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Abstract
Gaussian processes (GPs) are distributions over functions, which provide a Bayesian non-
parametric approach to regression and classification. In spite of their success, GPs have 
limited use in some applications, for example, in some cases a symmetric distribution with 
respect to its mean is an unreasonable model. This implies, for instance, that the mean and 
the median coincide, while the mean and median in an asymmetric (skewed) distribution 
can be different numbers. In this paper, we propose skew-Gaussian processes (SkewGPs) 
as a non-parametric prior over functions. A SkewGP extends the multivariate unified skew-
normal distribution over finite dimensional vectors to a stochastic processes. The SkewGP 
class of distributions includes GPs and, therefore, SkewGPs inherit all good properties of 
GPs and increase their flexibility by allowing asymmetry in the probabilistic model. By 
exploiting the fact that SkewGP and probit likelihood are conjugate model, we derive 
closed form expressions for the marginal likelihood and predictive distribution of this new 
nonparametric classifier. We verify empirically that the proposed SkewGP classifier pro-
vides a better performance than a GP classifier based on either Laplace’s method or expec-
tation propagation.

Keywords Skew Gaussian Process · Nonparametric · Classifier · Probit · Conjugate · Skew

1 Introduction

Gaussian processes (GPs) extend multivariate Gaussian distributions over finite dimen-
sional vectors to infinite dimensionality. Specifically, a GP defines a distribution over func-
tions, that is each draw from a Gaussian process is a function. Therefore, GPs provide a 
principled, practical, and probabilistic approach to nonparametric regression and classifi-
cation and they have successfully been applied to different domains (Rasmussen and Wil-
liams 2006).
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GPs have several desirable mathematical properties. The most appealing one is that, 
for regression with Gaussian noise, the prior distribution is conjugate for the likelihood 
function. Therefore the Bayesian update step is analytic, as is computing the predictive 
distribution for the function behavior at unknown locations. In spite of their success, 
GPs have several known shortcomings.

First, the Gaussian distribution is not a “heavy-tailed” distribution, and so it is not 
robust to extreme outliers. Alternative to GPs have been proposed of which the most 
notable example is represented by the class of elliptical processes (Fang 2018), such as 
Student-t processes (O’Hagan 1991; Zhang et al. 2007), where any collection of func-
tion values has a desired elliptical distribution, with a covariance matrix built using a 
kernel.

Second, the Gaussian distribution is symmetric with respect to its mean. This 
implies, for instance, that its mean and median coincide, while the mean and median 
in an asymmetric (skewed) distribution can be different numbers. This constraint limits 
GPs’ flexibility and affects the coverage of their credible intervals (regions)—especially 
when considering that symmetry must hold for all components of the (latent) function 
and that, as for instance discussed by Kuss and Rasmussen (2005); Nickisch and Ras-
mussen (2008), the exact posterior of a GP classifier is skewed.

To overcome this second limitation, in this paper, we propose skew-Gaussian pro-
cesses (SkewGPs) as a non-parametric prior over functions. A SkewGP extends the 
multivariate unified skew-normal distribution defined over finite dimensional vectors to 
a stochastic process, i.e. a distribution over infinite dimensional objects. A SkewGP is 
completely defined by a location function, a scale function and three additional param-
eters that depend on a latent dimension: a skewness function, a truncation vector and 
a covariance matrix. It is worth noting that a SkewGP reduces to a GP when the latent 
variables have dimension zero. Therefore, SkewGPs inherit all good properties of GPs 
and increase their flexibility by allowing asymmetry in the probabilistic model.

We focus on applying this new nonparametric model to a classification problem. In 
the case of parametric models, Durante (2019) shows that the posterior distribution of 
a probit likelihood and Gaussian prior has a unified skew-normal distribution. Such 
a novel result allowed the author to efficiently compute full posterior inferences for 
Bayesian logistic regression (for small datasets n ≈ 100 ). Moreover the author showed 
that the unified skew-normal distribution is a conjugate prior for the probit likelihood 
(without using this prior model for data analysis).

Here we extend this result to the nonparametric case, we derive a semi-analytical 
expression for the posterior distribution of the latent function and predictive probabili-
ties for SkewGPs. The term semi-analytical is adopted to indicate that posterior infer-
ences require the computation of the cumulative distribution function of a multivari-
ate Gaussian distribution (i.e., the computation of Gaussian orthant probabilities). By 
using a new formulation (Gessner et al. 2019) of elliptical slice sampling (Murray et al. 
2010), lin-ess, which permits efficient sampling from a linearly constrained (e.g., ort-
hant) Gaussian domain, we show that we can compute efficiently posterior inferences 
for SkewGP binary classifiers. Lin-ess is a special case of elliptical slice sampling that 
leverages the analytic tractability of intersections of ellipses and hyperplanes to speed 
up the elliptical slice algorithm. In particular, this guarantees rejection-free sampling 
and it is therefore also highly parallelizable.

The main contributions of this paper are 
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1. we propose a new class of stochastic processes called skew-Gaussian processes 
(SkewGP) which generalize GP models;

2. we show that a SkewGP prior process is conjugate for the probit likelihood thus deriving 
for the first time the posterior distribution of a GP classifier in an analytic form;

3. we derive an efficient way to learn the hyperparameters of SkewGP and compute Monte 
Carlo predictions using lin-ess, showing that our model has similar bottleneck compu-
tational complexity of GPs;

4. we evaluate the proposed SkewGP classifier against state-of-the-art implementations 
of the GP classifier which approximate the posterior with the Laplace method or with 
Expectation propagation;

5. we show on a small image classification dataset that a SkewGP prior can lead to better 
uncertainty quantification than a GP prior.

2  Background

The skew normal distribution is a continuous probability distribution that generalises the 
normal distribution to allow for non-zero skewness. The probability density function (PDF) 
of the univariate skew-normal distribution with location � ∈ ℝ , scale 𝜎 > 0 and skew 
parameter � ∈ ℝ is given by O’Hagan and Leonard (1976):

where � and � are the PDF and, respectively, cumulative distribution function (CDF) of 
the standard univariate normal distribution. This distribution has been generalised in sev-
eral ways, see Azzalini (2013) for a review. In particular, Arellano and Azzalini (2006) pro-
vided a unification of the above generalizations within a single and tractable multivariate 
unified skew-normal distribution that satisfies closure properties for marginals and condi-
tionals and allows more flexibility due the introduction of additional parameters.

2.1  Unified skew‑normal distribution

A vector z ∈ ℝ
p is said to have a multivariate unified skew-normal distribution with latent 

skewness dimension s, z ∼ SUNp,s(�,�,�, �,� ) , if its probability density function (Azza-
lini 2013, Ch.7) is:

where �p(z − �;�) represents the PDF of a multivariate normal distribution with mean 
� ∈ ℝ

p and covariance 𝛺 = D𝛺�̄�D𝛺 ∈ ℝ
p×p , with �̄� being a correlation matrix and 

D� a diagonal matrix containing the square root of the diagonal elements in � . The 
notation �s(a;M) denotes the CDF of Ns(0,M) evaluated at a ∈ ℝ

s . The parameters 
� ∈ ℝ

s,� ∈ ℝ
s×s,�p×s of the SUN distribution are related to a latent variable that controls 

the skewness, in particular � is called Skewness matrix. The PDF (1) is well-defined pro-
vided that the matrix

p(z) =
2

�
�

(
z − �

�

)
�

(
�

(
z − �

�

))
, z ∈ ℝ

(1)p(z) = 𝜙p(z − �;𝛺)
𝛷s

(
� + 𝛥T�̄�−1D−1

𝛺
(z − �);𝛤 − 𝛥T�̄�−1𝛥

)
𝛷s(�;𝛤 )
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i.e., M is positive definite. Note that when � = 0 , (1) reduces to �p(z − �;�) . Moreover we 
assume that �0(⋅) = 1 , so that, for s = 0 , (1) becomes a multivariate normal distribution.

The rôle of the latent dimension s can be briefly explained as follows. Consider now a 

random vector 
[
x0
x1

]
∼ Ns+p(0,M) with M as in (2) and define � as the vector with distribu-

tion (x1 ∣ x0 + � > 0) , then it can be shown (Azzalini 2013, Ch. 7) that 
z = � + D�� ∼ SUNp,s(�,�,�, �,� ) . This representation will be used in Sect. 5 to draw 
samples from the distribution. Figure 1 shows the density of a univariate SUN distribution 
with latent dimensions s = 1 (a1) and s = 2 (a2). The effect of a higher latent dimension 
can be better observed in bivariate SUN densities as shown in Fig. 2. The contours of the 
corresponding bivariate normal are dashed. We also plot the skewness directions given by 
�̄�−1𝛥.

The skew-normal family has several interesting properties, see Azzalini (2013, Ch.7) for 
details. Most notably, it isr close under marginalization and affine transformations. Specifi-
cally, if we partition z = [z1, z2]

T , where z1 ∈ ℝ
p1 and z2 ∈ ℝ

p2 with p1 + p2 = p , then

(2)M ∶=

[
𝛤 𝛥T

𝛥 �̄�

]
∈ ℝ

(s+p)×(s+p) > 0,

(a1) s = 1, Γ )2a(1= s = 2, Γ1Γ1Γ ,2 = 0.88

Fig. 1  Density plots for SUN1,s(0, 1,�, � ,� ) . For all plots �  is a correlation matrix, � = 0 , dashed lines are 
the contour plots of y ∼ N1(0, 1)

s = 1, Γ = 1 (a3) s = 2, Γ1,2 = 0.96 (a4) s = 2, Γ1,2 = 0.33(a1) s = 1, Γ = 1 (a2)
∆ = [0.88, 0.61]T , ∆ = [0.61, 0.88]T ∆ =

[
0.61 0.76
0.88 , 0.97

]
∆ =

[
0.61 0.88
0.88 0.61

]

Fig. 2  Contour density plots for four unified skew-normal. For all plots p = 2 , � = [0, 0]T , � and �  are cor-
relation matrices with �1,2 = 0.88 , � = 0 , dashed lines are the contour plots of y ∼ N2(�,�)
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Moreover, (Azzalini 2013, Ch.7) the conditional distribution is a unified skew-normal, i.e., 
(Z2|Z1 = z1) ∼ SUNp2,s

(�2|1,�2|1,�2|1, �2|1,�2|1) , where

and �̄�−1
11

∶= (�̄�11)
−1.

3  Skew‑Gaussian process

In this section, we define a Skew-Gaussian Process (SkewGP). Consider the functions 
� ∶ ℝ

p → ℝ , a location function, � ∶ ℝ
p ×ℝ

p → ℝ , a scale function, � ∶ ℝ
p → ℝ

s , the 
Skewness vector function, and � ∈ ℝ

s,� ∈ ℝ
s×s.

We say that a real function f ∶ ℝ
p → ℝ is distributed as a Skew-Gaussian process 

with latent dimension s, if, for any sequence of n points x1,… , xn ∈ ℝ
p , the vector 

f (X) = [f (x1),… , f (xn)]
T is skew-Gaussian distributed with parameters �,�  , location, 

scale and skewness matrices, respectively, given by

The skew-Gaussian distribution above is well defined provided that the matrix

is positive definite for all X = {x1,… , xn} ⊂ ℝ
p and for all 0. In this case we can write

We detail how to select the parameters in Sect.  4, the proposition below shows that 
SkewGP is a proper stochastic process.

Proposition 1 The construction of a Skew-Gaussian process from a finite-dimensional 
distribution is well-posed.

All the proofs are in “Appendices 1 and 2".

(3)
z1 ∼ SUNp1,s

(�1,�11,�1, �,� ),

with � =

[
�1
�2

]
, � =

[
�1

�2

]
, � =

[
�11 �12

�21 �22

]
.

�2|1 ∶= �2 +𝛺21𝛺
−1
11
(z1 − �1), 𝛺2|1 ∶= 𝛺22 −𝛺21𝛺

−1
11
𝛺12,

𝛥2|1 ∶= 𝛥2 − �̄�21�̄�
−1
11
𝛥1,

�2|1 ∶= � + 𝛥T
1
𝛺−1

11
(z1 − �1), 𝛤2|1 ∶= 𝛤 − 𝛥T

1
�̄�−1

11
𝛥1,

(4)
�(X) ∶=

⎡
⎢⎢⎢⎣

�(x1)

�(x2)

⋮

�(xn)

⎤
⎥⎥⎥⎦
, �(X,X) ∶=

⎡
⎢⎢⎢⎣

�(x1, x1) �(x1, x2) … �(x1, xn)

�(x2, x1) �(x2, x2) … �(x2, xn)

⋮ ⋮ … ⋮

�(xn, x1) �(xn, x2) … �(xn, xn)

⎤
⎥⎥⎥⎦
,

�(X) ∶=
�
�(x1) �(x2) … �(xn)

�
.

[
� �(X)

�(X)T �(X,X)

]

(5)f (x) ∼ SkewGPs(�(x),�(x, x�),�(x, x�), �,� ).
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3.1  Binary classification

Consider the training data D = {(xi, yi)}
n
i=1

 , where xi ∈ ℝ
p and yi ∈ {0, 1} . We aim 

to build a nonparametric binary classifier. We first define a probabilistic model M 
by assuming that f ∼ SkewGP(�,�,�, �,� ) and considering a probit model for the 
likelihood:

where W = diag(2y1 − 1,… , 2yn − 1) . A SkewGP prior combined with a probit likelihood 
gives rise to a posterior SkewGP over functions, this because skew-Gaussian distributions 
are conjugate priors for probit models. In the finite dimensional parametric case, this prop-
erty was shown by Durante (2019), hereafter we extend it to the nonparametric one.

Theorem 1 The posterior of f(X) is a skew-Gaussian distribution, i.e.

where, for simplicity of notation, we have denoted  �(X),�(X,X),�(X) as �,�,� and 
𝛺 = D𝛺�̄�D𝛺.

From Theorem 1 we can immediately derive the following result.

Corollary 1 The marginal likelihood of the observations  D = {(xi, yi)}
n
i=1

  given the proba-
bilistic model  M, that is the prior (5) and likelihood  (6), is 

with �̃,𝛤  defined in Theorem  1.

In classification, based on the training data D = {(xi, yi)}
n
i=1

 , and given test inputs x∗ , 
we aim to predict the probability that y∗ = 1.

Corollary 2 The posterior predictive probability of  y∗ = 1 given the test input  x∗ ∈ ℝ
p and 

the training data  D = {(xi, yi)}
n
i=1

 is 

(6)
p(D|f ) =

n∏
i=1

�(f (xi);1)
yi (1 −�(f (xi);1))

1−yi =

n∏
i=1

�((2yi − 1)f (xi);1)

= �n(Wf (X);In),

(7)p(f (X)|D) = SUNn,s+n(𝜉, �̃�,𝛥, �̃,𝛤 )

(8)𝜉 = 𝜉, �̃� = 𝛺,

(9)𝛥 = [𝛥, �̄�D𝛺W
T ],

(10)�̃ = [�, W𝜉]T ,

(11)𝛤 =

[
𝛤 𝛥TD𝛺W

T

WD𝛺𝛥 (W𝛺WT + In)

]
,

(12)p(D|M) =
𝛷s+n(�̃;𝛤 )

𝛷s(�;𝛤 )
,
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where �̃∗,𝛤 ∗ are the corresponding matrices of the posterior computed for the augmented 
dataset  X̂ = [XT , x∗T ]T , ŷ = [yT , 1∕2]T.

Note that the dummy value 1
2
 in ŷ does not influence the value of p(y∗ = 1|x∗,X, y) and it 

was chosen only for mathematical convenience, as it allows for marginalization over f (x∗) 
and to derive the expression of �̃∗,𝛤 ∗ similarly to the ones in Theorem 1.1

4  Prior functions, parameters and hyperparameters

A SkewGP prior is completely defined by the location function �(x) , the scale function 
�(x, x�) , the latent dimension s ∈ ℕ , the skewness vector function �(x, x�) ∈ ℝ

s and 
� ∈ ℝ

s,� ∈ ℝ
s×s . As it is common for GPs, we will take the location function �(x) to be 

zero, although this need not be done. Let K(x, x�) be a positive definite covariance func-
tion (kernel) and let � = K(X,X) be the covariance matrix obtained by applying K(x, x�) 
elementwise to the training data X. In this paper, we propose the following way to define 
the location, scale and skewness functions of a SkewGP:

with L ∈ ℝ
s×s is a diagonal matrix whose elements Lii ∈ {−1, 1} (a phase), 

R = [r1,… , rs]
T ∈ ℝ

s×p is a vector of s pseudo-points and K̄(x, x�) = 1

𝜎2
K(x, x�) (for sta-

tionary kernels) with K(x, x�) being the kernel function and �2 the variance parameter of 
the kernel, e.g., for the RBF kernel

It can easily be proven that M > 0 and, therefore, (2) holds. We select the parameters of the 
kernel �,� , the locations ri of the pseudo-points and the phase diagonal matrix L by maxi-
mizing the marginal likelihood. In particular we exploit the lower bound (16) explained in 
Sect. 5.

Similarly to the inducing points in the sparse approximation of GPs (Quiñonero-Can-
dela and Rasmussen 2005; Snelson and Ghahramani 2006; Titsias 2009; Bauer et al. 2016), 
the points ri can be viewed as a set of s latent variables. However, their rôle is completely 
different from that of the inducing points, they allow us to locally modulate the skewness of 
SkewGP. Figure 3 shows latent functions (in gray, second column) drawn from a SkewGP 
with latent dimension 2 and the result of squashing these sample functions through the 
probit logistic function (first column). In all cases, we have considered �(x) = 0 and a RBF 
kernel with � = 0.3 and �2 = 1 . The values of the other parameters of the SkewGP are 
reported at the top of the plots in the first column. The green line is the mean function 

(13)p(y∗ = 1|x∗,X, y) = 𝛷s+n+1(�̃
∗;𝛤 ∗)

𝛷s+n(�̃;𝛤 )
,

(14)M =

[
𝛤 𝛥(X,R)T

𝛥(X,R) �̄�(X,X)

]
∶=

[
LK̄(R,R)L LK̄(R,X)

K̄(X,R)L K̄(X,X)

]
,

K(x, x�) ∶= �2 exp

�
−
‖x − x�‖2

2�2

�
.

1 Note in fact that, for y = 1∕2 , the likelihood �((2y − 1)f (x∗), 1) = 0.5 and it does not depend on f (x∗) , 
and so it is marginalised out.
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and the red dots represent the location of the s = 2 latent pseudo-points. For large positive 
values of �1, �2 , SkewGP is equivalent to a GP (plots (a1)–(a2)). At the decreasing of �i , 
i = 1, 2 (plots (b1)–(b2)), the mean shifts up and the mass of the distribution is concen-
trated on the top of the figure. By changing the phase (the sign of) L22 (plots (c1)–(c2)), 
the mean and the mass of the distribution shift down at the location of the second pseudo-
observation r2 . We can magnifying this effect by decreasing both �i (plots (d1)–(d2)). It is 
also possible to introduce skewness without changing the mean (plots (e1)–(e2)). In this 
latter case, r1 = r2 and the mass of the distribution is shifted up.

5  Computational complexity

Corollaries 1 and 2 provide two straightforward ways to compute the marginal likelihood 
and the predictive posterior probability however Eqs. (12) and (13) both require the accu-
rate computation of �s+n . Quasi-randomized Monte Carlo methods (Genz 1992; Genz 
and Bretz 2009; Botev 2017) allows calculation of �s+n for small n (few hundreds obser-
vations). Therefore, these procedures are not in general suitable for medium and large n 
[apart from special cases Phinikettos and Gandy (2011), Genton et al. (2018), Azzimonti 
and Ginsbourger (2018)]. We overcome this issue with an effective use of sampling for the 
predictive posterior and a mini-batch approach to marginal likelihood.

5.1  Posterior predictive distribution

In order to compute the predictive distribution we generate samples from the posterior dis-
tribution at training points and then exploit the closure properties of the SUN distribution 
to obtain samples at test points. The following result from Azzalini (2013) allows us to 
draw independent samples from the posterior in (7):

where T�̃(0;𝛤 ) is the pdf of a multivariate Gaussian distribution truncated component-wise 
below −�̃ . Equation (15) is a consequence of the additive representation of skew-normal 
distributions, see Azzalini (2013, Ch. 7.1.2 and 5.1.3) for more details. Note that sampling 
U0 can be achieved with standard methods, however using standard rejection sampling 
for the variable U1 would incur in exponentially growing sampling time as the dimension 
increases. A commonly used sampling technique for this type of problems is Elliptical 
Slice Sampling (ess) (Murray et al. 2010) which is a Markov Chain Monte Carlo algorithm 
that performs inference in models with Gaussian priors. This method looks for acceptable 
samples along elliptical slices and by doing so drastically reduces the number of rejected 
samples. Recently, Gessner et al. (2019) proposed an extension of ess, called linear ellipti-
cal slice sampling (lin-ess), for multivariate Gaussian distribution truncated on a region 
defined by linear constraints. In particular, this approach analytically derives the acceptable 

(15)
f (X) ∼ 𝜉 + D𝛺

(
U0 + 𝛥𝛤 −1U1

)
,

U0 ∼ N(0;�̄� − 𝛥𝛤 −1𝛥T ), U1 ∼ T�̃(0;𝛤 ),

Fig. 3  The second column shows random latent functions (in gray) drawn from a SkewGP with latent 
dimension 2 and the first column shows the result of squashing these sample functions through the probit 
logistic function. The values of the parameters of the SkewGP are reported at the top of the plots in the 
first column. The green line is the mean function and the red dots represent the location of the s = 2 latent 
pseudo-points

▸
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(a2)(a1)

(b2)(b1)

(c2)(c1)

(d2)(d1)

(e2)(e1)
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regions on the elliptical slices used in ess and thus guarantees rejection-free sampling. This 
leads to a large speed up over ess, especially in high dimensions.

Given posterior samples at the training points it is possible to compute the predictive 
posterior at a new test points x∗ thanks to the following result.

Theorem 2 The posterior samples of the latent function computed at the test point x∗ can 
be obtained by sampling f (x∗) from:

with f(X)  sampled from the posterior  SUNn,s+n(𝜉, �̃�,𝛥, �̃,𝛤 )  in Theorem 1, K  is a kernel 
that defines the matrices � ,�,� as in eq. (14) and where

and D� = diag[D�(X),D�(x
∗)]) is a diagonal matrix containing the square root of the 

diagonal elements of the inner matrix in the r.h.s..

Observe that the computation of the predictive posterior requires the inversion of a n × n 
matrix ( �̄�11 ), which has complexity O(n3) with storage demands of O(n2) . SkewGPs then 
have a bottleneck in computational complexity similar to that of GPs. Moreover, note that 
sampling from SUN1,s is extremely efficient when the latent dimension s is small (in the 
experiments we use s = 2).

5.2  Marginal likelihood

As discussed in the previous section, in practical application of SkewGP, the (hyper-)
parameters of the scale function �(x, x�) , of the skewness vector function �(x, x�) ∈ ℝ

s and 
the parameters � ∈ ℝ

s,� ∈ ℝ
s×s have to be selected. As for GPs, we use Bayesian model 

selection to consistently set such parameters. This requires the maximization of the mar-
ginal likelihood with respect to these parameters and, therefore, it is essential to provide a 
fast and accurate way to evaluate the marginal likelihood. In this paper, we propose a sim-
ple approximation of the marginal likelihood that allows us to efficiently compute a lower 
bound.

Proposition 2 Consider the marginal likelihood p(D|M) in Corollary 1, then it holds

f (x∗) ∼ SUN1,s(𝜉∗,𝛺∗,𝛥∗, �∗,𝛤∗),

𝜉∗ = 𝜉(x∗) + K(x∗,X)K(X,X)−1(f (X) − 𝜉(X)),

𝛺∗ = K(x∗, x∗) − K(x∗,X)K(X,X)−1K(X, x∗),

𝛥∗ = 𝛥(x∗) − K̄(x∗,X)K̄(X,X)−1𝛥(X),

�∗ = � + 𝛥(X)TK̄(X,X)−1D𝛺(X,X)
−1(f (X) − 𝜉(X)),

𝛤∗ = 𝛤 − 𝛥(X)TK̄−1𝛥(X),

[
K̄(X,X) K̄(X, x∗)

K̄(x∗,X) K̄(x∗, x∗)

]
∶= D−1

𝛺

[
K(X,X) K(X, x∗)

K(x∗,X) K(x∗, x∗)

]
D−1

𝛺

(16)p(D�M) =
𝛷s+n(�̃;𝛤 )

𝛷s(�;𝛤 )
≥

∑b

i=1
𝛷s+�Bi�(�̃Bi

;𝛤Bi
) − (b − 1)

𝛷s(�;𝛤 )
,
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where B1,… ,Bb denotes a partition of the training dataset into b random disjoint subsets, 
|Bi| denotes the number of observations in the ith element of the partition, �̃Bi

, 𝛤Bi
 are the 

parameters of the posterior computed using only the subset Bi of the data.

If the batch-size is low (in the experiments we have used |Bi| = 30 ), then we can effi-
ciently compute each term 𝛷s+|Bi|(�̃Bi

;𝛤Bi
) by using a quasi-randomised Monte Carlo 

method. We can then optimize the hyper-parameter of SkewGP by maximizing the lower 
bound in (16).

5.3  Computational load and parallelization

To evaluate the computational load, we have generated artificial classification data using 
a probit likelihood model and drawing the latent function f (X) = [f (x1),… , f (xn)] , with 
xi ∼ N(0, 1) , from a GP with zero mean and radial basis function kernel (lengthscale 0.5 
and variance 2). We have then computed the full posterior latent function from Theorem 1, 
that is a SkewGP posterior. Figure 4 compares the CPU time for sampling 1000 instances 
of f(X) from the SkewGP posterior as a function of n for lin-ess versus a standard Elliptical 
Slice Sampler (ess) (5000 burn in).2 It can be observed the computational advantage of lin-
ess with respect to ess.

The average CPU time required to compute 𝛷s+|Bi|(�̃Bi
;𝛤Bi

) with |Bi| = 30 , using the 
randomized lattice routine with 5000 points (Genz 1992), is 0.5 seconds on a standard 
laptop. Since the above method is randomized, we use the simultaneous perturbation 

Fig. 4  Computational time for sampling from the posterior of SkewGP0 using ess versus lin-ess on a stand-
ard laptop

2 Sampling is performed according to (15) and, therefore, lin-ess and ess are applied to sample U1 from 
T�̃(0;𝛤 ) . To increase the probability of acceptance for ess, we have replaced the indicator function that 
defines the truncation Iu1>�̃ with a logistic function sigmoid(80(u1 − �̃)) . We have verified that, using 5000 
samples for burn in, the posterior first moment of lin-ess and ess are close for all considered values of n.
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stochastic approximation algorithm (Spall 1998) for optimizing the maximum lower bound 
(16).3

Finally notice that, both the computation of the lower bound of the marginal likeli-
hood and the sampling from the posterior via lin-ess are highly parallelizable. In fact, each 
term 𝛷s+|Bi|(�̃Bi

;𝛤Bi
) can be computed independently as well as each sample in lin-ess can 

be sample independently (because lin-ess is rejection-free and, therefore, no “burn in” is 
necessary).

(b)(a)

(c)

Fig. 5  Plot a shows the training dataset and compares the true posterior mean probability of class 1, that is 
a SkewGP, versus the approximations computed via Laplace’s method and EP. Plot c shows the posterior 
mean latent function and corresponding 95% credible intervals for the three methods and Plot b reports the 
density-plot of the latent function posterior prediction at x∗ = 0.42

3 The SkewGP classifier is implemented in Python, but we call Matlab to use existing implementations of 
both the simultaneous perturbation stochastic approximation algorithms and the randomized lattice routine. 
We plan to re-implement everything in Python and then release the source code for SkewGP.
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6  Properties of the posterior

In the above sections, we have shown how to compute the posterior distribution of a 
SkewGP process when the likelihood is a probit model. The full conjugacy of the model 
allows us to prove that the posterior is again a SkewGP process. This section provides more 
details on the properties of the posterior and compares it with two approximations. For GP 
classification, there are two main alternative approximation schemes for finding a Gauss-
ian approximation to the posterior: the Laplace’s method and the Expectation-Propagation 
(EP) method, see, e.g. Rasmussen and Williams (2006) chapter 3.

Figure 5 provides a one-dimensional illustration using a synthetic classification problem 
with 50 observations and scalar inputs taken from (Kuss and Rasmussen 2005). Figure 5a 
shows the dataset and the predictive posterior probability for the Laplace and EP approxi-
mations. Moreover, by using a SkewGP prior with latent dimension s = 0 (that coincides 
with a GP prior), we have computed the exact SkewGP predictive posterior probability. 
Therefore, all three methods have the same prior: a GP with zero mean and RBF covari-
ance function (the lengthscale and variance of the kernel are the same for all the three 
methods and have been set equal to the values that maximise the Laplace’s approximation 
to the marginal likelihood). Figure 5c shows the posterior mean latent function and corre-
sponding 95% credible intervals. It is evident that the true posterior (SkewGP) of the latent 
function is skew (see for instance for x ∈ [0, 2] and the slice plot in Fig. 5b)). Laplace’s 
approximation peaks at the posterior mode, but places too much mass over positive values 
of f. The EP approximation aims to match the first two moments of the posterior and, there-
fore, usually obtains a better coverage of the posterior mass. That is why EP is usually the 
method of choice for approximate inference in GP classification.

Figure 6 shows the true posterior and the two approximations for the same dataset, but 
now the lengthscale and variance of the kernel are the optimal values for the three meth-
ods. It is evident that the skewness of the posterior provides a better model fit to the data.

Figure  7 shows the posteriors corresponding to a prior SkewGP process with latent-
dimension s = 2 . The red dot denotes the optimal location of the pseudo-point r1 , while 
r2 = 13.5 (their initial location were 5.8 and, respectively, 6). The additional degrees of 
freedom of the SkewGP prior process gave a much more satisfactory answer than that 
obtained from a GP prior model. By comparing Figs. 6 and 7, it can be noticed that the 
skew-point allows us to locally modulate the skewness. Moreover, the additional degrees 

(b)(a)

Fig. 6  Plot a shows the training dataset and compares the true posterior mean probability of class 1, that is 
a SkewGP, versus the approximations computed via Laplace’s method and EP. Plot b shows the posterior 
mean latent function and corresponding 95% credible intervals for the three methods



1890 Machine Learning (2020) 109:1877–1902

1 3

of freedom do not lead to overfitting, even with small data, as highlighted by the optimized 
location of r2 (far away) that has not effect on the skewness of the posterior SkewGP.

7  Results

We have evaluated the proposed SkewGP classifier on a number of benchmark classifi-
cation datasets and compared its classification accuracy with the accuracy of a Gauss-
ian process classifier that uses either Laplace’s method (GP-L) or Expectation Propaga-
tion (GP-EP) for approximate Bayesian inference. For GP-L and GP-EP, we have used the 
implementation available in GPy (GPy, since 2012).

7.1  Penn machine learning benchmarks

From the Penn Machine Learning Benchmarks (Olson et al. 2017), we have selected 124 
datasets (number of features up to 500). Since this pool includes non-binary class data-
sets, we have defined a binary sub-problem by considering the first (class 0) and second 
(class 1) class. The resulting binarised subset of datasets includes datasets with number of 
instances between 100 and 7400. We have scaled the inputs to zero mean and unit standard 
deviation and used, as performance measure, the average information in bits of the predic-
tions about the test targets (Kuss and Rasmussen 2005):

where p∗
i
 is the predicted probability for class 1. This score equals 1 bit if the true label is 

predicted with absolute certainty, 0 bits for random guessing and takes negative values if 
the prediction gives higher probability to the wrong class. We have assessed the above per-
formance measure for the three classifiers by using 5-fold cross-validation.

While we could use any kernel for GP-L, GP-EP and SkewGP, in this experiment we 
have chosen the RBF kernel with a lengthscale for each dimension. Figure  8 contrasts 
GP-L and GP-EP with SkewGP0 (SkewGP with s = 0 ) and SkewGP2 (SkewGP with 

I(p∗
i
, yi) =

yi + 1

2
log2(p

∗
i
) +

1 − yi

2
log2(1 − p∗

i
) + 1,

(b)(a)

Fig. 7  Plot a shows the training dataset and compares the true posterior mean probability of class 1, that is 
a SkewGP2, versus the approximations computed via Laplace’s method and EP. Plot b shows the posterior 
mean latent function and corresponding 95% credible intervals for the three methods. The red dot denotes 
the optimal location of the pseudo-point r1
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s = 2 ). We selected s = 2 because we decided to use the same dimension for all datasets 
and, since there are several datasets where the ratio between the number of features and the 
number of instances is high, a latent dimension s > 2 leads to a number of parameters that 
exceeds the number of instances affecting the convergence of the maximization of the mar-
ginal likelihood. The proposed SkewGP2 and SkewGP0 outperform the other two models 
for most data sets. The average information score of SkewGP2 is 0.573 (average accuracy 
0.904), SkewGP0 is 0.557 (acc. 0.882), GP-EP is 0.542 (acc. 0.859) and GP-L is 0.512 
(acc. 0.863).

This claim is supported by a statistical analysis. We have compared the three classifi-
ers using the (nonparametric) Bayesian signed-rank test (Benavoli et al. 2014, 2017). This 
test declares two classifiers practically equivalent when the difference of average informa-
tion is less than 0.01 (1%). The interval [−0.01, 0.01] thus defines a region of practical 
equivalence (rope) for classifiers. The test returns the posterior probability of the vector 
[p(Cl1 > Cl2), p(Cl1 ≈ Cl2), p(Cl1 < Cl2)] and, therefore, this posterior can be visualised in 
the probability simplex (Fig. 9). For the comparison GP-L versus GP-EP, as expected it 
can seen that GP-EP is better than GP-L.4 Conversely, for GP-EP versus SkewGP0, 100% 
of the posterior mass is in the region in favor of SkewGP0, which is the region at the right 
bottom of the triangle. This confirms that SkewGP0 is practically significantly better than 
GP-L and GP-EP. The comparison SkewGP2 versus SkewGP0 shows that SkewGP2 has 

Fig. 8  Average information score on 124 datasets of the Penn Machnine Learning Benchmark dataset

4 It is well known that GP-EP usually achieves a more calibrated estimate of the class probability. Laplace’s 
method gives over-conservative predictive probabilities (Kuss and Rasmussen 2005).
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surely an average information score that is not worse than that of SkewGP0 and better with 
probability about 0.76.

The difference between GP-L and GP-EP, and SkewGP is that the posterior of SkewGP 
can be skewed. Therefore, we expect SkewGP to outperform GP-L and GP-EP on the data-
sets for which the posterior is far from Normal (e.g., highly skewed). To verify that we 
have computed the sample skewness statistics (SS) for each test input �∗

i
:

with � = E
[
(f (�∗

i
)
]
 and the expectation E[⋅] can be approximated using the posterior 

samples drawn as in Theorem  2. Note that SS(�∗
i
) = 0 for symmetric distributions. Fig-

ure 10(left) shows, for each of the 124 datasets, the difference between the average infor-
mation score of SkewGP0 and GP-EP in the y-axis, and max

�
∗
i
SS(�∗

i
) for SkewGP0 in the 

x-axis. We used a regression tree (green line) to detect structural changes in the mean of 
these data points. It is evident that, for large values of the maximum skewness statistics, 
SkewGP0 outperforms GP-EP (the average difference is positive). Figure 10(right) reports 
a similar plot for SkewGP2 and the difference is even more evident. This confirms that 
SkewGP on average outperforms GP-EP in those datasets where the posterior is skewed 
and has a similar performance otherwise.

SS(�∗
i
) =

E
[
(f (�∗

i
) − �)3

]

(E
[
(f (�∗

i
) − �)2

]
)3∕2

Fig. 9  Bayesian Wilcoxon signed-rank test
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7.2  Image classification

We have also considered an image classification task: Fashion MNIST dataset (each image 
is 28 × 28 = 784 pixels and there are 10 classes: 0 T-shirt/top, 1 Trouser, 2 Pullover, 3 
Dress, 4 Coat, 5 Sandal, 6 Shirt, 7 Sneaker, 8 Bag, 9 Ankle boot). We randomly pooled 
10000 images from the dataset and divided them into two sets, with 5000 cases for training 
and 5000 for testing. For each one of the 10 classes, we have defined a binary classifica-
tion sub-problem by considering one class against all the other classes. We have compared 
GP-EP and SkewGP2, that is a SkewGP with latent dimension s = 2 (for the same reason 
outlined in the previous section). We have initialised ri by taking 2 random samples from 

Fig. 10  Maximum skewness statistics versus difference in average information score. For visualisation pur-
pose only, we bounded the y-axis to [−0.11, 0.16]

Table 1  Image classification

Bold denotes the highest accuracy in the corresponding classification task

RBF kernel NN kernel

Accuracy Accuracy Time

Class GP-EP SkewGP2 GP-EP SkewGP2 GP-EP SkewGP2

0 0.945 0.955 0.956 0.958 80.7 67.8
1 0.988 0.990 0.988 0.991 125.7 68.0
2 0.923 0.934 0.943 0.943 130.9 70.7
3 0.951 0.961 0.953 0.961 79.2 56.9
4 0.932 0.946 0.946 0.944 121.1 49.3
5 0.967 0.980 0.975 0.983 110.5 53.0
6 0.917 0.922 0.924 0.933 115.7 65.1
7 0.970 0.974 0.981 0.983 113.6 66.3
8 0.969 0.979 0.980 0.981 121.5 51.4
9 0.980 0.982 0.983 0.986 137.0 55.0
One-vs-rest 0.785 0.821 0.823 0.844
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the training data. We have also considered two different kernels: RBF and the Neural Net-
work kernel (Williams 1998). Table 1 reports the accuracy for each of the 10 binary clas-
sification sub-problems. For the RBF kernel, it can be noticed that SkewGP2 outperforms 
GP-EP in all sub-problems. For the NN kernel, the differences between the two models are 
less substantial (due to the higher performance of the NN kernel on this dataset) but in any 
case in favor of SkewGP2. We have also reported, for both the models, the computational 
time5 (in minutes) needed to optimize the hyperparameters, to compute the posterior and 
to compute the predictions for all instances in the test set. This shows that SkewGP2 is also 
faster than GP-EP.6 The last row reports the accuracy on the original multi-class classifica-
tion problem obtained by using the one-vs-rest heuristic, with the only goal of showing 
that the more accurate estimate of the probability by SkewGP leads also to an increase in 
accuracy for one-vs-rest. A multi-class Laplace’s approximation for GP classification was 
developed by Williams and Barber (1998) and other implementations are for instance dis-
cussed by Hernández-Lobato et al. (2011) and Chai (2012), we plan to address multi-class 
classification in future work.

Our goal is assessing the accuracy but also the quality of the probabilistic predictions. 
Figure 11, plot (a1), shows, for the RBF kernel case and for each instance in the test set of 
the binary sub-problem relative to class 8 versus rest, the value of of the mean predicted 
probability of class rest for SkewGP2 (x-axis) and GP-EP (y-axis). Each instance is rep-
resented as a blue point. The red points highlight the instances that were misclassified by 
GP-EP. Figure (a2) shows the same plot, but the red points are now the instances that were 
misclassified by SkewGP2. By comparing (a1) and (a2), it is clear that SkewGP2 provides 
a higher quality of the probabilistic predictions.

SkewGP2 also returns a better estimate of its own uncertainty, as shown in plots (b1) 
versus (b2). For each instance in the test set and for each sample from the posterior, we 
have computed the predicted class (the class that has probability greater than 0.5). For 
each test instance, we have then computed the standard deviation of all these predictions 
and used it to color the scatter plot of the mean predicted probability. In this way, we 
have a visual representation of first order (mean predicted probability) and second order 
(standard deviation of the predictions) uncertainty. Fig. 11(b1) is relative to GP-EP and 
shows that GP-EP confidence is low only for the instances whose mean predicted prob-
ability is close to 0.5. This is not reflected in the value of the mean predicted probability 
for the misclassified instances (compare plot (a1) and (b1)). We have also computed the 
histogram of the standard deviation of the predictions for those instances that were mis-
classified by GP-EP in Figure (c1). Note that, the peak of the histogram corresponds to 
very low standard deviation, that means GP-EP has misclassified instances that have low 
second order uncertainty. This implies that the model is overestimating its confidence. 
Conversely, the second order uncertainty of SkewGP2 is clearly consistent, see plot (a2) 
and (b2), and in particular the histogram in (c2)—the peak is in correspondence of high 
values of the standard deviation of the predictions. In other words, SkewGP2 has mainly 
misclassified instances with high second order uncertainty, that is what we expect from 
a calibrated probabilistic model. We have reported additional examples of the better cal-
ibration of SkewGP2 for the MNIST and German-road sign dataset in "Appendices 1 
and 2".

5 More precisely, the table reports the average computational time for the RBF and NN kernel case.
6 This is due to both the efficiency of lin-ess and the batch approximation of the marginal likelihood.
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8  Conclusions

We have introduced the Skew Gaussian process (SkewGP) as an alternative to Gaussian 
processes for classification. We have shown that SkewGP and the probit likelihood are 
conjugate and provided marginals and closed form conditionals. We have also shown that 
SkewGP contains the GP as a special case and, therefore, SkewGPs inherit all good proper-
ties of GPs and increase their flexibility. The SkewGP prior was applied in classification 

(a2)(a1)

(b2)(b1)

(c1) (c2)

Fig. 11  Fashion MNIST dataset
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showing improved performance over GPs (Laplace’s method and Expectation Propagation 
approximations).

As future work, we plan to study other more native ways to parametrize the skewness 
matrix � that do not rely on an underlying kernel. Moreover, we plan to investigate the pos-
sibility of using inducing points, as for sparse GPs, to reduce the computational load for 
matrix operations (complexity O(n3) with storage demands of O(n2) ) as well as deriving 
the posterior for the multi-class classification problem.
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Appendix 1: Proofs

Proposition 1 To prove that, we exploit Kolmogorov’s extension theorem (Orbanz 2009). 
Suppose that a family FI of probability measures are the I-finite-dimensional marginals of 
an infinite-dimensional measure F  (a “stochastic process”). Each measure FI belongs to 
the finite-dimensional subspace of dimension I. Given two marginals FI ,FJ , as marginals 
of the same measure F  , they must be marginals of each other, that is

where ⋅ ↓ I denotes the projection onto the subspace of dimension I. A family of probabil-
ity measures that satisfies (17) is called a projective family. The Kolmogorov’s extension 
theorem states that any projective family on the finite-dimensional subspaces of an infinite-
dimensional product space uniquely defines a stochastic process on the space. This means 
that we can define a nonparametric Bayesian model from a finite-dimensional distribution 
by simply verifying that (17) holds. From (3), it then immediately follows that the defi-
nition (5) uniquely defines a stochastic process and, therefore, SkewGP is a well-defined 
stochastic process.

Theorem 1 We aim to derive the posterior of f(X). The joint distribution of f (X),D is

where we denoted f = f (X) ∈ ℝ
n and omitted the dependence on X. First, note that

(17)F
I = F

J↓I whether I ⊂ J,

(18)

p(D|f (X))p(f (X))
= 𝛷n(Wf ;In) SUNn,s(�,𝛺,𝛥, �,𝛤 )

= 𝛷n(Wf ;In) 𝜙n(f − �;𝛺)
𝛷s

(
� + 𝛥T�̄�−1D−1

𝛺
(f − �);𝛤 − 𝛥T�̄�−1𝛥

)
𝛷s(�;𝛤 )

∝ 𝜙n(f − �;𝛺)𝛷n(Wf ;In)𝛷s

(
� + 𝛥T�̄�−1D−1

𝛺
(f − �);𝛤 − 𝛥T�̄�−1𝛥

)

http://creativecommons.org/licenses/by/4.0/
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Therefore, we can write

with

and

From (18)–(19) and the definition of the PDF of the SUN distribution (1), we can easily 
show that we can rewrite (18) as a SUN distribution with updated parameters:

Corollary 1 This follows directly from the above proof by observing that 𝛷s+n(�̃,𝛤 ) is the 
normalization constant of the posterior and, therefore, the marginal likelihood is

Corollary 2 Denote with f̂ (X̂) = [f (X)T , f (x∗)T ]T and observe that the predictive distribu-
tion is by definition

with f ∗ ∶= f (x∗) and f = f (X) . Note that we have omitted the dependence on x∗,X for 
easier notation ( p(f ∗|f ) corresponds to p(f ∗|x∗,X, f ) ). We can write the posterior as

and so

𝛷n(Wf ;In)

= 𝛷n

(
W� + (�̄�D𝛺W

T )T�̄�−1D−1
𝛺
(f − �);(W𝛺WT + In) −WD𝛺�̄�D𝛺W

T
)

(19)

𝛷n(Wf ;In)𝛷s

(
� + 𝛥T�̄�−1D−1

𝛺
(f − �);𝛤 − 𝛥T�̄�−1𝛥

)

= 𝛷n

(
W� + (�̄�D𝛺W

T )T�̄�−1D−1
𝛺
(f − �);(W𝛺WT + In) −WD𝛺�̄�D𝛺W

T
)

⋅𝛷s

(
� + 𝛥T�̄�−1D−1

𝛺
(f − �);𝛤 − 𝛥T�̄�−1𝛥

)

= 𝛷s+n(m;M)

m =

[
� + 𝛥T�̄�−1D−1

𝛺
(f − �)

W� + (�̄�D𝛺W
T )T�̄�−1D−1

𝛺
(f − �)

]
,

M =

[
𝛤 − 𝛥T�̄�−1𝛥 0

0 (W𝛺WT + In) −WD𝛺�̄�D𝛺W
T

]
.

𝜉 = 𝜉,

�̃� = 𝛺,

𝛥 = [𝛥, �̄�D𝛺W
T ],

�̃ = [�, W𝜉]T ,

𝛤 =

[
𝛤 𝛥TD𝛺W

T

WD𝛺𝛥 (W𝛺WT + In)

]
.

𝛷s+n(�̃,𝛤 )

𝛷s(�,𝛤 )
.

∫ ∫ �(f ∗;1)p(f ∗|f )p(f |D)dfdf ∗,

p(f |D) =
p(D|f )p(f )

p(D)
,
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Observe that

with Ŵ = diag(2y1 − 1,… , 2yn+1 − 1) and yn+1 = 0.5 . Note that 2yn+1 − 1 = 2 ⋅ 0.5 − 1 = 0 
and this is the reason why we have introduced the dummy class value 1/2.

Observe that

is the marginal likelihood of a SkewGP posterior corresponding to the augmented dataset 
X̂ = [XT , x∗T ]T , ŷ = [yT , 1∕2]T . Therefore, we have that

where �̃∗,𝛤 ∗ are the corresponding matrices of the posterior computed for the augmented 
dataset.

Proposition 2 This follows by the Fréchet inequality:

where Ai are events. In fact, note that

where Pr is computed w.r.t. the PDF of a multivariate distribution with zero mean and 
covariance 𝛤 .

Theorem 2 The proof follows straightforwardly from that of Corollary 2.

Appendix 2: Additional image classification examples

We have defined a binary sub-problem from the German Traffic Sign data by considering 
Speed-Limit 30 versus 50 and from MNIST digit dataset by considering 3 versus 5. We 
have compared GP-L versus SkewGP2 (both with RBF kernel). Table 2 reports the average 
accuracy and shows again SkewGP2 outperforms GP-L (GP-EP achieves lower accuracy 
than GP-L in both cases).

Our goal is assessing the accuracy but also the quality of the probabilistic predic-
tions. Figure 12, plot (a1), shows, for each instance in the test set (one of the fold) of the 

∫ ∫ �(f ∗;1)p(f ∗|f )p(f |D)dfdf ∗

=
1

p(D) ∫ ∫ �(f ∗;1)p(f ∗|f )p(D|f )p(f )dfdf ∗

=
1

p(D) ∫ ∫ �(f ∗;1)p(D|f )p(f , f ∗)dfdf ∗.

𝛷(f ∗;1)p(D|f ) = 𝛷(f ∗;1)𝛷n(Wf ;In) = 𝛷n+1(Ŵf̂ ;In+1)

∫ ∫ 𝛷n+1(Ŵf̂ ;In+1)p(f , f
∗)dfdf ∗

1

p(D) ∫ ∫ 𝛷n+1(Ŵf̂ ;In+1)p(f , f
∗)dfdf ∗ =

𝛷s+n+1(�̃
∗ ,𝛤 ∗)

𝛷s(�,𝛤 )

𝛷s+n(�̃,𝛤 )

𝛷s(�,𝛤 )

,

Pr(A1,A2,… ,Ab) ≥ max

(
0,

b∑
i=1

Pr(Ai) − (b − 1)

)
,

𝛷s+n(�̃;𝛤 ) = Pr(u1 ≥ �̃1,… , us+n ≥ �̃s+n)
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MNIST datatset , the value of of the mean predicted probability of class 5 for SkewGP2 
(x-axis) and GP-L (y-axis). Each instance is represented as a blue point. The mean pre-
dicted probability ranges in [0.41, 0.53] for GP-L and in [0.25, 0.8] for SkewGP2 . The 
red points highlight the instances that were misclassified by GP-L (plot (a2) reports the 

Table 2  Image classification Dataset Classes GP-L SkewGP
2

German traffic sign Speed-limit 30 
versus 50

0.96 0.98

MNIST 3 versus 5 0.80 0.90

(a2)(a1)

(b2)(b1)

(c2)(c1)

Fig. 12  MNIST dataset
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images of some of the misclassified instances included in the rectangle). Figure (b1) 
shows the same plot, but the red points are now the instances that were misclassified by 
SkewGP2 . By comparing (a) and (b), it is evident that SkewGP2 provides a higher qual-
ity of the probabilistic predictions.

SkewGP2 also returns a better estimate of its own uncertainty. This is showed in plots 
(c1) and (c2). For each instance in the test set and for each sample from the posterior, 
we have computed the predicted class (the class that has probability greater than 0.5). 
For each test instance, we have then computed the standard deviation of all these predic-
tions and used it to color the scatter plot of the mean predicted probability. In this way, 
we have a visual representation of first order (mean predicted probability) and second 

(a2)(a1)

(b2)(b1)

(c2)(c1)

Fig. 13  German-road sign dataset
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order (standard deviation of the predictions) uncertainty. Plot 12(c1) is relative to GP-L 
and shows that GP-L confidence is low only for the instances whose mean predicted 
probability is close to 0.5. This is not reflected in the value of the mean predicted prob-
ability for the misclassified instances (compare plot (a1) and (c1) and note that the red 
spot in (a1) is outside the yellow area in (c1)). Conversely, the second order uncertainty 
of SkewGP2 is clearly consistent with plot (b1).

Figure 13 shows a similar plot for the “German road-sign” dataset. Plot 13(c1) is rela-
tive to GP-L and shows that GP-L confidence is low only for the instances whose mean 
predicted probability is in [0.3, 0.7]. This is not reflected in the value of the mean predicted 
probability for the misclassified instances (compare plot (a1) and (c1) and note that some 
of the red points in (a1) are outside the yellow area in (c1)). Conversely, 13(c2) shows that 
the second order uncertainty of SkewGP2 is clearly consistent with plot (b1).
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