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Abstract
We introduce the idea that using optimal classification trees (OCTs) and optimal classifica-
tion trees with-hyperplanes (OCT-Hs), interpretable machine learning algorithms devel-
oped by Bertsimas and Dunn (Mach Learn 106(7):1039–1082, 2017), we are able to obtain 
insight on the strategy behind the optimal solution in continuous and mixed-integer convex 
optimization problem as a function of key parameters that affect the problem. In this way, 
optimization is not a black box anymore. Instead, we redefine optimization as a multiclass 
classification problem where the predictor gives insights on the logic behind the optimal 
solution. In other words, OCTs and OCT-Hs give optimization a voice. We show on several 
realistic examples that the accuracy behind our method is in the 90–100% range, while 
even when the predictions are not correct, the degree of suboptimality or infeasibility is 
very low. We compare optimal strategy predictions of OCTs and OCT-Hs and feedforward 
neural networks (NNs) and conclude that the performance of OCT-Hs and NNs is compa-
rable. OCTs are somewhat weaker but often competitive. Therefore, our approach provides 
a novel insightful understanding of optimal strategies to solve a broad class of continuous 
and mixed-integer optimization problems.

Keywords Parametric optimization · Interpretability · Sampling · Multiclass classification

1 Introduction

Optimization has a long and distinguished history that has had and continues to have genu-
ine impact in the world. In a typical optimization problem in the real world, practitioners 
see optimization as a black-box tool where they formulate the problem and they pass it 
to a solver to find an optimal solution. Especially in high dimensional problems typically 
encountered in real world applications, it is currently not possible to interpret or intuitively 
understand the optimal solution. However, independent from the optimization algorithm 
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used, practitioners would like to understand how problem parameters affect the optimal 
decisions in order to get intuition and interpretability behind the optimal solution. Moreo-
ver, in almost all real world applications of optimization the main objective is not to solve 
just one problem but to solve multiple similar instances that vary slightly from each other. 
In fact, in most real-world applications we solve similar optimization problems multiple 
times with varying data depending on problem-specific parameters.

Our goal in this paper is to propose a framework to predict the optimal solution 
as parameters of the problem vary and do so in an interpretable way. A naive approach 
could be to learn directly the optimal solution from the problem parameters. However, 
this method is computationally intractable and imprecise: intractable, because it would 
require a potentially high dimensional predictor with hundreds of thousands of components 
depending on the decision variable size; imprecise, because it would involve a regression 
task that would naturally carry a generalization error leading to suboptimal or even infea-
sible solutions. Instead, our approach encodes the optimal solution with a small amount 
of information that we denote as strategy. Depending on the problem class, a strategy can 
have different meanings but it always corresponds to the complete information needed to 
efficiently recover the optimal solution.

In recent times, machine learning has also had significant impact to the world. Optimi-
zation methods has been a major driver of its success (Hastie et al. 2009; Bertsimas and 
Dunn 2019). In this paper, we apply machine learning to optimization with the objective to 
give a voice to optimization, that is to provide interpretability and intuition behind optimal 
solutions.

First, we solve an optimization problem for many parameter combinations and obtain 
the optimal strategy: the set of active constraints as well as the value of the discrete vari-
ables. Second, we encode the strategies with unique integer scalars. In this way, we have a 
mapping from parameters to the optimal solution strategies, which gives rise to a multiclass 
classification problem (Hastie et al. 2009). We solve the multiclass classification problem 
using OCTs and OCT-Hs developed by Bertsimas and Dunn (2017, 2019), interpretable 
state of the art classification algorithms as well as NNs, which, while not interpretable, 
serve as a benchmark to compare the accuracy of OCTs and OCT-Hs.

1.1  Related work

There has been a significant interest from both the computer science and the optimization 
communities to systematically analyze and solve optimization problems using machine 
learning. From the first works applying machine learning as a substitute for mathemati-
cal optimization algorithms in the 1990s  (Smith 1999), this research direction has been 
increasingly active until recent results on learning for combinatorial optimization (Bengio 
et al. 2018).

1.1.1  Learning to tune algorithms

Most optimization methods consist of iterative routines with several parameters obtained 
through experts’ knowledge and manual tuning. For example, Gurobi optimizer has 157 
parameters (Gurobi Optimization 2020) that are carefully tuned in every release. However, 
this tuning can be, on the one hand, very complex because it concerns several aspects of 
the problem that are not known a priori and, on the other hand, suboptimal for the instances 
considered in a specific application. To overcome these limitations, the machine learning 
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community studied the algorithm configuration problem, i.e., the problem of automatically 
tuning algorithms from the problem instances of interest. One of the first efficient auto-
matic configuration methods is ParamILS (Hutter et al. 2009) which iteratively improves 
the algorithm parameters using local search methods. Hutter et  al. (2011) extended this 
idea in SMAC, a framework to learn the relationship between algorithm configurations and 
performance. The proposed scheme relies on Gaussian Processes and Random Forests to 
perform the predictions. Later, López-Ibáñez et al. (2016) introduced irace, an algorithm 
that iteratively refines the candidate parameters configurations to identify the best ones for 
a specific application. Despite their relevance in practice, these approaches aim to identify 
or predict the best algorithm parameters, independently from the algorithm ultimate task, 
i.e., they do not only consider optimization algorithms. In addition, they do not consider 
interpretability of the predictors. For instance, SMAC could benefit from interpretable pre-
dictors such as OCTs to allow the user to understand why some parameter configurations 
are better than others. Our work, instead, studies the relationship between the problem 
instances and the optimal solution focusing specifically on optimization algorithms and the 
interpretability of the optimal solutions.

1.1.2  Learning heuristics

Optimization methods not only rely on careful parameter tuning, but also on efficient heu-
ristics. For example, branch-and-bound (B&B) involves several heuristic decisions about 
the branching behavior that are hand-tuned into the solvers. However, heuristics tuning can 
be very complex because it concerns several aspects of the problem that are not known 
a priori. Khalil et  al. (2016) propose to learn the branching rules showing performance 
improvements over commercial hand-tuned algorithms. Similarly,  Alvarez et  al. (2017) 
approximate strong branching rules with learning methods. Machine learning has been use-
ful also to select reformulations and decompositions for mixed-integer optimization (MIO). 
Bonami et al. (2018) learn in which cases it is more efficient to solve mixed-integer quad-
ratic optimization problem (MIQO) by linearizing or not the cost function. They model 
it as a classification problem showing advantages compared to how this choice is made 
heuristically inside state-of-the-art solvers. Kruber et al. (2017) propose a similar method 
applied to decomposition selection for MIO.

1.1.3  Reinforcement learning for optimization

Another interesting line of research models optimization problems as control tasks to 
tackle using reinforcement learning  (Sutton and Barto 2018). Problems suitable to this 
framework include knapsack-like or network problems with multistage decisions. Dai et al. 
(2017) develop a method to learn heuristics over graph problems. In this way the node 
selection criterion becomes the output of a specialized neural network that does not depend 
on the graph size (Dai et al. 2016). Every time a new node is visited, Dai et al. (2017) feed 
a graph representation of the problem to the NN obtaining a criterion suggesting the next 
node to select in the optimal solution.

1.1.4  Learning constraint programs

Constraint programming is a paradigm to model and solve combinatorial optimization 
problems very popular in the computer science community. The first works on applying 
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machine learning to automatically configure  constraint programs (CPs) date back to the 
1990s (Minton 1996). Later, Clarke et al. (2002) used Decision Trees to replace computa-
tionally hard parts of counterexample guided SAT solving algorithms. More recently, Xu 
et al. (2008) describe SATzilla, an automated approach for learning which candidate solv-
ers are best on a given instance. SATzilla won several SAT solver competitions because 
if its ability to adapt and pick the best algorithm for a problem instance. Given a SAT 
instance, instead of solving it with different algorithms, SATzilla relies on a empirical 
hardness model to predict how long each algorithm should take. This model consists of a 
ridge regressor (Hastie et al. 2009) after nonlinear transformation of the problem features. 
Selsam et al. (2019) applied recent advances in NN archtectures to CPs by directly predict-
ing the solution or infeasibility. Even though this approach did not give as good results as 
state-of-the-art methods, it introduces a new research direction for solving CPs. Therefore, 
the constraint programming community is also working on data-driven methods to improve 
the performance and understanding of solution algorithms.

1.1.5  Learning parametric programs

Even though recent approaches for integrating machine learning and optimization show 
promising results, they do not consider the parametric nature of the problems appearing 
in real-world applications. It is often the case that practitioners solve the same problem 
with slightly varying parameters multiple times generating a large amount of data describ-
ing how the parameters affect the optimal solution. There are only a few recent papers 
exploiting this information to build better solution algorithms. The idea of learning the set 
of active constraints for parametric online optimization has been proposed by Misra et al. 
(2019). The authors frame the learning procedure as a sampling scheme where they collect 
all the active sets appearing from the parameters. However, we found several limitations 
of their approach. First, in the online phase, they evaluate all the relevant active sets in 
parallel and pick the best one (ensemble policy Misra et al. 2019). Therefore, they do not 
solve the optimization problem as a multiclass classification problem and they are not able 
to gain insights on how the parameters affect the optimal strategy. In addition, they do not 
tackle mixed-integer optimization problems but only continuous convex ones. Finally, the 
sampling strategy by Misra et al. (2019) has to be tuned for each specific problem since 
it depends on at least four different parameters. This is because the authors compute the 
probabilistic guarantees based on how many new active sets appear over the samples in 
a window of a specific size (Misra et al. 2019, Sect. 3). In this work, instead, we provide 
a concise Good–Turing estimator (Good 1953) for the probability of finding new unseen 
strategies which can be directly applied to many different problem instances. In the field 
of model predictive control (MPC), Klaučo et  al. (2019) warm-start an online active set 
method for solving quadratic optimization problems (QOs). However, in that work there 
is no rigorous sampling scheme with probability bounds to obtain the different active sets. 
Instead, the authors either simulate the dynamical controlled system or provide an alter-
native gridding method to search for the relevant active sets. Furthermore, the method 
by Klaučo et al. (2019) is tailored to a specific linear control problem in the form of QO 
and cannot tackle general convex or mixed-integer convex problems. Learning for para-
metric programs can also speedup the online solution algorithms. Bertsimas and Stellato 
(2019) apply the framework in this paper to online mixed-integer optimization. By focus-
ing on speed instead of interpretability, they obtain significant speedups compared to state-
of-the-art solvers.
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1.1.6  Sensitivity analysis

The study of how changes in the problem parameters affect the optimal solution has 
long been studied in sensitivity analysis,  see Bertsimas and Tsitsiklis (1997,  Chapter  5) 
and Boyd and Vandenberghe (2004, Sect. 5.6) for introductions on the topic. While sen-
sitivity analysis is related to our work as it analyzes the effects of changes in problem 
parameters, it is fundamentally different both in philosophy and applicability. In sensitiv-
ity analysis the problem parameters are uncertain and the goal is to understand how their 
perturbations affect the optimal solution. This aspect is important when, for example, the 
problem parameters are not known with high accuracy and we would like to understand 
how the solution would change in case of perturbations. In this work instead, we consider 
problems without uncertainty and use previous data to learn how the problem parameters 
affect the optimal solution. Therefore, our problems are deterministic and we are not con-
sidering perturbations around any nominal value. As a matter of fact, the data we use for 
training are not restricted to lie close to any nominal point. In addion, sensitivity analysis 
usually studies continuous optimization problems since it relies on the dual variables at 
the optimal solution to determine the effect of parameter perturbations. This is why there 
has been only limited work on sensitivity analysis for MIO. In contrast, we show that our 
method can be directly applied to problems with integer variables.

1.2  Contributions

In this paper, we propose a learning framework to give a voice to continuous and mixed-
integer convex optimization problems. With our approach we can reliably sample the 
occurring strategies using the Good–Turing estimator, learn an interpretable classifier 
using OCTs and OCT-Hs, interpret the dependency between the optimal strategies and 
the key parameters from the resulting tree and solve the optimization problem using the 
learned predictor.

Our specific contributions include: 

1. We introduce a new framework for gaining insights on the solution of optimization 
problems as a function of their key parameters. The optimizer becomes an interpretable 
machine learning classifier using OCTs and OCT-Hs which highlights the relationship 
between the optimal solution strategy and the problem parameters. In this way optimi-
zation is no longer a black box and our approach gives it a voice that provides intuition 
and interpretability on the optimal solution.

2. We show that our method can be applied to a broad collection of optimization problems 
including convex continuous and convex mixed-integer optimization problem. We do 
not pose any assumption on the dependency of the cost and constraints on the problem 
parameters.

3. We introduce a new exploration scheme based on the Good–Turing estimator (Good 
1953) to discover the strategies arising from the problem parameters. This scheme allows 
us to reliably bound the probability of encountering unseen strategies in order to be sure 
our classifier accurately represents the optimization problem.

4. In several realistic examples we show that the sample accuracy of our method is in the 
90–100% range, while even in the cases where the prediction is not correct the degree 
of suboptimality or infeasibility is very low. We also compare the performance of OCTs 
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and OCT-Hs to NNs which can achieve state-of-the-art performance across a wide 
variety of prediction tasks. In our experiments we obtained comparable out-of-sample 
accuracy with OCTs, OCT-Hs and NNs.

In other words, our approach provides a novel, reliable and insightful framework for under-
standing the strategies to compute the optimal solution of a broad class of continuous and 
mixed-integer optimization problems.

1.3  Paper structure

The structure of the paper is as follows. In Sect. 2, we define an optimal strategy to solve 
continuous and mixed-integer optimization problems and present several concrete exam-
ples that demonstrate what we call the voice of optimization. In Sect.  3, we outline the 
core part of our approach of using multiclass classification to learn the mapping from 
parameters to optimal strategies. We further present an approach to estimate how likely it 
is to encounter a parameter that leads to an optimal strategy that has not yet been seen. In 
Sect.  4, we outline our Python implementation MLOPT (Machine Learning Optimizer). 
In Sect.  5, we test our approach on multiple examples from continuous and mixed-inte-
ger optimization and present the accuracy of predicting the optimal strategy of OCTs and 
OCT-Hs in comparison with a NNs implementation. Section  6 summarizes our conclu-
sions. Appendix 1 and Appendix 2 briefly present optimal classification trees (OCTs and 
OCT-Hs) and NNs, respectively to make the paper self-contained.

2  The voice of optimization

In this section, we introduce the notion of an optimal strategy to solve continuous and 
mixed-integer optimization problems.

Given a parametric optimization problem, we define strategy s(�) as the complete infor-
mation needed to efficiently compute its optimal solution given the parameter � ∈ �p . We 
assume that the problem is always feasible for every encountered value of �.

Note that in the illustrative examples in this section we omit the details of the learn-
ing algorithm which we explain in Sect. 3. Instead, we focus on the interpretation of the 
resulting strategies which correspond to a decision tree. For these examples the accuracy of 
our approach to find the optimal solution was always 100%, confirming that the resulting 
models accurately recover the optimal solution. For simplicity of exposition, we sample the 
problem parameters in the examples of this section in simple regions such as intervals or 
balls around specific points but this is not a strict requirement for our approach as it will be 
more clear in the next sections. In the examples in this section we used OCTs since their 
accuracy was 100% and they are more interpretable than OCT-Hs. In the last example, we 
used both an OCT and an OCT-H for comparison.

2.1  Optimal strategies in continuous optimization

Consider the continuous optimization problem
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where x ∈ �n is the vector of decision variables and � ∈ �p the vector of parameters affect-
ing the problem data. Functions f ∶ �p × �n

→ � and g ∶ �p × �n
→ �m are assumed to 

be convex in x. Given a parameter � we denote the optimal primal solution as x⋆(𝜃) and the 
optimal cost function value as f (𝜃, x⋆(𝜃)).

2.1.1  Tight constraints

Let us define the tight constraints T(�) as the set of constraints that are satisfied as equali-
ties at optimality,

Given the tight constraints, all the other constraints are no longer needed to solve the origi-
nal problem.

For non-degenerate problems, the tight constraints correspond to the support 
constraints, i.e., the set of constraints that, if removed, would allow a decrease in 
f (𝜃, x⋆(𝜃))  (Calafiore 2010,  Definition 2.1). In the case of linear optimization problems 
(LOs) the support constraints are the linearly independent constraints defining a basic fea-
sible solution  (Bertsimas and Tsitsiklis 1997,  Definition  2.9). An important property of 
support constraints is that they cannot be more than the dimension n of the decision varia-
ble (Hoffman 1979, Proposition 1), (Calafiore 2010, Lemma 2.2). This fact plays a key role 
in our method to reduce the complexity to predict the solution of parametric optimization 
problems. The benefits are more evident when the number of constraints is much larger 
than the number of variables, i.e., n ≪ m.

2.1.2  Multiple optimal solutions and degeneracy

In practice we can encounter problems with multiple optimal solutions or degeneracy. 
When the cost function is not strongly convex in x, we can have multiple optimal solutions. 
In these cases we consider only one of the optimal solutions to be x⋆ since it is enough for 
our training purposes. Note that most solvers such as Gurobi Optimization (2020) return 
anyway only one solution and not the complete set of optimal solutions. With degenerate 
problems, we can have more tight constraints than support constraints for an optimal solu-
tion x⋆ . This is because the support constraints set is no longer unique in case of degen-
eracy. However, we use the set of tight constraints which remains unique since it includes 
by definition all the constraints that are satisfied as equalities independently from being 
support constraints or not. In addition, our method is still efficient because the number of 
tight constraints is in practice much lower than the total number of constraints, even in case 
of degeneracy. Therefore, we can directly apply our framework to problems with multiple 
optimal solutions and affected by degeneracy.

2.1.3  Solution strategy

We can now define our strategy as the index of tight constraints at the optimal solution, i.e., 
s(�) = T(�) . Given the optimal strategy, solving (1) corresponds to solving

(1)
minimize f (�, x)

subject to g(�, x) ≤ 0,

(2)T(𝜃) = {i ∈ {1,… ,m} ∣ gi(𝜃, x
⋆) = 0}.



256 Machine Learning (2021) 110:249–277

1 3

This problem is easier than (1), especially when n ≪ m . Note that we can enforce the com-
ponents gi that are linear in x as equalities. This further simplifies (3) while preserving its 
convexity. In case of LO and QO when the cost f is linear or quadratic and the constraints g 
are all linear, the solution of (3) corresponds to solving a linear system of equations defined 
by the KKT conditions (Boyd and Vandenberghe 2004, Sect. 10.2).

2.1.4  Inventory management

Consider an inventory management problem with horizon t = 0,… , T − 1 with T = 30 . 
The decision variables are ut , describing how much we order at time t and xt , describ-
ing the inventory level at time t. The cost of ordering is c = 2 , h = 1 is the holding cost 
and p = 3 is the shortage cost. We define the maximum quantity we can order each time 
as M = 3 . The parameters are the product demand dt at time t and the initial value of the 
inventory xinit . The optimization problem can be written as follows

Depending on dt with t = 0,… , T − 1 and xinit , we need to adapt our ordering policy to 
minimize the cost. We assume that dt ∈ [1, 3] and xinit ∈ [7, 13].

The strategy selection is summarized in Fig.  1 and can be easily interpreted: 
ut = 0 for t ≤ t0 and then ut = dt for t > t0 . We can explain this rule from the problem 

(3)
minimize f (�, x)

subject to gi(�, x) ≤ 0, ∀i ∈ T(�).

(4)

minimize

T−1∑

t=0

max(hxt,−pxt) + cut

subject to xt+1 = xt + ut − dt, t = 0,… , T − 1

x0 = xinit
0 ≤ ut ≤ M, t = 0,… , T − 1.

xinit < 9.97

xinit < 7.91

4 2

True

d5 < 1.91

xinit < 11.61

1 3

xinit < 12.2

1 3

False

Fig. 1  Decision strategy for the inventory example. Strategy 1: do not order for the first 4 time steps, then 
order matching the demand. Strategy 2: do not order for the first 5 time steps, then order matching the 
demand. Strategy 3: do not order for the first 6 time steps, then order matching the demand. Strategy 4: do 
not order for the first 3 time steps, then order matching the demand
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formulation. As discussed before, the strategy tells us which constraints are tight, in this 
case when ut = 0 and, therefore, when we do not order. In the other time steps, we can 
ignore the inequality constraints and our goal is to minimize the cost by matching the 
demand. In this way, we do not have to store anything in the inventory, i.e., xt = 0 and 
max(hxt,−pxt) = 0 . Note that we anyway need to pay the cost of ordering cut since we 
have the satisfy the demand over the horizon.

An inventory level trajectory example appears in Fig.  2. Let us outline the strate-
gies depicted in Fig. 1. For example, if the initial inventory level xinit is below 7.91, we 
should apply Strategy 4, where we wait only t0 = 3 time steps before ordering. Other-
wise, if 7.91 ≤ xinit < 9.97 we should wait for t0 = 5 time steps before ordering because 
the initial inventory level is higher. The other branches can be similarity interpreted. 
Note that for this problem instance the decision is largely independent from dt . The only 
exception comes with d5 that determines the choice of strategies in the right-hand side 
of the tree.

Note that this is a simple illustrative example and the strategies shown are not all the 
theoretical ones. By allowing the problem parameters to take all the possible values we 
should expect a much larger number of strategies, and therefore a deeper tree. However, 
even though real-world examples can be more complicated, we very rarely hit all the 
possible strategy combinations.

The strategies we derived are related to the (s,  S) policies for inventory manage-
ment  (Zheng and Federgruen 1991). If the inventory level xt falls below value s, an 
(s,  S) policy orders a quantity ut so that the inventory is replenished to level S. This 
policy is remarkably simple because it consists only in a if-then-else rule. The optimal 
decisions from our approach are as simple as the (s, S) policies because we can describe 
them with the if-then-else rules as in Fig. 1. However, our method gives better perfor-
mance because it takes into account future predictions and can deal with more complex 
problem formulations with harder constraints.

0 5 10 15 20 25
0

5

10
x

0 5 10 15 20 25

0

1

2

u

0 5 10 15 20 25

0

1

2

t

d

Fig. 2  Inventory behavior with Strategy 2. The lower bound on ut is active for the first 5 steps. Then ut = dt
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2.2  Optimal strategies in mixed‑integer optimization

When dealing with integer variables we address the following problem

where I  is the set of indices for the variables constrained to be integer and |I| = d.

2.2.1  Tight constraints

In this case the set of tight constraints does not uniquely define the optimal solution 
because of the integrality of some components of x. However, when we fix the integer 
variables to their optimal values x⋆

I
(𝜃),  (5) becomes a continuous convex optimization 

problem of the form

Note that the optimal cost of (6) and (5) are the same, however, optimal solutions may be 
different as there may be alternative optima. After fixing the integer variables, the tight 
constraints of problem (6) uniquely define an optimal solution.

2.2.2  Solution strategy

For this class of problems the strategy corresponds to a tuple containing the index of 
tight constraints of the continuous reformulation (6) and the optimal value of the inte-
ger variables, i.e., s(𝜃) = (T(𝜃), x⋆

I
(𝜃)) . Compared to continuous problems, we must also 

include the value of the integer variables to recover the optimal solution x⋆(𝜃).
Given the optimal strategy, problem  (5) corresponds to solving the continuous 

problem

Solving this problem is much less computationally demanding than  (5) because it 
is continuous, convex and has smaller number of constraints, especially when n ≪ m . 
As for the continuous case (3), the components gi that are linear in x can be enforced as 
equalities further simplifying (7) while preserving its convexity.

Similarly to Sect. 2.1, in case of mixed-integer linear optimization problem (MILO) 
and MIQO when the cost f is linear or quadratic and the constraints g are all linear, the 
solution of (3) corresponds to solving a linear system of equations defined by the KKT 
conditions  (Boyd and Vandenberghe 2004, Sect.  10.2). This means that we can solve 

(5)
minimize f (�, x)

subject to g(�, x) ≤ 0

xI ∈ �d.

(6)
minimize f (𝜃, x)

subject to g(𝜃, x) ≤ 0

xI = x⋆
I
(𝜃).

(7)
minimize f (𝜃, x)

subject to gi(𝜃, x) ≤ 0, ∀i ∈ T(𝜃)

xI = x⋆
I
(𝜃).
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these problems online without needing any optimization solver (Bertsimas and Stellato 
2019).

2.2.3  The knapsack problem

Consider the knapsack problem

with n = 10 . The decision variables are x = (x1,… , x10) indicat-
ing the quantity to pick for each item i = 1,… , 10 . We chose the cost vector 
c = (0.42, 0.72, 0, 0.3, 0.15, 0.09, 0.19, 0.35, 0.4, 0.54) . The knapsack capacity is b = 5 . The 
weights a = (a1,… , a10) and the maximum order quantity u = (u1,… , u10) are our param-
eters. We assume that a is in a ball B(a0, r0) and u ∈ B(u0, r0) where u0 = a0 = (2, 2,… , 2) 
and r0 = 1.

With this setup we obtain the solution strategy outlined in Fig. 3. For this problem 
each strategy uniquely identifies the integer variables and is straightforward to analyze. 
For instance, the left part of the tree outlines what happens if the upper bound u2 is 
strictly less than 2. Moreover, if the weight a1 < 1.4 , then it is easier to include x1 in the 
knapsack solution and for this reason Strategy 3 has x1 = 2 and x2 = 1 . On the contrary, 
if a1 ≥ 1.4 , then Strategy 2 applies x1 = 0 and x2 = x10 = 1 . Even though all these rules 
are simple, they capture the complexity of a hard combinatorial problem for the param-
eters that affect it. Note that only a few parameters affect the strategy selection, i.e., 
u2, a1 and a2 , while the others are not relevant for this class of problem instances that 
have a ∈ B(a0, r0) and u ∈ B(u0, r0).

(8)

maximize cTx

subject to aTx ≤ b

0 ≤ x ≤ u

x ∈ �n,

u2 < 2

a1 < 1.4

3 2

True

a2 < 1.62

4 a2 < 2.48

1 2

False

Fig. 3  Example knapsack decision strategies. Strategy 1: xi = 0 for i ≠ 2 and x2 = 2 . Strategy 2: xi = 0 
for i ≠ 2, 10 and x2 = x10 = 1 . Strategy 3: xi = 0 for i ≠ 1, 2 and x1 = 2 and x2 = 1 . Strategy 4: xi = 0 for 
i ≠ 2, 10 and x2 = 2 and x10 = 1
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2.2.4  Supplier selection

Consider the problem of selecting n = 5 suppliers in order to satisfy a known demand d. Our 
decision variables are x ∈ {0, 1}n determining which suppliers we choose and the amount 
of shipments ui . For each supplier i we have a per-unit cost c = (0.42, 0.72, 0, 0.3, 0.15) 
and a maximum quantity to order m = (1.09, 1.19, 1.35, 1.4, 1.54) , while � = 0.1 . We are 
interested in understanding the optimal strategy as a function of the demand d and the sup-
plier delivery times �i , which are the problem parameters. The optimization problem is as 
follows:

Specifically, we are interested in d ∈ [1, 3] and � = (�1,… , �5) ∈ B(�0, r0) with the center 
of the ball being �0 = (2, 3, 2.5, 5, 1) and radius r0 = 0.5 . With these parameters we obtain 
the solution described in Fig. 4. Also in this case, the decision rules are simple and the 
solution strategy can be interpreted from the problem structure. The strategy outputs 
directly the optimal choice of suppliers xi and which inequalities are tight corresponding to 
where we order the maximum quantity, i.e., when ui = mi . Note that the demand constraint 
is always tight by construction, i.e., we want to spend the minimum to match d. Therefore, 
we can fix xi and ui to the values given by the strategy and we can set the remaining ui s to 
the minimum value such that 

∑n

i=1
ui ≥ d.

In Fig. 5, we show the tree that OCT-H gave for this example. Even though the accu-
racy of the OCT in Fig. 4 is 100%, the OCT-H depth is smaller at the cost of being less 

(9)

minimize

n∑

i=1

ciui + � max
i
({�ixi})

subject to

n∑

i=1

ui ≥ d

0 ≤ ui ≤ ximi

x ∈ {0, 1}n, ui ∈ �.

d < 1.18

τ3 < 2.56

τ5 < 0.79

4 3

τ5 < 1.07

4 3

True

d < 2.89

d < 1.35

3 2

1

False

Fig. 4  Example vendor decision strategies using OCT. Strategy 1: x = (1, 0, 1, 0, 1) , u2 = u4 = 0 . 
u3 = m3, u5 = m5 and u1 is left to match demand d. Strategy 2: x = (0, 0, 1, 0, 1) . u1 = u2 = u4 = 0 and 
u3 = m3 . u5 is left to match demand d. Strategy 3: x = (0, 0, 1, 0, 0) . u1 = u2 = u4 = u5 = 0 and u3 is left to 
match demand d. Strategy 4: x = (0, 0, 0, 0, 1) . u1 = u2 = u3 = u4 = 0 . u5 is left to match demand d 
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interpretable. Note that in some cases having a lower depth can make some classification 
tasks more interpretable despite the multiple coefficients on the hyperplanes.

3  Machine learning

In this section, we introduce the core part of our approach: learning the mapping from 
parameters to optimal strategies. After the training, the mapping will replace the core part 
of standard optimization algorithms—the optimal strategy search—with a multiclass clas-
sification problem where each strategy corresponds to a class label.

3.1  Multiclass classifier

We would like to solve a multiclass classification problem with i.i.d. data 
(�i, si), i = 1,… ,N where �i ∈ �p are the parameters and si ∈ S the corresponding labels 
identifying the optimal strategies. S represents the set of strategies of cardinality |S| = M.

In this work we apply two supervised learning techniques for multiclass classification to 
compare their predictive performance: optimal classification trees (OCTs, OCT-Hs) (Bert-
simas and Dunn 2017, 2019) and neural networks (NNs) (Bengio 2009; LeCun et al. 2015). 
As we mentioned earlier OCTs, OCT-Hs are interpretable and can be described using sim-
ple rules as in the examples in the previous section, while NNs are not interpretable since 
they represent a composition of multiple nonlinear functions. A more detailed description 
of OCTs and OCT-Hs can be found in Appendix 1 and of NNs can be found in Appendix 2.

3.2  Strategies exploration

In this section, we estimate how likely it is to find a new parameter � whose optimal strat-
egy does not lie among the ones we have already seen. If we have already encountered 
most of the strategies for our problem, then it is unlikely to find unseen strategies. There-
fore, we can be sure that our classification problem includes all the possible strategies 

d < 1.36

−1.16d+ 0.89τ3 − 0.89τ5 < 1.16

3 4

True

d < 2.89

2 1

False

Fig. 5  Example vendor decision strategies using OCT-H. The strategies are the same as in Fig. 4 but accu-
racy is the same or higher and the tree depth is reduced. Smaller tree depth can sometimes help in interpret-
ing the classification
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(classes) arising in practice. Otherwise, we must collect more data to have a more repre-
sentative classification problem.

3.2.1  Estimating the probability of finding unseen strategies

Given N independent samples �N = {�1,… , �N} drawn from an unknown discrete distri-
bution P with the corresponding strategies (s(�1),… , s(�N)) , we find M unique strategies 
S(�N) = {s1,… , sM} . We are interested in bounding the probability of finding unseen 
strategies

with confidence at least 1 − � where 𝛽 > 0.

3.2.2  Historical background

This problem started from the seminal work by Turing and Good (Good 1953) in the con-
text of decrypting the Enigma codes during World War II. The Enigma machine was a 
German navy encryption device used for secret military communications. Part of Enigma’s 
encryption key was a three letter sequence (a word) selected from a book containing all 
the possible ones in random order. The number of possible words was so large that it was 
impossible to test all the combinations with the computing power available at that time. In 
order to decrypt the Enigma machine without testing all the possible words, Turing wanted 
to check only a subset of them while estimating that the likelihood of finding a new unseen 
word was low. This is how the Good–Turing estimator was developed. It was a funda-
mental step towards the Enigma machine decryption which is believed to have shortened 
World War II of at least 2 years (Copeland 2012). In addition, this class of estimators have 
become standard in a wide range of natural language processing applications.

3.2.3  Good–Turing estimator

Let Nr be the number of strategies that appeared exactly r times in (s(�1),… , s(�N)) . The 
Good–Turing estimator for the probability of having an unseen strategy is given by Good 
(1953)

which corresponds to the ratio between the number of distinct strategies that have appeared 
exactly once, over the total number of samples. Despite the elegant result, Good and 
Turing did not provide a convergence analysis of this estimator for finite samples. Only 
few decades later the first theoretical work on that topic appeared in McAllester and Scha-
pire (2000). Using McDiarmid (1989)’s inequality the authors derived a high probability 
confidence interval. That result can be directly applied to our problem with the following 
theorem.

Theorem  3.1 (Missing strategies bound) The probability of encountering a parameter 
�N+1 corresponding t’o an unseen strategy s(�N+1) satisfies with confidence at least 1 − �

�(s(�N+1) ∉ S(�N)),

(10)G = N1∕N,

�(s(�N+1) ∉ S(�N)) ≤ G + c
√
(1∕N) ln(3∕�),
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where G corresponds to the Good–Turing estimator (10) and c = (2
√
2 +

√
3).

Proof of  Theorem  3.1 The result follows directly from  McAllester and Schapire 
(2000, Theorem 9).□

3.2.4  Exploration algorithm

Given the bound in Theorem 3.1 we construct Algorithm 1 to compute the different strat-
egies appearing in our problem. The algorithm keeps on sampling until we encounter a 
large enough set of distinct strategies. It terminates when the probability of encountering 
a parameter with an unseen optimal strategy is less than � with confidence at least 1 − � . 
Note that in practice, instead of sampling one point per iteration k, it is more convenient 
to sample more points to avoid having to recompute the class frequencies which becomes 
computationally intensive with several thousands of samples and hundreds of classes. 
Algorithm 1 imposes no assumptions on the optimization problem nor the data distribution 
apart from i.i.d. samples.

Algorithm 1 Strategies exploration
1: given ε, β,Θ = ∅,S = ∅, u = ∞
2: for k = 1, . . . , do
3: Sample θk and compute s(θk) � Sample parameter and strategy.
4: Θ ← Θ ∪ {θk} � Update set of samples.
5: if s(θk) /∈ S then
6: S ← S ∪ {s(θk)} � Update strategy set if new strategy found
7: if G+ c

√
(1/k) ln(3/β) ≤ ε then � Break if bound less than ε

8: break
9: return k,Θ,S

4  Machine learning optimizer

We implemented our method in the Python software tool MLOPT (Machine Learning 
Optimizer). It is integrated with CVXPY (Diamond and Boyd 2016) to formulate and solve 
the problems. CVXPY allows the user to easily define mixed-integer convex optimization 
problems performing all the required reformulations needed by the optimizers while keep-
ing track of the original constraints and variables. This makes it ideal for identifying which 
constraints are tight or not at the optimal solution. The MLOPT implementation is freely 
available online at

github.com/bstellato/mlopt.

We used the Gurobi Optimizer (Gurobi Optimization 2020) to find the tight constraints 
because it provides a good tradeoff between solution accuracy and computation time. Note 
that from Sect. 2, in case of LO, MILO, QO and MIQO when the cost f is linear or quad-
ratic and the constraints g are all linear, the online solution corresponds to solving a lin-
ear system of equations defined by the KKT conditions  (Boyd and Vandenberghe 2004, 
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Sect.  10.2) on the reduced subproblem. This means that we can solve those parametric 
optimization problems without the need to apply any optimization solver.

MLOPT performs the iterative sampling procedure outlined in Sect. 3.2 to obtain the 
strategies required for the classification task. We sample 5000 new points at each itera-
tion and compute their strategies until the Good Turing estimate is below �GT = 0.005 . The 
strategy computation is fully parallelized across samples.

We interfaced MLOPT to the machine learning libraries OptimalTrees.jl  (Bertsimas 
and Dunn 2019) on multi-core CPUs and PyTorch (Paszke et al. 2017) for both CPUs and 
GPUs. In the training phase we automatically tune the predictor parameters by splitting the 
data points in 90/10% training/validation. We tune the OCTs and OCT-Hs with maximal 
depth for values 5, 10, 15 and minimum bucket size for values 1, 5, 10. For the NNs we 
validate the stochastic gradient descent learning rate for values 0.001, 0.01, 0.1, batch size 
for values 32, 128 and number of epochs for values 50, 100. We described the complete 
algorithm in Fig. 6.

5  Computational benchmarks

In this section, we test our approach on multiple examples from continuous and mixed-
integer optimization. We benchmarked the predictive performance of OCTs, OCT-Hs (see 
Appendix 1) and NNs (see Appendix 2) depending on the problem type and size. We exe-
cuted the numerical tests on a Dell R730 cluster with 28 Intel E5-2680 CPUs with a total 
of 256 GB RAM and a Nvidia Tesla K80 GPU. To facilitate the data collection, we gener-
ated the training samples from distributions on intervals or on hyperballs around specified 
points. In this way the distributions are unimodal and therefore closer to the ones encoun-
tered in practice. Note that our theoretical results do not assume anything on the distribu-
tion generating data apart from i.i.d. samples. Therefore, we could have chosen other distri-
butions such as multimodal ones. In general, how to generate training data highly depends 
on the practical application and in many cases we can simply fit a representative distribu-
tion, either unimodal or multimodal, to the historical data we have. We evaluated the per-
formance metrics on 100 unseen samples drawn from the same distribution of �.

5.1  Infeasibility and suboptimality

After the learning phase, we compared the predicted solution x̂⋆
i
 to the optimal one x⋆

i
 

obtained by solving the instances from scratch. Given a parameter �i , we say that the 

Offline

CVXPY
Modeling

Strategies
Sampling Training

Online

Strategy
Predictionθ s(θ) Solution

Decoding x�

Fig. 6  Algorithm implementation
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predicted solution is infeasible if the constraints are violated more than a predefined toler-
ance �inf = 10−3 according to the infeasibility metric

where r(�, x) normalizes the violation depending on the size of the summands of g. For 
example, if g(�, x) = A(�)x − b , then r(�, x) = max(‖A(�)x‖2, ‖b‖2) . If the predicted solu-
tion x̂i is feasible, we define its suboptimality as

Note that d(x̂⋆
i
) ≥ 0 by construction. We consider a predicted solution to be accurate if it 

is feasible and if the suboptimality is less than the tolerance �sub = 10−3 . For each instance 
we report the maximum infeasibility p̄ = maxi p(x̂

⋆
i
) and the maximum suboptimality 

d̄ = maxi d(x̂
⋆
i
) over the test dataset. Note that for notation ease and to simplify the max 

operation, if a point is infeasible we consider its suboptimality 0 and ignore it.

5.2  Predicting the optimal strategy

Once the learning phase is completed, the predictor outputs the three (3) most likely opti-
mal strategies and picks the best one according to infeasibility and suboptimality after solv-
ing the associated reduced problems.

5.3  Runtimes

The training times of these examples range from a 2 to 12 h including the time to solve 
the problems in parallel over the training phase and the time to train the predictors. Even 
though this time can be significant, it is comparable to the usual time dedicated to train 
predictors for modern machine learning tasks. We report the time ratio tratio between the 
time needed to solve the problem with Gurobi  (Gurobi Optimization 2020) compared to 
our method.

5.4  Tables notation

We now outline the table headings as reported in every example. Dimensions n and/or m 
denote problem-specific sizes that vary over the benchmarks. The total number of variables 
and constraints are nvar and ncon respectively. Column “learner” indicates the learner type: 
OCT, OCT-H or NN. We indicate the Good–Turing estimator under column “GT” and the 
accuracy over the test set as “acc [%]”. The column tratio denotes the speedup of our method 
over Gurobi  (Gurobi Optimization 2020). The maximum infeasibility appears under col-
umn p̄ and the maximum suboptimality under column d̄.

5.5  Transportation optimization

Consider a standard transportation problem with n warehouses and m retail stores. Let xij 
be the quantity we ship from warehouse i to store j. si denotes the supply for warehouse i 
and dj the demand from store j. We define the cost of transporting a unit from warehouse i 
to store j as cij . The optimization problem can be formulated as follows:

p(x̂⋆
i
) = ‖(g(𝜃i, x̂⋆i ))+‖2∕r(𝜃i, x̂

⋆
i
),

d(x̂⋆
i
) = (f (x̂⋆

i
) − f (x⋆

i
))∕|f (x⋆

i
)|.
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The first constraint ensures we respect the supply for each warehouse  i. The second con-
straint enforces the sum of all the shipments to match at least the demand for store  j. 
Finally, the quantity of shipped product has to be nonnegative. Our learning parameters are 
the demands dj.

5.6  Problem instances

We generate the transportation problem instances by varying the number of warehouses n 
and stores m. The cost vectors ci are distributed as U(0, 5) and the supplies si as U(3, 13) . 
The parameter vector d = (d1,… , dm) was sampled from a uniform distribution within the 
ball B(d, 0.75) with center d ∼ N(3, 1).

5.7  Results

The results appear in Table  1. Independently from the problem instances the prediction 
accuracy is very high for both optimal trees and neural networks. Note that even though 
we solve problems with thousands of variables and constraints, the number of strategies 
is always within few tens or less. The solution time provides usually slight speedups up to 
almost 5 folds. Note that in the very small instances Gurobi can be faster than our method 
due to the delays in data exchange between predictor and our Python code.

5.8  Portfolio optimization

Consider the problem of allocating assets to minimize the risk adjusted return considered 
in Markowitz (1952) who formulated it as a QO

where the variable x ∈ �n represents the investments to make.
Our learning parameter is the vector of expected returns � ∈ �n . In addition we denote 

the risk aversion coefficient as 𝛾 > 0 , and the covariance matrix for the risk model as 
� ∈ �n

+
 . � is assumed to be

where F ∈ �n×p is the factor loading matrix and D ∈ �n×n is a diagonal matrix describing 
the asset-specific risk.

minimize

n∑

i=1

m∑

j=1

cijxij

subject to

m∑

j=1

xij ≤ si, ∀i

n∑

i=1

xij ≥ dj ∀j

xij ≥ 0 ∀i, j.

maximize �Tx − �(xT�x)

subject to �Tx = 1

x ≥ 0,

� = FFT + D,
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5.9  Problem instances

We generated portfolio instances for different number of factors p and assets n. We chose 
the elements of F with 50% nonzeros and Fij ∼ N(0, 1) . The diagonal matrix D has ele-
ments Dii ∼ U(0,

√
p) . The return vector parameters were randomly sampled from a uni-

form distribution within the ball B(�, 0.15) with � ∼ N(0, 1) . The risk-aversion coefficient 
is � = 1.

5.10  Results

Results are shown in Table  2. The prediction accuracy for OCTs, OCT-Hs and NNs is 
100%, the number of strategies is less than 15, and the infeasibility and suboptimality are 
very low. The solution times improvement is not significant due to the delays of passing 
data to the predictor and the fact that Gurobi is fast for these problems.

Table 1  Transportation benchmarks

n m n
var

n
con

Learner N GT |S| acc (%) t
ratio

p̄ d̄

20 20 400 440 NN 10,000 1.00 × 10−4 11 100.00 0.81 6.34 × 10−5 4.40 × 10−16

20 20 400 440 OCT 10,000 1.00 × 10−4 11 100.00 0.04 6.34 × 10−5 4.40 × 10−16

20 20 400 440 OCT-H 10,000 1.00 × 10−4 11 100.00 1.22 6.34 × 10−5 4.40 × 10−16

20 10 200 230 NN 10,000 1.00 × 10−4 6 100.00 0.74 1.42 × 10−16 2.76 × 10−16

20 10 200 230 OCT 10,000 1.00 × 10−4 6 100.00 0.88 1.42 × 10−16 2.76 × 10−16

20 10 200 230 OCT-H 10,000 1.00 × 10−4 6 100.00 1.36 1.42 × 10−16 2.76 × 10−16

40 40 1600 1680 NN 10,000 2.00 × 10−4 9 100.00 1.95 3.00 × 10−16 1.98 × 10−16

40 40 1600 1680 OCT 10,000 2.00 × 10−4 9 100.00 1.74 3.00 × 10−16 1.98 × 10−16

40 40 1600 1680 OCT-H 10,000 2.00 × 10−4 9 100.00 1.81 3.00 × 10−16 1.98 × 10−16

40 20 800 860 NN 10,000 0.00 3 100.00 4.98 1.41 × 10−16 2.11 × 10−16

40 20 800 860 OCT 10,000 0.00 3 100.00 3.53 1.41 × 10−16 2.11 × 10−16

40 20 800 860 OCT-H 10,000 0.00 3 100.00 3.74 1.41 × 10−16 2.11 × 10−16

60 60 3600 3720 NN 10,000 1.50 × 10−3 43 99.00 2.04 1.86 × 10−2 2.46 × 10−16

60 60 3600 3720 OCT 10,000 1.50 × 10−3 43 95.00 1.80 2.72 × 10−2 1.55 × 10−4

60 60 3600 3720 OCT-H 10,000 1.50 × 10−3 43 100.00 2.11 5.17 × 10−5 2.46 × 10−16

60 30 1800 1890 NN 10,000 8.00 × 10−4 30 99.00 1.70 1.60 × 10−3 1.97 × 10−16

60 30 1800 1890 OCT 10,000 8.00 × 10−4 30 100.00 1.48 1.19 × 10−16 1.97 × 10−16

60 30 1800 1890 OCT-H 10,000 8.00 × 10−4 30 100.00 1.55 1.19 × 10−16 1.97 × 10−16

80 80 6400 6560 NN 10,000 1.10 × 10−3 36 100.00 2.04 1.99 × 10−16 2.20 × 10−16

80 80 6400 6560 OCT 10,000 1.10 × 10−3 36 100.00 2.12 1.99 × 10−16 2.20 × 10−16

80 80 6400 6560 OCT-H 10,000 1.10 × 10−3 36 100.00 2.43 1.99 × 10−16 2.20 × 10−16

80 40 3200 3320 NN 10,000 1.00 × 10−4 14 100.00 2.40 2.10 × 10−16 3.23 × 10−16

80 40 3200 3320 OCT 10,000 1.00 × 10−4 14 100.00 2.13 2.10 × 10−16 3.23 × 10−16

80 40 3200 3320 OCT-H 10,000 1.00 × 10−4 14 100.00 2.38 2.10 × 10−16 3.23 × 10−16
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5.11  Facility location

Let i ∈ I the set of possible locations for facilities such as factories or warehouses. We 
denote as j ∈ J the set of delivery locations. The cost of transporting a unit of goods from 
facility i to location j is cij . The construction cost for building facility i is fi . For each loca-
tion j, we define the demand dj . The capacity of facility i is si . The main goal of this prob-
lem is to find the best tradeoff between transportation costs versus construction costs. We 
can write the model as a MILO

The decision variables xij describe the amount of goods sent from facility i to location j. 
The binary variables yi determine if we build facility i or not.

5.12  Problem instances

We generated the facility location instances for different values of facilities n and ware-
houses m. The costs cij are sampled from a uniform distribution U(0, 1) and fi from 
U(0, 10) . We chose capacities si as U(8, 18) to ensure the problem is always feasible. The 
demands parameters d = (d1,… , dm) were sampled from a uniform distributions within the 
ball B(d, 0.25) with d ∼ N(3, 1).

(11)

minimize
∑

i∈I

∑

j∈J

cijxij +
∑

i∈I

fiyi

subject to
∑

i∈I

xij ≥ dj, ∀j ∈ J

∑

j∈J

xij ≤ siyi, ∀i ∈ I

xij ≥ 0

yi ∈ {0, 1}.

Table 2  Continuous portfolio benchmarks

n p n
con

Learner N GT |S| acc (%) t
ratio

p̄ d̄

100 10 101 NN 10,000 4.00 × 10−4 12 100.00 1.01 6.66 × 10−16 7.06 × 10−16

100 10 101 OCT 10,000 4.00 × 10−4 12 100.00 0.09 6.66 × 10−16 7.06 × 10−16

100 10 101 OCT-H 10,000 4.00 × 10−4 12 100.00 1.07 6.66 × 10−16 7.06 × 10−16

200 20 201 NN 10,000 4.00 × 10−4 11 100.00 0.88 4.44 × 10−16 5.54 × 10−16

200 20 201 OCT 10,000 4.00 × 10−4 11 100.00 0.81 4.44 × 10−16 3.84 × 10−7

200 20 201 OCT-H 10,000 4.00 × 10−4 11 100.00 0.79 4.44 × 10−16 5.54 × 10−16

300 30 301 NN 10,000 1.00 × 10−4 4 100.00 2.87 3.38 × 10−5 6.96 × 10−16

300 30 301 OCT 10,000 1.00 × 10−4 4 100.00 2.55 3.38 × 10−5 6.96 × 10−16

300 30 301 OCT-H 10,000 1.00 × 10−4 4 100.00 2.46 3.38 × 10−5 6.96 × 10−16

400 40 401 NN 10,000 0.00 14 100.00 1.29 1.48 × 10−5 5.26 × 10−16

400 40 401 OCT 10,000 0.00 14 100.00 0.72 1.48 × 10−5 5.26 × 10−16

400 40 401 OCT-H 10,000 0.00 14 100.00 1.20 1.48 × 10−5 1.82 × 10−7
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5.13  Results

Table 3 shows the benchmark examples. All prediction methods showed very high accu-
racy. There is a significant improvement in computation time compared to Gurobi. To illus-
trate an example of the OCT interpretability, we reported the resulting tree for n = 60 and 
m = 30 in Fig. 7. Even though for space concerns we cannot directly report the strategies in 
terms of tight constraints and integer variables since the problem involves 1860 variables 
and 2010 constraints, the tree is remarkably simple. In every strategy all the demand con-
straints are tight since we are trying to minimize the cost while satisfying the demand. In 
addition, the strategy illustrates which facilities hit the maximum capacity si which could 
mean that further facilities might be needed in that area. Finally, with the values of binary 
variables yi , the strategy tells us which facilities we should open depending on the demand.

5.14  Hybrid vehicle control

Consider the hybrid-vehicle control problem in Takapoui et  al. (2017, Sect.  3.2). The 
model consists of a battery, an electric motor/generator and an engine. We assume to 
know the demanded power Pdes

t
 over the horizon t = 0,… , T − 1 . The goal is to plan 

Table 3  Facility location benchmarks

n m n
var

n
con

Learner N GT |S| acc (%) t
ratio

p̄ d̄

20 10 220 270 NN 10,000 0.00 1 100.00 537.67 1.06 × 10−16 1.64 × 10−16

20 10 220 270 OCT 10,000 0.00 1 100.00 3.87 1.06 × 10−16 1.64 × 10−16

20 10 220 270 OCT-H 10,000 0.00 1 100.00 573.24 1.06 × 10−16 1.64 × 10−16

20 20 420 480 NN 10,000 1.00 × 10−4 9 100.00 149.06 9.45 × 10−5 1.81 × 10−9

20 20 420 480 OCT 10,000 1.00 × 10−4 9 100.00 174.62 9.45 × 10−5 1.81 × 10−9

20 20 420 480 OCT-H 10,000 1.00 × 10−4 9 100.00 234.11 9.45 × 10−5 1.81 × 10−9

40 20 840 940 NN 10,000 0.00 2 100.00 1986.00 1.76 × 10−16 2.43 × 10−16

40 20 840 940 OCT 10,000 0.00 2 100.00 2080.12 1.76 × 10−16 2.43 × 10−16

40 20 840 940 OCT-H 10,000 0.00 2 100.00 2201.23 1.76 × 10−16 2.43 × 10−16

40 40 1640 1760 NN 10,000 1.00 × 10−4 5 100.00 1037.03 1.42 × 10−16 2.50 × 10−9

40 40 1640 1760 OCT 10,000 1.00 × 10−4 5 100.00 961.91 1.42 × 10−16 2.50 × 10−9

40 40 1640 1760 OCT-H 10,000 1.00 × 10−4 5 100.00 1070.20 1.42 × 10−16 2.50 × 10−9

60 30 1860 2010 NN 10,000 1.00 × 10−4 3 100.00 325.76 2.02 × 10−16 1.91 × 10−16

60 30 1860 2010 OCT 10,000 1.00 × 10−4 3 100.00 334.58 2.02 × 10−16 1.91 × 10−16

60 30 1860 2010 OCT-H 10,000 1.00 × 10−4 3 100.00 296.36 2.02 × 10−16 1.91 × 10−16

60 60 3660 3840 NN 10,000 1.00 × 10−4 5 100.00 341.24 3.01 × 10−16 2.63 × 10−16

60 60 3660 3840 OCT 10,000 1.00 × 10−4 5 100.00 415.54 3.01 × 10−16 2.63 × 10−16

60 60 3660 3840 OCT-H 10,000 1.00 × 10−4 5 100.00 409.08 3.01 × 10−16 2.63 × 10−16

80 40 3280 3480 NN 10,000 1.00 × 10−4 9 100.00 97.38 3.03 × 10−16 2.77 × 10−16

80 40 3280 3480 OCT 10,000 1.00 × 10−4 9 100.00 99.44 3.03 × 10−16 2.77 × 10−16

80 40 3280 3480 OCT-H 10,000 1.00 × 10−4 9 100.00 89.52 3.03 × 10−16 2.77 × 10−16

80 80 6480 6720 NN 10,000 1.00 × 10−4 6 100.00 865.45 3.34 × 10−16 2.52 × 10−10

80 80 6480 6720 OCT 10,000 1.00 × 10−4 6 100.00 64.74 3.34 × 10−16 2.52 × 10−10

80 80 6480 6720 OCT-H 10,000 1.00 × 10−4 6 100.00 1061.22 3.34 × 10−16 2.52 × 10−10
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the battery and the engine power outputs Pbatt
t

 and Peng
t  so that they match at least the 

demand,

The status of the battery is modeled with the internal energy Et evolving as

where 𝜏 > 0 is the time interval discretization. The battery capacity is limited by Emax and 
its initial value is Einit.

We now model the cost function. We penalize the terminal energy state of the battery 
with the function

with � ≥ 0 . At each time t we model the on-off state of the engine with the binary vari-
able zt . When the engine is off ( zt = 0 ) we do not consume any energy, thus we have 
0 ≤ P

eng
t ≤ Pmaxzt . When the engine is on ( zt = 1 ) it consumes �Peng

t + �P
eng
t + � units of 

fuel, with 𝛼, 𝛽, 𝛾 > 0 . We define the stage power cost as

We also introduce a cost of turning the engine on at time t as �(zt − zt−1)+.
The hybrid vehicle control problem can be formulated as a mixed integer quadratic 

optimization problem:

Pbatt
t

+ P
eng
t ≥ Pdes

t
.

Et+1 = Et − �Pbatt
t

,

g(E) = �(Emax − E)2.

f (P, z) = �P2 + �P + �z.

d8 < 3.35

d18 < 3.04

1 d30 < 2.19

2 d18 < 3.04

2 1

False

1

True

Fig. 7  Facility location benchmark OCT for n = 60 and m = 30
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The initial state E0 and demanded power Pdes
t

 are our parameters.

5.15  Problem instances

We generated the control instances with varying horizon length T. The discretization time 
interval is � = 4 . We chose the cost function parameters � = � = � = 1 , and � = 0.1 . The 
maximum charge is Emax = 50 and the maximum power Pmax = 1 . The parameter E0 was 
sampled from a uniform distribution within the ball B(40,  0.5). The demand Pdes also 
comes from a uniform distribution within the ball B(P

des
, 0.5) where

is the desired power in  Takapoui et  al. (2017). Depending on the horizon length T we 
choose only the first T elements of P

des to sample Pdes.

5.16  Results

We present the results in Table 4. Here there is a significant improvement in computation 
time compared to Gurobi. Also in this case the number of strategies |S| is much less than 
the number of variables or the worst case number of control input combinations. The maxi-
mum infeasibility and suboptimality are low even when the predictions are not exact and 
the performance of OCTs, OCT-Hs and NNs is comparable except in the last case.

6  Conclusions

We introduced the idea that using OCTs and OCT-Hs we obtain insight on the strategy of 
the optimal solution in many optimization problems as a function of key parameters. In this 
way, optimization is not a black box anymore, but rather it has a voice, i.e., we are able to 
provide insights on the logic behind the optimal solution. The class of optimization problems 
that these ideas apply to is rather broad since it includes any continuous and mixed-integer 
convex optimization problems without any assumption on the parameters dependency. The 
accuracy of our approach is in the 90–100%, while even when it does not provide the optimal 
solution the degree of suboptimality or infeasibility is extremely low. In addition, the com-
putation times of our method are significantly faster than solving the problem using standard 

minimize �(ET − Emax)2 +

T−1∑

t=0

f (P
eng
t , zt) + �(zt − zt−1)+

subject to Et+1 = Et − �Pbatt
t

, t = 0,… , T − 1

0 ≤ Et ≤ Emax, t = 0,… , T

E0 = Einit

0 ≤ P
eng
t ≤ Pmax, t = 0,… , T − 1

Pbatt
t

+ P
eng
t ≥ Pdes

t
, t = 0,… , T − 1

zt ∈ {0, 1}, t = 0,… , T − 1.

P
des

t
= (0.05, 0.30, 0.55, 0.80, 1.05, 1.30, 1.55, 1.80, 1.95, 1.70, 1.45, 1.20, 1.02,

1.12, 1.22, 1.32, 1.42, 1.52, 1.62, 1.72, 1.73, 1.38, 1.03, 0.68, 0.33,− 0.02,

− 0.37,− 0.72,− 0.94,− 0.64,− 0.34,− 0.04, 0.18, 0.08,− 0.02,− 0.12,

− 0.22,− 0.32,− 0.42,− 0.52)
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optimization algorithms. Even though the solving times did not have a strict limit for the 
proposed applications, our method can be useful in online settings where problems must be 
solved within a limited time and with limited computational resources. Applications of this 
framework to fast online optimization appear in Bertsimas and Stellato (2019). Comparisons 
on several examples show that the out-of-sample strategy prediction accuracy of OCT-Hs is 
comparable to the NNs. OCTs show competitive accuracy in most comparisons apart from the 
cases with higher number of strategies where the prediction performance degrades. Note that 
this is not necessarily related to the size of the problem but rather to how the parameters affect 
the optimal solution and, in turn, the total number of strategies. OCTs also exhibit low infea-
sibility and low suboptimality even when the prediction is not correct. In addition, OCTs have 
higher interpretability than OCT-Hs and NNs because of their structure with parallel splits, 
therefore, being required in applications where models must be explainable. For these reasons, 
our framework provides a reliable and insightful understanding of optimal solutions in a broad 
class of optimization problems using different machine learning algorithms.

Table 4  Hybrid control benchmarks

T n
var

n
con

Learner N GT |S| acc (%) t
ratio

p̄ d̄

10 51 103 NN 10,000 3.00 × 10−4 16 100.00 2.79 1.17 × 10−14 3.78 × 10−15

10 51 103 OCT 10,000 3.00 × 10−4 16 99.00 0.12 9.37 × 10−4 3.78 × 10−15

10 51 103 OCT-H 10,000 3.00 × 10−4 16 100.00 3.00 1.17 × 10−14 3.78 × 10−15

15 76 153 NN 10,000 4.00 × 10−4 16 99.00 4.20 7.27 × 10−5 4.29 × 10−15

15 76 153 OCT 10,000 4.00 × 10−4 16 99.00 3.68 7.27 × 10−5 4.29 × 10−15

15 76 153 OCT-H 10,000 4.00 × 10−4 16 99.00 3.05 7.27 × 10−5 4.29 × 10−15

20 101 203 NN 10,000 6.00 × 10−4 16 100.00 3.89 1.46 × 10−14 6.04 × 10−15

20 101 203 OCT 10,000 6.00 × 10−4 16 99.00 4.16 2.23 × 10−4 6.04 × 10−15

20 101 203 OCT-H 10,000 6.00 × 10−4 16 100.00 4.33 1.46 × 10−14 6.04 × 10−15

25 126 253 NN 10,000 2.00 × 10−4 10 100.00 4.27 5.49 × 10−5 6.33 × 10−15

25 126 253 OCT 10,000 2.00 × 10−4 10 100.00 4.38 5.49 × 10−5 6.33 × 10−15

25 126 253 OCT-H 10,000 2.00 × 10−4 10 100.00 5.12 5.49 × 10−5 6.33 × 10−15

30 151 303 NN 10,000 1.00 × 10−4 20 100.00 86.65 1.55 × 10−13 7.72 × 10−16

30 151 303 OCT 10,000 1.00 × 10−4 20 100.00 148.37 1.55 × 10−13 7.72 × 10−16

30 151 303 OCT-H 10,000 1.00 × 10−4 20 100.00 124.01 1.55 × 10−13 7.72 × 10−16

35 176 353 NN 10,000 3.00 × 10−4 37 100.00 845.13 4.04 × 10−5 1.14 × 10−15

35 176 353 OCT 10,000 3.00 × 10−4 37 98.00 1010.73 4.04 × 10−5 3.48 × 10−4

35 176 353 OCT-H 10,000 3.00 × 10−4 37 100.00 1250.19 4.04 × 10−5 5.98 × 10−5

40 201 403 NN 10,000 2.00 × 10−4 35 100.00 6461.46 6.50 × 10−14 1.53 × 10−15

40 201 403 OCT 10,000 2.00 × 10−4 35 93.00 6846.49 6.50 × 10−14 3.12 × 10−2

40 201 403 OCT-H 10,000 2.00 × 10−4 35 89.00 6551.66 6.50 × 10−14 3.02 × 10−2
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Appendix 1: Optimal classification trees

OCTs and OCT-Hs developed by  Bertsimas and Dunn (2017, 2019) are a recently pro-
posed generalization of classification and regression trees (CARTs) developed by Breiman 
et  al. (1984) that construct decision trees that are near optimal with significantly higher 
prediction accuracy while retaining their interpretability. Bertsimas and Dunn (2019) have 
shown that given a NN (feedforward, convolutional and recurrent), we can construct an 
OCT-H that has the same in sample accuracy, that is OCT-Hs are at least as powerful as 
NNs. The constructions can sometimes generate OCT-Hs with high depth. However, they 
also report computational results that show that OCT-Hs and NNs have comparable perfor-
mance in practice even for depths of OCT-Hs below 10.

Architecture

OCT recursively partition the feature space �p to construct hierarchical disjoint regions. A 
tree can be defined as a set of nodes t ∈ T  of two types T = TB ∪ TL : 

Branch nodes  Nodes t ∈ TB at the tree branches describe a split of the form aT
t
𝜃 < bt 

where at ∈ �p and bt ∈ � . They partition the space in two subsets: the 
points on the left branch satisfying the inequality and the remaining ones 
points on the right branch. If splits involve a single variable we denote 
them as parallel and we refer to the tree as optimal classification tree 
(OCT).. This is achieved by enforcing all components of at to be all 0 
except from one. Otherwise, if the components of at can be freely nonzero, 
we denote the splits as hyperplanes and we refer to the tree as optimal 
classification tree with-hyperplanes (OCT-H).

Leaf nodes  Nodes t ∈ TL at the tree leaves make a class prediction for each point fall-
ing into that node.

 An example OCT for the Iris dataset appears in Fig. 8 (Bertsimas and Dunn 2019). For 
each new data point it is straightforward to follow which hyperplanes are satisfied and 
to make a prediction. This characteristic makes OCTs and OCT-Hs highly interpretable. 
Note that the level of interpretability of the resulting trees can be also tuned by changing 

Fig. 8  Example OCT for the Iris 
dataset (Bertsimas and Dunn 
2019)
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minimum sparsity of at . The two extremes are maximum sparsity OCTs and minimum 
sparsity OCT-Hs but we can specify anything in between.

Learning

With the latest computational advances in MIO, Bertsimas and Dunn (2019) were able to 
exactly formulate the tree training as a MIO problem and solve it in a reasonable amount of 
time for problem sizes arising in real-world applications.

The OCT cost function is a tradeoff between the misclassification error at each leaf and 
the tree complexity

where the Lt is the misclassification error at node t and the second term represents the com-
plexity of the tree measured as the sum of the norm of the hyperplane coefficients in all 
the splits. The parameter 𝛼 > 0 regulates the tradeoff. For more details about the cost func-
tion and the constraints of the problem, we refer the reader to Bertsimas and Dunn (2019, 
Sects. 2.2, 3.1).

Bertsimas and Dunn apply a local search method (Bertsimas and Dunn 2019, Sect. 2.3) 
that manages to solve OCT problems for realistic sizes in fraction of the time an off-the-
shelf optimization solver would take. The algorithm proposed iteratively improves and 
refines the current tree until a local minimum is reached. By repeating this search from 
different random initialization points the authors compute several local minima and then 
take the best one as the resulting tree. This heuristic showed remarkable performance both 
in terms of computation time and quality of the resulting tree becoming the algorithm 
included in the OptimalTrees.jl Julia package (Bertsimas and Dunn 2019).

Appendix 2: Neural networks

NNs have recently become one of the most prominent machine learning techniques revolu-
tionizing fields such as speech recognition (Hinton et al. 2012) and computer vision (Kriz-
hevsky et al. 2012). The wide range of applications of these techniques recently extended 
to autonomous driving  (Bojarski et  al. 2016) and reinforcement learning  (Silver et  al. 
2017). The popularity of neural networks is also due to the widely used open-source librar-
ies learning on CPUs and GPUs coming from both academia and industry such as Tensor-
Flow (Abadi et al. 2015), Caffe (Jia et al. 2014) and PyTorch (Paszke et al. 2017). We use 
feedforward neural networks which offer a good tradeoff between simplicity and accuracy 
without resorting to more complex architectures such as convolutional or recurrent neural 
networks (LeCun et al. 2015).

Architecture

Given L layers, a neural network is a composition of functions of the form

where each function consists of

LOCT =
�

t∈TL

Lt + �
�

t∈TB

‖at‖1,

ŝ = fL(fL−1(… f1(𝜃))),
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The number of nodes in each layer is nl and corresponds to the dimension of the vec-
tor yl ∈ �nl . Layer l = 1 is defined as the input layer and l = L as the output layer. Con-
sequently y1 = � and yL = ŝ . The linear transformation in each layer is composed of an 
affine transformation with parameters Wl ∈ �nl×nl−1 and bl ∈ �nl . The activation function 
g ∶ �nl → �nl models nonlinearities. We chose as activation function the  rectified linear 
unit (ReLU) defined as

for all the layers l = 1,… , L − 1 . Note that the max operator is intended element-wise. We 
chose a ReLU because on the one hand it provides sparsity to the model since it is 0 for the 
negative components of x and because on the other hand it does not suffer from the vanish-
ing gradient issues of the standard sigmoid functions (Goodfellow et al. 2016). An example 
neural network can be found in Fig. 9.

For the output layer we would like the network to output not only the predicted class, 
but also a normalized ranking between them according to how likely they are to be the 
right one. This can be achieved with a softmax activation function in the output layer 
defined as

where j = 1,… ,M are the elements of g(x). Hence, 0 ≤ g(x) ≤ 1 and the predicted class is 
argmax(ŝ).

Learning

Before training the network, we rewrite the labels for the neural network learning using a 
one-hot encoding, i.e., si ∈ �M where M is the total number of classes and all the elements 
of si are 0 except the one corresponding to the class which is 1.

We define a smooth cost function amenable to algorithms such as gradient descent, i.e., 
the cross-entropy loss

where log is intended element-wise. The cross-entropy loss L can also be interpreted as the 
distance between the predicted probability density of the labels compared to the true one.

The actual training phase consists of applying stochastic gradient descent using the 
derivatives of the cost function using the back-propagation rule. This method works very 
well in practice and provides good out-of-sample performance with short training times.

(12)yl = f (yl−1) = g(Wlyl−1 + bl).

g(x) = max(x, 0),

g(x)j =
exj

∑M

j=1
exj

,

LNN =

N∑

i=1

−sT
i
log(ŝi),

f1
θ

f2
y1 y2 . . . fL

yL−1 ŝ

Fig. 9  Example feedforward neural network with functions fi, i = 1,… ,L defined in (12)
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