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Abstract
In supervised learning, we often face with ambiguous (A) samples that are difficult to label 
even by domain experts. In this paper, we consider a binary classification problem in the 
presence of such A samples. This problem is substantially different from semi-supervised 
learning since unlabeled samples are not necessarily difficult samples. Also, it is different 
from 3-class classification with the positive (P), negative (N), and A classes since we do 
not want to classify test samples into the A class. Our proposed method extends binary 
classification with reject option, which trains a classifier and a rejector simultaneously 
using P and N samples based on the 0-1-c loss with rejection cost c. More specifically, we 
propose to train a classifier and a rejector under the 0-1-c-d loss using P, N, and A samples, 
where d is the misclassification penalty for ambiguous samples. In our practical imple-
mentation, we use a convex upper bound of the 0-1-c-d loss for computational tractability. 
Numerical experiments demonstrate that our method can successfully utilize the additional 
information brought by such A training data.

Keywords Ambiguous samples · Classification with reject option · Binary classification

1 Introduction

Supervised learning has been successfully deployed in various real-world applications, 
such as medical diagnosis (Bar et al. 2015; Wang et al. 2016; Esteva et al. 2017) and manu-
facturing systems (Park et al. 2016; Ren et al. 2017). However, when the amount of labeled 
data is limited, current supervised learning methods still do not work reliably (Pesapane 
et al. 2018).

To efficiently obtain labeled data, domain knowledge has been used in many appli-
cation areas (Ren et al. 2017; Cruciani et al. 2018; Konishi et al. 2019; Bejnordi et al. 
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2017). However, as some studies have pointed out (Wagner et al. 2005; Li et al. 2016; 
Shahriyar et al. 2018), there are often ambiguous samples that are substantially difficult 
to label even by domain experts.

The goal of this paper is to propose a novel classification method that can handle 
such ambiguous data. More specifically, we consider a binary classification problem 
where, in addition to positive (P) and negative (N) samples, ambiguous (A) samples are 
available for training a classifier.

Naively, we may consider employing 3-class classification methods for the P, N, and 
A classes. However, since we classify test samples only in the P or N class, not in the A 
class, naive 3-class methods cannot be directly used in our problem. Moreover, they can-
not utilize the information that the A class exists between the P and N classes. Another 
related approach is classification with reject option (Bartlett and Wegkamp 2008; Cortes 
et al. 2016), where ambiguous test samples are not classified into the P or N classes, but 
rejected. However, classification methods with reject option do not consider ambiguous 
samples in the training phase and thus they cannot be employed in the current scenario.

Semi-supervised learning may also be related to the current problem, where unla-
beled data is used for training a classifier in addition to P and N data (Odena 2016; 
Sakai et  al. 2017). In semi-supervised learning, unlabeled samples are P and N sam-
ples that have not yet been labeled and they are not necessarily difficult samples to be 
labeled. On the other hand, in our target problem of classification with ambiguous data, 
ambiguous data are typically distributed in the intersection of the P and N classes. Thus, 
since the problem setups are intrinsically different, merely using semi-supervised learn-
ing methods in the current problem may not be promising.

Classification with imperfect labeling (Cannings et al. 2020) allows incorrect labels 
in training data, so it can be useful to deal with a dataset where annotators forcibly give 
positive or negative labels to all samples. Open-set classification (Scheirer et al. 2012) 
detects samples classified into none of the training classes and classifies them into the 
“unknown” class, so we can apply it when we deal with a dataset where annotators skip 
labeling hard-to-label samples and we classify test samples into the P, N or A class. 
However, those two approaches are still different from our problem setting in terms of 
labels in input and output data. Table  1 summerizes the problem setting of different 
approaches.

To effectively solve the problem of classification with ambiguous data, we propose to 
extend classification with reject option that trains a classifier and a rejector simultaneously 
using P and N samples based on the 0-1-c loss with rejection cost c (Cortes et al. 2016). 
Our proposed method trains a classifier and a rejector under the 0-1-c-d loss using P, N, 
and A samples, where d is the misclassification penalty for ambiguous samples. Then, in 
the test phase, we use the trained classifier to assign P or N labels to test samples. How-
ever, in the same way as the 0-1-c loss, directly performing optimization with the 0-1-c-d 
loss is cumbersome due to its discrete nature. To cope with this problem, we introduce a 
convex upper bound of the 0-1-c-d loss and use it in our practical implementation. Through 
experiments, we demonstrate that the proposed method can improve the test classification 
accuracy by utilizing A samples in the training phase. We also consider a simple heuristic 
that we randomly relabel ambiguous samples into the positive or negative class and apply 
classification with reject option. We show that the heuristic is essentially equivalent to a 
special case of the proposed method, and thus it can be an easy-to-implement alternative to 
the proposed method.

The rest of this paper is organized as follows. We briefly review supervised learning 
in Sect. 2. Then, we define our problem setting and describe the details of our proposed 
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method in Sect.  3 . In Sect.  4, we experimentally evaluate its performance. Finally, in 
Sect. 5, we summarize our contributions and describe future works.

2  Supervised classification

In this section, we first define the standard supervised classification problem and then 
review its standard solution.

2.1  Formulation

Let x ∈ X  be an input point and y ∈ Y = {1,−1} denote a binary label, which corresponds 
to the positive and negative classes, respectively. Suppose that we are given a set of posi-
tive and negative samples {(xi, yi)}Ni=1 drawn independently from the probability distribu-
tion with density p(x, y) defined on X × Y . Let h ∶ X → ℝ denote a discriminant function, 
with which a class label is predicted for test input point x as ŷ = sign(h(x)).

The goal is to train the discriminant function h so that the expected misclassification 
rate is minimized. Let us define the 0-1 loss as

where 1A is the indicator function that takes 1 if statement A is true and 0 otherwise. Then, 
we can express this problem as

where h∗ denotes the optimal discriminant function and �p(x,y) denotes the expectation over 
p(x, y). In practice, since we do not know the true density p(x, y), we usually use the empir-
ical distribution to approximate the expectation:

Based on Eqs. (1) and (2), we can formulate various classification methods depending on 
loss functions (Sugiyama 2015). In the rest of this section, we introduce the support vec-
tor machine (SVM) (Vapnik 1995), which is one of the most basic algorithms of binary 
classification.

2.2  Support vector machine (SVM)

Because optimization with L01(h, x, y) is computationally intractable, it is not practical to 
optimize the empirical risk R̂(h) directly. To overcome this problem, the hinge loss, an 
upper bound of L01(h, x, y) called the hinge loss, defined by

has been introduced as its surrogate. Since the hinge loss is convex, optimization can be 
reduced to a convex program. Further introducing the L2 regularization, basis functions 

(1)L01(h, x, y) = 1yh(x)≤0,

h∗ = argmin
h

R(h),

R(h) = �p(x,y)

[
L01(h, x, y)

]
,

(2)R̂(h) =
1

N

N∑
i=1

L01(h, xi, yi).

(3)LH(h, x, y) = max (1 − yh(x), 0),
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�1(x),… ,�N(x) , and slack variables 𝜉 = (𝜉1,… , 𝜉N)
⊤ with ⊤ being the transpose, the fol-

lowing quadratic program can be obtained as a dual optimization problem:

where w = (w1,… ,wN)
⊤ are the coefficients of the discriminant function, 𝜆 > 0 is the 

L2 regularization parameter, and hi is the value of the discriminant function at sam-
ple point xi given by hi =

∑N

j=1
wj�j(xi) . The resulting discriminant function is given by 

h(x;ŵ) =
∑N

j=1
ŵj𝜙j(x).

3  Classification with ambiguous data

In this section, we formulate our target problem called classification with ambiguous data 
(CAD) and propose a new method for solving the CAD.

3.1  Formulation

We consider three class labels, i.e,. positive, ambiguous, and negative: y ∈ Y0 = {1, 0,−1} . 
Suppose that we are given a set of positive, ambiguous, and negative samples {(xi, yi)}Ni=1 
drawn independently from the probability distribution with density p0(x, y) defined on 
X × Y0 . Our goal is still to learn a discriminant function that classifies test samples into 
either the positive or negative class (not in the ambiguous class). Our key question in this 
scenario is if we can utilize the ambiguous training data to improve the classification accu-
racy of the discriminant function.

In this section, we develop a new method based on a method of classification with reject 
option (CRO) (Cortes et  al. 2016). For this reason, before deriving the new method, we 
first review the CRO method.

3.2  Classification with reject option by SVM (CRO‑SVM)

Cortes et  al. (2016) introduced a rejection function r ∶ X → ℝ to identify the regions 
with high risk for misclassification, in addition to discriminating the positive and negative 
classes. When the rejection function takes a positive value, the corresponding sample is 
accepted and is classified into the positive or negative class by classifier h; otherwise, the 
sample is rejected and is not classified. When a sample is rejected, the rejection cost c is 
incurred, which trades off the risk of misclassification and the cost of rejection. To realize 
this idea, the 0-1-c loss was introduced:

When c = 0 , all samples are rejected because the loss function does not incur any cost. 
On the other hand, when c ≥ 0.5 , no samples are rejected because the expectation of the 
0-1 loss is less than 0.5; in that case, the 0-1-c loss is reduced to the 0-1 loss. Therefore, 

(4)
(ŵ, 𝜉) = argmin

(w,𝜉)

�
𝜆

2
‖w‖2 + 1

N

N�
i=1

𝜉i

�

s.t.

�
𝜉i ≥ 1 − yihi

𝜉i ≥ 0

�
for i = 1,… ,N,

(5)L01c(h, r, x, y) = 1yh(x)≤01r(x)>0 + c1r(x)≤0.
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effectively, we only consider c such that 0 < c < 0.5 . The rejection function and the discri-
minant function are simultaneously learned from training data.

Similarly to the 0-1 loss, the 0-1-c loss has discrete nature and thus its direct optimiza-
tion is computationally intractable. To avoid the discontinuity, the following surrogate loss 
called the max-hinge (MH) loss was introduced:

where 𝛼, 𝛽 > 0 are the hyperparameters to control the shape of the surrogate loss.
In the same manner as the original SVM, introducing the L2 regularization, basis func-

tions, and slack variables yields the following quadratic program:

where w = (w1,… ,wN)
⊤ are the coefficients of the discriminant function, u = (u1,… , uN)

⊤ 
are the coefficients of the rejection function, 𝜆, 𝜆′ > 0 are the L2 regularization parame-
ters, and hi and ri denote the values of the discriminant function and rejection function at 
sample point xi given by hi =

∑N

j=1
wj�j(xi) and ri =

∑N

j=1
uj�j(xi) , respectively. The result-

ing discriminant function and rejection function are given by h(x;ŵ) =
∑N

j=1
ŵj𝜙j(x) and 

r(x;û) =
∑N

j=1
ûj𝜙j(x).

We refer to this method as CRO-SVM.

3.3  Proposed method: classification with ambiguous data by SVM (CAD‑SVM)

To handle ambiguous training data in the SVM formulation, we extend the 0-1-c loss to the 
0-1-c-d loss defined as

Tables 2 and 3 compare the behavior of the 0-1-c loss and the 0-1-c-d loss. For positive 
and negative samples, the 0-1-c-d loss behaves the same as the 0-1-c loss. On the other 
hand, for ambiguous samples, the 0-1-c-d loss incurs penalty d when they are classified 
into the positive or negative class. Therefore, ambiguous samples tend to be classified into 

(6)LMH(h, r, x, y) = max
(
1 +

�

2
(r(x) − yh(x)), c(1 − �r(x)), 0

)
,

(7)

(ŵ, û, 𝜉) = argmin
(w,u,𝜉)

�
𝜆

2
‖w‖2 + 𝜆�

2
‖u‖2 + 1

N

N�
i=1

𝜉i

�

s.t.

⎛⎜⎜⎝

𝜉i ≥ 1 +
𝛼

2

�
ri − yihi

�
𝜉i ≥ c(1 − 𝛽ri)

𝜉i ≥ 0

⎞⎟⎟⎠
for i = 1,… ,N,

(8)L01cd(h, r, x, y) = 1y2=1
(
1yh(x)≤01r(x)>0 + c1r(x)≤0

)
+ d1y=01r(x)>0.

Table 2  The 0-1-c loss function Label y Judgement (h, r)

Positive Rejected Negative

h > 0 r ≤ 0 h ≤ 0

r > 0 r > 0

Positive y = 1 0 c 1
Negative y = −1 1 c 0
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the ambiguous class if we employ the 0-1-c-d loss. Compared to the CRO formulation, 
where a rejector cannot be learned explicitly from positive and negative samples, the CAD 
utilizes ambiguous samples to learn a rejector explicitly.

The above discussion may mislead us as if we are just solving a 3-class problem with the 
positive, ambiguous, and negative classes. However, we do not classify test samples into the 
ambiguous class, but only into the positive and negative classes. To solve the CAD problem, 
we utilize a binary discriminant function h and a rejection function r, as in the CRO formula-
tion reviewed above. More specifically, we train h and r under the 0-1-c-d loss, and we only 
use h in the test phase to classify test samples into the positive and negative classes. Thanks 
to the interplay between h and r in the 0-1-c-d loss, we can utilize ambiguous data to train h 
through r.

Similarly to the 0-1-c loss, we consider the following convex upper bound of the 0-1-c-d 
loss called the max-hinge-ambiguous (MHA) loss as a surrogate to avoid its discrete nature:

where � ≥ 1 is the hyperparameter to control the shape of the surrogate loss. See Fig. 1 for 
its visualization.

Then, in the same way as the CRO-SVM, we have the following quadratic program:

(9)

L01cd(h, r, x, y) ≤ 1y2=1LMH(h, r, x, y) + d1y=0 max (1 + �r(x), 0)

= y2 max
(
1 +

�

2
(r(x) − yh(x)), c(1 − �r(x)), 0

)

+ (1 − y2)max (d(1 + �r(x)), 0)

≤ y2 max
(
1 +

�

2
(r(x) − yh(x)), �c(1 − �r(x)), 0

)

+ (1 − y2)max (�d(1 + �r(x)), 0)

≡ LMHA(h, r, x, y),

(10)

(ŵ, û, 𝜉) = argmin
(w,u,𝜉)

�
𝜆

2
‖w‖2 + 𝜆�

2
‖u‖2 + 1

N

N�
i=1

𝜉i

�

s.t.

⎛
⎜⎜⎜⎝

𝜉i ≥ y2
i

�
1 +

𝛼

2
(ri − yihi)

�

𝜉i ≥ y2
i
𝜂c(1 − 𝛽ri)

𝜉i ≥ (1 − y2
i
)𝜂d(1 + 𝛽ri)

⎞
⎟⎟⎟⎠

for i = 1,… ,N.

Table 3  The 0-1-c-d loss 
function

Label y Judgement (h, r)

Positive Ambiguous Negative

h > 0 r ≤ 0 h ≤ 0

r > 0 r > 0

Positive y = 1 0 c 1
Ambiguous y = 0 d 0 d
Negative y = −1 1 c 0
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This is our proposed method called CAD-SVM. The computational complexity of the 
CAD-SVM depends on implementation of the quadratic program. It naively costs O(N3) , 
but if we use a fixed number of basis functions, the complexity reduces to O(N).

The MHA loss depends on the choice of hyperparameters (�, �, �) . To find good 
hyperparameter values, let us analyze the 0-1-c-d loss first.

For each x ∈ X  , let �+(x) = p0(y = 1|x) , �0(x) = p0(y = 0|x) , and 
�−(x) = p0(y = −1|x) , where �+(x) + �0(x) + �−(x) = 1 . Then the following lemma 
shows how c and d are related to �+(x) and �−(x) for the optimal classifier and rejector 
(its proof is available in Appendix 1):

Lemma 1 For each x ∈ X  , let

Then

Figure 2 illustrates the above results. This shows that when �+ (or �− ) is large (i.e., 
imbalanced classification), the rejector accepts the sample and the classifier classifies 

(11)
(
h∗
01cd

, r∗
01cd

)
= argmin

(h,r)

�p0(y|x)
[
L01cd(h, r, x, y)

]
.

(12)

⎧⎪⎨⎪⎩

sign(h∗
01cd

) = 1, sign(r∗
01cd

) = 1 if �+ ≥
d + (1 − c − d)�−

c + d
,

sign(h∗
01cd

) = −1, sign(r∗
01cd

) = 1 if �− ≥
d + (1 − c − d)�+

c + d
,

sign(r∗
01cd

) = −1 otherwise.

Fig. 1  The 0-1-c-d loss L01cd and its surrogate loss LMHA for the penalty values (c, d) = (0.2, 0.5)
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that sample into the positive (or negative) class. On the other hand, when both �+ and �− 
are not so large, the rejector rejects the sample.

Next, based on the above lemma, we have the following theorem for the MHA loss (its 
proof is given in Appendix 2):

Theorem 1 For each x ∈ X  , let

Then, for

the signs of (h∗
MHA

, r∗
MHA

) match those of (h∗
01cd

, r∗
01cd

).

Based on the above theorem, we use Eq. (14) as hyperparameter values in our experiments 
in the next section and demonstrate that they work well in practice. Nevertheless, given that 
the above theorem is valid only for the optimal solutions, we may cross-validate better hyper-
parameter values around Eq. (14) to further improve the classification performance. Note that 
Eq. (14) does not include d.

4  Numerical experiments

In this section, we report experimental results.

4.1  Datasets

For experiments, we use a toy dataset, a public dataset, and an in-house dataset.

(13)
(
h∗
MHA

, r∗
MHA

)
= argmin

(h,r)

�p0(y|x)
[
LMHA(h, r, x, y)

]
.

(14)�∗ = 2(1 − 2c), �∗ = 1 + 2c, �∗ =
2

1 + 2c
,

Fig. 2  Optimal solutions for the 
0-1-c-d loss
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4.1.1  Toy dataset

To understand the behavior of our method and related methods, we created a toy classi-
fication problem and applied the methods to it. The problem contains three regions: the 
positive, negative, and mixed regions (see Fig. 3). The positive and negative regions are 
clearly separable, whereas the mixed region has no good discriminant function. For this 
problem, we want to clearly discriminate the positive and negative regions, with the influ-
ence of the mixed region avoided. We also studied how the proportion of ambiguous 
samples influences the results by changing the proportion of ambiguous samples in the 
mixed region r. The number of all samples is 400, the total number of positive and nega-
tive samples in the separable regions is 200, and the total number of positive and negative 
samples in the mixed region is 200(1 − r) . Therefore, the expected maximum accuracy is 
{1 + (1 − r) × 0.5}∕{1 + (1 − r)}.

4.1.2  Public datasets (PD1, PD2, PD3)

We processed a regression dataset, the Boston Housing Dataset (Harrison and Rubinfeld 
1978), to convert it to a classification dataset with ambiguous data. The original dataset 
consists of 13 features �i ∈ ℝ

13 associated with the average house prices �i ∈ ℝ for 506 
districts, where 1 ≤ i ≤ 506 denotes the sample number. We annotated all the samples to be 
positive, negative, and ambiguous according to the following procedure:

PD1 (P/N/A separable): Simply, the samples with 𝜁i > 23 were labeled as positive, the 
samples with 𝜁i < 19 were labeled as negative, and the other samples were labeled as 
ambiguous. The numbers of samples were 190, 173, and 143 for the positive, negative, 
and ambiguous classes, respectively.
PD2 (P/N/A mixed): The samples with 𝜁i > 23 and the samples with 𝜁i < 19 were still 
labeled as positive and negative, respectively, but the remaining 143 samples were ran-
domly labeled as positive, negative, or ambiguous.
PD3 (separable and mixed): We considered a hyperplane v ⋅ � = 0 in the feature space 
and divided all the samples into two parts, the mixed part {i|v ⋅ �i ≥ 0} and the separable 
part {i|v ⋅ 𝜉i < 0} . The coefficients of the hyperplane v are selected so that the averages 

Fig. 3  Toy dataset. The lower-
left and lower-right regions are 
negative and positive regions, 
while the upper region is the 
mixed region. The numbers 
indicate the numbers of samples 
in each region. For each region, 
samples are distributed uniformly
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of �i over the samples in both parts were approximately matched. For the mixed part, 
each sample is randomly labeled as positive, negative or ambiguous, whereas for the 
separable part, the samples with 𝜁i > 21 were labeled as positive and the others were 
labeled as negative. The numbers of samples in the separable region were 83, 0, and 
87, and those in the mixed region were 114, 107, and 115 for the positive, negative, and 
ambiguous classes, respectively.

Figure 4a–c and e–g show the 2-dimensional plots of the above datasets visualized by the 
principle component analysis (PCA) and the locality preserving projection (LPP) (He and 
Niyogi 2004). On the whole, ambiguous points are located between positive and negative 
points.

4.1.3  In‑house dataset from a cell culture process (ID)

As a real-world application, we prepared an in-house cell culture dataset. This dataset con-
tained 124 fields of view (FOV). For each FOV, 2 images were acquired: one was in the 
middle, and the other was at the end of the culturing process. Each middle image was ana-
lyzed by the image processing software, CL-Quant (Alworth et al. 2010), and converted to 
8 morphological features such as the average brightness and average area of cells.

Each final image was annotated by experts. If the cells in the image overall looked 
healthy/damaged, the image was labeled as positive/negative. However, some images con-
tained both healthy and damaged cells, and they were labeled as ambiguous. The numbers 
of samples were 41, 59, and 24 for positive, negative, and ambiguous, respectively.

Our motivation was to predict the final state of each FOV annotated by the experts, 
using morphological features obtained in the middle of the culturing process. If we could 
predict it accurately, the culturing cost would be saved by aborting the culturing process 
where the cells would be damaged while keeping the healthy cells cultured. Therefore, 
we should focus on reducing misclassification between the positive and negative classes 
and we hope that information from ambiguous samples could be useful to improve the 

PD1 Dataset PD2 Dataset ID Dataset

PCA

LPP

(a) (b) (c)

(e) (f) (h)

(d)

(g)

PD3 Dataset

Fig. 4  Two-dimensional visualization of the PD1, PD2, PD3, and ID datasets by the PCA and the LPP. Red, 
blue, and green points correspond to positive, negative and ambiguous samples, respectively (Color figure 
online)



2380 Machine Learning (2020) 109:2369–2388

1 3

prediction accuracy. That was why test samples did not have the ambiguous label and were 
not classified into the ambiguous class in our scenario. Though ambiguous samples may 
occur in the test phase in the actual curturing process, we did not care which class they 
were classified into.

In the same manner as the PD1, PD2, and PD3 datasets, this dataset was also visualized 
by the PCA and the LPP in Fig. 4d and h, respectively. They show that ambiguous points 
are roughly located between positive and negative points. 

4.2  Experimental settings

Using the above datasets, we compared the classification performance of the SVM, the 
SVM-RL (random label), the LapSVM (Belkin et al. 2006), the two-step SVM, the CRO-
SVM, the CRO-SVM-RL, and the CAD-SVM. The SVM-RL employs the SVM algorithm, 
but ambiguous samples are randomly relabeled as positive or negative, which effectively 
utilizes information of the ambiguous samples. The LapSVM is a semi-supervised learn-
ing method based on the SVM, which employs a regularization term defined by the graph 
Laplacian. Ambiguous samples are treated as unlabeled samples in the LapSVM. The two-
step SVM is the method which learns the rejection function and the discriminant function 
sequentially—first the rejection function is learned to judges whether the sample is ambig-
uous or not, and then the discriminant function is learned only using the samples which are 
not rejected by the rejection function. When the rejection function is learned, class weights 
c and d are applied to non-ambiguous (i.e., positive and negative) and ambiguous samples, 
respectively. The CRO-SVM-RL is the CRO-SVM with random labels for ambiguous sam-
ples in the same manner as SVM-RL.

For each method, 500 test runs were performed by changing the training and test data-
sets which were randomly divided from the original dataset. The dividing ratio of the train-
ing and test dataset was 4:1 for the ID dataset and 1:2 for the other datasets. For each test 
run, 5-fold cross validation was performed to determine the parameters below. For valida-
tion and in the test phase, only positive and negative samples were applied to the discrimi-
nant function, thus we was able to evaluate the binary classification accuracy.

Note that our goal was to maximize the binary classification accuracy in the test phase, 
and that was equivalent to minimizing the expected 0-1 loss. Though we trained the models 
using various loss functions such as the hinge loss, the MH loss, and the MHA loss, the 0-1 
loss was minimized by cross validation.

In total, we had 10 hyperparameters (�, ��, �, ��, �, c, d, �, �, �) , where (�, ��) were the 
L2 regularization parameters, � was the width of the Gaussian radial basis function in the 
basis functions �i(x) = exp

�
−

‖x−xi‖2
2�2

�
 , �′ was the hyperparameter of the weight matrix W 

of the graph Laplacian as Wij = exp
�
−

‖xi−xj‖2
2��2

�
 (only in the LapSVM), � was the coeffi-

cient of the graph Laplacian regularization (only in the LapSVM), (c, d) were the hyperpa-
rameters of the 0-1-c loss (in the CRO-SVM and CRO-SVM-RL), the 0-1-c-d loss (in the 
CAD-SVM) or the class weights (in the two-step SVM), and (�, �, �) were the hyperparam-
eters of the MH and MHA loss functions (in the CRO-SVM, CRO-SVM-RL and CAD-
SVM). We used 5-fold cross validation in terms of the classification accuracy to choose the 
hyperparameters from (�, ��) ∈ {10−3, 10−5, 10−7} , (�, ��) ∈ {100.5, 100.75, 101} , 
� ∈ {10−1, 10−2, 10−3} , c ∈ {0.03, 0.06, 0.20, 0.45} , and d ∈ {0.03, 0.06, 0.20, 0.50} . The 
other hyperparameters (�, �, �) were determined by Eq. (14). Quadratic programming prob-
lems were solved using cvxopt (Andersen et al. 2018).
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4.3  Results

Figure 5 shows an example of the discriminant results for the toy dataset with r = 0.5 . 
The upper half of the domain was the mixed region of positive and negative samples 
and samples in that region are expected to be classified into the ambiguous class. On 
the other hand, the lower half of the domain was perfectly separable into the positive 
and negative regions and samples in those regions are expected to be discriminated 
accurately (see Fig. 3). The SVM made some misclassifications in the lower half of the 
domain, which were caused by the mixed region. The SVM-RL and LapSVM could not 
reduce the number of misclassifications, though they utilized information of ambiguous 
samples. This suggests that ambiguous samples should not be simply relabeled to posi-
tive or negative samples or should not be treated as unlabeled samples. The two-step 
SVM could not also reduce the number of misclassifications and it could not learn the 
ambiguous region. Thus, it would be disadvantageous to learn the ambiguous region 
by combining positive and negative classes. The CRO-SVM and CRO-SVM-RL suc-
cessfully learned the ambiguous region but that did not lead to learning more accurate 
discriminant functions. The CAD-SVM also successfully learned the ambiguous region 
and then it was able to learn a more accurate discriminant function. Overall, the CAD-
SVM was shown to be the most appropriate method in this toy experiment.

Tables  4 shows the test accuracy of the toy dataset by changing the parameters r 
which are the propotion of ambiguous samples in the mixed region. When the propor-
tion of the ambiguous samples was small, the proposed method did not work effectively 
since the number of ambiguous samples was too small. On the other hand, when the 
proportion of the ambiguous samples was large, it also did not show better performance. 
This was because, under this condition, only small numbers of positive and negative 
samples existed in the mixed region. Therefore, methods which do not utilize ambigu-
ous samples showed reasonably good enough performance. However, when the propor-
tion of ambiguous samples was r = 0.5 , the CAD-SVM achieved a better score than the 
other methods.

(a) SVM (b) SVM-RL (c) LapSVM (d) Two-step SVM

(e) CRO-SVM (f) CRO-SVM-RL (g) CAD-SVM

Fig. 5  An example of discriminant results for the toy dataset
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Table  5 summarizes the test accuracy of each method for the PD1, PD2, PD3, and 
ID datasets, respectively. For the PD1 dataset, the CAD-SVM was not superior to other 
methods since this condition was similar to the toy dataset with higher r. For the PD2 
dataset, though the dataset had a mixed region, the CAD-SVM also did not show good 
performance. However, for the PD3 dataset, which had a mixed region and a separable 
region, the CAD-SVM achieved the best performance among the compared methods. It is 
suggested that our proposed method, the CAD-SVM, works effectively when the dataset 
has both of a mixed region and a separable boundary between the positive and negative 
classes. The CAD-SVM utilizes ambiguous samples to learn a rejector which rejects mixed 
regions, thus it would be able to focus on learning a separable region. The CRO-SVM and 
the CRO-SVM-RL also learn a rejector from positive and negative samples, but the CAD-
SVM would be superior since the CAD-SVM can explicitly learn a rejector using ambigu-
ous samples. For the ID dataset, the CAD-SVM performed better than the other method, 
except for the CRO-SVM-RL. Overall, ambiguous samples can improve the binary classifi-
cation accuracy under some conditions, and the CAD-SVM is one of the solutions that can 
utilize such ambiguous samples.

4.4  Discussions

Through all the experiments, the CRO-SVM-RL gave as good performance as the CAD-
SVM. As detailed in Appendix 3, we can show the following relations between the CRO-
SVM-RL and the CAD-SVM: 

Table 4  Test accuracy for the toy 
dataset by changing the ratio r of 
ambiguous samples in the mixed 
region

The boldface numbers show the best and equivalent results with 5% 
t-test

r 0.1 0.3 0.5 0.7 0.9

SVM �.��� 0.767 0.814 0.853 0.931
SVM-RL �.��� 0.766 0.812 0.850 0.926
LapSVM �.��� 0.766 0.814 0.850 0.930
Two-step SVM �.��� �.��� 0.816 0.854 �.���

CRO-SVM 0.736 0.767 �.��� 0.857 0.931
CRO-SVM-RL 0.735 0.768 0.817 �.��� 0.926
CAD-SVM 0.736 0.767 �.��� 0.857 0.932

Table 5  Test accuracy for the PD1, PD2, PD3, and ID datasets, where ± denotes the standard deviation

The boldface numbers show the best and equivalent results with 5% t-test

PD1 PD2 PD3 ID

SVM �.��� ± �.��� �.��� ± �.��� 0.635 ± 0.029 0.803 ± 0.089

SVM-RL 0.918 ± 0.021 �.��� ± �.��� 0.629 ± 0.030 0.806 ± 0.088

LapSVM 0.921 ± 0.020 0.824 ± 0.021 0.629 ± 0.031 0.802 ± 0.088

Two-step SVM 0.918 ± 0.024 0.823 ± 0.021 0.632 ± 0.030 0.790 ± 0.091

CRO-SVM �.��� ± �.��� �.��� ± �.��� 0.635 ± 0.029 �.��� ± �.���

CRO-SVM-RL 0.917 ± 0.026 �.��� ± �.��� 0.632 ± 0.029 �.��� ± �.���

CAD-SVM 0.921 ± 0.020 �.��� ± �.��� �.��� ± �.��� �.��� ± �.���
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1. The 0-1-c loss function for the randomly labeled (RL) dataset, in which we randomly 
relabeled ambiguous samples as positive or negative, reduces to the 0-1-c-d loss with 
d =

1

2
− c.

2. For the RL dataset, the MH loss can be regarded as a surrogate loss of the 0-1-c-d loss 
with d =

1

2
− c , and it is calibrated under the conditions of Eq. (14).

Thus, though it is a simple heuristic, the CRO-SVM-RL is essentially equivalent to the 
CAD-SVM except for that the hyperparameter d is fixed to 1

2
− c . In practice, the CRO-

SVM-RL is easier to implement and thus it may be used as an alternative to the CAD-
SVM. However, we note that the CRO-SVM-RL alone does not provide rich theoretical 
insights that we have shown in Sect. 3.

Our goal for each experiment was minimizing the expected 0-1 loss in the test phase. 
Therefore, the SVM was naively an appropreate method since the hinge loss was calibrated 
to the 0-1 loss. Nevertheless, though the CRO-SVM-RL and the CAD-SVM minimized 
a surrogate of the 0-1-c-d loss in the training phase, they were able to achieve the better 
accuracy than the SVM in the test phase. It is suggested that the providing a reject option 
and incorporating ambiguous training samples could work as a kind of regularization, but 
further studies will be needed to clarify its mathematical properties.

We note that ambiguous samples are intrinsically hard-to-label samples even by experts, 
so they usually contain little information for classifying positive and negative samples, and 
thus we cannot expect large improvement to the binary classification accuracy. Neverthe-
less, our proposed method achieved statistically significant improvements for some cases.

5  Conclusion

In this study, we aimed to reduce the labeling cost and improve the classification accu-
racy by allowing labelers to give “ambiguous” labels for difficult samples. We extended 
a method of classification with reject option and proposed a novel classification method 
named the CAD-SVM that uses the 0-1-c-d loss. We derived a surrogate loss for the 0-1-
c-d loss, which allowed us to convert the optimization problem into a convex quadratic 
program. We carried out numerical experiments and showed that ambiguous labels can 
be effectively used to improve the classification accuracy. We also showed that the CRO-
SVM-RL, in which we randomly relabeled ambiguous samples to be positive or negative 
and applied classification with reject option, can be a practical alternative to the proposed 
method since it is essentially equivalent to the proposed method.

Though our proposed method was based on the SVM, it would be more useful if it can 
be applied to other models especially deep neural networks. However, further experimental 
studies will be needed to confirm if a naive application of the proposed MHA loss works 
well in practice. Indeed, it is known that changing models can cause other problems such 
as overfitting (Kiryo et al. 2017). Moreover, for deep neural networks, though we usually 
use the softmax cross entropy as the loss function, even the 0-1-c loss function has not 
been extended to the softmax cross entropy. So, analyzing the influence of changing loss 
functions is also an important issue to be further investigated.

In addition to the experimental analysis with more complex models, our future study 
will conduct theoretical analysis of the proposed method such as statistical consistency 
and the rate of convergence. Extending the proposed loss function to semi-supervised 
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problems, imperfect labeling problems or multi-class problems is also a promising 
direction to be pursued.

Acknowledgements The authors would like to thank Yasujiro Kiyota and Momotaro Ishikawa for providing 
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Appendix 1: Proof of Lemma 1

We calculate the expectation value of L01cd as follows:

Then, the minimum of the expectation value is

From the comparison of Eqs. (15) and (16), the optimal (h, r) subject to (�+,�−) are deter-
mined.   ◻

Appendix 2: Proof of Theorem 1

At the condition of Eq. (14), the expectation value of the loss is

To find the minimum of the expectation value, we derive a linear programming problem 
considering r(x), h(x) as independent variables. As shown in Fig. 6, we can calculate the 
boundary conditions subject to (h, r) as,

(15)

�y∼p0(y�x)[L01cd(h, r, x, y)]

= �+L01cd(h, r, x,+1) + �0L01cd(h, r, x, 0) + �−L01cd(h, r, x,−1)

=

⎧
⎪⎨⎪⎩

d�0 + �− if sign(h) = 1, sign(r) = 1,

d�0 + �+ if sign(h) = −1, sign(r) = 1,

c(�+ + �−) otherwise.

(16)

min
(h,r)

�y∼p0(y�x)[L01cd(h, r, x, y)]

= min
�
d�0 + �−, d�0 + �+, c(�+ + �−)

�

=

⎧
⎪⎨⎪⎩

d�0 + �− if �+ ≥
d+(1−c−d)�−

c+d
,

d�0 + �+ if �− ≥
d+(1−c−d)�+

c+d
,

c(�+ + �−) otherwise.

(17)

�y∼p0(y|x)[LMHA(h, r, x, y)]

= �+ max
(
1 + (1 − 2c)(r(x) − h(x)),

2c

1 + 2c
− 2cr(x), 0

)

+ �− max
(
1 + (1 − 2c)(r(x) + h(x)),

2c

1 + 2c
− 2cr(x), 0

)

+ �0 max
(

2d

1 + 2c
+ 2dr(x), 0

)
.
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Thus, we determine the minimizers of (h, r) subject to (�+,�−).

  ◻

Appendix 3: Relation between the CRO‑SVM‑RL and the CAD‑SVM

For a dataset which contains positive, negative and ambiguous samples, we define a RL 
(randomly labeled) dataset as a dataset in which ambiguous samples are randomly rela-
beled into the positive or negative classes.

Theorem 2 The risk of the 0-1-c loss function for the RL dataset is equal to the risk of the 
0-1-c-d loss with d =

1

2
− c for the original dataset.

Proof Let a relabeled label be z ∈ {−1, 1} which satisfies

(18)�y∼p0(y�x)[LMHA(h, r, x, y)] =

⎧
⎪⎪⎨⎪⎪⎩

4

1+2c
(d�0 + �−) if (h, r) =

�
2

1−4c2
,

1

1+2c

�
,

4

1+2c
(d�0 + �+) if (h, r) =

�
−

2

1−4c2
,

1

1+2c

�
,

4

1+2c
c(�+ + �−) if (h, r) =

�
0,−

1

1+2c

�
.

(19)(h∗
MHA

, r∗
MHA

) = argmin
(h,r)

�y∼Pr0(y|x)[LMHA(h, r, x, y)],

(20)

⎧⎪⎨⎪⎩

h∗
MHA

=
2

1−4c2
> 0, r∗

MHA
=

1

1+2c
> 0 if 𝜋+ ≥

d+(1−c−d)𝜋−

c+d
,

h∗
MHA

= −
2

1−4c2
< 0, r∗

MHA
=

1

1+2c
> 0 if 𝜋− ≥

d+(1−c−d)𝜋+

c+d
,

h∗
MHA

= 0, r∗
MHA

= −
1

1+2c
< 0 otherwise.

(21)Pr(z = 1|x) = �+(x) +
1

2
�0(x), Pr(z = −1|x) = �−(x) +

1

2
�0(x).

Fig. 6  The boundary conditions in the linear programming problem of Eq. (17)
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Thus, we can calculate the risk of the 0-1-c loss for the relabeled label z as

Therefore, the risk is equal to that of the 0-1-c-d loss for the original label y. Note that the 
second term in the right-hand side is constant with respect to h and r.   ◻

Theorem 3 The MH loss for the RL dataset is convex and an upper bound of the 0-1-c-d 
loss with d =

1

2
− c for the original dataset.

Proof For the ambiguous label, we can calculate the expectation value of the MH loss 
function over the relabeling process as

Since LMH(h, r, x, z = ±1) is convex, the expectation is also convex. For positive and nega-
tive labels, it can be calculated in the same manner.   ◻

Theorem 4 The expectation of the risk of the MH loss for the RL dataset is calibrated to 
the 0-1-c-d loss with d =

1

2
− c for the original dataset under the conditions of Eq. (14).

Proof We minimize the expectation of the MH loss with respect to (r, h) for the RL dataset 
as

Then, we calculate the minimizers as

(22)

�z∼Pr(z|x)[L01c(h, r, x, z)]
=
(
𝜋+(x) +

1

2
𝜋0(x)

)
(1h<01r≥0 + c1r<0) +

(
𝜋−(x) +

1

2
𝜋0(x)

)
(1h>01r≥0 + c1r<0)

= 𝜋+(x)(1h<01r≥0 + c1r<0) + 𝜋−(x)(1h>01r≥0 + c1r<0) + 𝜋0(x)
(

1

2
− c

)
1r≥0 + c𝜋0(x)

= �y∼p0(y|x)
[
L01cd(h, r, x, y)

||d= 1

2
−c

]
+ 𝜋0(x)c.

(23)

�z∼Pr(z|x,y=0)[LMH(h, r, x, z)]

= 1

2
LMH(h, r, x, z = 1) + 1

2
LMH(h, r, x, z = −1)

= 1

2
max

(
1 + �

2
(r(x) − h(x)), c(1 − �r(x)), 0

)

+ 1

2
max

(
1 + �

2
(r(x) + h(x)), c(1 − �r(x)), 0

)

≥ L01cd(h, r, x, y = 0).

(24)

min
(h,r)

�z∼Pr(z�x)[LMH(h, r, x, z)]

= min
(h,r)

�
�+(x)LMH(h, r, x, z = 1) + �−(x)LMH(h, r, x, z = −1)

+�0(x)
1

2

�
LMH(h, r, x, z = 1) + LMH(h, r, x, z = −1)

��

= min
(h,r)

⎡
⎢⎢⎢⎣

2

1 + 2c
×

⎧
⎪⎨⎪⎩

2�+ + �0 (h = −
2

1−4c2
, r =

1

1+2c
)

2�− + �0 (h =
2

1−4c2
, r =

1

1+2c
)

2c (h = 0, r = −
1

1+2c
)

⎤⎥⎥⎥⎦
.
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The derived minimizers are consistent with Lemma 1 with d =
1

2
− c .   ◻
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