVD) 3.88
Presence of left ventricular hypertrophy (LVH) 2.15
Prescripion of antihypertensive medication (AHT) 1.93
Systolic blood pressure (SBP) 0.51
Age 0.07
Gender 0
History of atrial fibrilation (Afib) 0
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Table 6  Percentage of missing 
data in each covariate in the 
original DFCI dataset

Feature % Missing

History of psoriatic arthritis 99.98
Creatinine clearance levels 99.96
AFP mutation 99.91
CA.19.9 mutation 98.74
ALT mutation 96.92
AST mutation 96.92
CA.125 mutation 96.84
Direct Bilirubin levels 77.73
CEA mutation 69.32
CA.27.29 mutation 62.91
Percentage difference in weight from previous measure-

ment
50.88

Hispanic race 29
Hematocrit levels 25.15
Creatinine levels 24.59
Total Bilirubin levels 23.69
Albumin levels 23.61
White blood cells count 22.86
Systolic blood pressure levels 5.56
Pulse 5.56
Weight 0.46
History of myocardial infarction 0.1
History of congestive heart failure 0.1
History of peripheral artery disease 0.1
History of stroke 0.1
History of dementia 0.1
History of pulmonary disease 0.1
History of rheumatic disease 0.1
History of peptic ulcer disease 0.1
History of mild liver disease 0.1
History of diabetes mellitus 0.1
DMcx 0.1
History of paralysis 0.1
History of renal failure 0.1
History of severe liver disease 0.1
History of metabolic disease 0.1
History of HIV 0.1
Immunotherapy prescription 0
Targetted therapy prescription 0
Number of drugs prescribed 0
Number of blood transfusions 0
Total number of inpatient visits 0
Total number of outpatient visits 0
Line of therapy prescribed 0
General cancer stage 0
Pathological cancer stage 0
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Table 6  (continued) Feature % Missing

Clinical cancer stage 0
Number of diagnoses 0
Gender 0
White race 0
Black race 0
Age at diagnosis 0
Age at treatment 0
Divorced 0
Married 0
ACETAMINOPHEN 0
ALARIS 0
AMBULATORY 0
APREPITANT 0
ATROPINE 0
BEVACIZUMAB 0
BORTEZOMIB 0
CARBOPLATIN 0
CISPLATIN 0
CYCLOPHOSPHAMIDE 0
DARBEPOETIN 0
DEXAMETHASONE 0
DEXTROSE 0
DIPHENHYDRAMINE 0
DOCETAXEL 0
DOXORUBICIN 0
EPOETIN 0
ETOPOSIDE 0
EVACUATED 0
FAMOTIDINE 0
FILGRASTIM 0
FLUOROURACIL 0
FOSAPREPITANT 0
GEMCITABINE 0
IRINOTECAN 0
IV 0
LEUCOVORIN 0
LORAZEPAM 0
MAGNESIUM 0
MANNITOL 0
MEPERIDINE 0
MESNA 0
METHYLPREDNISOLONE 0
METOCLOPRAMIDE 0
NS 0
ONDANSETRON 0
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Supplemental synthetic experiments results

Figure  14 provides a direct comparison between the Custom Tuning and Grid Search 
parameter selection processes. We provide results with respect to the imputation error 
using the RMSE metric.

Nemenyi critical diagrams

In this section, we show Nemenyi Critical Diagrams (Ismail  Fawaz et  al. 2019) for 
the results from the Percentage of Missing Data experiments which are presented in 
Sect.  3. These graphs highlight statistically significant differences in the overall rank-
ings of the methods. To generate these diagrams, first the Friedman Rank Test was per-
formed to compare the relative performance of the different imputation methods in each 
experiment. Second, the Wilcoxon-Holm method was performed to detect pairwise sig-
nificance. In the diagram for a single experiment, each imputation method is plotted 
according to its average relative rank on a number line from one to seven. Methods 
which do not have statistically significant differences in their overall rankings are joined 
by a horizontal line.

In Figs. 15 and 16, we show the Nemenyi Critical Diagrams comparing the methods 
on the imputation tasks under the MAE and RMSE metrics, respectively. For the FHS 
and PPMI datasets, we observe that med.knn is consistently the top ranked method 
across all of the experiments. For the DFCI dataset, med.knn is consistently top 
ranked method under the MAE metric, however med.knn outperforms the benchmark 
methods by a smaller margin under the RMSE metric.

In Fig. 17, we show the Nemenyi Critical Diagrams comparing the methods on the 
downstream predictive tasks. Our results demonstrate the edge of the proposed algo-
rithm over the other missing data imputation methods considered. The performance gap 
is wider in the longitudinal datasets (FHS, PPMI) compared to the DFCI dataset. Nev-
ertheless, even in the latter case, we notice that med.knn improves upon the other best 
performing methods (mean and bpca).

Table 6  (continued) Feature % Missing

OXALIPLATIN 0
OXYCODONE 0
PACLITAXEL 0
PALONOSETRON 0
PEGFILGRASTIM 0
PEMETREXED 0
POTASSIUM 0
PROCHLORPERAZINE 0
RANITIDINE 0
SECONDARY 0
TRASTUZUMAB 0
VINORELBINE 0
ZOLEDRONIC 0
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Table 7  Percentage of missing data in each covariate in the original PPMI dataset

Feature % Missing

MDS-UPDRS total score 30.19
Hoehn and Yahr stage (on stage) 17.45
Hoehn and Yahr stage (off stage) 17.45
TD/PIGD classification—original categories 17.45
TD/PIGD classification—new categories 17.45
TD/PIGD classification Indeterminate 17.45
TD/PIGD classification PIGD 17.45
TD/PIGD classification TD 17.45
MDS-UPDRS part III score 17.45
Total rigidity score 17.39
Tremor score 17.39
MDS-UPDRS part III score 17.39
APOE genotype—number of e4 alleles 9.7
Change in diagnosis 5.04
Primary diagnosis: corticobasal degeneration 5.04
Primary diagnosis: Dementia with Lewy bodies 5.04
Primary diagnosis: idiopathic Parkinson’s disease 5.04
Primary diagnosis: multiple system atrophy 5.04
Primary diagnosis: no Parkinson’s disease nor other neurological disorder 5.04
Serum uric acid 4.33
SCOPA-AUT total score 1.42
SCOPA-AUT gastrointestinal (GI) score 0.97
Benton judgement of line orientation score 0.84
HVLT delayed recognition 0.84
HVLT false alarms 0.84
HLVT discrimination 0.84
Right caudate 0.78
Left caudate 0.78
Right putamen 0.78
Left putamen 0.78
REM sleep behavior disorder questionnaire score 0.65
Categorical REM sleep behavior disorder 0.65
Symbol digit modalities score 0.65
HVLT delayed recall 0.58
HLVT retention 0.58
Letter number sequencing score 0.58
SCOPA-AUT sexual dysfunction score 0.58
Semantic fluency score—animal subscore 0.58
Semantic fluency score—vegetable subscore 0.58
Semantic fluency score—fruit subscore 0.58
Semantic fluency total score 0.58
HVLT immediate/total recall 0.52
STAI trait sub-score 0.52
STAI total score 0.52
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Table 7  (continued)

Feature % Missing

Epworth sleepiness scale score 0.45
Categorical epworth sleepiness scale score 0.45
STAI state sub-score 0.45
QUIP disorder—hobbies 0.39
QUIP disorder—punding 0.39
QUIP disorder—walking or driving 0.39
Total rigidity score 0.39
Use of dopamine agonist 0.32
Use of dopamine agonist and other PD medication 0.32
Use of levodopa 0.32
Use of levodopa and dopamine agonist 0.32
Use of levodopa and dopamine agonist and other PD medication 0.32
Use of levodopa and other PD medication 0.32
Use of other PD medication 0.32
Unmedicated for PD 0.32
MDS-UPDRS Part I score 0.32
MDS-UPDRS Part I fatigue 0.32
MDS-UPDRS Part II score 0.32
Geriatric depression scale score 0.32
Categorical geriatric depression scale score 0.32
QUIP disorder—gambling 0.32
QUIP disorder—sex 0.32
QUIP disorder—buying 0.32
QUIP disorder—eating 0.32
General QUIP score 0.32
Any QUIP disorder 0.32
SCOPA-AUT cardiovascular score 0.32
SCOPA-AUT thermoregulatory score 0.32
MDS-UPDRS Part I cognitive impairment 0.26
MDS-UPDRS Part I hallucinations and psychosis 0.26
MDS-UPDRS Part I depressed mood 0.26
MDS-UPDRS Part I anxious mood 0.26
MDS-UPDRS Part I apathy mood 0.26
MDS-UPDRS Part I features of dopamine dysregulation syndrome 0.26
SCOPA-AUT urinary score 0.26
SCOPA-AUT pupillomotor score 0.26
Family History of Parkinson’s disease 0.26
Initial symptom (at diagnosis)—postural instability 0.26
Initial symptom (at diagnosis)—other 0.26
Age 0
Gender—Female 0
Gender—Male 0
Years of Education 0
Race—Hispanic/Latino 0
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Additional statistical significance tests for the percentage of missing data 
experiments

In this section, we present the results from statistical tests comparing the performance 
of the med.knn method at different levels of missing data. In particular, we run Welch 
two-sided t-tests evaluating whether med.knn leads to higher imputation error and lower 
downstream model accuracy as we increase the percentage of missing data. We run statisti-
cal tests for the following pairs of missing percentages: 10% versus 20%, 20% versus 30%, 
30% versus 40%, and 40% versus 50%.

The results from the t-tests comparing the imputation errors are summarized in 
Table 21. We observe that in all of the experiments, the imputation error significantly 
increases going from 40 to 50% missing values. Similarly, the imputation error signifi-
cantly increases going from 30 to 40% missing values with the exception of the DFCI 
dataset. For the MAE metric, most of the differences are not significant for percentage 
shifts below 30%. On the other hand, most of the differences for the percentage shifts 
below 30% are significant for the RMSE metric, with the exception of two cases where 
the opposite trend is observed.

Table 7  (continued)

Feature % Missing

Race—Non hispanic/non latino 0
Race—Asian 0
Race—Black 0
Race—Other 0
Race—White 0
Duration of Parkinson’s disease 0
Age Onset of Parkinson’s disease 0
Age at diagnosis 0
Brain side most affected at Parkinson’s disease onset 0
Initial symptom (at diagnosis)—resting tremor 0
Initial symptom (at diagnosis)—rigidity 0
Initial symptom (at diagnosis)—bradykinesia 0
Missing initial symptoms 0
SNCA rs356181 genotype—C.C 0
SNCA rs356181 genotype—C.T 0
SNCA rs356181 genotype—T.T 0
SNCA rs3910105 genotype—C.C 0
SNCA rs3910105 genotype—C.T 0
SNCA rs3910105 genotype—T.T 0
MAPT genotype—H1H1 0
MAPT genotype—H1H2 0
MAPT genotype—H2H2 0
Ipsliateral caudate 0
Ipsilateral striatum 0
Left striatum 0
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Fig. 13  Histogram of the number of observations per patient in the DFCI dataset

Table 8  Summary statistics of inter-visit time intervals (in days) for the DFCI dataset, where t
i
 is the time 

of visit i and t
1
 corresponds to the most recent visit for each patient

We consider 11 intervals because the maximum number of visits per patient is 12 in the DFCI dataset

d
i
= t

i
− t

i+1 Mean SD Median Min Max Range Skew

d
1
= t

1
− t

2
19.81 6.92 21.00 1.00 30.00 29.00 − 0.61

d
2
= t

2
− t

3
24.66 7.10 22.00 7.00 42.00 35.00 0.16

d
3
= t

3
− t

4
29.75 10.47 28.00 14.00 42.00 28.00 − 0.12

d
4
= t

4
− t

5
68.02 22.88 70.00 13.50 117.00 103.50 − 0.49

d
5
= t

5
− t

6
89.76 26.38 85.00 17.50 163.00 145.50 0.21

d
6
= t

6
− t

7
98.79 35.76 98.00 21.00 175.00 154.00 0.04

d
7
= t

7
− t

8
130.85 51.70 126.00 27.00 266.00 239.00 0.45

d
8
= t

8
− t

9
177.60 70.40 177.50 30.50 329.00 298.50 0.20

d
9
= t

9
− t

10
230.44 101.10 226.00 14.00 518.00 504.00 0.25

d
10

= t
10
− t

11
549.97 268.29 525.00 88.00 1344.00 1256.00 0.90

d
11

= t
11
− t

12
1236.95 626.50 1157.63 70.00 3022.00 2952.00 0.82
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Table 11  Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets, 
varying the time horizon which determines the number of observations per patient

The missing data mechanism is fixed to MCAR, and the total percentage of missing data is fixed to 50%. 
For an illustration, see Fig. 3

OPP  MAE (SE)

med.knn mice amelia moving.
avg

bpca mean opt.knn

DFCI
1 5.092 (0.190) 4.866 (0.579) 7.048 (2.543) 6.063 (0.065) 4.75 (0.806) 4.479 (0.066) 4.981 (0.666)
2 4.859 (0.290) 5.055 (0.853) 7.261 (2.569) 5.961 (0.087) 4.842 (0.906) 4.528 (0.075) 4.972 (0.650)
3 4.581 (0.154) 4.954 (0.673) 7.252 (2.003) 5.822 (0.117) 4.825 (0.917) 4.516 (0.083) 4.926 (0.648)
4 4.195 (0.170) 4.887 (0.655) 7.339 (2.008) 5.566 (0.098) 4.648 (0.874) 4.341 (0.057) 4.637 (0.482)
5 3.735 (0.183) 4.715 (0.474) 6.812 (1.664) 5.333 (0.083) 4.49 (1.001) 4.142 (0.050) 4.594 (0.495)
6 3.598 (0.194) 5.006 (0.594) 8.188 (2.299) 5.282 (0.112) 4.7 (1.311) 4.241 (0.051) 4.683 (0.457)
7 3.601 (0.205) 4.952 (0.523) 8.178 (2.212) 5.312 (0.108) 4.72 (1.314) 4.267 (0.048) 4.731 (0.415)
8 3.749 (0.099) 5 (0.456) 9.01 (2.149) 5.34 (0.104) 4.911 (1.635) 4.345 (0.047) 4.977 (0.475)
9 3.9 (0.131) 5.292 (0.391) 9.613 (2.236) 5.572 (0.127) 5.28 (2.080) 4.562 (0.063) 5.117 (0.237)
10 3.717 (0.129) 5.198 (0.420) 10.579 (2.651) 5.444 (0.104) 5.225 (2.241) 4.484 (0.058) 5.027 (0.455)
11 3.574 (0.140) 5.086 (0.335) 9.84 (2.205) 5.373 (0.106) 5.271 (2.444) 4.423 (0.055) 5.013 (0.369)
12 3.568 (0.156) 5.139 (0.407) 10.126 (1.955) 5.342 (0.107) 4.679 (1.570) 4.367 (0.049) 5.044 (0.466)

OPP  MAE (SE)

med.knn mice amelia moving.
avg

bpca mean opt.knn

FHS
1 0.489 (0.006) 0.593 (0.010) 0.667 (0.017) 0.598 (0.004) 0.52 (0.014) 0.498 (0.004) 0.472 (0.013)
2 0.371 (0.006) 0.592 (0.008) 0.661 (0.014) 0.477 (0.006) 0.499 (0.006) 0.498 (0.006) 0.46 (0.007)
3 0.318 (0.006) 0.585 (0.008) 0.665 (0.018) 0.431 (0.006) 0.496 (0.004) 0.497 (0.004) 0.459 (0.004)
4 0.299 (0.005) 0.591 (0.006) 0.665 (0.015) 0.418 (0.006) 0.501 (0.005) 0.499 (0.004) 0.463 (0.004)
5 0.291 (0.005) 0.59 (0.010) 0.656 (0.018) 0.418 (0.004) 0.504 (0.003) 0.502 (0.005) 0.466 (0.006)
6 0.286 (0.005) 0.593 (0.008) 0.66 (0.016) 0.427 (0.004) 0.504 (0.005) 0.504 (0.005) 0.469 (0.005)
7 0.286 (0.005) 0.599 (0.009) 0.661 (0.014) 0.442 (0.005) 0.508 (0.006) 0.511 (0.005) 0.478 (0.006)
8 0.289 (0.004) 0.607 (0.010) 0.665 (0.012) 0.455 (0.004) 0.519 (0.002) 0.519 (0.004) 0.486 (0.005)
9 0.295 (0.003) 0.611 (0.009) 0.666 (0.011) 0.47 (0.005) 0.53 (0.006) 0.528 (0.006) 0.495 (0.007)
10 0.289 (0.004) 0.615 (0.009) 0.668 (0.011) 0.482 (0.004) 0.534 (0.005) 0.534 (0.005) 0.501 (0.006)

OPP  MAE (SE)

med.knn mice amelia moving.
avg

bpca mean opt.knn

PPMI
1 2.106 (0.035) 2.336 (0.053) 3.23 (0.964) 3.222 (0.019) 2.556 (0.058) 2.202 (0.019) 2.317 (0.197)
2 1.658 (0.032) 2.236 (0.051) 2.876 (1.429) 2.717 (0.034) 2.308 (0.040) 2.198 (0.019) 2.016 (0.087)
3 1.394 (0.024) 2.171 (0.082) 2.623 (1.243) 2.458 (0.023) 2.359 (0.063) 2.194 (0.060) 2.079 (0.173)
4 1.284 (0.025) 2.181 (0.021) 2.605 (0.660) 2.358 (0.026) 2.42 (0.038) 2.234 (0.031) 1.996 (0.028)
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Table 12  Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying the 
time horizon which determines the number of observations per patient

The missing data mechanism is fixed to MCAR, and the total percentage of missing data is fixed to 50%. 
For an illustration, see Fig. 9

OPP  AUC (SE)

med.knn mice amelia moving.
avg

bpca mean opt.knn

FHS
1 0.778 (0.029) 0.789 (0.028) 0.742 (0.034) 0.786 (0.026) 0.819 (0.023) 0.806 (0.026) 0.798 (0.020)
2 0.835 (0.024) 0.777 (0.027) 0.74 (0.030) 0.815 (0.024) 0.8 (0.035) 0.79 (0.026) 0.781 (0.030)
3 0.868 (0.023) 0.79 (0.032) 0.738 (0.037) 0.842 (0.019) 0.806 (0.040) 0.804 (0.032) 0.797 (0.034)
4 0.864 (0.026) 0.772 (0.025) 0.736 (0.040) 0.837 (0.022) 0.786 (0.021) 0.781 (0.031) 0.764 (0.033)
5 0.862 (0.020) 0.782 (0.036) 0.741 (0.030) 0.839 (0.022) 0.799 (0.017) 0.788 (0.033) 0.778 (0.035)
6 0.865 (0.014) 0.778 (0.024) 0.745 (0.030) 0.84 (0.017) 0.783 (0.032) 0.783 (0.024) 0.77 (0.027)
7 0.86 (0.028) 0.775 (0.032) 0.732 (0.034) 0.838 (0.025) 0.773 (0.027) 0.781 (0.031) 0.764 (0.031)
8 0.882 (0.015) 0.769 (0.036) 0.733 (0.034) 0.835 (0.026) 0.785 (0.024) 0.779 (0.032) 0.757 (0.037)
9 0.873 (0.018) 0.772 (0.038) 0.743 (0.035) 0.827 (0.022) 0.787 (0.030) 0.773 (0.040) 0.757 (0.037)
10 0.864 (0.016) 0.769 (0.024) 0.735 (0.037) 0.827 (0.018) 0.768 (0.021) 0.768 (0.021) 0.749 (0.029)

OPP  AUC (SE)

med.knn mice amelia moving.
avg

bpca mean opt.knn

DFCI
1 0.845 (0.017) 0.857 (0.016) 0.854 (0.012) 0.835 (0.016) 0.854 (0.017) 0.854 (0.016) 0.846 (0.017)
2 0.838 (0.023) 0.844 (0.015) 0.831 (0.015) 0.83 (0.017) 0.842 (0.018) 0.842 (0.019) 0.835 (0.019)
3 0.84 (0.021) 0.845 (0.019) 0.838 (0.021) 0.83 (0.020) 0.841 (0.020) 0.841 (0.020) 0.836 (0.021)
4 0.847 (0.017) 0.845 (0.017) 0.845 (0.020) 0.836 (0.018) 0.843 (0.020) 0.844 (0.018) 0.84 (0.020)
5 0.862 (0.015) 0.85 (0.017) 0.855 (0.015) 0.85 (0.017) 0.852 (0.017) 0.852 (0.017) 0.844 (0.019)
6 0.872 (0.014) 0.858 (0.015) 0.859 (0.020) 0.858 (0.015) 0.865 (0.017) 0.865 (0.017) 0.853 (0.018)
7 0.878 (0.014) 0.862 (0.015) 0.865 (0.018) 0.864 (0.014) 0.867 (0.016) 0.867 (0.015) 0.858 (0.016)
8 0.878 (0.019) 0.866 (0.018) 0.873 (0.017) 0.866 (0.016) 0.871 (0.017) 0.871 (0.017) 0.861 (0.019)
9 0.882 (0.012) 0.872 (0.015) 0.865 (0.012) 0.867 (0.013) 0.873 (0.016) 0.873 (0.016) 0.867 (0.017)
10 0.889 (0.015) 0.878 (0.018) 0.9 (0.014) 0.872 (0.016) 0.881 (0.019) 0.881 (0.019) 0.873 (0.020)
11 0.89 (0.014) 0.881 (0.017) 0.906 (0.026) 0.874 (0.015) 0.886 (0.016) 0.886 (0.016) 0.881 (0.017)
12 0.889 (0.017) 0.879 (0.019) 0.881 (0.017) 0.872 (0.016) 0.884 (0.018) 0.884 (0.018) 0.879 (0.018)

OPP  MAE (SE)

med.knn mice amelia moving.
avg

bpca mean opt.knn

PPMI
1 2.116 (0.076) 2.183 (0.058) 2.12 (0.079) 2.249 (0.094) 2.08 (0.063) 2.104 (0.098) 2.087 (0.107)
2 1.982 (0.102) 2.141 (0.047) 2.094 (0.115) 2.167 (0.088) 2.101 (0.075) 2.1 (0.099) 2.089 (0.081)
3 1.899 (0.089) 2.09 (0.062) 2.075 (0.090) 2.071 (0.081) 2.03 (0.121) 2.029 (0.120) 2.009 (0.082)
4 1.923 (0.040) 2.138 (0.032) 2.126 (0.078) 2.076 (0.063) 2.101 (0.058) 2.126 (0.034) 2.097 (0.050)
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Table 15  Median halflife 
parameter selected for each 
covariate in the FHS dataset in 
the MCAR missing percentage 
experiments with 10 observations 
per patient

Covariate Missing %

10 20 30 40 50

Afib 365 365 365 365 365
Age 180 180 180 180 180
AHT 365 365 1000 1000 1000
BMI 365 365 1000 1000 1000
CVD 365 365 365 365 365
diabetes 1000 1000 1000 1000 1000
Gender 1 1 1 1 1
Glucose_bl 1000 1000 1000 1000 1000
HDL 1000 1000 1000 1000 1000
Hemat 1000 1000 1000 1000 1000
LVH 1000 1000 1000 1000 1000
SBP 1000 1000 1000 1000 1000
Smoking 1000 1000 1000 1000 1000

Table 16  Median alpha 
parameter selected for each 
covariate in the FHS dataset in 
the MCAR Missing Percentage 
experiments with 10 observations 
per patient

Covariate Missing %

10 20 30 40 50

Afib 1 1 1 1 1
Age 1 1 1 1 0.95
AHT 1 1 1 1 1
BMI 1 1 1 1 1
CVD 1 1 1 1 1
diabetes 1 1 1 1 1
Gender 1 1 1 1 1
Glucose_bl 0.65 0.6 0.6 0.55 0.5
HDL 0.85 0.85 0.85 0.85 0.85
Hemat 0.8 0.8 0.8 0.75 0.75
LVH 1 1 1 1 1
SBP 0.85 0.85 0.8 0.75 0.75
Smoking 1 1 1 1 1
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Table 17  Median halflife parameter selected for each covariate in the FHS dataset in the MCAR OPP 
experiments with 50% missing data

Covariate Observations per patient (OPP)

1 2 3 4 5 6 7 8 9 10

Afib 1 1 1000 1000 365 365 365 365 365 365
Age 1 1 90 90 180 180 180 180 180 180
AHT 1 1 1000 1000 1000 1000 1000 1000 1000 1000
BMI 1 1 365 365 1000 1000 1000 1000 1000 1000
CVD 1 1 180 365 365 365 365 365 365 365
diabetes 1 1 1000 1000 1000 1000 1000 1000 1000 1000
Gender 1 1 1 1 1 1 1 1 1 1
Glucose_bl 1 1 1000 1000 1000 1000 1000 1000 1000 1000
HDL 1 1 1000 1000 1000 1000 1000 1000 1000 1000
Hemat 1 1 1000 1000 1000 1000 1000 1000 1000 1000
LVH 1 1 1000 1000 1000 1000 1000 1000 1000 1000
SBP 1 1 1000 1000 1000 1000 1000 1000 1000 1000
Smoking 1 1 365 1000 1000 1000 1000 1000 1000 1000

Table 18  Median alpha parameter selected for each covariate in the FHS dataset in the MCAR OPP experi-
ments with 50% missing data

Covariate Observations per patient (OPP)

1 2 3 4 5 6 7 8 9 10

Afib 0 1 1 1 1 1 1 1 1 1
Age 0 0.8 0.8 0.8 0.85 0.85 0.9 0.9 0.9 0.95
AHT 0 1 1 1 1 1 1 1 1 1
BMI 0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1
CVD 0 1 1 1 1 1 1 1 1 1
diabetes 0 1 1 1 1 1 1 1 1 1
Gender 0 1 1 1 1 1 1 1 1 1
Glucose_bl 0 0.6 0.6 0.5 0.55 0.5 0.55 0.55 0.5 0.5
HDL 0 0.9 0.85 0.9 0.9 0.85 0.9 0.85 0.85 0.85
Hemat 0 0.8 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75
LVH 0 1 1 1 1 1 1 1 1 1
SBP 0 0.65 0.6 0.65 0.65 0.65 0.7 0.7 0.7 0.75
Smoking 0 1 1 1 1 1 1 1 1 1
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Table 19  Median halflife parameter selected for each covariate in the FHS dataset in the MNAR experi-
ments with 50% missing data and 10 observations per patient

Covariate Gamma

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Afib 365 1000 365 365 365 365 365 365 365 365 365
Age 180 180 180 180 180 180 180 180 180 180 180
AHT 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
BMI 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
CVD 365 365 365 365 365 365 365 365 365 365 365
diabetes 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Gender 1 1 1 1 1 1 1 1 1 1 1
Glucose_bl 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
HDL 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Hemat 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
LVH 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
SBP 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Smoking 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 20  Median alpha parameter selected for each covariate in the FHS dataset in the MNAR experiments 
with 50% missing data and 10 observations per patient

Covariate Gamma

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Afib 1 1 1 1 1 1 1 1 1 1 1
Age 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
AHT 1 1 1 1 1 1 1 1 1 1 1
BMI 1 1 1 1 1 1 1 1 1 1 1
CVD 1 1 1 1 1 1 1 1 1 1 1
diabetes 1 1 1 1 1 1 1 1 1 1 1
Gender 1 1 1 1 1 1 1 1 1 1 1
Glucose_bl 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.5 0.5 0.5 0.5
HDL 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Hemat 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
LVH 1 1 1 1 1 1 1 1 1 1 1
SBP 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Smoking 1 1 1 1 1 1 1 1 1 1 1
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Fig. 14  Average RMSE imputation errors for MedImpute methods on the Synthea dataset using different 
procedures for hyperparameter tuning, with varying numbers of observations n and features p in the dataset

Fig. 15  Nemenyi critical diagrams comparing the relative ranking of all methods on the imputation tasks 
varying the percentage of missing data with respect to the MAE metric. Diagrams are shown for the FHS, 
DFCI, and PPMI datasets (right to left) and varying levels of missing data from 10 to 50% (top to bottom). 
In each diagram, imputation methods are plotted according to their average relative rankings on a number 
line from one to seven. Methods which do not have statistically significant differences in their overall rank-
ings are joined by a horizontal line
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Fig. 16  Nemenyi Critical Diagrams comparing the relative ranking of all methods on the imputation tasks 
varying the percentage of missing data with respect to the RMSE metric. Diagrams are shown for the FHS, 
DFCI, and PPMI datasets (right to left) and varying levels of missing data from 10 to 50% (top to bottom). 
In each diagram, imputation methods are plotted according to their average relative rankings on a number 
line from one to seven. Methods which do not have statistically significant differences in their overall rank-
ings are joined by a horizontal line

Fig. 17  Nemenyi Critical Diagrams comparing the relative ranking of all methods on the downstream pre-
dictive tasks varying the percentage of missing data. For the FHS and DFCI datasets, rankings are based 
upon the out-of-sample AUC metric, and for the PPMI dataset, rankings are based upon the out-of-sample 
MAE metric. Diagrams are shown for the FHS, DFCI, and PPMI datasets (right to left) and varying levels 
of missing data from 10 to 50% (top to bottom). In each diagram, imputation methods are plotted according 
to their average relative rankings on a number line from one to seven. Methods which do not have statisti-
cally significant differences in their overall rankings are joined by a horizontal line



246 Machine Learning (2021) 110:185–248

1 3

The results from the t-tests comparing the downstream model performance are summa-
rized in Table 22. In all but one case, we observe that the downstream model performance 
significantly declines as the percentage of missing data increases.
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