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Abstract
Research in imbalanced domain learning has almost exclusively focused on solving clas-
sification tasks for accurate prediction of cases labelled with a rare class. Approaches for 
addressing such problems in regression tasks are still scarce due to two main factors. First, 
standard regression tasks assume each domain value as equally important. Second, stand-
ard evaluation metrics focus on assessing the performance of models on the most common 
values of data distributions. In this paper, we present an approach to tackle imbalanced 
regression tasks where the objective is to predict extreme (rare) values. We propose an 
approach to formalise such tasks and to optimise/evaluate predictive models, overcoming 
the factors mentioned and issues in related work. We present an automatic and non-para-
metric method to obtain relevance functions, building on the concept of relevance as the 
mapping of target values into non-uniform domain preferences. Then, we propose SERA, 
a new evaluation metric capable of assessing the effectiveness and of optimising models 
towards the prediction of extreme values while penalising severe model bias. An experi-
mental study demonstrates how SERA provides valid and useful insights into the perfor-
mance of models in imbalanced regression tasks.

Keywords Supervised learning · Imbalanced domain learning · Imbalanced regression · 
Extreme value prediction

1 Introduction

The primary assumption of standard supervised learning tasks is that each value of 
the domain is equally important. However, this is not always true. In domains such 
as finance, meteorology or environmental sciences, the goal is often the prediction of 
uncommon events, also known as rare/extreme cases. Imbalanced domain learning tasks 
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formalise such predictive modelling scenarios. These have two characteristics  (Branco 
et  al. 2016): (i) skewed distribution of target variables and (ii) domain preference for 
underrepresented cases.

Research concerning imbalanced domain learning spans over 20 years, addressing vari-
ous aspects (Fernández et al. 2018; Branco et al. 2016; López et al. 2013; Krawczyk 2016; 
He and Ma 2013). These include (i) the formalisation of the task, (ii) shortcomings of 
standard learning algorithms, (iii) strategies to overcome such limitations, and (iv) the 
search for appropriate evaluation metrics. The problem of imbalanced classification and, 
especially, binary classification, has been the main focus of research in this topic. In com-
parison, the volume of research concerning imbalanced regression tasks is negligible.

Imbalanced regression faces two significant challenges. First, to provide a principled 
approach capable of describing non-uniform preferences over continuous domains. Fig-
ure  1 illustrates the difference between the standard assumption of uniform and that of 
non-uniform preferences. Although trivial for classification tasks (e.g. deciding the posi-
tive class), ad-hoc solutions would require a specification of preferences over a poten-
tially infinite domain. As such, we may require automatic methods for specifying those 
preferences. Nonetheless, we cannot base such methods on static assumptions concerning 
the shape of the distribution, such as the assumption of normality. Such assumption has 
long-standing reports of its theoretical and practical inconsistencies  (Hald 1998; Wilcox 
1990) especially when assumed in continuous distributions  (Wilcox 2005). Nonetheless, 
it is a common assumption in machine learning and earlier work in the related topic of 
utility-based regression. The second challenge has to do with finding appropriate evalua-
tion and optimisation criteria capable of improving the predictive ability of models towards 
extreme values without severe model biasing. As in classification tasks, standard metrics 
for numerical prediction are not appropriate for these endeavours, given their focus on the 
normal behaviour of models. Also, concerning alternative metrics, these either consider all 
target values as equally important (Crone et al. 2005), i.e. uniform preferences, or allow for 
extraordinary model biasing towards extreme values, resulting in low generalisation capa-
bility. In this work, we tackle these challenges.

The main objective of this paper is to provide a new basis for the formalisation of imbal-
anced regression tasks and metrics for model evaluation and optimisation in this context. 
Such implies the identification of issues in related work and the proposal of new methods. 
The contributions of this paper are as follows:

– a review of earlier work on utility-based regression, and non-standard evaluation met-
rics for numerical prediction;

– an automatic and non-parametric method to infer non-uniform domain preferences 
biased to extreme values, tackling the assumption of an underlying normal distribution 
in earlier work (Torgo and Ribeiro 2007);

Fig. 1  Illustration of the impor-
tance of values for a target vari-
able distribution in a regression 
task: the assumption of uniform 
domain preferences (dashed 
green), as in standard regression 
tasks, and our objective—non-
uniform domain preferences 
biased to extreme values (black) 
(Color figure online)
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– a new evaluation metric SERA (Squared Error-Relevance Area) allowing the optimisa-
tion and evaluation of models as to their ability to predict extreme values, while robust 
to severe model biasing;

– an extensive experimental study which shows that (i) the evaluation metric SERA pro-
vides a robust tool for selection and optimisation procedures, (ii) as well as the analysis 
of prediction models’ performance and, (iii) its impact and predictive trade-offs;

– an open-source package containing all developed methods.1

The remainder of this paper is organised as follows. The task of imbalanced regression is 
described in Sect. 2, along with a motivating example. Section 3 formalises the concept 
of relevance and proposes a new non-parametric method to generate relevance functions 
automatically. Section  4 reviews evaluation metrics for imbalanced regression tasks and 
proposes a new metric for assessing model performance. Section 5 presents an extensive 
experimental study to support initial claims, followed by a discussion of results in Sect. 6, 
and conclusions in Sect. 7.

2  Imbalanced regression

Let D be a training set defined by D = {⟨�i, yi⟩}ni=1 , where �i is a feature vector from the 
feature space X  composed by predictor (independent) variables and yi is an instance of the 
target (dependent) variable Y with domain Y . For supervised learning tasks, the objective 
is to learn the best approximation of an unknown function f ∶ X → Y . Depending on the 
domain of the target variable, we may have a classification problem (if Y is discrete) or a 
regression problem (if Y is continuous). The approximation h is a model obtained by opti-
mising a preference criterion L on the training set. We base such optimisation on the search 
over the parameter space of the algorithm that builds the model.

In regression, overall error estimates, such as mean absolute error or mean squared 
error, are used as standard preference criteria. They focus on minimising the average error 
across the domain of the target variable. Given the predominance of cases with target val-
ues within/near the central tendency of the distributions, reducing the error of predictions 
for cases with common values will have a considerable impact on model performance. 
Naturally, model performance is mainly related to the accurate prediction of such values in 
detriment of extreme values.

However, as previously mentioned, for many real-world domains, not all values of the 
target variable are equally important. In many occasions, the prediction of extreme values 
is pertinent to be particularly accurate. Such raises the problem of imbalanced regression, 
described by the factors in the following taxonomy.

2.1  Taxonomy for imbalanced domain learning

Three factors must be considered when analysing imbalanced learning tasks: (i) the dis-
tribution of the target variable, (ii) domain preferences concerning accurate predictions, 
and (iii) their predictive focus. A schematic definition of such type of tasks is presented 

1 https ://githu b.com/nunom pmoni z/IRon.

https://github.com/nunompmoniz/IRon
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in Fig. 2. The following sections describe each of the factors, focusing on the problem of 
imbalanced regression.

2.1.1  Target variable distribution

The probability distribution of a target variable y may be balanced or imbalanced, depend-
ing on the frequency of all possible values, and if they present similar probabilities or not. 
In classification tasks, assuming a binary class scenario, the target variable distribution is 
considered imbalanced if the discrepancy in class cardinality is large, i.e. given a data set 
D , subsets labelled with common ( DN ) or rare ( DR ) classes imply ||DN

|| ≫ ||DR
|| . For regres-

sion tasks, we consider that the target variable distribution is imbalanced when extreme 
values (or outliers) are present. Commonly—but not necessarily—it translates to a skewed 
distribution.

2.1.2  Domain preferences

Given a particular prediction problem end-users have domain preferences. These describe 
the importance that each value of the domain has in terms of obtaining a precise predic-
tion. This factor can be uniform or non-uniform. The former considers that each value of 
the target variable domain is equally important. The latter stipulates specific ranges of tar-
get values as more or less critical. For example, in a season of wildfire danger, consider the 
task of predicting the temperature at noon for the following day: a predicted value of 30 °C 
for true values of 20 °C or 40 °C incurs an error of equal magnitude. Nevertheless, the lat-
ter presents a more hazardous situation.

2.1.3  Predictive focus

Finally, the third factor—predictive focus—entails the definition of which intervals have 
more or less importance w.r.t precise predictions. In case the underlying distribution is con-
sidered balanced, under non-uniform domain preferences, the predictive focus will concern 
specific intervals of values or a given class (or set of classes). As for the case where the 
distribution of values is considered imbalanced, possibilities mainly concern focusing on 

Fig. 2  Taxonomy of imbalanced domain learning tasks. The distribution of target variables can be balanced 
or imbalanced. Each of these may have uniform domain preferences or non-uniform. Balanced distributions 
with non-uniform preferences have a predictive focus on specific intervals or classes. As for imbalanced 
distributions, their predictive focus is either on average values/common cases or extreme values/rare cases. 
The characteristic conditions for imbalanced domain learning are marked red
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average/common values or extreme/rare values. Consider the previous example of antic-
ipating the temperature at noon for the following day. Assuming moderate climate con-
ditions, the goal of the first scenario (true value 20 °C) may be the prediction of values 
within the central tendency of the distribution (disregarding extreme values). The latter 
scenario (40 °C) describes an objective focused on accurately predicting values outside of 
such central tendency, e.g. extreme temperatures. Thus, predictive focus and the impor-
tance of values is related to probability distributions, either in a proportional (focus on 
average values) or inversely proportional manner (focus on extreme values).

According to the presented taxonomy, learning tasks are considered imbalanced regres-
sion tasks when, given a particular distribution of continuous values, (i) such distribution 
shows the presence of outliers, (ii) domain preferences are not uniform, and (iii) predictive 
focus is on extreme values. The following section describes an example of an imbalanced 
regression task, motivating our contributions.

2.2  Application: prediction of outdoor air pollution

Road traffic, industries and forest fires are among the main factors that affect air qual-
ity. Due to increasing percentages of unhealthy substances, the World Health Organiza-
tion (WHO) determined the establishment of concentration limits for some toxic com-
posts (Organization 2005)—AQGs (“Air Quality Guideline”).

Real data from a study (Aldrin and Haff 2005) that relates air pollution on a road with 
traffic volume and meteorology is used. The data2 consists of 500 observations collected by 
the Norwegian Public Roads Administration. The target variable (LNO2) is the log-trans-
formed concentration values of NO2 measured in μg/m3 for each hour, at Alnabru (Oslo, 
Norway), between October 2001 and August 2003. Figure 3 depicts the probability density 
function (pdf) of the LNO2 variable.

According to the ruling Directive 2008/50/EC, concentration values above 150 μg/m3 
( ln(150 μg/m3) ≈ 5.0 ) are dangerous—they should be avoided. Anticipating them is highly 

Fig. 3  The pdf of the log-transformed NO2 hourly concentration values (LNO2). The vertical line indicates 
the limit threshold established by Directive 2008/50/EC

2 Available on the StatLib Datasets Archive: http://lib.stat.cmu.edu/datas ets/.

http://lib.stat.cmu.edu/datasets/
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important. Thus, the goal is to obtain a model particularly accurate in the prediction of 
alarming levels of NO2 emissions.

The question that may arise is why not simplify the predictive task by casting it as a 
classification task, aggregating in a class all the extreme and dangerous values? In addition 
to multiple issues extensively raised in previous research (Royston et al. 2006), there are 
two key issues. First, it does not solve the imbalance issue, i.e. the most important class 
would be much less frequent than any other. Second, even though the number of bins and 
the respective cut-off points can be defined based on domain knowledge, this process cre-
ates crisp and artificial divisions between values of the target variable. This causes the rela-
tionship between the response and the predictors to be flat within intervals, thus dismissing 
the notion of numeric precision to a great extent. To illustrate, take the mentioned air pol-
lution study. Given the limit concentration value of 150 μg/m3 , let ŷ1 = 149 and ŷ2 = 200 
be predictions of models M1 and M2 , respectively, for a true value y = 151 . If transformed 
into a classification problem, model M2 would be more precise, although M1 presents the 
best approximation (smallest numeric deviation). Also, consider a prediction from a third 
model M3 where ŷ3 = 151 . As a classification problem, predictions of models M2 and M3 
would be considered equally correct, despite M3 presenting a precise prediction of the true 
value.

So far, we have provided a formalisation of the learning task and a description of its 
characteristics. Nonetheless, progress in research concerning imbalanced regression faces 
two challenges. First, to describe non-uniform preferences over continuous (and infinite) 
domains; second, to properly optimise and evaluate predictive models in such settings. We 
address such challenges in the following sections.

3  Relevance functions in imbalanced regression

There are many real-world imbalanced problems for which the prediction of a continu-
ous target value is essential, and where a classification approach may not be appropriate. 
Examples include domains such as climate/weather (Freemeteo 2017), electricity (Koprin-
ska et  al. 2011) and water demand  (Herrera et  al. 2010) or financial markets  (Akbilgic 
et al. 2014). In such domains, there are multiple tasks focused on models’ ability to antici-
pate extreme values and where magnitude is a factor. Examples include the prediction of 
extremely high or low stock market returns, abnormally high-temperature levels, electricity 
load or water consumption or harmful outdoor air pollution levels. Nevertheless, it is dif-
ficult to map continuous target variables and domain preferences. In this section, we review 
and formalise an approach to obtain such mapping through relevance functions, and pro-
pose a non-parametric approach for its automatic definition.

3.1  Definition

To our knowledge, Torgo and Ribeiro (2007) are the first to mention the concept of rel-
evance in a similar context. Introduced as a domain-dependent concept for utility-based 
regression tasks, it translates a target value into a scale of relevance, describing the impor-
tance of obtaining an accurate prediction. Ribeiro (2011) proposes a first approach for 
obtaining relevance functions, used in early work concerning utility-based regression and 
forecasting tasks (e.g. Torgo et al. 2013; Branco et al. 2016; Moniz et al. 2017b, a; Branco 
et al. 2019). It is formally defined as follows.
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Definition 1 (Relevance function) A relevance function �(Y) ∶ Y → [0, 1] is a continuous 
function that expresses the application-specific bias concerning the target variable domain 
Y by mapping it into a [0, 1] scale of relevance, where 0 and 1 represent the minimum and 
maximum relevance, respectively.

In imbalanced classification, specifying the relevance of a target variable is, in most 
cases, choosing the positive (minority) class. For imbalanced regression, given the poten-
tially infinite nature of the target variable domain, specifying the relevance of all values is 
virtually impossible, requiring an approximation. Two essential components are necessary: 
a set of data points where relevance is known, i.e. control points, and a decision on which 
interpolation method to use.

3.1.1  Control points

In order to obtain a relevance function, � ∶ Y → [0, 1] , a set of control points 
S =

�
⟨yk,�(yk),��(yk)⟩

�s

k=1
 must be given as input to an interpolation algorithm. This 

set must contain information on (i) the target value yk , (ii) its respective relevance value 
�(yk) and on (iii) the intended derivative of the relevance function at that point ��(yk) . By 
default, control points are assumed as local minimum or maximum of relevance and, thus, 
all have derivative ��(yk) equal to zero. But, other values may be provided, adjusting them 
so that monotonicity is preserved.

Ideally, control points should be introduced based on domain knowledge. However, it 
is common for such knowledge to be unavailable or nonexistent even. To tackle such sce-
narios, we propose an approach to automatically obtain control points based on the distri-
bution of target variables, described in Sect. 3.3.

3.1.2  Interpolation

Interpolation concerns the estimation of values within a range given by a set of data 
points (Phillips 2003). We aim at estimating the relevance of target values given a set of 
data points for which such relevance is known, i.e. control points. There are two main types 
of interpolation methods: statistical and spline smoothing. The former includes methods 
such as loess smoothing (Cleveland et al. 1992). The latter includes methods such as near-
est-neighbour, bilinear, bicubic and shape-preserving interpolation (Basu et al. 2015).

The interpolation required within the scope of our objective has several aspects that help 
decide which methods are most appropriate. For example, the set of control points will 
typically have a very low cardinality. Such restriction hampers the application of statisti-
cal methods. These methods focus on minimising the residual sum of distances between 
two continuous functions and require reasonably large and densely sampled sets of data 
points  (Basu et al. 2015). Concerning spline smoothing methods, two aspects help focus 
our decision. First, interpolation methods should have certain properties as to guarantee 
that the relevance of data points is distinguishable. Such includes properties of continu-
ity, convexity and monotonicity. Second, the interpolation method must guarantee that the 
estimated relevance values match the relevance values at control points. Given this, shape-
preserving interpolation methods provide the best option. The main reasons are that these 
are not prone to unrealistic overshoots of estimated values (as in cubic splines Barker and 
McDougall 2020) and that they are bounded by the data points provided.
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We propose, as in early work by Ribeiro (2011), the use of Piecewise Cubic Hermite 
Interpolating Polynomials  (Dougherty et  al. 1989) (pchip), using a set of n known rele-
vance values, i.e. control points. We base this option on the ability of pchip in guarantee-
ing the smoothness of interpolation and allowing user control on the generated function’s 
shape—it requires the derivative at each control point. By restricting the first derivative at 
control points, the method preserves local positivity, monotonicity and convexity of the 
data. As mentioned, these are convenient properties in the context of our target applica-
tions as we want to induce a continuous function that reproduces, as closely as possible, the 
relevance values of the supplied control points. Algorithm 1 shows how pchip is performed 
over a set of control points S. 

A key feature of this algorithm is finding the right slopes at given points. This guar-
antees that the interpolant is piecewise monotone, i.e. its derivative does not change the 
sign in any interval defined by control points. This task is ensured by the check_slopes 
method proposed by Fritsch and Carlson (1980) and presented in Algorithm 2. The method 
estimates reasonable derivatives at each control point. Once the first derivative values 
are known, the four coefficients returned by pchip are calculated for each interval of the 
interpolant. If a control point is a local maximum or minimum, the method ensures a zero 
derivative. 



1811Machine Learning (2020) 109:1803–1835 

1 3

At the end of the interpolation process, evaluating the relevance of value y ∈ Y , i.e. 
�(y) , corresponds to estimating the interpolant �(y) such that [yk, yk+1[ is the interval of 
control points interpolation to which y belongs. Beyond the maximum and the minimum 
values supplied in the set of control points, the relevance function is guaranteed to be con-
stant, by linear extrapolation.

3.2  Illustrative example

Considering the NO2 Emissions prediction problem described in Sect.  2.2, the Direc-
tive 2008/50/EC contains information on the relevance of certain data points. In particu-
lar, the goal to maintain the LNO2 hourly concentration values below a limit equal to 
ln(150 μg/m3) ≈ 5.0 —a value with maximum relevance, and the annual mean guideline of 
ln(40�g/m3) ≈ 3.7—minimum relevance. To complete our comprehension of the domain 
(Table 1), the lowest concentration value of LNO2 is attributed minimum relevance.

Table 1  Control points of 
LNO2 concentration thresholds 
according to Directive 2008/50/
EC

yk : LNO2 concentration values �(yk) ��(yk)

Low concentration: ln(3 μg/m3) ≈ 1.1 0.0 0.0
Annual mean guideline: ln(40 μg/m3) ≈ 3.7 0.0 0.0
Limit threshold: ln(150 μg/m3) ≈ 5.0 1.0 0.0
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Based on this information of control points, Fig. 4 presents two possible relevance func-
tions �() : one obtained by Algorithm 1 (pchip) and another obtained by splinefun, a 
standard cubic interpolation algorithm available on R software (R Core Team 2017).

Results show that the relevance function produced by pchip suits best the application 
goals. Also, cubic spline interpolation does not allow much control over the function. 
It does not confine the relevance function to the stipulated [0,  1] interval scale. Such is 
addressed by the pchip method using appropriate derivatives at control points, guarantee-
ing the properties of positivity, monotonicity and convexity. These are crucial for a princi-
pled mapping of domain preferences.

The main caveat for this approach rises when domain knowledge is unavailable or non-
existent. The following section proposes a non-parametric method to obtain relevance 
functions based on a target variable distribution automatically, assuming extreme values as 
the most important to anticipate.

3.3  Automatic and non‑parametric relevance functions

Lack of sufficient domain knowledge to define precise control points is a common situa-
tion. To obtain relevance functions in such conditions, we require an automatic approach 
that determines which target values have minimum and maximum relevance. Given that 
the most extreme values of the distribution are considered the most important to predict 
accurately, these should have maximum relevance. On the contrary, the most common and 
well-represented values of the distribution should have minimum relevance.

Determining which values of a distribution should be considered extreme is a long-
standing topic in the literature, with an emphasis in outlier/anomaly detection and extreme 
value analysis. From an unsupervised perspective, there are several approaches to tackle 
this issue  (Chandola et  al. 2009). Such includes statistical-based, proximity-based, using 
notions of distance or density, and clustering-based detection techniques. Given that our 
problem is univariate, the most direct approach to reaching our goal is to resort to distri-
bution-based analysis, i.e. statistical techniques. These are broadly divided into parametric 
and non-parametric approaches. The former include approaches based on Gaussian or a 
mixture of parametric distributions. The latter is commonly based on solutions using his-
tograms and kernel functions. For a thorough analysis and discussion of outlier/extreme 
value detection methods, we point to several contributions such as the work of Aggarwal 
(2013), Chandola et al. (2009) and Hodge and Austin (2004).

Fig. 4  Relevance functions for 
the prediction of LNO2 concen-
tration values obtained by two 
different interpolation methods: 
piecewise cubic hermite interpo-
lating polynomial (pchip) versus 
cubic splines. The data points 
used are based on domain knowl-
edge from Directive 2008/50/EC
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Tukey’s boxplot rule (1970) is one of the most frequently used statistical graphic meth-
ods (Wickham and Stryjewski 2012) for depicting data from continuous distributions. This 
method illustrates information concerning the location, spread, skewness and tails of the 
distribution. It uses a box to represent the interquartile range (IQR) and two whiskers that 
define the fences of the boxplot, based on the IQR. This interval frames average values; 
when outside such interval, values are considered probable outliers—the target cases in 
imbalanced regression. Nonetheless, the standard rule proposed by Tukey assumes a nor-
mal distribution of data points, i.e. distribution symmetry. When learning with skewed and 
asymmetrical distributions, this rule is prone to erroneously classifying specific data points 
as being outliers (Hoaglin et al. 1983). One can apply a transformation, e.g. logarithm, to 
make the data distribution symmetrical and detect outliers afterwards. However, finding a 
robust transformation to symmetry with application to all distributions is far from trivial. 
An adaptation to Tukey’s original proposal (Tukey 1970) is the adjusted boxplot, proposed 
by Hubert and Vandervieren (2008). The objective is to correct the symmetry issue using 
a robust measure of skewness when determining the fences of the boxplot, i.e. limits for 
values considered normal.

The interval proposed by Tukey (1970) for determining outliers cutoff values is 
[Q1 − 1.5 IQR, Q3 + 1.5 IQR] where Q1 and Q3 are the first and third quartile, respec-
tively, and IQR = Q3 − Q1 is the interquartile range. To make this interval less prone to 
bias, Hubert and Vandervieren (2008) propose to incorporate the medcouple, introduced by 
Brys et al. (2004), into the definition of the whiskers. The medcouple is a robust alternative 
to the classical skewness coefficient, based on variance and skewness of data. It is location 
and scale-invariant, and defined as

where Q2 is the second quartile (median) and for all xi ≠ xj the kernel function h is given by

According to the value of MC, the following intervals will mark points outside them as 
potential outliers:

– if MC ≥ 0 , then the interval is [Q1 − 1.5 e−4MC IQR, Q3 + 1.5 e3MC IQR];
– if MC < 0 , then the interval is [Q1 − 1.5 e−3MC IQR, Q3 + 1.5 e4MC IQR].

According to the study carried by Hubert and Vandervieren (2008), the use of such expo-
nential functions, allows the boxplot to be more skewness-adjusted as the fences might be 
asymmetric around the box.

Given the context of imbalanced regression tasks, the adjusted boxplot method presents 
a better alternative for two main reasons. First, it is non-parametric, therefore more flexible 
to underlying distributions. Second, by using a robust measure of skewness, the method is 
better suited to avoid missing real cases of extreme values (outliers).

To illustrate the difference between the two types of boxplots, in Fig. 5 we depict the 
Tukey’s boxplot and the adjusted boxplot for a set of 1000 artificial generated values from 
different theoretical distributions. As it is possible to observe, for Binomial, Logistic and 
Poisson distributions there is almost no difference (green). Then, we observe that sym-
metric distributions such as Normal and Student t distributions present a slight difference 

(1)MC = med
xi≤Q2≤xj h(xi, xj),

(2)h(xi, xj) =
(xj − Q2) − (Q2 − xi)

xj − xi
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between the two boxplots (blue). Finally, we have heavily skewed distributions (red), 
namely �2 , Exponential, Gamma, Geometric, LogNormal and Weibull distributions. For 
these distributions, the difference between Tukey’s boxplot and adjusted boxplot becomes 
more evident: the number of extreme values (outliers) identified by the latter is much 
smaller in comparison to the former. Such confirms that the adjusted boxplot rule is more 
appropriate for automatic outlier detection when dismissing any assumption concerning the 
distribution of the data.

We propose the use of adjusted boxplot to automatically supply the control points, based 
on the methodology presented by Ribeiro (2011)—initially designed to handle Tukey’s 
boxplot supplied control points. This method fulfils the objective of obtaining a continuous 
relevance function that maps the domain of the target variable Y to the relevance interval 
[0, 1] so that the extreme values of Y are assigned maximum relevance. As such, the upper 
and lower adjacent values are considered threshold values for extremes. Also, the median 
value of Y is considered as a centrality value of irrelevance. Three points compose the set 
of control points: the median value of Y with relevance value equal to zero and the upper 
and lower adjacent values with relevance value equal to one.3 All these control points are 
assumed to have a derivative of zero so that they represent local maximum and minimum 
of the relevance function. The pchip interpolation method (cf. Algorithm 1) receives this 
set of control points and derives an extreme-based relevance function �().
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Fig. 5  A comparison of the standard Tukey’s boxplot (left) and the adjusted boxplot (right) for a set of arti-
ficial samples from symmetric and skewed theoretical distributions, and their degree of dissimilarity: none 
(green), residual (blue) and considerable (red) (Color figure online)

Table 2  Control points for high 
LNO2 extreme values inferred by 
the automatic and non-parametric 
approach to relevance functions 
based on the adjusted boxplot

yk : LNO2 concentration values �(yk) ��(yk)

Lower adjacent value: ln(3.4 μg/m3) ≈ 1.2 0.0 0.0
Median: ln(46.9 μg/m3) ≈ 3.8 0.0 0.0
Upper adjacent value: ln(116.3μg/m3) ≈ 4.8 1.0 0.0

3 By default we assume that both high and low extreme values are relevant. In case only one type is rel-
evant, only the corresponding adjacent value has relevance value equal to one.
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Resorting to the air pollution scenario, one can use the referred method to define the 
set of control points automatically,4 as shown in Table 2. Using such set of control points 
and the pchip interpolation method, the obtained relevance function �() is depicted (red) 
in Fig. 6. It is interesting to notice that, regarding the most critical values in this particular 
data set, the proposed automatic method (red) obtains a relevance function similar to the 
relevance function obtained by the established guidelines based on Directive 2008/50/EC 
(blue).

3.4  Discussion on relevance functions

In the previous section, we presented an automatic and non-parametric method to obtain 
the set of control points to build the relevance function, based on the adjusted boxplot. 
The question one may ask is whether these automatically induced relevance functions meet 
real-world domain preferences.

We resort to the domain of air pollution and the indicator PM10, using three publicly 
available data sets. First, concerning hourly averages of concentration levels in Beijing 

Fig. 6  Relevance functions when 
a automatically obtained for 
the prediction of high extreme 
of LNO2 concentration values 
(red), and b guided by domain 
knowledge—Directive 2008/50/
EC values (blue) (Color figure 
online)
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Fig. 7  Relevance functions using domain-guided value-relevance pairs according to standard international 
guidelines (blue, dashed) and the non-parametric automatic method proposed (red, solid), with respective 
adjusted boxplots, for data concerning PM10 concentration levels in Beijing (China)  (Zheng et al. 2013), 
rural background stations in Germany  (Pebesma 2012) and a station in Alnabru, Oslo (Norway)  (Aldrin 
2006). Left and right vertical dashed lines represent official values considered normal ( 50 μg/m ) and dan-
gerous ( 150 μg/m ) for 24-h averages (Color figure online)

4 In this particular example, the focus is only on high extreme values, as low extreme values have no harm-
ful impact on human health.
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(China) from August 2012 to March 2013  (Zheng et  al. 2013). Second, daily averages 
for rural background stations in Germany from 1998 to 2009  (Pebesma 2012). Third, 
hourly values for a station in Alnabru, Oslo (Norway), between October 2001 and August 
2003 (Aldrin 2006).

We base the set of control points used on official recommendations per the Organi-
zation (2005) for denoting 24-h averages as normal or dangerous: �(50μg/m) = 0 and 
�(150 μg/m) = 1 , respectively. The baseline (blue, dashed) and the automatic and non-par-
ametric (red, solid) relevance functions for each data set are presented in Fig. 7. We also 
include an illustration of the adjusted boxplot.5

Our proposal to automatically obtain relevance functions on information is based on 
control points relayed by the adjusted boxplot. Therefore, its derivation is solely dependent 
on the underlying distribution of the data sample. By comparison, results show that with-
out the introduction of domain knowledge, automatic relevance functions cannot approxi-
mate such knowledge naturally. This might only occur when the control points derived by 
the sample distribution approximate those of domain knowledge.

In effect, the ideal scenario is to have access to domain knowledge that would allow 
the relevance function to express as closely as possible the reality. As that is often hard to 
obtain, we present a non-parametric alternative to automatically induce a relevance func-
tion based on the target variable sample distribution. We assume that extreme values are 
the most relevant ones. The similarity between the relevance functions obtained by these 
two methods is dependent on the representativeness of our data sample concerning the 
domain information. If that is the case, then the boxplot-induced and the domain provided 
control points would be identical, and both relevance functions will be similar; we observe 
this in the example provided in Sect. 3.3 (Fig. 6). Otherwise, the relevance function will be 
specific to the data sample distribution. Using the case of air pollution, this means that con-
centration values considered relevant by the automatic method rely solely on sample values 
rather than WHO reference values. They represent a contextual (sample-based) notion of 
relevance.

4  Evaluation metrics

In regression tasks, researchers commonly resort to standard metrics such as the Mean 
Squared Error (MSE). These metrics assume uniform domain preferences, focusing solely 
on the magnitude of the prediction error. As such, they raise several issues when evaluating 

Table 3  Artificial scenario with the predictions of two models M
1
 and M

2
 , for the same set of true LNO2 

values and their respective loss values

True LNO2 2.71 3.35 3.36 3.63 4.08 4.16 4.31 5.55 5.78 6.40
M1 2.68 3.30 3.43 3.72 3.96 4.29 4.55 5.91 7.03 4.72
M1 Loss 0.03 0.05 0.07 0.09 0.12 0.13 0.24 0.37 1.25 1.67
M2 1.04 4.61 3.73 3.87 4.21 4.04 4.41 5.62 5.73 6.37
M2 Loss 1.67 1.25 0.37 0.24 0.13 0.12 0.09 0.07 0.05 0.03

5 We excluded values PM
10

> 300 from the figure on the left for scaling and comparison purposes.
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imbalanced domain learning tasks (Torgo et al. 2013). To demonstrate one of such poten-
tial problems, Table 3 describes a predictive modelling scenario using synthetically gener-
ated data for NO2 emissions. It contains the predictions of two models ( M1 and M2 ) for the 
same set of true values.6 

Results show that model M1 is more accurate concerning lower values of the data, 
and model M2 is more precise at higher values. However, standard metrics such as Mean 
Squared Error and Mean Absolute Deviation (MSE and MAD, respectively), report no dif-
ference between these two models: a score 0.460 for MSE and 0.402 for MAD. Such occurs 
because the overall magnitude of errors is equal, and such metrics consider all domain 
values equally relevant.

4.1  Alternative evaluation metrics to standard error metrics

Several authors have proposed alternative evaluation metrics to account for non-uniform 
domain preferences. In finance, (Christoffersen and Diebold 1996) proposed the LIN-LIN 
error metric aiming at distinguishing prediction errors depending on them being under- 
or over-predictions. By introducing a different penalisation (weight) to these two cases, 
this metric includes an asymmetric notion of error. Based on such notion, other metrics 
were proposed  (Zellner 1986; Cain and Janssen 1995; Christoffersen and Diebold 1996, 
1997; Granger 1999; Crone et al. 2005; Lee 2007) combining linear, quadratic or exponen-
tial costs. Also, the proposal of ROC space for regression (RROC) by Hernández-Orallo 
(2013) plots the total over-estimation and under-estimation error of models in X-axis and 
Y-axis, respectively. As in the context of classification, this graphical metric enables the 
inference of dominance when analysing multiple models, providing an important tool of 
performance analysis. However, distinguishing under- and over-predictions is not sufficient 
to adequately evaluate imbalanced regression tasks. Regardless of their relevance, errors of 
the same magnitude are considered equal—all cases are assumed equally relevant.

The Regression Error Characteristic (REC) curves, proposed by Bi and Bennett (2003), 
depict the cumulative distribution of models’ prediction errors. The authors use the notion 
of error tolerance (X-axis) and accuracy (Y-axis), translating to the percentage of cases 
with a prediction error smaller (or equal to) a given tolerance � . However, REC curves do 
not account for non-uniform domain preferences, allowing for errors with the same magni-
tude—but different relevance—to be equally considered. Torgo (2005) proposed an exten-
sion to REC curves: the Regression Error Characteristic Surfaces (RECS). This graphical 
metric includes an additional dimension to plot the cumulative distribution of the target 
variable. As such, it depicts the prediction errors across the domain of the target variable. 
The importance of this proposal lies in allowing the study of models’ ability in predicting 
ranges of extreme target values. Nonetheless, a proper illustration of the link between the 
magnitude of the error and the relevance of cases is not clear.

Finally, Ribeiro (2011) describes a utility-based precision/recall evaluation framework. 
This proposal focuses on the ability of models in accurately predicting cases with high rel-
evance. It analyses the usefulness of predictions as a function of numeric prediction error 
and the relevance of both predicted and true values. However, the proposal has two caveats. 
First, it requires an ad-hoc relevance threshold. Second, it does not account for the predic-
tive ability of models in cases where both the relevance of the predicted and true values are 

6 Example based on previous work by Ribeiro (2011).
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below the mentioned threshold. This issue is equivalent to that of F-Measure (Rijsbergen 
1979) in classification tasks. The combination of such caveats allows the optimisation of 
models that may neglect the impact of prediction cases with low relevance—i.e. majority 
of cases. In turn, this could lead to naive extreme models with no discernible capability of 
generalisation.

Based on the review of previous work, we propose a new evaluation metric to overcome 
the challenges posed to the evaluation of imbalanced regression tasks. Such a metric must 
encompass critical characteristics, such as: 

1. focus on minimising prediction errors in cases with extreme target values, i.e. high 
relevance, by countering the dominance of low relevance cases;

2. ability to prevent over-fitting of models, biased to predicting extreme (or near extreme) 
target values and disregarding all other cases;

3. allow for an asymmetric notion of loss, i.e. errors of equal magnitude have different 
impacts depending on their relevance;

4. allowing model discrimination, comparison and dominance analysis.

4.2  Squared error‑relevance area (SERA)

Consider a data set D = {⟨xi, yi⟩}Ni=1 and a relevance function � ∶ Y → {0, 1} defined for 
the target variable Y. We define the subset Dt ⊆ D formed by the cases for which the rele-
vance of the target value is above or equal a cutoff t, i.e. Dt = {⟨xi, yi⟩ ∈ D ��(yi) ≥ t} . We 
can obtain an estimate of the Squared Error-Relevance of a model with respect to a cutoff t 
( SERt ), as follows,

where ŷi and yi are the predicted and true values for case i, respectively. For this estimate, 
only the subset of predictions composed by the cases i ∈ D

t , for which the relevance of the 
true target value is above a specific cutoff t, are considered.

Given the bounds of relevance values—�(y) ∈ [0, 1] , we may represent a curve, where 
each point represents the value of SERt for a possible relevance cutoff t. This curve has 
interesting properties. The highest and the lowest value of SERt are attained when all 
( t = 0 ) or only the most relevant cases ( t = 1 ) are included, respectively. Additionally, for 
any � ∈ ℝ

+ such that t + � ≤ 1 , we have that SERt ≥ SERt+� , given that SERt+� considers 

(3)SERt =
∑

i∈Dt

(ŷi − yi)
2

Fig. 8  An example of the squared 
error-relevance area (SERA) 
metric for an artificial model, 
based on the integration of 
Squared Error-Relevance ( SER

t
 ) 

for cutoff relevance �(.) values 
t. The grey dashed line depicts 
the sum of squared errors for all 
cases (Color figure online)
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a subset (or all) of the cases included in SERt . These properties ensure that the curve is 
decreasing and monotonic.

In this paper, we propose the Squared Error-Relevance Area (SERA). It represents the 
area below the SERt curve, obtained via integration7 (cf. Eq. 4), illustrated in Fig. 8.

It is important to note that the SERt curve provides an overview of the magnitude of 
the prediction errors in the domain, along with different relevance cutoff values. Thus, the 
smaller is the area under this curve (SERA), the better is the model. Also, we should note 
that, when uniform preferences are assumed, �(Y) = 1 , SERA is equivalent to the sum of 
squared errors.

Optimisation of SERA. To optimise the squared error, we must find the constant that 
minimises it. Given the target variable domain Y , we know that the squared loss function is 
differentiable for every predicted value in that domain. Likewise, SERt is also differentiable 
w.r.t. the predicted value: the constant mt that minimises SERt is the average of true target 
values, concerning only the target values whose relevance values are equal or above the 
specified cutoff t. This is shown in Eq. 5 (cf. proof of Theorem 1 in “Appendix”).

Additionally, we should note that it is also possible to find the constant that minimises 
SERA. SERA corresponds to the integration of SERt over the [0,  1] relevance interval. 
Given that SERt is differentiable, by applying the Fundamental Theorem of Calculus, SERA 
is also differentiable. The constant m that minimises SERA is given by Eq. 6 (cf. proof of 
Theorem 2 in “Appendix”).

4.2.1  Analysis

Although our goal is mainly to estimate the effectiveness of models in predicting extreme 
values, SERA does not entirely discard the impact of models’ performance in cases with 
average target values. Prediction errors made in lower relevance cases have much less 
impact than those in highly relevant cases. The errors of the latter are counted more times 
along the relevance cutoff values in the overall sum that constitutes each point the curve. 
Therefore, SERA encompasses previously mentioned characteristics for an appropriate 
evaluation metric in imbalanced regression tasks (characteristics 1–3, Sect. 4.1): the reduc-
tion of prediction errors in extreme target values via model optimisation with an asym-
metric notion of loss while preventing over-fitting of models towards highly relevant cases.

(4)SERA = ∫
1

0

SERt dt = ∫
1

0

∑

i∈Dt

(ŷi − yi)
2 dt

(5)mt =

∑
i∈Dt yi

�Dt�

(6)m =
∫ 1

0

∑
i∈Dt yi dt

∫ 1

0
�Dt� dt

7 Riemann sums with the trapezoidal rule is used, with a default delta of 0.001.
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Building on the graphical dimension of this metric, SERA is capable of allow-
ing model discrimination, comparison and dominance analysis (characteristic 4, 
Sect.  4.1), as illustrated in Fig.  9. We use different learning algorithms available in 
R packages: random forests (rf)  (Wright and Ziegler 2017), CART regression tree 
(rpart)  (Therneau and Atkinson 2018) and multiple adaptive regression splines 
(mars)  (Milborrow 2019), all with the default parameters. The figure depicts a com-
parison between three models from these learning algorithms, using a standard evalu-
ation metric (MSE) and SERA, in three distinct and common scenarios in imbalanced 
regression: (i) naive mean, (ii) equivalence, and (iii) naive extreme. The first and the 
third represent configurations where the best model according to MSE is biased towards 
predicting cases with an average value (naive mean), or a model is biased towards pre-
dicting all cases with extreme (or near-extreme) values (naive extreme). The second 
(equivalence) depicts a scenario where conclusions of MSE and SERA agree, w.r.t the 
rank of models. Individual model scores are described in Table 4. 

For the naive mean scenario (left), the rf model obtains the best MSE score but a worse 
SERA score when compared to the mars model. Based on the graphical capabilities of 
SERA for dominance analysis, although the rf model presents a lower overall prediction 
error (value at relevance 0), it shows low ability to correctly model cases with extreme 
values, i.e. the majority of prediction errors for this model. Such is illustrated further by 
its low slope across the domain w.r.t �(.) . The mars model shows a predictive advantage 
for cases with relevance greater than 0.3. Given our objective to accurately predict target 
values of highly relevant cases, this shows how MSE scores may be misleading in such 
context.
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Fig. 9  Visual comparison of three prediction models from different learning algorithms in three distinct and 
common evaluation scenarios in imbalanced regression: (i) naive mean, (ii) equivalence between the MSE 
and SERA evaluation metrics, and (iii) naive extreme

Table 4  MSE and SERA 
estimates for the evaluation 
scenarios depicted in Fig. 9. The 
best scores in each scenario, and 
for each evaluation metric, are 
denoted in bold

Model Naive Mean Equivalence Naive Extreme

MSE SERA MSE SERA MSE SERA

rpart 1392.8 596.8 1373.1 630.1 1335.6 515.4
mars 1033.2 414.1 1026.9 357.9 1252.7 616.8
rf 722.8 416.3 548.9 220.2 540.4 210.9
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Concerning naive extreme scenarios (right), results show that the rf model is the best 
model for both MSE and SERA metrics Nevertheless, results concerning rpart and mars 
models are contradictory: although the former presents a worse MSE score, it shows an 
advantage concerning SERA. By analysing SERA, we observe that although the mars 
model demonstrates lower prediction errors concerning the most extreme values, it also 
achieves considerably higher levels of prediction error for the remainder of the domain, 
showing a considerable bias towards accurately predicting extreme values at the cost of 
low representation of the average behaviour of data. As such, optimisation with the SERA 
metric provides the ability to prevent over-fitting of models biased to predict extreme (or 
near extreme) target values.

Regarding the scenario of equivalence, this illustrates an agreement between the MSE 
and SERA metrics as to the rank of the rf, mars and rpart models.

Concluding, we show that SERA allows a thorough analysis of prediction models w.r.t 
prediction errors in varying levels of relevance, as well as dominance analysis. This com-
bination of characteristics results in a significant contribution to the evaluation of imbal-
anced regression tasks, allowing an assessment focused on the predictive ability of models 
towards extreme values.

5  Experimental study

We present a broad experimental study focusing on the problem of imbalanced regression. 
First, an experimental evaluation is performed over a diverse list of data sets, using multi-
ple learning algorithms. The objective is to compare the selection of models using a stand-
ard evaluation metric and the proposed metric SERA. Second, we provide an analysis of 
results concerning the impact of using SERA as a preference criterion for the optimisation 
of models in imbalanced regression tasks. Given such objectives, our goal is to answer the 
following research questions. 

RQ1  What is the impact on models performance when using standard evaluation metrics 
for model selection, in comparison to using the proposed metric SERA?

RQ2  Which are the predictive trade-offs associated with models performance estimation 
using SERA as a criterion?

RQ3  Is the SERA metric appropriate for model optimisation processes when our goal is 
to improve the prediction of extreme values?

5.1  Data

In our experimental study, we used a diverse group of regression data sets from different 
domains.8 First, we collected a considerable number of data sets from public repositories. 
Then, we applied the adjusted box-plot method (previously described) to assess if the dis-
tribution of target values in each data set demonstrated the existence of extreme values. 
The data sets used in this experimental study are those that demonstrated the existence of 
such extreme values. Table 5 describes their characteristics. For each data set, the descrip-
tion includes information on the number of instances and the number of nominal and 

8 Data sets are made available in https ://githu b.com/nunom pmoni z/IRon.

https://github.com/nunompmoniz/IRon
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numeric variables. Also, we provide information regarding the number of instances with 
maximum, |D1| ( �(y) = 1 ), and non-maximum relevance, |D⧵D1| ( 𝜙(y) < 1 ). Such informa-
tion is obtained using the proposed approach for non-parametric auto-generated relevance 
functions (see Sect. 2). The imbalance ratio (IR) is calculated as |D⧵D1|

|D1| .

Table 5  Datasets ( D ) used in the experimental study with no. of instances ( |D| ); nr. of nominal (Nom) and 
numerical (Num) variables; nr. of instances with maximum ( |D1| ) and non-maximum ( |D⧵D1| ) values of 
relevance; Imbalance Ratio (IR); and Type of extremes according to the adjusted boxplot: upper (U), lower 
(L) or both (B)

# Datasets ( D) |D| Nom Num |D⧵D1| |D1| IR Type

1 diabetes 43 0 2 39 4 9.75 U
2 triazines 186 0 60 181 5 36.20 B
3 a7 198 3 8 187 11 17.00 U
4 elecLen1 495 0 2 489 6 81.50 U
5 housingBoston 506 0 13 455 51 8.92 B
6 forestFires 517 0 12 508 9 56.44 U
7 strikes 625 0 6 620 5 124.00 U
8 mortgage 1049 0 15 971 78 12.45 L
9 treasury 1049 0 15 953 96 9.93 L
10 musicorigin 1059 0 117 1043 16 65.19 B
11 airfoild 1503 0 5 1490 13 114.62 U
12 acceleration 1732 3 11 1702 30 56.73 B
13 fuelConsumption 1764 12 25 1725 39 44.23 B
14 availablePower 1802 7 8 1712 90 19.02 B
15 maxTorque 1802 13 19 1747 55 31.76 B
16 debutenizer 2394 0 7 2278 116 19.64 U
17 space_ga 3107 0 6 3077 30 102.57 B
18 pollen 3848 0 4 3811 37 103.00 B
19 abalone 4177 1 7 3693 484 7.63 B
20 wine 6497 0 11 5220 1277 4.09 U
21 deltaAilerons 7129 0 5 6459 670 9.64 B
22 heat 7400 3 8 7351 49 150.02 B
23 cpuAct 8192 0 21 7898 294 26.86 L
24 kinematics8fh 8192 0 8 8125 67 121.27 B
25 kinematics32fh 8192 0 32 8121 71 114.38 B
26 pumaRobot 8192 0 32 8070 122 66.15 B
27 deltaElevation 9517 0 6 7265 2252 3.23 U
28 sulfur1 10,081 0 5 9518 563 16.91 B
29 sulfur2 10,081 0 5 9340 741 12.60 B
30 ailerons 13,750 0 40 13,515 235 57.51 B
31 elevators 16,599 0 17 14,589 2010 7.26 B
32 calHousing 20,640 0 8 20,613 27 763.44 L
33 house8H 22,784 0 8 22,387 397 56.39 B
34 house16H 22,784 0 16 22,387 397 56.39 B
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5.2  Methods

In this section, we describe the learning and evaluation methods used in the experimen-
tal study. We also present information concerning parametrisation for reproducibility 
purposes.

The following learning algorithms are used: CART regression trees (rpart), multivari-
ate adaptive regression splines (mars), support vector machines (svm), random forests (rf) 
and bagging, based on implementations in R packages.

Parametrisation is carried out using a grid search approach, using the values in Table 6. 
Each model is identified by a number corresponding to the respective combination of 
parameters. For example, rpart1 corresponds to parameters minsplit and cp with respective 
values 10 and 0.001, and rpart2 with values 10 and 0.005. Experimental results are pre-
sented using evaluation metrics MSE and SERA, estimated using a 2 × 5-fold cross valida-
tion evaluation methodology.

5.3  Results: model selection

In Sect.  4.2, the SERA evaluation metric is proposed, and the shortcomings of standard 
metrics, such as MSE, in imbalanced regression tasks are described. In this section, an 
experimental evaluation is carried out to understand the impact of assessing the perfor-
mance of models when using either of these two metrics.

We employ the following methodology: 

1. for each data set (Table 5), we split the data into train and test sets using a 70%/30% 
random partition of cases;

2. each combination of learning algorithm/parameter configuration (Table 6) is used to 
create a model—30 models for each data set;

3. models are evaluated with the test set using MSE and SERA metrics;
4. for each data set, we select the models that provide the best approximation according to 

each evaluation metric used; these are denoted as “oracles”.

Our objective is to analyse how the different evaluation criteria impact the selection pro-
cess of learning algorithms and their respective parameterisation. In Fig. 10, we present 
the results obtained from applying the methodology described, which indicates for each 

Table 6  Models parameters considered for grid search in the experimental study

Algorithm Parameters R Package

rpart minsplit ∈ {10, 20, 30}
cp ∈ {0.001,0.005,0.01}

rpart (Therneau and Atkinson 2018)

mars thresh ∈ {0.001, 0.005, 0.01} earth (Milborrow 2019)
svm kernel ∈ {linear, polynomial, radial, 

sigmoid}
epsilon ∈ {0.1, 0.05, 0.01}

e1071 (Meyer et al. 2019)

rf ntrees ∈ {100, 250, 500} ranger (Wright and Ziegler 2017)
bagging nbagg ∈ {25, 50, 100} ipred (Peters and Hothorn 2018)
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data set (column), the best models according to the evaluation metrics SERA (blue) and 
MSE (green). If both metrics select the same model, these are denoted in red. From the 
30 models created for each dataset, 17 were selected by either evaluation metric in at 
least one dataset. Models that were never selected are marked with a grey background. 
The subscript of the models represents the different parameter configurations of each 
learning algorithm, as described in Sect. 5.2 (Table 6).

svm12

svm11

svm10

svm9

svm8

svm7

svm6

svm5

svm4

svm3

svm2

svm1

rpart9
rpart8
rpart7
rpart6
rpart5
rpart4
rpart3
rpart2
rpart1

rf3
rf2
rf1

mars3

mars2

mars1

bagging3

bagging2

bagging1

51 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Best Both MSE SERA

Fig. 10  Best model (oracle) for all 34 data sets of the experimental evaluation, according to MSE and/or 
SERA metrics, using the grid search described in Table 6
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Fig. 11  SER curves of the best model according to the MSE metric (green) and the best model according to 
the SERA metric (blue) in datasets 9, 12 and 15 (Color figure online)
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Results show that the evaluation metrics MSE and SERA selected different models in 12 
of the 34 data sets. In 9 of such cases (26% overall), the best prediction models according 
to the mentioned metrics belong to different learning algorithms; in 3 cases (9%), the mod-
els belong to the same algorithm while using different parameter settings. Based on these 
results, we observe the discrepancy of outcomes when assessing model performance with 
these two evaluation metrics. Nonetheless, such analysis does not adequately illustrate the 
impact in predictive performance of those models, in the context of imbalanced regression 
tasks. With such aim, Fig. 11 provides a depiction of the SER curves for data sets 9, 12 and 
15 (Table 5), where MSE (green) and SERA (blue) metrics select models from different 
learning algorithms.

Results show that models selected by the MSE metric tend to demonstrate a lower sum 
of squared errors for the entire domain (observed when relevance is 0). However, such an 
advantage is mostly due to the high density of cases in the central tendency of the target 
variable distribution—cases with lower relevance. Once we progressively focus on those 
with higher relevance, we rapidly observe a trade-off point where models selected by the 
SERA metric provide a considerably better predictive performance. To provide further evi-
dence of this trade-off, Fig. 12 illustrates a smoothed conditional mean of the percentage 
difference of the SER score concerning the oracle (best) model according to MSE and the 
oracle model according to SERA. Furthermore, such illustration distinguishes two settings. 
First, using all the available data sets (orange); second, using the data sets in which the 
models selected according to MSE and SERA metrics are different (green). We carry out 
the computation of the percentage difference of SERt at each relevance value t as follows:

 where SERs
t
 and SERm

t
 represent the SER score of the oracle according to SERA and the 

oracle according to MSE, respectively.
Based on this illustration, we are capable of further understanding the impact of employ-

ing the SERA metric in the context of imbalanced regression tasks. In comparison to those 
selected by the MSE metric, the best models, according to SERA, are considerably more 
able to reduce prediction loss in cases with higher relevance. Also, we observe that such 
ability does not come at the cost of significant bias for extreme values: we observe a favour-
able trade-off towards the best models according to SERA for cases with relevance above 
0.1, approximately. Also, we observe that such conclusion is valid both when focusing on 
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Fig. 12  Average percentage difference between the best models (oracles) according to either MSE or SERA 
metrics for: (i) all data sets (orange) (ii) data sets where different models were selected by the two metrics 
(green) (Color figure online)
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data sets where the MSE and SERA metrics select different models, but also when account-
ing for all data sets—although with different magnitude. However, this comes at a cost for 
cases in the centre of the distribution—slight decrease in predictive accuracy. Nonetheless, 
results show two important conclusions. First, it is possible to improve predictive accu-
racy towards extreme target values by selecting models using SERA. Second, this does not 
require a significant bias of prediction models towards the naive mean or extreme scenarios 
(RQ1). For clarity, we should highlight the magnitude of the trade-off between the best 
models according to MSE and SERA. As such, we analyse the mean squared error decom-
position of the best models according to MSE and SERA, using the bias-variance frame-
work described by Geman et al. (1992). We present the results of such study in Fig. 13 for 
all data sets where the selected models are different.

Results provide interesting insights concerning the normal behaviour of the models. 
As previously stated, the process of selecting a model that minimises SERA will likely 
increase the MSE score—although presenting a far better ability at predicting target values 
that diverge from the mean of the distribution. Figure 13 shows that this is mostly due to 
an increase in variance—models that perform better in imbalanced regression tasks are 
more sensitive towards extreme values. However, we observe a considerable fluctuation of 
bias: despite a slight increase on average, results show that bias is reduced in 57.1% of the 
data sets analysed (8 data sets), in contrast with the variance—1 data set (7.1% of cases). 
Overall, results confirm that the predictive ability of the best models according to SERA 
present a slight decrease in performance for low relevance cases. In contrast, they present a 
significant increase in the ability to anticipate target values for cases with higher relevance 
(RQ2)—the goal in imbalanced regression tasks.

5.4  Results: model optimisation

In the previous section, we compared the predictive performance of the best prediction 
models (oracles) when selected by either MSE or the proposed SERA metric. In this sec-
tion, we assess the ability of the SERA metric when used for model optimisation. Specifi-
cally, we address the problem of optimising the parametrisation of learning algorithms, to 
minimise SERA.

The most common approach for optimising a learning algorithm’s parameters is 
using a parameter grid search with a k-fold cross-validation methodology. The data set 
is divided into k partitions. An iterative process is applied where we use each partition 
as a validation set, and the remainder partitions are grouped, forming a train set. In 
each pair of train and validation sets, we use the train set to learn a prediction model 

Fig. 13  Distribution of the 
percentage difference, regarding 
bias and variance error decom-
position, between the best model 
according to MSE and to SERA 
metrics for all 14 data sets where 
the selected models are different � �

�
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for every combination of parameters in the user-defined grid. We use the validation set 
to obtain an estimate of the prediction error for each model. The expectation is that 
the average metric score across the k validation sets will be a good proxy of the real 
predictive error—test set. Although it is the most common approach, this is a greedy 
methodology and therefore, very time consuming and computationally expensive. This 
limitation is one of the core motivations for automated machine learning (Brazdil et al. 
2008) (AutoML), where the goal is to generate automatic recommendations or rankings 
of predictive solutions.

Research in AutoML has provided multiple search procedures and optimisation algo-
rithms that are capable of fulfilling such goal with reasonable time constraints  (Pinto 
et al. 2017). Examples include the Data Mining Advisor (Giraud-Carrier 2005), a meta-
learning approach that relates the characteristics of data sets and the performance of 
learning algorithms and their respective parametrisation. Bayesian optimisation meth-
ods are also well-known for their ability to optimise the parametrisation of learning 
algorithms efficiently. For example, SMAC  (Hutter et  al. 2011), a Bayesian optimisa-
tion method, maps the relationship between the performance of learning algorithms and 
their parametrisation. Additionally, we should mention the Hyperband method (Li et al. 
2017), a pure-exploration algorithm for multi-armed bandits. Such method approaches 
the automatic model selection problem as an automatic model evaluation problem. Most 
importantly, Hyperband has provided evidence of its ability to improve over the results 
of bayesian optimisation methods. For a thorough review of the state-of-art in AutoML, 
we refer to the work of He et al. (2019).

In this experimental evaluation, we employ a similar methodology to the one used in 
Sect. 5.3, as follows. 

1. We split each data set (Table 5) into train and test sets using a 70%/30% random partition 
of cases;

2. In the training data set, we apply two optimisation methods: (i) grid search, as described 
in Table 6, and (ii) Hyperband. We aim at comparing a greedy approach—grid search—
with a method that optimises the parametrisation of algorithms based on the direct 
minimisation of the SERA metric—Hyperband. 

(a) We apply the grid search method with a 2x5-fold cross-validation methodology. 
We average the results to obtain an estimation of the best learning algorithm and 
its parametrisation;

(b) We also apply the Hyperband method with a 2x5-fold cross-validation methodol-
ogy for each learning algorithm. We average the results to obtain an estimation 
of which learning algorithm is best;

3. We use the outcome of the grid search method (the best combination of learning algo-
rithm-parametrisation) to learn a prediction model. The Hyperband method is applied 
to the entire train set using the best learning algorithm according to the cross-validation 
results;

4. Models optimised with grid search and Hyperband methods are used to predict the test 
set, retrieving an estimation of out-of-sample prediction performance.
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We should stress that the test set data is not used in the optimisation process, and is 
only used for the final prediction of the optimised models and to obtain the SERA metric 
estimates.

After the collection of experimental results using the described methodology, results 
are analysed using the Bayes Sign Test (Benavoli et al. 2014, 2017). In order to provide 
such analysis, we require the use of standardised values over the multiple data sets used 
in this experimental evaluation. As such, we use the oracle models from the previous 
experimental evaluation as a baseline. These are the best models (oracles) in an out-of-
sample evaluation according to either MSE or SERA metrics (Sect.  5.3). We use such 
baselines to obtain the percentage difference between the out-of-sample SERA score of 
the models obtained with the grid search and Hyperband methods, and the SERA score 
of the oracle models. We carry out the percentage difference as follows:

where SERAa and SERAo represent the SERA score of the model under comparison and the 
score of the oracle model, respectively.

Given this, we can define the region of practical equivalence (ROPE) (Kruschke and 
Liddell 2015). In the context of Bayesian analysis, practical equivalence means that the 
probability of the difference of values being inside a specific range can be considered as 
having virtually no effect. Therefore, the main idea of using ROPE is to define an area 
around the null value (no difference between predictive solutions) encapsulating val-
ues considered equivalent to such null value for practical purposes Kruschke (2015). In 
classification tasks, the interval [−1%, 1%] for the average difference between accuracy 
scores is considered a reasonable value for the ROPE (Benavoli et al. 2017), Kruschke 
(2015). In regression tasks, (Kruschke and Liddell 2017) suggest that this value can be 
by default set to a range of −0.1 to 0.1 of a certain standardised parameter. For thor-
oughness, we define ROPE to be the interval [−1%, 1%] , given that it is more restrictive. 
Therefore, based on Eq.  8, we consider that: (i) if the percentage difference of SERA 
scores between model a and the oracle model is less than −1% , the former outperforms 
the latter (win); (ii) if the percentage difference is within the interval [−1%, 1%] , they are 
of practical equivalence (draw); and (iii) if the percentage difference is greater than 1%, 
the oracle outperforms model a (lose). Figure 14 shows the proportion of probability for 

(8)
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Fig. 14  Proportion of probability concerning wins, draws ans losses of models optimised through grid 
search or Hyperband methods, in comparison to the oracle models, according to the Bayes Sign test applied 
to the SERA scores of the models. ROPE is defined as the interval [−1%, 1%] , concerning the percentage 
difference between SERA scores
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wins, draws and losses against the oracle models, considering all data sets used in the 
experimental evaluation.

We observe that the optimised models are either of practical equivalence to or outper-
form the oracle models with more than 50% of probability. In the case of models optimised 
with grid search, this value is 66%; for models optimised with Hyperband, the value is 54% 
(6% of wins). Such outcome provides evidence of an essential aspect of the SERA metric: 
its usefulness as a metric for the optimisation of learning algorithms and their parametrisa-
tion in the context of imbalanced regression tasks (RQ3).

6  Discussion

In this section, we discuss our contribution in light of recent work and related topics. Also, 
we discuss the relationship between metrics MSE, SERA and the utility-based metric Fu 
used in the evaluation of utility-based regression tasks.

6.1  Recent work

Recent contributions address the topic of extreme values, such as the work of Siffer et al. 
(2017), Ding et al. (2019) and Wang et al. (2019). Based on the formalisation or use of 
tools from extreme value theory (the first two references) or combinations of pairwise 
preference classification and ordinal ranking, they illustrate well the issues tackled in this 
paper. The mentioned works are dependent on the definition of thresholds to distinguish 
target and non-target cases. As argued, discretisation disregards the magnitude of predic-
tion errors, raising extensively discussed issues (Royston et al. 2006). Also, the contribu-
tions mentioned do not tackle the learning assumption of uniform domain preferences, and 
the evaluation metrics used are debatable. Siffer et al. (2017) use an error rate based on the 
quantiles of the distribution and a ROC analysis on discretised values. Ding et al. (2019) 
use the Root Mean Squared Error and the F-Score with discretised values. Wang et  al. 
(2019) use statistical distance metrics for distributions and ROC analysis on discretised 
values. Such is an illustration of the problem faced by imbalanced regression, as none of 
the mentioned metrics is appropriate for evaluating learning tasks where domain prefer-
ences are non-uniform, and the aim is to anticipate extreme values—an issue addressed by 
the evaluation metric proposed in our contribution, SERA.

6.2  Related topics

Relevant discussions are raised when analysing the use of support vector machine regres-
sion (Drucker et al. 1996) algorithms or extreme value theory (Goodwin and Wright 2010), 
providing interesting inputs concerning the impact of our work.

In support vector machine regression, algorithms such as SVR Drucker et al. (1996) are 
based on hinge loss. This metric assumes the dismissal of errors below a particular value 
� , allowing easier convergence. In this paper, the formalisation of the learning task and 
model performance assessment with the SERA metric allows for a non-uniform weighting 
of cases, via relevance functions, mimicking the logic of hinge loss in SVR. Additionally, 
our work does not assume distribution symmetry, as with hinge loss. Such is also a signifi-
cant departure from previous work in utility-based regression, originating our proposal for 
non-parametric automatic generation of relevance functions.
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As for extreme value theory, methods attempt to avoid the bias introduced by assuming 
a normal distribution, concentrating the analysis on extremes. Often, methods require the 
definition of ad-hoc thresholds to distinguish extreme values (i.e. events), raising a known 
issue: lower thresholds increase the number of cases to estimate distribution parameters 
but include items closer to the central tendency of distributions; a higher threshold might 
lack sufficient data to estimate such parameters accurately. Our formalisation of imbal-
anced regression, and the use of the SERA evaluation metric, dismisses the common need 
of such thresholds. Such is also a significant difference to utility-based regression (Torgo 
and Ribeiro 2007), which requires user-defined thresholds for distinguishing normal and 
rare/extreme cases.

6.3  Utility‑based metrics

Utility-based regression aims to address learning problems where a pre-specified range of 
highly relevant target values are associated with some sort of actionable decision—similar 
to activity monitoring (Fawcett and Provost 1999). Our formalisation of imbalanced regres-
sion tasks does not follow such perspective. The goal is to address problems by learn-
ing models that achieve good overall performance with an emphasis on the extreme (and 
higher relevance) values of the target variable.

In this paper, we have not made a direct comparison of SERA and metrics tailored for 
utility-based regression tasks (Ribeiro 2011; Moniz et al. 2018), such as the utility-based 
F-Score Fu —a combination of utility-based precision ( Precu ) and recall ( Recu ). There are 
several reasons for such a decision. First, the Fu metric evaluates the predictive ability of 
models solely in specific intervals of the domain; contrary to this, both MSE and SERA 
focus on evaluating predictive performance in the entire domain. Second, Fu requires the 
definition of an ad-hoc threshold, which ultimately dismisses the impact of cases where 
both true and predicted values have a relevance score lower than the ad-hoc threshold.

Regardless, we acknowledge the interest in clarifying the different impact that SERA 
and Fu metrics have in model selection/optimisation processes. Accordingly, we collected 
the results of the utility-based metric Fu in the experimental evaluation process described 
in Sect. 5.3, using an ad-hoc threshold of 1 (maximum). Figure 15 provides a depiction of 

0

10

20

30

Relevance φ(y)

S
E

R

Model rpart2 svm3 rpart1

Dataset 3

0

10

20

30

Relevance φ(y)

S
E

R

Model rpart2 rf1 mars1

Dataset 12

0

5

10

15

20

25

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Relevance φ(y)

S
E

R

Model mars2 rf3 mars1

Dataset 13
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the SER curves for data sets 3, 12 and 13 (details in Table 5), where MSE (green), SERA 
(blue) and Fu (purple) metrics select different models. We remind that such experimen-
tal evaluation is based on the selection of the best performing model w.r.t. each metric 
(oracles). 

By comparing the results of the metrics MSE and Fu , we observe that the best models 
according to the latter demonstrate the ability to reduce the prediction error in cases with 
high relevance. Nonetheless, they may demonstrate a considerable increase in the overall 
error across the domain (as observed when relevance is 0). As for the comparison between 
the best models according to SERA or Fu , results show that both reduce predictive error in 
higher relevance cases. However, results also show that models optimised with the SERA 
metric reduce the overall error more effectively—they do not focus solely on highly rel-
evant cases. Additionally, the best models according to Fu show a consistent and notewor-
thy increase in the overall error across the domain, a trade-off that selection/optimisation 
processes using the SERA metric are capable of containing more effectively.

7  Conclusions

This paper addresses the problem of imbalanced regression and the prediction of extreme 
values. Although imbalanced domain learning has been a popular topic for over two dec-
ades, research concerning regression domains is, in comparison, negligible. This paper pro-
poses methods that allow a robust process of formalisation and evaluation for imbalanced 
regression tasks. First, given the frequent absence of information concerning the domain, 
we propose an automatic and non-parametric approach to approximate domain preferences. 
Second, we propose a new evaluation metric—SERA, which is not only capable of consid-
ering non-uniform preferences in a domain but also provides a tool for dominance analysis. 
Results demonstrate the magnitude of our contribution, which we expect will foster future 
work in imbalanced regression. Further research directions can focus on two main aspects: 
the exploration of other methods to obtain relevance functions and the further study of 
SERA, regarding other evaluation metrics, e.g. rank-based metrics.
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Appendix: Minimization of SERA

Consider a data set D = {⟨xi, yi⟩}Ni=1 , a relevance function � ∶ Y → {0, 1} defined for the 
target variable Y. We define the subset Dt ⊆ D formed by the cases for which the relevance 
of the target value is above or equal a threshold t, i.e. Dt = {⟨xi, yi⟩ ∈ D ��(yi) ≥ t}.

Theorem  1 The constant mt that minimizes the Squared Error-Relevance 
SERt =

∑
i∈Dt (ŷi − yi)

2 is mt =
∑

i∈Dt yi

�Dt�

Proof To minimize the function SERt with respect to mt , we must have that �SERt

�mt

= 0.
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Theorem  2 The constant m that minimizes the Squared Error-Relevance Area 
SERA = ∫ 1

0
SERt dt is m =

∫ 1

0

∑
i∈Dt yi dt

∫ 1

0
�Dt� dt

Proof To minimize the function SERA with respect to m, we must have that �SERA
�m

= 0.
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