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Abstract
Multi-view data have become increasingly popular in many real-world applications where
data are generated fromdifferent information channels or different views such as image+ text,
audio+video, and webpage+ link data. Last decades have witnessed a number of studies
devoted to multi-view learning algorithms, especially the predictive latent subspace learning
approaches which aim at obtaining a subspace shared by multiple views and then learning
models in the shared subspace. However, few efforts have been made to handle online multi-
view learning scenarios. In this paper, we propose an online Bayesian multi-view learning
algorithm which learns predictive subspace with the max-margin principle. Specifically, we
first define the latent margin loss for classification or regression in the subspace, and then
cast the learning problem into a variational Bayesian framework by exploiting the pseudo-
likelihood and data augmentation idea. With the variational approximate posterior inferred
from the past samples, we can naturally combine historical knowledge with new arrival data,
in a Bayesian passive-aggressive style. Finally, we extensively evaluate our model on several
real-world data sets and the experimental results show that our models can achieve superior
performance, compared with a number of state-of-the-art competitors.

Keywords Multi-view learning · Online learning · Bayesian subspace learning ·
Max-margin · Classification · Regression

1 Introduction

Nowadays, multi-view data are often generated from multiple information channels con-
tinuously, e.g., hundreds of YouTube videos consisting of visual, audio and text features
are uploaded every minute. Different views usually contain complementary information,
and multi-view learning can exploit this information to learn representation that is more
expressive than that of single-view learning method. Therefore, multi-view representation
learning has become a very promising topic with wide applicability. Multi-view learning
arouses amounts of interests in the past decades (Zhao et al. 2017; Quang et al. 2013; Sun
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and Chao 2013; Li et al. 2016; Ye et al. 2015; Liu et al. 2016; Chen and Zhou 2018). Nowa-
days, there are many multi-view learning approaches, e.g., multiple kernel learning (Gönen
and Alpaydın 2011), disagreement-based multi-view learning (Blum and Mitchell 1998),
late fusion methods which combine outputs of the models constructed from different view
features (Ye et al. 2012) and subspace learning methods for multi-view data (Chen et al.
2012). Among them, the multi-view subspace learning approaches aim at obtaining a sub-
space shared by multiple views and then learning models in the shared subspace (Sharma
et al. 2012; Hardoon et al. 2004; Guo and Xiao 2012; Zhang et al. 2017; Brbić and Kopriva
2018). They are very useful for cross-view classification and retrieval tasks. However, these
approaches may overfit small training data. A max-margin harmoniummodel (MMH) (Chen
et al. 2012) was proposed to avoid overfitting by introducing the max-margin principle to
the latent subspace Markov network for multi-view data. But MMH is under the maximum
entropy discrimination framework and cannot infer the penalty parameter of max-margin
models in Bayesian style automatically. In Du et al. (2015), a posterior-regularized Bayesian
approach is proposed to combine principal component analysis (PCA) with the max-margin
learning, which can infer the penalty parameter of max-margin models but cannot address
multi-view data.

On the other hand, multi-view data often cannot be collected in a single time due to
temporal and spatial constrictions in applications, while the traditional multi-view algorithm
needs store the entire training samples. Online learning is an efficient method to address this
problem. Online learning starts from the Perceptron algorithm (Rosenblatt 1958) and many
efforts have been made on the studies of online learning (Cesa-Bianchi and Lugosi 2006;
Hazan et al. 2007; Chechik et al. 2010). Unfortunately, there are few studies about online
multi-view learning methods. OPMV (Zhu et al. 2015) is one of the few online multi-view
learning algorithms. OPMV jointly optimizes the composite objective functions with consis-
tency linear constraints for different views. It doesn’t take the relevance of different views into
account. OPMV is formulated as a point estimate by optimizing some deterministic objec-
tive function, without consideration of the model uncertainty. Online passive-aggressive (PA)
learning provides amethod for online large-margin learning (Crammer et al. 2006). Although
it enjoys strong discriminative ability suitable for predictive tasks, it is also formulated as a
point estimate by optimizing some deterministic objective function. The point estimate can
be affected seriously by inappropriate regularization, outliers and noises, especially when
the training data arrive sequentially. Based on the online PA learning, Shi and Zhu (2013)
proposed a Bayesian PA learning method which infers a posterior under the Bayesian frame-
work instead of a point estimate. Nevertheless, these online learning methods cannot process
multi-view data. To the best of our knowledge, there have been few efforts focused on online
multi-view learning under the Bayesian framework.

We address the aforementioned problems by developing an online Bayesian multi-view
subspace learning method with the max-margin principle. Specifically, we first propose a
predictive subspace learning method based on factor analysis and define a latent margin
loss for classification in the subspace. Then we cast the learning problem into a variational
Bayesian framework by exploiting the pseudo-likelihood and data augmentation idea (Zhu
et al. 2014) which allows us to automatically infer the penalty parameter. With the variational
approximate posterior inferred from the past samples, we can naturally combine historical
knowledge with new arriving data, in a Bayesian passive-aggressive style. We update our
model with the training data coming batch by batch, instead of storing all training data.

In the previous work, we propose a Bayesian multi-view learning algorithm (He et al.
2016) to learn predictive subspace with max-margin principle and then extend this model to
the online scenario with streaming data. However, our preliminary work mainly focuses on
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classification tasks and is not available to predict the continuous response values like rating
scores for hotel reviews and movie reviews.

In this paper, we further extend our Bayesian multi-view subspace learning model to
solve multi-view regression problem which is based on the ε-insensitive Support Vector
Regression (SVR) (Zhu et al. 2009). Regression tasks have been successfully applied in
many fields like finance (Jiang and He 2012; Kazem et al. 2013), transportation (Lin et al.
2013), meteorology (Kalteh 2013; Chen and Jie 2014), and other fields. We have applied
our proposed regression model on many real multi-view regression data sets to predict the
global rating score of the hotel, the rating of the movie and the relative location of the CT
image on the axial axis, while our classification model can not predict the continuous values
of regression tasks. Furthermore, we also extend our batch regression model to the online
scenario which can deal with streaming data. Experiments on synthetic and various real
classification and regression tasks show both our batch and online models have superior
performance, compared with a number of competitors.

The paper is structured as follows. Section 2 introduces the relatedwork. Section 3 presents
theBayesian subspacemulti-viewclassification (regression)models and their online versions.
Section 4 presents the variational inference for our models. Section 5 presents empirical
results and Sect. 6 concludes.

2 Related work

The earliest works of multi-view learning are introduced by Blum and Mitchell (1998) and
Yarowsky (1995). Nowadays, there are many multi-view learning approaches, e.g., multiple
kernel learning (Gönen and Alpaydın 2011), disagreement-based multi-view learning (Blum
and Mitchell 1998) and late fusion methods which combine outputs of the models con-
structed from different view features (Ye et al. 2012). Especially, the multi-view subspace
learning algorithms learn the latent salient representation of multi-view data (Sharma et al.
2012; Hardoon et al. 2004; Zhang et al. 2017; Brbić and Kopriva 2018). This approach aims
at obtaining a subspace shared by multiple views and then learning models in the shared
subspace. However, most of these approaches are formulated as a point estimate by optimiz-
ing some deterministic objective function. The point estimate can be affected seriously by
inappropriate regularization, outliers and noises.

The above methods mainly focus on multi-view classification tasks, while multi-view
regression tasks of which the response values are continuous are also applied in many fields.
Most of the existing multi-view regression models are based on a maximum likelihood
approach or optimizing some deterministic objective function (Zheng et al. 2015; Lan et al.
2016; Wang et al. 2013; Merugu et al. 2006), whose objective is to learn an optimal value
for each parameter involved in the model, thus can be affected seriously by outliers and
noises. What’s worse, most existing multi-view regression solvers require user pre-specified
the penalty parameter as input, but in many real machine learning applications, the optimal
penalty parameter may be hard to be determined in advance. Though these solvers provide
an automatic parameter selection mechanism by conducting cross-validation on the training
samples, they may overfit small training sets.

Online learning starts from the Perceptron algorithm (Rosenblatt 1958) and has attracted
much attention during the past years (Cesa-Bianchi and Lugosi 2006; Hazan et al. 2007;
Grangier and Bengio 2008; Chechik et al. 2010; Chen et al. 2017). Crammer proposes the
Online passive-aggressive (PA) learningwhich provides a general framework for online large-
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margin learning (Crammer et al. 2006), with many applications (Chiang et al. 2008). Online
Bayesian passive-aggressive learning presents a generic framework of performing online
learning for Bayesian max-margin models (Shi and Zhu 2013). Chen et al. (2017) proposes
an online partial least square optimization method to study a non-convex formulation for
multi-view representation learning, which can be efficiently solved by a simple stochastic
gradient method. Xie et al. (2017) proposes dynamic multi-view hashing (DMVH), which
can adaptively augment hash codes according to dynamic changes of image. And an online
unsupervised multi-view model is proposed for feature selection (Shao et al. 2016).

Unfortunately, there are few online multi-view learning methods for multi-view data.
OPMV (Zhu et al. 2015) is one of the few online multi-view classification models. This
approach jointly optimizes the composite objective functions with consistency linear con-
straints for different views. It doesn’t take the cross view latent relationship into consideration.
OPMV is formulated as a point estimate by optimizing some deterministic objective function,
without consideration of the model uncertainty. For regression, there are some online regres-
sion models (Parrella 2007; Ting 2011; Nguyen-Tuong et al. 2009; Deng et al. 2016). These
methods can deal with the multi-view learning by concatenating all views to form a new
single view. But these methods don’t take the relevance of the different views into account
and most of the existing models are based on point estimation, without consideration of the
model uncertainty. As a result, their prediction performance can be effected seriously by
online outliers and noises.

3 The proposedmodel

In this section, we firstly propose the max-margin subspace learning based on factor analysis.
Then we develop a multi-view classification and a multi-view regression with max-margin
subspace learning under the Bayesian framework. Finally, we extend the batch model to the
online scenario which trains the model with the samples coming batch by batch.

3.1 Max-margin subspace learning

Suppose we have a set of N observations x(n), n = 1, . . . , N in d-dimension feature space.
Factor analysis projects an observation into a low dimensional space that captures the latent
feature of data. In factor analysis, the generative process for each observation x is as follows:

z ∼ N (z|0, Im)

ε ∼ N (ε|0, Φ)

x = μ + Wz + ε, (1)

where ε ∈ R
d×1 denotes the Gaussian noise, Φ ∈ R

d×d is a dimension variance matrix
of ε, μ ∈ R

d×1 is the mean value of x, W ∈ R
d×m is the factor loading matrix, z is a

m-dimensional latent variable.
So we can get the maximum likelihood �s of {x(n)}, n = 1, . . . , N

max
μ,W,Φ

�s(μ,W, Φ) = max
μ,W,Φ

log
N∏

n=1

exp
(− 1

2 (x
(n) − μ)T (WWT + Φ)−1(x(n) − μ)

)

(2π)d/2|WWT + Φ|1/2 .

However, factor analysis is an unsupervised model, which learns the latent variables of
the observations without using any supervised side information. The max-margin principle
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can be introduced to incorporate supervised side information into the factor analysis model.
Now, we need to devise a loss function that integrates themax-margin principle for prediction
with latent subspace discovery. Suppose we have a 1× N response vector y with its element
y(n), n = 1, . . . , N . If there is a classification task, we suppose y(n) ∈ {+1,−1}. Especially,
if there is a regression task, y(n) will be a continuous value. We define z̃ = [zT , 1]T as the
augmented latent representation of observation x, and let f (x; z̃, η) = ηT z̃ be a discriminant
function parameterized by η. For classification, we can compute the following margin loss
on training data (X, y) with fixed values of Z and η:

�m(Z, η) =
N∑

n=1

max(0, 1 − y(n) f (x(n))). (2)

For regression, we choose to minimize the ε-insensitive loss, which is used in standard
support vector regression (SVR) (Smola and Lkopf 2004):

�m(Z, η) =
N∑

n=1

max(0, |y(n) − f (x(n))| − ε), (3)

where ε ∈ R+ is the precision parameter, which is usually small.
The max-margin subspace learning (M2SL) model can be formulated as follows:

max
μ,W,Φ,Z,η

�s(μ,W, Φ) − C�m(Z, η), (4)

where C is the regularization parameter.

3.2 Multi-view classification with BayesianM2SL

Thenwe propose a Bayesianmax-margin subspacemulti-view learning (BM2SMVL)model.
In this section, we present the classification model. We consider the general multi-class
classification. The binary case can be similarly derived.

We assume that Nv is the number of views, Nc is the number of classes, di is the dimension
of the i-th view, the data matrix of the i-th view is Xi ∈ R

di×N consisting of N observations
x(n)
i in di -dimension feature space.We define y, y(n) ∈ {1, . . . , Nc}, n = 1, . . . , N as a 1×N

label vector and x(n) = {x(n)
i }, i = 1, . . . , Nv as the n-th observation.

In our BM2SMVL model, we learn the latent variable zn from which the observation x(n)

is generated. For the n-th observation x(n), each view x(n)
i of x(n) is generated from the latent

variable z(n). Next, we impose a prior distribution over the parameters in Eq. (1). So we can
get the generative process for the n-th observations as follows:

μi ∼ N (μi |0, β−1
i Idi )

αi ∼
m∏

j=1

Γ (αi j |aαi , bαi )

Wi |αi ∼
di∏

j=1

N (wi j |0, diag(i))

φi ∼ Γ (φi |aφi , bφi )

x(n)
i |z(n) ∼ N (x(n)

i |Wiz(n) + μi , φ−1
i Idi ),
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where Γ (·) is the Gamma distribution,1 and β, aαi , bαi , aφi , bφi are the hyper-parameters,
Wi ∈ R

di×m . The prior on Wi and αi is introduced according to the automatic relevance
determination (ARD) (Reents and Urbanczik 1998). In order to improve the efficiency
of our algorithm, we define the variance matrix Φi of the x(n)

i as a diagonal matrix
φ−1
i Idi . Let Ω = (μ, α,W, φ, z) denote all the parameters and latent variables. p0(Ω) =
p0(μ)p0(W, α)p0(φ)p0(z) is the prior of Ω . According to the regularized Bayesian infer-
ence (Zhu et al. 2014), we re-express Eq. (1) as a Bayesian posterior distribution. It can be
verified that the Bayesian posterior distribution p(Ω|X) = p0(Ω)p(X|Ω)/p(X) is equal to
the solution of the following optimization problem:

min
q(Ω)∈P KL(q(Ω)‖p0(Ω)) − Eq(Ω)[logp(X|Ω)], (5)

where KL(q‖p) is the Kullback–Leibler (KL) divergence, and P is the space of probability
distributions. When the observations are given, p(X) is a constant.

Then we introduce a multi-class classification by using the large-margin approach based
on the one-VS-rest idea for SVM. We redefine the label y(n) of the n-th observation as a
1 × Nc label vector. If the n-th observation’s label y(c)

n belongs to the c-th class, we define
y(n)
c = +1 otherwise y(n)

c = −1. We have Nc classifiers, and take the c-th classification for
an example: fc(x(n); z̃(n), ηc) = ηT

c z̃
(n) denotes a discriminant function. Under the Bayesian

framework, we impose a prior on ηc as follows:

νc ∼ p0(νc) = Γ (νc|aνc , bνc )

p(ηc|νc) = N (ηc|0, ν−1
c I(m+1)),

where aνc and bνc are hyper-parameters. νc controls the inverse variance of ηc, playing a
similar role as the penalty parameter in conventional SVM. If νc has a posterior distribution
concentrated at large values, ηc will tend to be small, then the model will be simple and may
not perform very well on training data. In conventional SVM, the penalty parameter νc is
learned by time-consuming cross-validation. Instead, it can be determined automatically as
part of Bayesian inference in our model. So we can automatically infer the penalty parameter
of the max-margin model. For simplify, let Θ = {(ηc, νc)}Nc

c=1.
Then we can replace the margin loss with the expected margin loss for the classification.

So we introduce

ϕ(y|Z, η) =
N∏

n=1

Nc∏

c=1

exp{−2C · max(0, 1 − y(n)
c ηT

c z̃
(n))} (6)

as the pseudo-likelihood of the n-th data’s label variable. Next we get our final model as
follows:

min
q(Ω,Θ)∈P KL(q(Ω,Θ)‖p0(Ω,Θ)) − Eq(Ω)[logp(X|Ω)] − Eq(Ω,Θ)[log(ϕ(y|Z, η))], (7)

where p0(Ω,Θ) is the prior, p0(Ω,Θ) = p0(Ω)p0(Θ), p0(Θc) = p(ηc|νc)p0(νc) and C
is the regularization parameter. Solving problem (7), we can get the posterior distribution

q(Ω,Θ) = p0(Ω,Θ)p(X|Ω)ϕ(y|Z, η)

φ(X, y)
, (8)

where φ(X, y) is the normalization constant. In order to approximate q(Ω,Θ) we use vari-
ational approximate inference which is introduced in the Sect. 4.

1 We use the shape-rate parameterization, i.e., α. and β. are the shape and rate parameter respectively

123



Machine Learning (2020) 109:219–249 225

3.3 Multi-view regression with BayesianM2SL

In this section, we present the max-margin latent subspace multi-view learning (BM2SMVL)
for regression.

The Bayesian multi-view subspace learning model is the same with the classification
model, the difference is the loss function. We use the ε-insensitive loss for regression (Zhu
et al. 2009), so we introduce

ϕR(y|Z, η, ε) =
N∏

n=1

exp{−2CR · max(|y(n) − ηT z̃(n)| − ε, 0)}

as the pseudo-likelihood of the n-th data. Under the Bayesian framework, we impose a prior
on η as follows:

p0(ν) = Γ (ν|aν, bν)

p(η|ν) = N (η|0, ν−1I(m+1)).

For simplify, let Θ = {η, ν, ε} for regression. Similar to the classification model, we can
get the posterior distribution for regression as:

q(Ω,Θ) = p0(Ω,Θ)p(X|Ω)ϕR(y|Z, η, ε)

φ(X, y)
. (9)

3.4 Online version of BM2SMVL

Thegoal of online learning is tominimize the cumulative loss for a certain prediction task from
the sequentially arriving training samples. In this section, we present an online BM2SMVL
(OBM2SMVL) based on the online Bayesian passive-aggressive (BayesPA) learning frame-
work for Bayesian max-margin models (Shi and Zhu 2013).

Assuming we have already got the posterior qt (Ω,Θ) at time t , when the new data
(x(t+1), y(t+1)) is coming, we need update the new posterior distribution qt+1(Ω,Θ). For
simplify, we denote x(t+1) = {x(t+1)

i }Nv

i=1. Generally, we defineω as the parameterized model
and �(ω; x(t+1), y(t+1)) as the loss for the new data (x(t+1), y(t+1)).

Insted of updating a point estimate ofω, onlineBayesPAsequentially infers a newposterior
distribution qt+1(ω). It sequentially infers a new posterior distribution qt+1(ω) on the arrival
of new data (x(t+1), y(t+1)) by solving the following optimization problem:

min
q(ω)∈P KL(q(ω)‖qt (ω)) − Eq(ω)[logp(x(t+1)|ω)] + �(ω; x(t+1), y(t+1)).

The online model includes three main updating rules. Firstly, we hope KL(q(ω)‖qt (ω))

is as small as possible. It means that qt+1(ω) is close to qt (ω). Secondly, the likelihood
of the new data Eq(ω)[logp(x(t+1)|ω)] is high enough. Thirdly, the loss of the new data
�(ω; x(t+1), y(t+1)) is as small as possible. It means that the new model qt+1(ω) suffers little
loss from the new data. Note that the latent variable z for each data is also included in ω, but
the prior distribution of latent variable zt+1 for the new arrival data (x(t+1), y(t+1)) is not the
posterior of zt , but p0(z). So the updating rule for latent variables z is different from other
parameters.

Considering that in reality, sometimeswe can obtain several training samples during a short
moment, so we can use them as amini-batch to learn themodel, which is effective in reducing
the noise in data and cutting the time for online learning. Suppose that we have amini-batch of
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M samples at time t , for simplicity, we useX(t+1) = {x(l)}, y(t+1) = {y(l)} (l = 1, 2, . . . , L)

to denote the mini-batch observed in time t + 1.
To introduce the online idea to the above multi-view classification BM2SMVL , we let

(Ω,Θ) denote ω and y(t+1) = {y(t+1)
c }Nc

c=1. A new posterior distribution qt+1(Ω,Θ) on
the arrival of new data (X(t+1), y(t+1)) can be gotten by solving the following optimization
problem:

min
q(Ω,Θ)∈P KL(q(Ω,Θ)‖qt (Ω,Θ)) − Eq(Ω,Θ)[logp(X(t+1)|Ω,Θ)]

+ �(Ω,Θ;X(t+1), y(t+1)).

As above, we introduce ϕ(·) function to replace the hinge loss as the pseudo-likelihood.
So the formula is replaced by:

min
q(Ω,Θ)∈P KL(q(Ω,Θ)‖qt (Ω,Θ)) − Eq(Ω)[logp(X(t+1)|Ω)]

−Eq(Ω,Θ)[log(ϕ(y(t+1)|z̃, η))].
Similar to Eq. (8), we can get the posterior distribution:

qt+1(Ω,Θ) = qt (Ω,Θ)p(X(t+1)|Ω)ϕ(y(t+1)|z̃, η)

φ(X(t+1), y(t+1))
,

where φ(X(t+1), y(t+1)) is the normalization constant. Note that, the latent variable zt is
unrelated to the new posterior, because the variable zt+1’s prior is p0(z). Let (Ω,Θ\zt )
denote all variables in Ω and Θ except zt , then we can further get

qt+1(Ω,Θ) = qt (Ω,Θ\zt )p0(z)p(X(t+1)|Ω)ϕ(y(t+1)|z̃, η)

φ(X(t+1), y(t+1))
. (10)

The online BM2SMVL for regression is similar to that for classification. So we can easily
get the new posterior with the new arrival data for regression:

qt+1(Ω,Θ) = qt (Ω,Θ\zt )p0(z)p(X(t+1)|Ω)ϕR(y(t+1)|z̃, η, ε)

φ(X(t+1), y(t+1))
. (11)

In order to approximate qt+1(Ω,Θ) we use variational approximate inference which is
introduced in Sect. 4.

4 Variational inference

Because the posterior is intractable to compute, we apply the variational inference method
(Beal 2003) to approximate the posteriors in Eqs. (8) and (9) for BM2SMVL and in Eqs. (10)
and (11) for OBM2SMVL. This method is much more efficient than sampling based meth-
ods (Gilks 2005).

4.1 Data augmentation

Since the pseudo-likelihood function ϕ(·) involves a max operater which is difficult and
inefficient for posterior inference. We re-express the pseudo-likelihood function into the
integration of a functionwith augmented variable based on the data augmentation idea (Polson
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and Scott 2011; Zhu et al. 2014). For classification in BM2SMVL, we replace the pseudo-
likelihood ϕ(·) with ϕ(y(n)

c |z̃(n), ηc):

ϕ(·) =
∫ ∞

0

exp

{
−1
2λ(n)

c
[λ(n)

c + C(1 − y(n)
c ηT

c z̃
(n))]2

}
dλ

(n)
c

√
2πλ

(n)
c

,

where λ
(n)
c (n = 1, . . . , N ) are the auxiliary variables introduced to deal with the max

function. Let λ = [λ1, . . . , λN ]T , then the augmented pseudo likelihood of y,λ can be
expressed as:

ϕ(y,λ|Z, η) =
N∏

n=1

Nc∏

c=1

exp

{
−1
2λ(n)

c
[λ(n)

c + C(1 − y(n)
c ηT

c z̃
(n))]2

}

√
2πλ

(n)
c

.

Similarly, we introduce the augmented variable to the pseudo-likelihood function ϕ(·) for
classification in OBM2SMVL:

ϕ(y(t+1),λ(t+1)|Z, η) =
L∏

l=1

Nc∏

c=1

exp

{
−1
2λ(l)

c
[λ(l)

c + C(1 − y(l)
c ηT

c z̃
(l))]2

}

√
2πλ

(l)
c

.

For regression, the ε-insensitive loss ϕR(y(n)|z(n), η) can be represented as a dual scale
mixture of Gaussian distributions based on data augmentation:

ϕR(·) =
∫ ∞

0
exp

{
−[λ(n) + CR(y(n) − ηT z̃(n) − ε)]2

2λ(n)

}
· dλ(n)

√
2πλ(n)

×
∫ ∞

0
exp

{
−[θ(n) + CR(ηT z̃(n) − y(n) − ε)]2

2θ(n)

}
· dθ(n)

√
2πθ(n)

,

where λ(n) and θ(n) (n = 1, . . . , N ) are the auxiliary variables introduced to deal with the
max function. Let λ = [λ1, . . . , λN ]T and θ = [θ1, . . . , θN ]T , then the augmented pseudo
likelihood ϕR(y,λ, θ |Z, η, ε) of y,λ, θ can be expressed as:

ϕR(·) =
N∏

n=1

exp
{

1
−2λ(n) [λ(n) + CR(y(n) − ηT z̃(n) − ε)]2

}

√
2πλ(n)

×
exp

{
1

−2θ(n) [θ(n) + CR(ηT z̃(n) − y(n) − ε)]2
}

√
2πθ(n)

.

Similarly, we introduce the augmented variable to the pseudo-likelihood function ϕR

(y(t+1),λ(t+1), θ (t+1)|Z, η, ε) for regression in OBM2SMVL:

ϕ
(t+1)
R (·) =

L∏

l=1

exp
{

1
−2λ(l) [λ(n) + CR(y(n) − ηT z̃(n) − ε)]2

}

√
2πλ(l)

×
exp

{
1

−2θ(l) [θ(n) + CR(ηT z̃(n) − y(n) − ε)]2
}

√
2πθ(l)

.
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4.2 Variational approximate inference

Next,we apply themean-field variationalmethod to approximating the posterior distributions.

4.2.1 Variational inference in BM2SMVL

In this section, we take the classification model as an example. Firstly, we define a family of
factorized but free-form variational distributions:

V (Ω,Θ,λ) = V (μ)V (W)V (α)V (φ)V (Z)V (η)V (λ)V (ν).

The main idea of variational Bayesian inference is that we need to minimize the KL diver-
gence KL(V (Ω,Θ,λ)‖q(Ω,Θ,λ)) between the approximating distribution and the target
posterior. Next, we initialize the distributions of V (Ω,Θ,λ). Then we iteratively update
each parameter of our model by fixing other parameters as the current estimates. Now, we
give the joint distribution of data and parameters:

p(Ω,Θ,λ,X, y) = p0(μ)p(W|)p0(α)p0(φ)p0(Z)p(η|ν)

· p0(ν)p(X|μ,W, φ,Z)ϕ(y,λ|Z, η).

It can be shown that when keeping all other factors fixed, the optimal distribution V ∗(λ)

satisfies
V ∗(λ) ∝ exp{E−λ[log p(Ω,Θ,λ,X, y)]},

where E−λ denotes the expectation with respect to V (Ω,Θ,λ) over all variables except for
λ. Then we can get the updating formula for E−λ:

V ∗(λ) =
Nc∏

c=1

N∏

n=1

GIG(λ(n)
c |1

2
, 1, χ(n)

c )

χ(n)
c = C2〈(1 − y(n)

c ηT
c z̃

(n))2〉
Eλ(n) [(λ(n))−1] = 1/

√
χλ(n) , (12)

where 〈·〉 represents the expectation, GIG(·) is the generalized inverse Gaussian distribution.
Similarly, we can get the updating formulas for all other factors. And the main steps for
mean-filed methods can be found in.2 Since they are tedious and easy to derive, here we only
provide the equations for Z, other updating formulas can be found in the “Appendix”.

V ∗(Z) =
N∏

n=1

N (z(n)|μ(n)
z ,Σ(n)

z )

Σ(n)
z =

{
C2

Nc∑

c=1

〈η̃cη̃cT 〉〈λ(n)
c

−1〉 + Im

+
Nv∑

i=1

〈φi 〉〈Wi
TWi 〉

}−1

μ(n)
z = Σ(n)

z

{
Nv∑

i=1

〈φi 〉〈Wi
T 〉(x(n)

i − 〈μi 〉)

2 https://en.wikipedia.org/wiki/Variational_Bayesian_methods.
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+{C(1 + C〈(λ(n))−1〉)y(n)〈η̃〉
− C2〈(λ(n))−1〉〈η(m+1)η̃〉}

}

Ez(n) [z(n)] = μ(n)
z , (13)

where η̃ denotes the first m dimensions of η, i.e., η = [η̃, η(m+1)].
For regression, only the variablesZ, η, λ and θ are different from the classification model.

The updating formulas for Z, η λ and θ can also be found in the “Appendix”. We summarize
the proposed BM2SMVL model in Algorithm 1.

Algorithm 1 BM2SMVL
Input:

the multi-view data {Xi }Nv
i=1, the response vector y, the subspace dimension m and the maximal number

of iterations max I ter .
Output:

Eη[η], Eμi [μi ], EWi [Wi ], Eφi [φi ]
Method:
1: InitializeEν [ν],Eλ[λ],Eη[η],Eμi [μi ],EWi [Wi ],Eφi [φi ],Eαi [αi ] (i = 1, . . . , Nv),EZ[Z],Eθ [θ] (only

for regression);
2: for i ter = 1 to max I ter do
3: UpdateEμi [μi ],EWi [Wi ],Eφi [φi ],Eαi [αi ] andEν [ν] according toEq.(18), Eq.(17), Eq.(16) , Eq.(19)

and Eq.(20) respectively;
4: if Task is classification then
5: UpdateEZ[Z] , Eλ[λ] andEη[η] according toEq.(13), Eq.(12) , Eq.(21) respectively for classification
6: else {Task is regression}
7: UpdateEZ[Z] , Eλ[λ] , Eθ [θ] andEη[η] according toEq.(22), Eq.(23) , Eq.(24), Eq.(25) respectively

for regression
8: end if
9: end for
10: return Eη[η], Eμi [μi ], EWi [Wi ], Eφi [φi ]

4.2.2 Variational inference in OBM2SMVL

Now, we use variational inference to approximate qt+1(Ω,Θ) in OBM2SMVL model. It
is very similar to the posterior q(Ω,Θ). Firstly, we give the joint distribution of data and
parameters:

p(Ω,Θ,λ(t+1), x(t+1), y(t+1)) = p0(μ)p(W|)p0(α)p0(φ)p0(z)p(η|ν)p0(ν)

· p(x(t+1)|μ,W, φ,Z)ϕ(y(t+1),λ(t+1)|z, η).

It can be shown that when keeping all other factors fixed, the optimal distribution V ∗(λ(t+1))

satisfies
V ∗(λ(t+1)) ∝ exp{E−λ(t+1) [log p(Ω,Θ,λ, x(t+1), y(t+1))]},

where E−λ(t+1) denotes the expectation with respect to V (Ω,Θ,λ(t+1)) over all variables
except for λ(t+1). Then we can get the updating formula for E−λ(t+1) :

V ∗(λ(t+1)) =
L∏

l=1

Nc∏

c=1

GIG
(

λ(l)
c |1

2
, 1, χ(l)

c

)
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χ
λ

(l)
c

= C2〈(1 − y(l)
c (η(t+1)

c )T z̃(l))2〉.
E

λ
(l)
c

[(λ(l)
c )−1] = 1/

√
χ

λ
(l)
c

. (14)

Similarly, we can get the updating formulas for all other factors. Since they are tedious
and easy to derive, here we only provide the equations for Z(t+1), other updating formulas
can be found in the “Appendix”.

V ∗(Z(t+1)) =
L∏

l=1

N (z(l)|μ(l)
z ,Σ(l)

z )

Σ(l)
z =

{
C2

Nc∑

c=1

〈η̃(t+1)
c (η̃(t+1)

c )T 〉〈λ(l)
c

−1〉 + Im

+
Nv∑

i=1

〈φ(t+1)
i 〉〈(W(t+1)

i )TW(t+1)
i 〉

}−1

μ(l)
z = Σ(l)

z

{
Nv∑

i=1

〈φ(t+1)
i 〉〈(W(t+1)

i )T 〉(x(l)
i − 〈μ(t+1)

i 〉)

+{C(1 + C〈(λ(l))
−1〉)y(l)〈η̃(t+1)〉

− C2〈(λ(l))
−1〉〈η(t+1)

(m+1)η̃
(t+1)〉}

}

Ez(l) [z(l)] = μ(l)
z , (15)

where η̃ denotes the first m dimensions of η, i.e., ηc = [η̃c, η(m+1)
c ].

For regression, only the variables Z(t+1), η(t+1), λ(t+1) and θ (t+1) are different from
the classification model, the updating formulas for Z(t+1), η(t+1) λ(t+1) and θ (t+1) can be
found in the “Appendix”. A full description of the proposed OBM2SMVL model is given
in Algorithm 2. Here we use T to represent the total number of mini-batches. So the total
number of training data is N = T × L . Obviously, by limiting L to 1, the algorithm can
handle the case we first assumed, i.e., learning from samples one-by-one.

4.3 Prediction on unseen data

Suppose we have a set of test data that is unseen during the model training phase. To apply
our models learned above, we have to first project the new data to the same low-dimensional
feature space as that for training data. Given the optimal variational distributions V ∗(η),
V ∗(Wi ), V ∗(μi ), and V ∗(φi ) learned in the training phase, we use a single step variational
method to approximate the posterior latent representation p(znew|xnew) for test data xnew:

V ∗(znew) = N (znew|μnew
z ,Σnew

z )

Σnew
z =

{
Im +

Nv∑

i=1

Eφi [φi ]EWi [WT
i W]

}−1

μnew
z = Σnew

z

{
Nv∑

i=1

Eφi [φi ]EWi [WT
i ](xnewi − Eμi [μi ])

}
,
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Algorithm 2 OBM2SMVL
Input:

the multi-view data {Xi }Nv
i=1, the response vector y, the subspace dimension m, the total number of mini-

batches T (N = T × L) and the maximal number of iterations max I ter .
Output:

E
(T )
η [η], E(T )

μi [μi ], E(T )
Wi

[Wi ], E(T )
φi

[φi ]
Method:
1: InitializeEν [ν],Eλ[λ],Eη[η],Eμi [μi ],EWi [Wi ],Eφi [φi ],Eαi [αi ] (i = 1, . . . , Nv),EZ[Z],Eθ [θ] (only

for regression);
2: for t = 0 → T − 1 do
3: Xmini−bacth = {X(t+1)

i }Nv
i=1

ymini−bacth = y(t+1)

4: for i ter = 1 to max I ter do
5: Update E(t+1)

μi [μi ], E(t+1)
Wi

[Wi ] and E(t+1)
φi

[φi ] by Eq.(28), Eq.(27) and Eq.(26) respectively;
6: if Task is classification then
7: Update E(t+1)

Z [Z] , E(t+1)
λ [λ] and E(t+1)

η [η] according to Eq.(15), Eq.(14) , Eq.(29) respectively
for classification

8: else {Task is regression}

9: Update E(t+1)
Z [Z] , E(t+1)

λ [λ] , E(t+1)
θ

[θ] and E(t+1)
η [η] according to Eq.(33), Eq.(30) , Eq.(31),

Eq.(32) respectively for regression
10: end if
11: end for
12: end for
13: return E

(T )
η [η], E(T )

μi [μi ], E(T )
Wi

[Wi ], E(T )
φi

[φi ]

where the expectations are taken over the optimal variational distributions of η, Wi , μi and
φi .

Then with the optimal variational approximation V ∗(η) for the posterior distribution of
classification parameter η, we can predict the class label of xnew for classification by

μ̃new
z = [(μnew

z )T , 1]T
ynew = max

c
(Eηc,znew [ηT

c z̃new])
= max

c
(μT

ηc
μ̃new
z ).

For regression, we can directly predict the response value:

ynew = Eη,znew [ηT z̃new]
= μT

η μ̃new
z .

4.4 Computational complexity

For each iteration of parameter updating in our batch learning BM2SMVL, we need O(NNv

d̄m2) computation, where d̄ is the average dimension of all Nv views. The most computation
load is spent on the calculation of Σ

(n)
z , n = 1, . . . , N where the matrix multiplication

〈Wi
TWi 〉 consumes dim2 computation. And each iteration of parameter updating in our

online learning OBM2SMVL consumes O(LNv d̄m2) with a batch of L new arrival data.
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Table 1 Statistics of the multiclass data sets

Datasets Trecvid Washington Cornell Texas Wisconsin News4Gv NUS-WIDE

#size 1078 230 195 187 265 1500 21,935

#class 5 5 5 5 5 3 3

#D1 1894 1703 1703 1703 1703 6783 64

#D2 165 230 195 187 265 6307 144

#D3 – – – – – 7717 73

#D4 – – – – – 9336 128

#D5 – – – – – – 225

5 Experiments

We evaluate the proposed batch learning model BM2SMVL and online learning model
OBM2SMVL on various classification and regression tasks. For regression, we use the root-
mean-square error (RMSE) to evaluate the results. RMSE is formulated as follows:

RMSE =
√

Σ
Ntest
n=1 (ŷ(n) − y(n))2

Ntest
,

where y(n) is the ground truth of the n-th sample, ŷ(n) is the corresponding predicted value,
and Ntest is the total number of the testing samples.

5.1 Real data sets

There are seven data sets for classification tasks and three data sets for regression tasks in
our experiments. Trecvid contains 1078 manually labeled video shots that belong to five
categories (Chen et al. 2012). And each shot is represented by a 1894-dim binary vector of
text features and a 165-dim vector of HSV color histogram. WebKB data set has two views,
including the content features of the web pages and the link features exploited from the link
structures. This data set consists of 877 web pages from computer science departments in
four universities, i.e., Cornell, Washington, Wisconsin and Texas. And each university has
five document classes, i.e., course, faculty, student, project and staff. We select the web pages
from these four universities as our experimental data.3 These four data sets have five classes
with two views. 20Newsgroups data set is widely used for classification. This data set has
approximately 20,000 newsgroup documents,which are divided into 20 categories.We follow
the way in Long et al. (2008) to construct multi-view learning problems. The NUS-WIDE
dataset is a subset selected from Chua et al. (2009). NUS-WIDE dataset contains 21,935 web
images that belongs to three categories (‘water’, ‘vehicle’, ‘flowers’). Each image includes
six types of low-level features (64-D color histogram, 144-D color correlogram, 73-D edge
direction histogram, 128-D wavelet texture, 225-D block-wise color moments). We use the
tf-idf weighting scheme to represent the document, and the document frequency with the
value of 5 is adopted to cut down the number of word features. The details of these data sets
are shown in Table 1.

3 http://www-2.cs.cmu.edu/~webkb/.
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Table 2 Statistics of the
regression data sets

Datasets HotelReview MovieLens CT-Image

#size 5000 502 53,500

#D1 12,000 445 240

#D2 14 498 144

#D3 – 51 –

The hotel review dataset4 consists of 5000 hotel reviews randomly collected from Tri-
pAdvisor.5 Each review document is associated with two-view features (i.e., 12,000-dim
bag-of-word features and 14-dim contextual features) as well as a global rating score which
ranks from 1 to 5. In our experiment, we predict the global rating scores for reviews.

Another regression task for rating prediction is studied on this MovieLens dataset by
following the way in Lu et al. (2017). Each rating in this dataset has three views, i.e., users,
movies and tags. The user view consists of binary feature vectors for user ids, and thus for
each rating there is only one non-zero feature in the user view, i.e., the associated user id; the
same for the movie view. The tags of the movies are used for the tag view.

The data CT-Image6 was retrieved from a set of 53,500 CT images from 74 different
patients (43 male, 31 female). Each CT slice is described by two histograms in polar space.
The first histogram (240-dim) describes the location of bone structures in the image and the
second histogram (144-dim) describes the location of air inclusions inside of the body. The
predicting values are the relative location of the image on the axial axis which are in the
range (0-180) where 0 denotes the top of the head and 180 denotes the soles of the feet. The
details of these regression data sets are shown in Table 2.

5.2 Competitors

We compare our classification model with the following five competitors:

– VMRML (Quang et al. 2013): it is a vector-valued manifold regularization multi-view
learning model. The regularization parameters are set as the default value in their paper,
and we choose the best parameter σ for ‘rb f ’ from 10[−5:5] by fivefold cross-validation
in each data set;

– MVMED(SunandChao2013): it presents amulti-viewmaximumentropydiscrimination
model. We use the model with one-VS-rest strategy for multiclass problem. According
to the paper, we choose the best parameter from 2[−5:5] by executing fivefold cross-
validation for each data set;

– MMH (Chen et al. 2012): it is a large-margin predictive latent subspace learning method
formulti-viewdata. Based on the parameters given in its code,7 we tune the four paramters
carefully to choose the best parameters for each data set;

– SVM-FULL: it concatenates all views to form a new single view, and applies SVM
for classification. We choose the linear kernel and execute fivefold cross-validation on
training sets to decide the cost parameter c from 10[−3:3];

4 http://bigml.cs.tsinghua.edu.cn/~ningchen/data.htm.
5 http://www.tripadvisor.com.
6 http://archive.ics.uci.edu/ml/datasets.
7 http://bigml.cs.tsinghua.edu.cn/~ningchen/MMH.htm.
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– OPMV (Zhu et al. 2015): it is an online multi-view learning. According to the paper, the
learning rate parameter are chose from 2[−8:8], the regularization parameter are chose
from 1e[−16:0], and the penalty parameters is pre-defined as 1. The parameters are set
according to the above rules.

And the compared regression models are as follows:

– CoR-LS (Lan et al. 2016): it is a co-regularized least square regression model (CoR-LS)
for multi-view data;

– LCFS (Wang et al. 2013): it unifies coupled linear regressions, �21-norms and trace norm
into a generic minimization formulation so that subspace learning and coupled feature
selection can be performed simultaneously;

– SVR-FULL: it concatenates all views to form a new single view, and applies SVR8 for
regression. We use fivefold cross-validation on training sets to decide the regularization
parameter c from 10[−3:3] and the precision parameter ε from 10[−1:1];

– OSVR-FULL: it is the online SVRmethod.We concatenate all views to form a new single
view and applies OSVR. The code provided by Parrella9 for OSVR. For each data set,
we use fivefold cross-validation on training sets to decide the regularization parameter c
from 10[−3:3] and the precision parameter ε from 10[−1:1].

5.3 Parameter setting

In our batch learning, the regularization parameter C is chosen from the integer set {1, 2, 3}
and the subspace dimensionm from the integer set {20, 30, 50} for each data set by performing
fivefold cross validation on training data. While in our online learning, the regularization
parameter C is chosen from the integer set {1, 5, 15} and the subspace dimensionm from the
integer set {30, 50, 70}. For the hyperparameters, both our batch and online learning are set
as the same, i.e., aα = bα = 1e−3, aφ = 1e−2, aν = 1e−1, bφ = bν = β = 1e−5. And
we set the maximum iterations to 200.

For regression task, the regularization parameter C is chosen from the integer set
{2(−5), . . . , 2(10)} and the subspace dimension m from the integer set {50, 100, 150} for
each data set by performing fivefold cross validation on training data. The hyperparameters
are set as the same, i.e., aα = bα = 1e−3, aφ = 1e−2, aν = 1e−1, bφ = bν = β = 1e−5,
ε = 0.01. And we set the maximum iterations to 20 for each mini-batch.

5.4 Experimental results

Since a normal prior with zero mean is imposed on the observation data, we normalize the
observation data to have zero mean and unit variance. In batch learning experiments, the
results of all models on all data sets are averaged over 20 independent runs. We adopt two
evaluatingmetrics accuracy and F1 score for classification tasks. So the results about accuracy
are shown in Table 3 and the results about F1 socre are shown in Table 4. The ratio sampled
for training data is 0.5 in the six data sets Trecvid, Washington, Cornell, Texas, Wisconsin,
NUS-WIDE and 0.05 in News4Gv. Since MMH can only deal with two views in its code10

so its result is missing for News4Gv and NUS-WIDE in Table 3. And it provides a software

8 https://www.csie.ntu.edu.tw/cjlin/liblinear/.
9 http://onlinesvr.altervista.org/.
10 http://bigml.cs.tsinghua.edu.cn/~ningchen/MMH.htm.
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for MMH, but the software doesn’t provide the F1 score, so its result is missing in Table 4.
In online learning experiments, we use the same training/testing split of the above batch
learning experiments. We sample 0.1 of the training data as the batch training, and the rest
come one by one. Since OPMV can only deal with two-view data, so its result is missing for
News4Gv and NUS-WIDE in Tables 3 and 4. From Tables 3 and 4, we have the following
insightful observations:

– OurBM2SMVLachieves the best performance on the Trecvid, NUS-WIDE,Washington,
Cornell, Texas and Wisconsin data sets and performs just a little worse than the SVM-
FULL in the News4Gv data. We attribute it to that our method can automatically infer
the penalty parameter of max-margin model based on the data augmentation idea, while
MVMED andMMH are both under the maximum entropy discrimination framework and
cannot infer the penalty parameter. SVM-FULLmakes full use of all the information from
the observations by concatenating all views to form a new single view. This maybe the
reasonwhy it performs better than ourBM2SMVL in theNews4Gv.But some information
from the observations is not helpful for the classification in other data sets. In this case,
SVM-FULL cannot achieve a good performance.

– Our method infers a posterior under the Bayesian framework instead of a point estimate
as in VMRML. With Bayesian model averaging over the posterior, we can make more
robust predictions than VMRML.

– We also find that OBM2SMVLperforms better thanOPMVon all data sets and just a little
worse than BM2SMVL. Unlike OPMV, which seeks a point estimate by optimizing some
deterministic objective function, our online model infers a posterior under the Bayesian
framework. The point estimate can be affected seriously by inappropriate regularization,
outliers and noises, especially when the training data arrive sequentially.

We show every independent experimental run about all models and dataset in Figs. 1, 2
and 3.

For regression task, the results of all models are averaged over 5 independent runs on each
data set. All the results are shown in Table 5. The ratio sampled for training data is 0.5 in
the data set HotelReview and CT-Image and MovieLens. Since CoR-LS and LCFS can only
deal with two-view data, so their results are missing for MovieLens in Table 5.

In online regression learning experiments, we use the same training/testing split of the
above batch learning experiments.We sample 0.1 of the training data as the batch training, and
the rest samples come with a number of 30. From Table 5, we have the following insightful
observations:

– BM2SMVL consistently outperforms SVR-FULL. The reason may be that SVR-FULL
just concatenates all views to form a new single view but some information from the
observations is not helpful for regression on some data sets. And SVR-FULL doesn’t
take the relevance of different views into account.

– Our BM2SMVL achieves the best performance on the HotelReview, MovieLens and CT-
Image data sets. We attribute it to that our method can automatically infer the penalty
parameter of max-margin model based on the data augmentation idea, while CoR-LS
and LCFS both cannot infer the penalty parameter. What’s more, Our method infers a
posterior under the Bayesian framework instead of a point estimate as in CoR-LS and
LCFS. With Bayesian model averaging over the posterior, we can make more robust
predictions than CoR-LS and LCFS.

– We also find that OBM2SMVLperforms better thanOSVR-FULL on all data sets. Unlike
OSVR-FULL, which seeks a point estimate by optimizing some deterministic objective
function, our online model infers a posterior under the Bayesian framework. The point
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(a) Trecvid (b) NUS (c) Texas

(d) Cornell (e) Washington (f) Wisconsin

(g) News4Gv

Fig. 1 Classification (accuracy) results on different datasets

estimate can be affected seriously by inappropriate regularization, outliers and noises,
especially when the training data arrive sequentially. What’s more, OSVR-FULL doesn’t
consider the relevance of different views.

As we can see, our model performs better on most of the experiment runs. For some data
sets, the split of the training/testing data influences the performance of all models. That is
why the standard deviations of some data sets is a little big. And we can see from Figs. 1, 2
and 3, our model statistically performs the best on most of the data sets.

5.5 Computation complexity analysis

We compare efficiency of different algorithms on classification and regression tasks, the
results are reported in Tables 6, 7 and 8. FromTable 6,we can seeVMRMLcosts the least time
onmost of small scale data sets. To further analysis the computational complexity, we conduct
experiments on NUS-WIDE with different numbers of the training data (1000, 2000, 3000,
5000, 10,000) which is reported in Table 7. From Table 7, we find our models BM2SMVL
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(a) Trecvid (b) NUS (c) Texas

(d) Cornell (e) Washington (f) Wisconsin

(g) News4Gv

Fig. 2 Classification (F1 score)

(a) Hotel (b) Slice (c) Movie

Fig. 3 Regression (RMSE) results on different datasets
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Table 5 Comparisons on
regression data sets

HotelReview CT-Image MovieLens

CoR-LS 1.12 ± 0.02 12.43 ± 0.11 -

LCFS 1.26 ± 0.02 15.04 ± 0.55 -

SVR-FULL 1.20 ± 0.02 8.92 ± 0.20 1.58 ± 0.10

BM2SMVL 1.08 ± 0.05 8.87 ± 0.14 0.90 ± 0.02

OSVR-FULL 1.20 ± 0.01 12.03 ± 0.74 1.02 ± 0.01

OBM2SMVL 1.19 ± 0.02 9.07 ± 0.06 0.92 ± 0.02

Listed results are averaged RMSE. Bold face indicates lowest RMSE

Table 6 Training time (s) on classification tasks

Dataset Cornell Texas Washington Wisconsin Trecvid News4Gv

MVMED 48.49 45.09 44.10 63.46 804.35 1860.41

VMRML 0.02 0.02 0.02 0.02 0.03 0.97

SVM-FULL 0.10 0.05 0.07 0.08 0.59 4.11

B2SMVL 7.29 10.91 12.24 13.49 46.65 110.87

OPMV 6.54 6.30 7.81 9.18 47.93 –

OB2SMVL 11.24 14.30 14.14 15.07 50.65 337.90

Bold face indicates the least time

Table 7 Training time (s) on classification data set NUS

Algorithm Metric (s) Ntrain = 1000 Ntrain = 2000 Ntrain = 3000 Ntrain = 5000 Ntrain = 10,000

VMRML Train-time 4 18 50 210 1335

MVMED Train-time 1363 9721 N/A N/A N/A

SVM-FULL Train-time 7 13 19 34 78

BM2SMVL Train-time 234 277 340 490 776

OBM2SMVL Train-time 280 312 409 567 928

‘N/A’ means that no result returns after 24h. ‘−’ means out of memory. All experiments were conducted in
Matlab
Bold face indicates the least time

Table 8 Training time (s) on
regression Tasks

Dataset HotelReview MovieLens CT-Image

CoR-LS 27,949.34 – 25.14

LCFS 4956.47 – 23.54

SVR-FULL 62.42 0.08 37.00

B2SMVL 1083.40 13.49 2643.25

OSVR 726.56 20.42 96,223.27

OB2SMVL 1335.69 16.21 2631.83

Bold face indicates the least time

and OBM2SMVL scale linearly with the number of training data N which coincides with
the computational complexity discussed in Section Computational Complexity. Although the
training time of VMRML is shorter than that of BM2SMVL and OBM2SMVL in Table 7,
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it seems that VMRML scales squarely with the number of training data and VMRML needs
to store 5 Gram matrixes for both training and testing data on NUS-WIDE data set. Further
more, we conduct the experiment with 20,000 training data, VMRML is out of memory
while BM2SMVL and OBM2SMVL still work. Besides, BM2SMVL performs better than
VMRML on all considered data. From Table 7, we can also find the training time of SVM-
FULL is the shortest, because it adopts the ‘linear’ kernel with low algorithm complexity.
But SVM-FULL achieves the lowest accuracy and F1 score on NUS-WIDE compared to
other offline multi-view methods.

For regression, our online model OBM2SMVL takes less time than OSVR-FULL on
MovieLens and CT-Image. In batch learning, SVR-FULL takes the least time on MovieLens
and Hotel, LCFS takes the least time on CT-Image. BM2SMVL takes less time than CoR-
LS and LCFS on HotelReview, it is because the dimensions of the views are very high
on HotelReview. BM2SMVL learns low-dimension representations from multiple views, so
BM2SMVL shows advantages when the dimensions of views are high. What’s more, our
model achieves the lowest RMSE on all considered data sets. Although our model can not
cost the least time on all data sets, we believe it’s an acceptable and reasonable trade-off
between the model complexity and performance for our models.

5.6 Sensitivity analysis

We study the sensitivity of BM2SMVL andOBM2SMVLwith respect to the subspace dimen-
sion m, and the regularization parameter C .

When we study the influence of m, C (batch) is set as 2 for BM2SMVL and C (online) is
set as 15 for OBM2SMVL. The averaged results are shown in Figs. 4a and 5a. We find that
the test accuracy increases when m becomes larger. And when m is large enough, the test
accuracy remains stable.

When we study the influence of C ,m is set as 30 for both batch and online learning. From
the results in Figs. 4b and 5b, we can find that different data sets may prefer different values
of C . In batch learning, C (batch) balances the classification model and subspace learning
model, so our model cannot get the best performance when C (batch) is too large or too
small. C (online) reflects the importance of new arrival data in our online model. When C
(online) is too small, the new arrival data plays a tiny role in the online model and offers
little help to improve the performance of our online model. For some data sets like Cornell,

Cornell
Washington
Trecvid

Cornell
Washington
Trecvid

(a) Effect of m (b) Effect of C

Fig. 4 (a) Results on different data sets with different parameters m in BM2SMVL; (b) Results on different
data sets with different regularization parameters C in BM2SMVL
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Cornell
Washington
Trecvid

(a) Effect of m

Cornell
Washington
Trecvid

(b) Effect of C

Fig. 5 (a) Results on different data sets with different subspace dimensions m (online) in OBM2SMVL; (b)
Results on different data sets with different regularization parameters C (online) in OBM2SMVL

when C (online) is too large, the performance of OBM2SMVL would become bad because
the online model doesn’t take full advantage of the historical knowledge. For some other
data sets like Trecvid and Washington, they are less sensitive to C (online) when C (online)
is large enough.

6 Conclusion

We propose an online Bayesian method to learn predictive subspace for multi-view data.
Specifically, the proposed method is based on the data augmentation idea for max-margin
learning, which allows us to automatically infer the weight and penalty parameter and find
the most appropriate predictive subspace simultaneously under the Bayesian framework.
Experiments on various classification and regression tasks show that both our batch model
BM2SMVL and online model OBM2SMVL can achieve superior performance, compared
with a number of state-of-the-art competitors.
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Appendix

For BM2SVML, we calculate the updating formula of rest parameters which are omitted in
the main body as follows:

V ∗(φ) =
Nv∏

i=1

Γ (φi |aφi , bφi )

ãφi = aφi + Ndi
2

b̃φi = bφi + 1

2

N∑

n=1

〈||x(n)
i − Wiz(n) + μi ||〉
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Eφi [φi ] = ãφi /b̃φi (16)

V ∗(W) =
Nv∏

i=1

di∏

j=1

N (wi j |μwi j ,Σwi j )

Σwi j =
[
diag〈αi 〉 +

N∑

k=1

(〈φi 〉〈z(k)(z(k))T 〉)
]−1

μwi j = 〈φi 〉
N∑

k=1

{(x(k)
i − 〈μi 〉)〈z(k)〉T }Σwi j

Ewi j [wi j ] = μwi j (17)

V ∗(μ) =
Nv∏

i=1

N (μi |μμi ,Σμi )

Σμi = (βi + N 〈φi 〉)−1Idi

μμi = Σμi 〈Φi 〉
N∑

n=1

(x(n)
i − 〈Wi 〉〈z(n)〉)

Eμi [μi ] = μμi (18)

V ∗(α) =
Nv∏

i=1

m∏

j=1

Γ (αi j |ai , bi j )

ai = a + di/2

bi j = b + 〈‖Wi(:, j)‖2〉/2
Eαi j [αi j ] = ai/bi j (19)

V ∗(ν) =
Nc∏

c=1

Γ (νc|ãνc , b̃νc )

ãνc = aνc + (m + 1)/2,

b̃νc = bνc + 〈‖ηc‖2〉/2
Eνc [νc] = ãνc/b̃νc (20)

V ∗(η) =
Nc∏

c=1

N (ηc|μc
η,Σ

c
η)

Σηc =
{
C2

N∑

n=1

Z̃(diag(〈λ−1
c 〉))Z̃T + 〈νc〉I(m+1)

}−1

μηc = Σηc

N∑

n=1

C(1 + C〈(λ(n)
c )−1〉)y(n)

c 〈z̃(n)〉

Eηc [ηc] = μηc (21)
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For regression, only the variablesZ, η, λ and θ are different from the classification model,
so we only provide the updating formulas for Z, η λ and θ here:

V ∗(Z) =
N∏

n=1

N (z(n)|μ(n)
z ,Σ(n)

z )

Σ(n)
z =

{
C2
R(〈λ(n)〉−1 + 〈θ(n)〉−1

)〈η̃η̃T 〉

+ Im +
Nv∑

i=1

〈φi 〉〈WT
i Wi 〉

}−1

μ(n)
z = Σ(n)

z

{
Nv∑

i=1

〈φi 〉〈Wi
T 〉(x(n)

i − 〈μi 〉))

+C2
R{〈λ(n)〉−1

(y(n) − ε) + 〈θ(n)〉−1
(y(n) + ε)}〈η̃〉

− C2
R(〈λ(n)〉−1 + 〈θ(n)〉−1

)〈η(m+1)η̃〉
}

Ez(n) [z(n)] = μ(n)
z (22)

V ∗(λ) =
N∏

n=1

GIG(λ(n)|1
2
, 1, χ(n)

λ )

χ
(n)
λ = C2

R〈[ηT z̃(n) − (y(n) − ε)]2〉
Eλ(n) [(λ(n))−1] = 1/

√
χλ(n) (23)

V ∗(θ) =
N∏

n=1

GIG
(

θ(n)|1
2
, 1, χ(n)

θ

)

χ
(n)
θ = C2

R〈[ηT z̃(n) − (y(n) + ε)]2〉
Eθ(n) [(θ(n))−1] = 1/

√
χθ(n) (24)

V ∗(η) = N (η|μη,Ση)

Ση = {C2
RZ̃(diag(〈λ−1〉 + 〈θ−1〉))Z̃T + 〈ν〉I(m+1)}−1

μη = Ση{C2
RZ̃{〈λ−1〉 · (y − ε) + 〈θ−1〉 · (y + ε)}}

Eη[η] = μη (25)

Similarly, we can get the updating formulas for OBM2SMVL as follows:

V ∗(φ(t+1)) =
Nv∏

i=1

Γ (φ
(t+1)
i |a(t+1)

φi
, b(t+1)

φi
)

ã(t+1)
φi

= aφi + Ldi
2

b̃(t+1)
φi

= bφi + 1

2

L∑

l=1

〈||x(l)
i − W(t+1)

i z(l) + μ
(t+1)
i ||〉

E
(t+1)
φi

[φi ] = ã(t+1)
φi

/b̃(t+1)
φi
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V ∗(W(t+1)) =
Nv∏

i=1

di∏

j=1

N (w
(t+1)
i j |μ(t+1)

wi j
,Σ(t+1)

wi j
) (26)

Σ(t+1)
wi j

=
[
(Σ(t)

wi j
)−1 + (〈φ(t+1)

i 〉
L∑

l=1

〈z(l)(z(l))T 〉)
]−1

μ(t+1)
wi j

=
{

〈φ(t+1)
i 〉

L∑

l=1

[(x(l)
i − 〈μ(l)

i 〉)〈z(l)〉T ] + μ(t)
wi j

(Σ(t)
wi j

)−1

}
Σ(t+1)

wi j

E
(t+1)
wi j

[wi j ] = μ(t+1)
wi j

(27)

V ∗(μ(t+1)) =
Nv∏

i=1

N (μ
(t+1)
i |μ(t+1)

μi
,Σ(t+1)

μi
)

Σ(t+1)
μi

= ((Σ(t)
μi

)−1 + L〈φ(t+1)
i 〉)−1Idi

μ(t+1)
μi

= Σ(t+1)
μi

〈Φ(t+1)
i 〉

[
L∑

l=1

(x(l)
i − 〈W(t+1)

i 〉〈z(l)〉) + (Σ(t)
μi

)−1μ(t)
μi

]

E
(t+1)
μi

[μi ] = μ(t+1)
μi

(28)

V ∗(η(t+1)) =
Nc∏

c=1

N (η(t+1)
c |μηc

(t+1), Σηc
(t+1))

Σ(t+1)
ηc

=
{
C2

L∑

l=1

〈(z̃)(l)(z̃(l))T 〉〈λ(l)
c

−1〉 + (Σ(t)
ηc

)−1

}−1

μ(t+1)
ηc

= Σc
η
(t+1)

L∑

l=1

{C(1 + C〈λ(l)
c

−1〉)y(l)
c 〈(z̃)(l)〉 + (Σ(t)

ηc
)−1μ(t)

ηc
}

E
(t+1)
ηc

[ηc] = μ(t+1)
ηc

(29)

For regression, only the variables Z(t+1), η(t+1), λ(t+1) and θ (t+1) are different from the
classification model, so we only provide the updating formulas for Z(t+1), η(t+1) λ(t+1) and
θ (t+1) here:

V ∗(λt+1) =
L∏

l=1

GIG(λ(l)|1
2
, 1, χ(l)

λ )

χλ(l) = C2
R〈[ηT z̃(l) − (y(l) − ε)]2〉

Eλ[(λ(l))−1] = 1/
√

χλ(l) (30)

V ∗(θ t+1) =
L∏

l=1

GIG(θ(l)|1
2
, 1, χ(l)

θ )

χθ(l) = C2
R〈[ηT z̃(l) − (y(l) + ε)]2〉

Eθ [(θ(l))−1] = 1/
√

χθ(l) (31)

V ∗(η) = N (η|μ(t+1)
η ,Σ(t+1)

η )
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Σ(t+1)
η =

{
(Σ(t)

η )−1 +
L∑

l=1

C2(〈(λ(l))−1〉 + 〈(θ(l))−1〉)z(l)(z(l))T

}−1

μ(t+1)
η = Σ(t+1)

η

{
(Σ(t)

η )−1μ(t)
η +

L∑

l=1

C2{〈(λ(l))−1〉

(y(l) − ε) + 〈(θ(l))−1〉(y(l) + ε)}z(l)

}

E
(t+1)
η [η] = μ(t+1)

η (32)

V ∗(Z(t+1)) =
L∏

l=1

N (z(l)|μ(l)
z ,Σ(l)

z )

Σ(l)
z = {C2

R(〈λ(l)〉−1 + 〈θ(l)〉−1
)〈η̃(t+1)(η̃(t+1))T 〉

+ Im +
Nv∑

i=1

〈φ(t+1)
i 〉〈(W(t+1)

i )TW(t+1)
i 〉}−1

μ(l)
z = Σ(l)

z

{
Nv∑

i=1

〈φ(t+1)
i 〉〈(W(t+1)

i )T 〉(x(l)
i − 〈μ(t+1)

i 〉)

+C2
R{〈λ(l)〉−1

(y(l) − ε) + 〈θ(l)〉−1
(y(l) + ε)}〈η̃〉

− C2
R(〈λ(l)〉−1 + 〈θ(l)〉−1

)〈η(m+1)η̃〉
}

Ez(l) [z(l)] = μ(l)
z (33)

References

Beal, J. M. (2003). Variational algorithms for approximate bayesian inference. London: University College
London.

Blum, A, & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of
the 111th annual conference on computational learning theory (pp. 92–100).
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