
Machine Learning (2020) 109:175–218
https://doi.org/10.1007/s10994-019-05840-z

Kappa Updated Ensemble for drifting data streammining

Alberto Cano1 · Bartosz Krawczyk1

Received: 13 November 2018 / Revised: 29 June 2019 / Accepted: 6 September 2019 /
Published online: 2 October 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract
Learning from data streams in the presence of concept drift is among the biggest challenges
of contemporary machine learning. Algorithms designed for such scenarios must take into
an account the potentially unbounded size of data, its constantly changing nature, and the
requirement for real-time processing. Ensemble approaches for data stream mining have
gained significant popularity, due to their high predictive capabilities and effective mecha-
nisms for alleviating concept drift. In this paper, we propose a new ensemble method named
Kappa Updated Ensemble (KUE). It is a combination of online and block-based ensemble
approaches that uses Kappa statistic for dynamic weighting and selection of base classifiers.
In order to achieve a higher diversity among base learners, each of them is trained using a
different subset of features and updated with new instances with given probability follow-
ing a Poisson distribution. Furthermore, we update the ensemble with new classifiers only
when they contribute positively to the improvement of the quality of the ensemble. Finally,
each base classifier in KUE is capable of abstaining itself for taking a part in voting, thus
increasing the overall robustness of KUE. An extensive experimental study shows that KUE
is capable of outperforming state-of-the-art ensembles on standard and imbalanced drifting
data streams while having a low computational complexity. Moreover, we analyze the use of
Kappa versus accuracy to drive the criterion to select and update the classifiers, the contri-
bution of the abstaining mechanism, the contribution of the diversification of classifiers, and
the contribution of the hybrid architecture to update the classifiers in an online manner.

Keywords Machine learning · Data streams · Concept drift · Classification · Ensemble
learning

1 Introduction

The data revolution over the last two decades has changed almost every aspect of data
analytics. One must take into account the fact that the size of data is constantly growing and

Editor: João Gama.

B Alberto Cano
acano@vcu.edu

Bartosz Krawczyk
bkrawczyk@vcu.edu

1 Virginia Commonwealth University, 401 W. Main St. E4251, Richmond, VA 23284, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05840-z&domain=pdf
http://orcid.org/0000-0001-9027-298X

176 Machine Learning (2020) 109:175–218

one cannot store all of it. Data is in motion, constantly expanding, and changing its properties
(Morales et al. 2016). Additionally, data may come from many sources at the same time,
calling for efficient preprocessing and standardization (Ramirez-Gallego et al. 2017). Such
changes affected various real-life applications, including social media (Miller et al. 2014),
medicine (Triantafyllopoulos et al. 2016), and security (Faisal et al. 2015) to name a few.
This poses challenges for learning systems that must accommodate all these properties, while
maintaining a high predictive power and capabilities of operating in real-time (Marrón et al.
2017; Ramírez-Gallego et al. 2017; Cano and Krawczyk 2018, 2019).

The velocity of data gave rise to the notion of data streams, potentially unbounded col-
lections of data that continuously flood the system. As new data is continuously arriving,
storing a data stream is not a viable option. One needs to analyze new instances on-the-fly,
incorporate the useful information into the classifier, and discard them. Both the prediction
and classifier update steps cannot be of a high complexity, as instances arrive rapidly and
bottlenecks must be avoided. Data streams are also subject to a phenomenon known as con-
cept drift (Gama et al. 2014; Žliobaite et al. 2015a; Barddal et al. 2017), where the properties
of the stream are subject to a change over time. This includes not only the discriminatory
power of features but also the size of the feature space, ratios of instances among classes, as
well as the emergence and disappearance of classes.

In order to accommodate such characteristics, data streams inspired the development
of new families of algorithms capable of continuous integration of new data, while pro-
viding robustness to its evolving nature. These include concept drift detectors for creating
alarms when the change takes place, and incremental or online algorithms that are capa-
ble of processing new instances as they arrive and discarding them right after (Pears et al.
2014). Ensemble techniques, one of themost promising directions in standardmachine learn-
ing, have been successfully applied to the both former (Woźniak et al. 2016) and the latter
domains (Krawczyk et al. 2017). In this paper, we will focus on data streams classification.
Although there is a plethora of existing ensemble methods for drifting data streams, none of
the existing algorithms offers a stable performance over a high variety of potential streaming
problems (Krawczyk et al. 2017; Gomes et al. 2017a). This calls for the development of new
ensemble classifiers that will be characterized by a lower variance in the results when subject
to varying types of complex data.

Furthermore, existing ensemble techniques are dedicated to either standard or imbalanced
datasets but not to both of them (Hoens et al. 2012; Ren et al. 2018b). Standard ensembles fail
when dealing with skewed data (Krawczyk 2016), while ensembles dedicated to imbalanced
data streams perform sub-par to standard methods when the number of instances among
classes is roughly equal (Krawczyk et al. 2017). Additionally, one may not know beforehand
that the analyzed data stream is imbalanced, or data stream may become periodically imbal-
anced due to variations in ratios of arriving instances. This calls for developing a more robust
approach that can work efficiently in both scenarios.

This paper proposes a new ensemble learning algorithm for drifting data streams, named
KappaUpdated Ensemble (KUE). It addresses the discussed shortcomings of existing ensem-
ble methods, offering a stable and efficient classification approach over a wide set of data
stream problems. Additionally, it displays an improved robustness to class imbalance without
any need for applying preprocessing or specialized base classifiers. KUE achieves this by
guiding its learning process using the Kappa statistic and utilizing it for the calculation of
weights assigned to base classifiers. KUE offers a combination of online and block-based
approaches, both continuously updating its base classifiers and replacing them with new
ones when necessary. What is important, KUE adds new classifiers only when they improve
the ensemble performance, while maintaining the previous learners in opposite cases. Base

123

Machine Learning (2020) 109:175–218 177

classifiers used by KUE are diversified by using random feature subsets and updated with
new instances with probability derived from Poisson distribution. The wider exploration of
feature subspaces leads to improved generalization capabilities and better anticipation of
potential concept drifts. Finally, base classifiers in KUE may abstain from voting, reducing
the chance of incompetent classifiers affecting the final decision. Despite its various charac-
teristics, KUEdisplays low decision and update times, aswell as low computational resources
consumption.

To summarize, the main contributions of this work are as follow:

– KUE, a new ensemble classification algorithm for drifting data streams that uses the
Kappa statistic for selecting and weighting its base classifiers.

– Hybrid architecture, that updates base classifiers in an online manner, while changing
the ensemble set-up in a block-based mode.

– Diversification techniques for base learners that combine online bagging with using
random feature subspaces.

– Abstaining of base classifiers that reduces the impact of non-competent base learners.
– Achieving stable performance over a variety of streaming problems, while maintaining

robustness to drift and class imbalance, and displaying low computational complexity.
– A thorough experimental study, comparing KUE to 15 state-of-the-art ensemble methods

over 60 standard and 33 imbalanced data stream benchmarks.
– An analysis of the contribution and impact of each of the algorithm’s mechanisms indi-

vidually.

The rest of the paper is organized as follows. Section 2 presents an overview of data
stream mining and related works in ensemble learning and imbalanced classification for data
streams. Section 3 provides a detailed description of the proposed Kappa Updated Ensemble
algorithm, its architecture, and principles. Section 4 presents a thorough experimental study
on a large set of data streams, including imbalanced streams with concept drift and varying
imbalance ratio.Moreover, the contribution of each of the algorithm’smechanisms is individ-
ually analyzed to evaluate their impact in the quality of the predictions. Experimental results
are also validated through non-parametric statistical analysis. Finally, Sect. 5 summarizes
the concluding remarks and discusses future lines of work.

2 Data streammining

This section presents a comprehensible overview of data streammining, concept drift, ensem-
ble classifiers for data streams, and introduces the challenge of imbalanced learning in data
stream mining.

2.1 Overview

A data stream can be seen as a sequence < S1, S2, . . . , Sn, . . . >, in which each element S j

is a set of instances (or a single instance in a case of online learning) (Gaber 2012). Each
instance is independent and randomly generated using a stationary probability distribution
Dj . In this paper, we consider the supervised learning scenario that allows us to define each
element as:

S j ∼ p j (x
1, . . . , xd , y) = p j (x, y), (1)

123

178 Machine Learning (2020) 109:175–218

where p j (x, y) is a joint distribution of j th instance, defined by d-dimensional feature space
and belonging to class y. Each instance in the stream is independent and randomly drawn
from a stationary probability distribution Ψ j (x, y).

If a transition S j → S j+1 (where D j = D j+1) holds, then we deal with a stationary
data stream. However, real-life problems are usually subject to a change over time, where
the characteristics and definitions of a stream evolve. This phenomenon is known as concept
drift (Brzeziński and Stefanowski 2013; Gama et al. 2014; Balle et al. 2014; Webb et al.
2016, 2018).

We will now present main aspects related to concept drift and other difficulties present in
evolving data streams:

– Influence on decision boundaries There is a distinction between real and virtual concept
drifts (Sobolewski andWoźniak 2013). The former influences previously learned decision
rules or classification boundaries, increasing the error on instances coming from the
current stream concept. Real drift affects posterior probabilities p j (y|x) and additionally
may impact unconditional probability density functions. It poses a significant threat to
the learning system andmust be tackled as soon as it appears. Virtual concept drift affects
only the distribution of features x over time:

p̂ j (x) =
∑

y∈Y
p j (x, y), (2)

where Y is a set of possible values taken by S j . As only the values of features change,
this type of drift does not force us to adapt the used classification model. However, it
may trigger false change alarms and thus force unnecessary and costly adaptations.

– Locality of changes We distinguish between global and local concept drifts (Gama and
Castillo 2006). The former one affects the entire stream, while the latter one affects only
certain parts of it (e.g., selected regions of the feature space or subsets of classes). These
types of drifts should be distinguished, as often rebuilding the entire classification model
is not necessary and one may concentrate in updating only the part of the learning system
that has been subject to a local concept drift.

– Speed of changes We distinguish between sudden, gradual, and incremental concept
drifts (Gama et al. 2014).
Sudden concept drift describes a scenario in which underlying instance distribution
abruptly changes with t th example arriving from the stream:

p j (x, y) =
{

D0(x, y), if j < t

D1(x, y), if j ≥ t
(3)

Incremental concept drift can be seen as a steady progression from one concept to another
(thus consisting on multiple intermediate concepts in between), such that the distance
from the old concept is increasing, while the distance to the new concept is increasing:

p j (x, y) =

⎧

⎪

⎨

⎪

⎩

D0(x, y), if j < t1
(1 − α j)D0(x, y) + α j D1(x, y), if t1 ≤ j < t2
D1(x, y), if t2 ≤ j

(4)

where

α j = j − t1
t2 − t1

. (5)

123

Machine Learning (2020) 109:175–218 179

Gradual concept drift stands for a situation where over a given period of time instances
arriving from the stream oscillate between two distributions:

p j (x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

D0(x, y), if j < t1
D0(x, y), if t1 ≤ j < t2 ∧ δ > α j

D1(x, y), if t1 ≤ j < t2 ∧ δ ≤ α j

D1(x, y), if t2 ≤ j,

(6)

where δ ∈ [0, 1] is a random variable. This models the decreasing probability of old
concept occurrence with increasing probability of the new concept occurrence.

– Recurrence In many scenarios it is possible that a previously seen concept from kth
iteration may reappear D j+1 = D j−k , once or periodically (Gama and Kosina 2014).
This is known as recurring concept drift.

– Presence of noise Apart from concept drift, one may encounter other types of changes
in data. They are connected with the potential appearance of incorrect information in the
stream, and known as blips and noise (Zhu et al. 2008; Chandola et al. 2009). Blips are
random changes in stream characteristics that should be ignored (may be seen as outliers).
Noise represents significant fluctuations in feature values or class labels, representing
some corruption in received instances. While the classification model should adapt to
concept drift, these types of changes should not influence the underlying model, as they
will have a negative impact.

– Feature drift This is a type of change in data streams that happenswhen a subset of features
becomes, or stops to be, relevant to the learning task (Barddal et al. 2017). Additionally,
new featuresmay emerge (thus extending the feature space), while the old onesmay cease
to arrive (Barddal et al. 2019a). Therefore, classifiers need to adapt to these changes in
feature space (Barddal et al. 2016) by performing a dynamic feature selection (Yuan et al.
2018; Barddal et al. 2019b), using randomness in selected features (Abdulsalam et al.
2011), or employing a sliding window and feature space transformation (Nguyen et al.
2012).

We must note that in most real-world problems the nature of changes is far from being
well-defined or known, and wemust be able to deal with hybrid changes through time, known
as mixed concept drift. Moreover, this becomes even more challenging when access to the
labels is unavailable (Sethi and Kantardzic 2017).

The simplest solution for handling concept drift is to rebuild the classification model
whenever new data becomes available. Such an approach has a prohibitive computational
cost and it is not feasible for any real-life applications (Žliobaite et al. 2015b; Matuszyk and
Spiliopoulou 2017; Srinivasan and Bain 2017). This has led to the development of specialized
methods for this problem. There are two main approaches for tackling concept drift:

– Explicit drift handling This approach is based on using an external tool, called detec-
tor, that monitors specific characteristics of a data stream (Kuncheva 2013; Barros and
Santos 2018). Most typical ones include changes in classification errors (Pesaranghader
and Viktor 2016), statistical distribution variations (Sobolewski and Woźniak 2017), or
density changes (Liu et al. 2018). Detectors output two types of information: warning
and detection. A warning signal is being raised when a start of potential changes is being
observed and informs the learning system to start training a new classifier on recent
instances. A detection signal is being emitted when the magnitude of changes reaches a
certain threshold and informs the learning system to replace the old classifier with a new
one.

123

180 Machine Learning (2020) 109:175–218

– Implicit drift handling Here, we assume that the used classification model inherently
adapts itself to changes. One of the earliest approaches was to use a sliding window
of fixed size that stores most recent instances from the stream (Zhang et al. 2017). By
incorporating new instances and discarding old ones, this solution achieves an adaptation
to drifts in streams. A problem of proper window size setting is predominant here. Too
small window will adapt swiftly even to small changes but may lead to overfitting on a
small training sample. A large window will capture a more global outlook on the stream
but maymix instances coming from different concepts. Recent works in this area propose
to use multiple windows or to dynamically adapt the window size (Mimran and Even
2014). Another approach lies in using online learners, capable of processing instances
from the stream one by one, thus focusing its learning procedure on the most recent
ones (Vicente et al. 1998). Online learners are characterized by high processing speed
and low computational complexity and must process each instance only once. Some
standard classifiers (i.e., neural networks) are capable of working in an online mode but
there is a plethora of specialized classifiers that use modified learning schemes to cope
with drift presence (Zhang et al. 2016).

Please note that only explicit methods actually detect the moment of drift, are capable of
pinpointing the moment of change, and acting accordingly. They return information about
the change and thus can be seen as actual detection. Implicit methods follow the data and
inherently adapt to changes, but they (in vast majority of cases) do not return any information
on when the change took place, what was the nature of change, etc. Therefore, they cannot
be considered as “detection” methods. Thus, we refer to them both as explicit and implicit
drift handling methods.

2.2 Ensemble learning for data streammining

Ensemble learning has gained significant attention in machine learning and data mining over
the last two decades. Combining multiple classifiers is capable of returning an improved
predictive performance over any single learner in the pool. For an ensemble to work, it
must be formed from mutually complementary and individually competent classifiers. This
is the problem of diversity—a combination of accurate, yet similar learners will contribute
no new knowledge, while a combination of different, yet inaccurate classifiers will create
a weak ensemble. Therefore, various techniques for controlled diversity creation has been
proposed, with the most popular ones being Bagging, Boosting, and Random Forest (Bertini
and Nicoletti 2019; Van Rijn et al. 2018; Bertini and Nicoletti 2019).

Ensemble approaches are very popular in data stream mining, which can be contributed
to their flexible set-up, capabilities of changing the importance of base classifiers, as well
as natural mechanisms for incorporating new information (Krawczyk et al. 2017; Gomes
et al. 2017a; Dong and Japkowicz 2018). Additionally, new incoming data can be seen as an
attractive way to maintain diversity among ensemble members (Minku et al. 2010). We may
distinguish three main approaches for learning ensemble classifiers over data streams:

– Weight modifications This approach focuses on modifying the weights assigned to clas-
sifiers in the ensemble, in order to reflect their current competencies over the data
stream (Kolter andMaloof 2007; Ren et al. 2018a). The basic idea lies in having a diverse
pool of classifiers and monitoring their performance in a dynamic way (e.g., instance by
instance). Classifiers that make correct predictions can be deemed as better adapted to the
current concept and thus their weights should be increased. Classifiers making incorrect
decisions are penalized in a similar manner (Mejri et al. 2018). More advanced solutions

123

Machine Learning (2020) 109:175–218 181

take into an account the presence of concept drift that should strongly affect the weights,
especially in case of sudden changes (Krawczyk et al. 2017). Theweight adaptation speed
after a concept drift must be much more rapid to reflect the new state of the environment.

– Dynamic ensemble line-upThis approach focuses on dynamically replacing the classifiers
in the pool. After a new chunk of data becomes available, a new classifier is being
trained on it and added to the ensemble (Brzeziński and Stefanowski 2014b). If a certain
ensemble size has been reached, a pruning mechanism is applied to remove irrelevant
learners (Ditzler et al. 2013). Usually, the oldest or weakest performing classifier is being
discarded. This mechanism implements both incremental learning of new concepts, as
well as gradual forgetting of old ones, thus naturally tackling the evolving nature of
data streams. Dynamic ensemble set-up is usually connected with specific weighting
mechanisms that promote the newest ensemble members and reduce the weights as time
passes (Jackowski 2014). Recent proposals postulate to boost the weights of classifiers if
they are performing well on current instances even if these learners are trained on older
concepts (Woźniak et al. 2013).

– Online ensemble update This approach focuses on maintaining a pool of online classi-
fiers that are updated with incoming instances (Pietruczuk et al. 2017; Zhai et al. 2017;
Pesaranghader et al. 2018). Here the set-up is stable and learners adapt to drifts by updat-
ing themwith newdata (Olorunnimbe et al. 2018;Bonab andCan2018).Additionally, this
is used to maintain diversity among base classifiers, as if each of them would be updated
with the same set of instances, they would all converge to similar models (Minku et al.
2010). Dynamic classifier selection is a specific case of online approach, as a pool of
online learners is being maintained but only the most competent ones are being selected
for the decision making process (Almeida et al. 2016).

Apart from these main trends, there exist a plethora of hybrid solutions that merge the
mentioned techniques. Often dynamic ensemble line-ups are combined with online learners
to achieve faster response rates (Brzeziński and Stefanowski 2014a), or online ensembles
incorporate a pruning mechanism to discard classifiers that would be too difficult to properly
adapt to the current state of the stream (Bifet et al. 2010b).

2.3 Imbalanced data streams

Imbalanced distribution of instances among data classes poses a significant problem for
learning systems (Krawczyk 2016). This issue becomes even more challenging when being
present in a data stream mining scenario (Chen and He 2013; Wang et al. 2018). Here, we
must accommodate not only for skewed classes but also for the evolving nature of data. Main
issues related to imbalanced data streams include (Chen and He 2013; Fernández et al. 2018):

– Simultaneous concept and imbalance ratio drift The proportions of objects among classes
may change along the presence of concept drift. Therefore, classes are not permanently
associated with their minority or majority roles, as these may change over time.

– Evolving data characteristics Minority instances may have a different level of hardness
associated with them. This information may be used to improve the learning process by
concentrating on the most difficult instances. However, in data streams these properties
may change dynamically, forcing an adaptation of imbalance handling techniques.

– Emergence and disappearance of new classes Over time, new classes may emerge and
old ones disappear. As this is usually a gradual process, it will affect the class imbalance
ratios, which must be accounted for.

123

182 Machine Learning (2020) 109:175–218

A real-world example of such a problem is a network of sensors that collectively work
towards recognizing activities or object position. Here, the number of observations recorded
by each sensor will change over time, as well as the environmental conditions in the network
area. Novel activities may appear, increasing the number of classes to be recognized, as well
as further changing the minority-majority relationships among classes.

Ensemble algorithms have been applied to learning from imbalanced data streams with
great success. They usually aim at balancing data in every arriving chunk (Wang and Pineau
2016), or in case of online learning employing incremental sampling solutions to balance the
stream instance by instance (Wang et al. 2015).

These solutions have been applied to problems that are known beforehand as imbalanced
ones. However, one must note that in the data stream domain one usually does not know
beforehand what characteristics of data are to be expected. While these specific solutions are
effective for imbalanced streams, they are easily outperformed by other models on balanced
streams (Krawczyk 2017). Class imbalancemay appear periodically, e.g., after a concept drift
when instances from a new concept still appear less frequently (Sun et al. 2016). Therefore,
in many real-time scenarios one cannot predict if and when the stream will output imbal-
anced distributions. This requires classification algorithms that are able to handle effectively
balanced data streams, while at the same time displaying increased robustness to class imbal-
ance.

3 Kappa Updated Ensemble

This section presents the Kappa Updated Ensemble (KUE) algorithm, the learning model
and its components, its computational and memory complexity, and its advantages as com-
pared with state-of-the-art ensembles for data streams. KUE is detailed in Algorithm 1. The
main idea of KUE is to integrate the advantages already demonstrated in the data stream
mining literature of incremental learning, varying-size random subspaces, online bagging
(Bifet et al. 2010b), and dynamic weighted voting (Kolter and Maloof 2007), into a single
algorithm driven by the Kappa statistic while keeping a simple, effective, and computation-
ally efficient algorithm capable of quickly self-adapting to drifts in features and data classes
distribution without requiring an explicit drift detector. KUE maintains a weighted pool of
diverse component classifiers and predicts the class of incoming examples by aggregating
the predictions of components using weighted voting with possible abstention.

3.1 Ensemble structure and initialization

Let E be an ensemble classifier comprised by k components of γ base classifiers such that
γ j ∈ E (j = 1, 2, . . . , k). The components of the ensemble are initialized when the first
data chunk S1 in the data stream S arrives. In order to promote the diversity of the ensemble
components exploring feature subspaces of varied dimensionality, each base classifier γ j is
built on a different r -dimensional random subspace ϕ j , where 1 ≤ r ≤ f from the original
f -dimensional space in S. Importantly, the dimensionality and the subspace of features for
each component are both randomized. This is a significant difference as compared toAdaptive
Random Forest (Gomes et al. 2017b) which selects a fixed subspace dimensionality for all
the components. We consider that allowing a different subspace dimensionality per ensemble
component provides better flexibility to identify and explore more diverse random feature
subspaces.

123

Machine Learning (2020) 109:175–218 183

Algorithm 1 Kappa Updated Ensemble (KUE) algorithm.
Input: S: data stream, f : number of features, k: number of ensemble components, q: number of new com-

ponents to train
Output: E : ensemble of k γ classifiers,

ϕ: subspace of features for each of the k components,
κ: Kappa for each of the k components

1: for Si ∈ {S1, . . . ,Sn} do
2: if S1 then � Ensemble initialization
3: for j ∈ {1, . . . , k} do
4: r ← random integer with uniform probability [1, f]
5: ϕ j ← r -dimensional random subspace in S1 where instances are weighted according to

Poisson(1)
6: γ j ← new classifier on ϕ j (S1)
7: κ j ← compute Kappa of γ j on ϕ j (S1)
8: end for
9: else � Ensemble model update
10: for j ∈ {1, . . . , k} do
11: ϕ j ← instances inSi are weighted according to Poisson(1) keeping the r -dimensional subspace

12: γ j ← incremental train of γ j on ϕ j (Si)
13: κ j ← compute Kappa of γ j on ϕ j (Si)
14: end for � Train new components
15: for {1, . . . , q} do
16: r ← random integer with uniform probability [1, f]
17: ϕ′ ← r -dimensional random subspace in Si where instances are weighted according to

Poisson(1)
18: γ ′ ← new classifier on ϕ′(Si)
19: κ ′ ← compute Kappa of γ ′ on ϕ′(Si)
20: if κ ′ > κmin(κ) then � Replace weakest γ ∈ E
21: ϕmin(κ) ← ϕ’
22: γmin(κ) ← γ ’
23: κmin(κ) ← κ’
24: end if
25: end for
26: end if
27: end for

On the other hand, online bagging is applied to weight and resample with replacement
instances within the subspace using the Poisson(1) distribution. It has been shown that this
online bagging approach improves the performance of data stream classifiers, particularly
OzaBag (Oza 2005), Leverage Bagging (Bifet et al. 2010b), and Adaptive Random For-
est (Gomes et al. 2017b) follow this approach.

This way, the algorithm randomizes and diversifies the input (both instances and features)
for the internal construction of the ensemble components. Once the base classifiers are trained
on such data, their Kappa performances are used as weights on the voting for the class
prediction of new instances.

Kappa statistic has been commonly used in imbalanced classification (Ferri et al. 2009; Jeni
et al. 2013; Brzeziński et al. 2018). It evaluates the competence of a classifier by measuring
the inter-rater agreement between the successful predictions and the statistical distribution
of the data classes, correcting agreements that occur by mere statistical chance (Cano et al.
2013). Kappa statistic ranges from−100 (total disagreement) through 0 (default probabilistic
classification) to 100 (total agreement), and it is computed as in Eq. 7:

123

184 Machine Learning (2020) 109:175–218

Kappa =
n

∑c

i=1
xii −

∑c

i=1
xi .x.i

n2 −
∑c

i=1
xi .x.i

· 100 (7)

where xii is the count of cases in the main diagonal of the confusion matrix (successful
predictions),n is the number of examples, c is the number of classes, and x.i , xi . are the column
and row total counts, respectively. Importantly, Kappa penalizes all-positive or all-negative
predictions, which is especially useful in multi-class imbalanced data. Moreover, since the
data classes distributions may change through the progress of the stream, Kappa provides
better insight than other metrics to detect changes in the performance of the algorithms due
to drifts in the data classes distribution.

3.2 Ensemblemodel update

Every time a newdata chunkSi ∈S arrives, data is projected on the existing randomsubspaces
for each of the ensemble components and instances are weighted through online bagging
using the Poisson(1) distribution (Bifet et al. 2010b). This way, the existing components of
the ensemble are incrementally updated using the new data input diversified for eachmember,
similar to Adaptive Random Forest (Gomes et al. 2017b). The competence of the updated
components is evaluated on the most current data and their Kappa are updated. This is similar
to the Accuracy Updated Ensemble (Brzeziński and Stefanowski 2011) but using the Kappa
statistic rather than accuracy to drive the competence of classifiers.

Two scenarios may occur here when updating the competence of the components. In case
of receiving a chunk maintaining a similar data distribution than previous chunks, the per-
formance of each of the components is expected to be stable. The components will update
and refine their learned model. However, in case of a drift in the concepts, features, data
classes, or noise, the performance of the components may significantly decrease, especially
in the event of a sudden drift. Therefore, in order to preemptively anticipate any possible
drifts of unknown nature, a new set of q classifiers are trained and evaluated each in a new
r -dimensional random subspace on the most recent chunk. The variable random nature of
the feature projections in the building of the new components helps to overcome drifts and
noise on an undetermined sets of features. If the Kappa statistic of each of the new classi-
fiers improves the Kappa statistic of the weakest existing component, then it replaces such
component as it demonstrates to be most up to date. By replacing the weakest components
with the newest classifiers, the algorithm balances the learning of new classification models
and the forgetting of old classifiers which are no longer valid due to the drift in the data. This
way, there is no need for an explicit drift detector as the self-update mechanism is intrinsic
to the design of the ensemble update model.

3.3 Weighted voting

The class prediction ŷ of an instance x is conducted through weighted majority voting of
each of the ensemble components using their Kappa on themost current chunk. The weighted
aggregated voting is defined in Eq. 8:

ŷ = argmax
i

k
∑

j=1

{

κ j p(i | γ j (x)) if κ j ≥ 0

0 otherwise
(8)

123

Machine Learning (2020) 109:175–218 185

This simplifies the ensemble weighting mechanism while reflecting the most up to date
competence of the components. Importantly, components participate in the class voting only
when their Kappa ≥ 0, i.e., those components whose competence is clearly not good enough
abstain from the vote. Abstaining classifiers have demonstrated to improve the performance
of online ensembles for drifting and noisy data streams (Błaszczyński et al. 2009; Krawczyk
and Cano 2018). On the other hand, in the unlikely case of all classifiers having a Kappa
value< 0 means that no classifier was able to model the data better than a default-hypothesis
classifier based on the data class distribution. Therefore, in such cases the class prediction is
returned according to a roulette selector given the class distribution frequencies.

3.4 Complexity analysis

Let us now analyze the time and memory complexity of the KUE algorithm. The algorithm
receives a data chunk Si ∈ S of |Si | instances. The ensemble comprises k base classifiers.
The base classifier for KUE is HoeffdingTree, also known as VFDT, which builds a decision
tree with a constant time and constant memory per instance (Hulten et al. 2001). Therefore,
the ensemble initialization on the first chunk S1 has a time complexity of O(k|S1|). The
ensemble model update on a subsequent chunk Si has a time complexity of O(k|Si |) to
update the k existing components. Moreover, the algorithm trains q ≤ k new components
on the chunk Si potentially replacing the weakest members, which has a time complexity of
O(q|Si |). Consequently, the time complexity of KUE is O((k + q)|Si |).

The memory complexity of the base classifier HoeffdingTree is O(f vlc) where f is the
number of features, v is the maximum number of values per feature, l is the number of leaves
in the tree, and c is the number of classes (Hulten et al. 2001). However, KUE performs r -
dimensional random subspace projections for each of the k and q components, where r ≤ f ,
then effectively reducing the memory complexity of HoeffdingTree to O(rvlc). Therefore,
the memory complexity of KUE comprising k components plus one new trained at a time is
O((k + 1)rvlc).

3.5 Contribution, novelty, and advantages over existing ensembles

Initialization of componentsKUE initializes the k components using data from the first chunk
S1 projected on different random feature subspaces. On the contrary, Accuracy Updated
Ensemble and Accuracy Weighted Ensemble initialize only one component in each of the
initial k chunks and on whole of the feature set. This makes KUE more accurate and reliable
at the beginning of the stream sequence since the k diverse components exist from the very
first chunk.

Impact of learning in subspacesOnline bagging and random subspaces have demonstrated to
improve the performance of ensembles for online data streams, inspired by Random Forests
alike methods such as Adaptive Random Forest (Gomes et al. 2017b). However, the tradi-
tional approach is to build the ensemble components on random subspaces of the same fixed
dimensionality. This raises important concerns on whether this approach is the best for data
streams subject to concept drifts. First, the optimal subspace size cannot be predetermined
apriori as it depends on the dataset distribution and on the relevance, redundancy, or noise
in the features. Second, the dimensionality of the subspace should not be constant since fea-
tures and noise are subject to drift with time, making it necessary to dynamically adapt as the
stream evolves. One may think about a scenario in which noise is propagating from none to

123

186 Machine Learning (2020) 109:175–218

all features as the stream progresses, making fixed size subspaces incapable of dynamically
adapting. Therefore, the dynamic and variable size of the random subspaces in KUE consti-
tutes a significant advantage to adapt to such scenarios. Moreover, exploring random small
subspaces allows for faster model training and better classifier generalization while keeping
competitive accuracy.

Kappa metric for classifier weighting Use of Kappa rather than accuracy for evaluating the
competence of a data stream classifier in an ensemble is beneficial in three ways. First,
there is a clear threshold for Kappa > 0 in which one can determine whether a classifier is
positively contributing to the ensemble by making a likely a correct prediction. Components
whose Kappa < 0 are discarded as they actually introduce misleading predictions. However,
when using accuracy this is not possible since the mere accuracy value is not informative
enough as it does not take into account the data classes distribution. Second, Kappa is a strict
measure that will quickly drop in case of incorrect predictions, making it much more useful
forweighting components rather than using accuracy thatwould only introduce small changes
in weights. Third, the data classes distribution may drift as the stream progresses. Kappa is
capable of capturing the competence of the components reflecting the possibly varying data
classes distribution with time. Therefore, this is a significant advantage in KUE as compared
with existing ensembles driven by accuracy such as DynamicWeighted Majority (Kolter and
Maloof 2007), AccuracyUpdated Ensemble (Brzeziński and Stefanowski 2011), or Accuracy
Weighted Ensemble (Wang et al. 2003).

Incorporating new classifiers Accuracy Updated Ensemble (Brzeziński and Stefanowski
2011) treats the newly trained classifier for each chunk as perfect and its predictions are not
weighted. However, this may not be the best option, especially on complex data where high
accuracy is difficult to get, making the new classifier overconfident. On the other hand, in
KUE the weights of the new classifier are taken into account as soon as the classifier joins
the ensemble, reflecting its most current competence.

Moreover, KUE is designed to train and replace q classifiers at a time, replacingmany base
classifiers if needed due to extreme drifts of the stream where all previous base classifiers
would become immediately outdated. However, according to the experiments in Sect. 4.5, it
is shown that training one new base classifier per chunk is sufficient to achieve competitive
results while keeping the lowest computational complexity.

Abstaining classifiers Abstaining classifiers in the weighted voting is a significant advantage
as compared to similar existing ensemble methods (Krawczyk and Cano 2018), especially in
the case of a sudden drift where many of the components are suddenly no longer competent.
In such a scenario, block-based ensembles may not react sufficiently fast to changes and
it takes few iterations to learn new correct models in the new data distribution. Traditional
block-based ensembles may react too slowly as classifiers generated from outdated blocks
still remain valid components even though they have inaccurate weights. On the contrary,
by allowing a classifier to abstain in KUE, only the components that correctly reflect the
current concepts of the stream will participate in the vote, avoiding misleading predictions
from outdated components.

In this work, we propose to combine them all along with the Kappa metric to lead the
selection and update of the base classifiers.

123

Machine Learning (2020) 109:175–218 187

4 Experimental study

This section presents the algorithms, datasets, and experiments designed to evaluate and
compare the performance of the proposed method with state-of-the-art ensembles for data
streams.

4.1 Algorithms

The KUE algorithm has been implemented in the Massive Online Analysis (MOA) soft-
ware (Bifet et al. 2010a, 2018), which includes a collection of generators, algorithms, and
performancemetrics for data streams. The proposal is comparedwith 15 other ensemble clas-
sifiers for data stream mining available in MOA, all using a single-thread implementation
in Java. These comprise a diverse set of methods including block-based, bagging, boosting,
random forest, and weighted ensembles (Gama et al. 2013).

Table 1 lists the algorithms, their base learners, and their main parameters, which were
selected according to the recommended values reported by their authors and other studies
in this area. The KUE algorithm’s source code, an executable version, and the datasets
along with detailed results for the experimental analysis are available online to facilitate the
reproducibility of results and future comparisons.1 Experiments were run on an Intel Xeon
CPU E5-2690v4 with 384 GB of memory on a Centos 7 × 86 − 64 system.

4.2 Datasets

The experimental study comprises 60 standard and 33 imbalanced data stream benchmarks
to evaluate the performance of algorithms. Properties of the data stream benchmarks are
presented in Tables 2 and 3. We have selected a diverse set of benchmarks reflecting various
possible drifts (no drift, gradual drift, recurring drift, sudden drift), including 13 real datasets,
and a variety of stream generators (RBF, RandomTree, Agrawal, AssetNegotiation, LED,
Hyperplance,Mixed, SEA,Sine, STAGGER,Waveform)with different properties concerning
speed and number of concept drifts. Moreover, for imbalanced datasets, we analyze the
impact of the imbalance ratio (IR), including scenarioswhere the imbalance ratio dynamically
changes through the progress of the stream. The imbalance ratio represents the relation
between the number of instances of the majority class and the minority class. In the case of
multi-class imbalanced dataset it is reported as the relation between the most frequent class
and the least frequent class. For the sake of conducting a fair comparison, the chunk size is
set to 1000 instances for all algorithms, which is the default setup in the chunk evaluation of
data stream mining algorithms and it also the default value provided by MOA (Bifet et al.
2010a, 2018). To the best of our knowledge, this is one of the biggest experimental setups
conducted so far as most papers in data streams are based on 8-16 benchmarks (Krawczyk
et al. 2017; Gomes et al. 2017a).

4.3 Experiment 1: Evaluation on standard data streams

Table 4 shows the average performance and ranks of the classifiers on the 60 standard data
streams. Results are provided for accuracy, Kappa, model update (train time), prediction (test

1 KUE source code, datasets, detailed results, and visualizations available at: http://doi.org/10.17605/OSF.
IO/6H438.

123

http://doi.org/10.17605/OSF.IO/6H438
http://doi.org/10.17605/OSF.IO/6H438

188 Machine Learning (2020) 109:175–218

Ta
bl
e
1

E
ns
em

bl
e
al
go
ri
th
m
s
an
d
th
ei
r
m
ai
n
pa
ra
m
et
er
s

A
cr
on
ym

A
lg
or
ith

m
’s
na
m
e

Pa
ra
m
et
er
s

A
cr
on
ym

A
lg
or
ith

m
’s
na
m
e

Pa
ra
m
et
er
s

L
N
SE

(E
lw
el
la
nd

Po
lik

ar
20

11
)

L
ea
rn

++
.N

SE
L
ea
rn
er
:N

ai
ve
B
ay
es

en
se
m
bl
eS
iz
e:
15

L
B
(B
if
et
et
al
.2

01
0b

)
L
ev
er
ag
in
g
ba
gg

in
g

w
ith

A
D
W
IN

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

D
W
M

(K
ol
te
r
an
d
M
al
oo
f
20

07
)

D
yn

am
ic

w
ei
gh
te
d

m
aj
or
ity

L
ea
rn
er
:N

ai
ve
B
ay
es

m
ax
E
ns
em

bl
eS
iz
e:
in
f

SA
E
2
(G

om
es

an
d
E
ne
m
br
ec
k
20

14
)

So
ci
al
ad
ap
tiv

e
en
se
m
bl
e
2

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

D
A
C
C
(J
ab
er

et
al
.2

01
3)

D
yn

am
ic

ad
ap
ta
tio

n
to

co
nc
ep
tc
ha
ng

es

L
ea
rn
er
:N

ai
ve
B
ay
es

en
se
m
bl
eS
iz
e:
20

A
W
E
(W

an
g
et
al
.2

00
3)

A
cc
ur
ac
y
w
ei
gh
te
d

en
se
m
bl
e

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

en
se
m
bl
eB

uf
fe
r:
30

A
D
A
C
C
(J
ab
er

et
al
.2

01
3)

A
nt
ic
ip
at
iv
e
an
d

dy
na
m
ic

ad
ap
ta
tio

n
to

co
nc
ep
tc
ha
ng

es

L
ea
rn
er
:N

ai
ve
B
ay
es

en
se
m
bl
eS
iz
e:
20

A
U
E
1
(B

rz
ez
iń
sk
ia
nd

St
ef
an
ow

sk
i2

01
1)

A
cc
ur
ac
y
up

da
te
d

en
se
m
bl
e
1

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
15

en
se
m
bl
eB

uf
fe
r:
30

O
C
B
(P
el
os
so
f
et
al
.2

00
9)

O
nl
in
e
co
or
di
na
te

bo
os
tin

g
L
ea
rn
er
:H

oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

A
U
E
2
(B

rz
ez
iń
sk
ia
nd

St
ef
an
ow

sk
i2

01
4b

)
A
cc
ur
ac
y
up

da
te
d

en
se
m
bl
e
2

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

O
B
A
(O

za
20

05
)

O
za

bo
os
ta
dw

in
L
ea
rn
er
:H

oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

A
R
F
(G

om
es

et
al
.2

01
7b

)
A
da
pt
iv
e
ra
nd

om
fo
re
st

L
ea
rn
er
:a
da
pt
iv
e

ra
nd

om
fo
re
st

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

O
B
A
SH

T
(B
if
et
et
al
.2

00
9)

O
za

ba
g

ad
ap
tiv

e-
si
ze

H
oe
ff
di
ng

T
re
e

L
ea
rn
er
:

A
SH

oe
ff
di
ng
T
re
e

en
se
m
bl
eS
iz
e:
10

H
E
B
(V
an

R
ijn

et
al
.2

01
8)

B
L
A
ST

he
te
ro
ge
ne
ou

s
en
se
m
bl
es

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
5

O
B
A
D
(B
if
et
an
d
G
av
al
dà

20
07

)
O
za

ba
g
ad
w
in

L
ea
rn
er
:H

oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

K
U
E

K
ap
pa

up
da
te
d

en
se
m
bl
e

L
ea
rn
er
:

H
oe
ff
di
ng

T
re
e

en
se
m
bl
eS
iz
e:
10

ne
w
co
m
po

ne
nt
s:
1

123

Machine Learning (2020) 109:175–218 189

Ta
bl
e
2

Pr
op
er
tie
s
of

st
an
da
rd

da
ta
se
ts

D
at
as
et

In
st
an
ce
s

A
tts

C
la
ss
es

IR
Pr
op
er
tie
s

D
at
as
et

In
st
an
ce
s

A
tts

C
la
ss
es

IR
Pr
op
er
tie
s

Po
w
er
su
pp
ly

29
,9
28

3
24

1
U
nk

no
w
n
dr
if
t

A
ss
et
N
eg
ot
ia
tio

n-
F5

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

E
le
ct
ri
ci
ty

45
,3
12

8
2

1
U
nk

no
w
n
dr
if
t

H
yp

er
pl
an
e-
dr
if
t

1,
00

0,
00

0
10

4
1

G
ra
du

al
dr
if
t

Sh
ut
tle

58
,0
00

9
7

13
U
nk

no
w
n
dr
if
t

L
E
D

1,
00

0,
00

0
7

10
1

N
o
dr
if
t

C
on

ne
ct
-4

67
,5
57

43
3

6
U
nk

no
w
n
dr
if
t

L
E
D
-n
oi
se

1,
00

0,
00

0
7

10
1

N
oi
se

C
en
su
s

29
9,
28

4
42

2
15

U
nk

no
w
n
dr
if
t

L
E
D
-d
ri
ft

1,
00

0,
00

0
7

10
1

G
ra
du

al
dr
if
t

C
ov
Ty

pe
58

1,
01

2
54

7
29

U
nk

no
w
n
dr
if
t

L
E
D
-d
ri
ft
-4

1,
00

0,
00

0
7

10
1

Su
dd

en
dr
if
t

Po
ke
r

82
9,
20

1
11

10
10

U
nk

no
w
n
dr
if
t

M
ix
ed
-i
m
ba
la
nc
ed

1,
00

0,
00

0
5

2
1

Su
dd

en
dr
if
t

B
N
G
_b

ri
dg

es
1,
00

0,
00

0
13

6
4

U
nk

no
w
n
dr
if
t

M
ix
ed
-b
al
an
ce
d

1,
00

0,
00

0
5

2
1

Su
dd

en
dr
if
t

B
N
G
_l
ym

ph
1,
00

0,
00

0
19

4
17

U
nk

no
w
n
dr
if
t

R
B
F

1,
00

0,
00

0
50

4
1

N
o
dr
if
t

B
N
G
_z
oo

1,
00

0,
00

0
17

7
9

U
nk

no
w
n
dr
if
t

R
B
F-
dr
if
t

1,
00

0,
00

0
50

4
1

G
ra
du

al
dr
if
ts
lo
w

B
N
G
_w

in
e

1,
00

0,
00

0
14

3
1

U
nk

no
w
n
dr
if
t

R
B
F-
dr
if
t-
fa
st

1,
00

0,
00

0
50

4
1

G
ra
du

al
dr
if
tf
as
t

B
N
G
_h
ep
at
iti
s

1,
00

0,
00

0
20

2
4

U
nk

no
w
n
dr
if
t

R
B
F-
dr
if
t-
gr
ad
ua
l

1,
00

0,
00

0
50

4
1

G
ra
du

al
dr
if
t

In
te
lL
ab
Se
ns
or
s

2,
31

3,
15

3
6

58
1

U
nk

no
w
n
dr
if
t

R
B
F-
dr
if
t-
re
cu

1,
00

0,
00

0
50

4
1

R
ec
ur
re
nt

dr
if
t

A
gr
w
-F
1

1,
00

0,
00

0
9

2
1

N
o
dr
if
t

R
an
do

m
T
re
e

1,
00

0,
00

0
10

2
1

N
o
dr
if
t

A
gr
w
-F
10

to
F1

-d
ri
ft

1,
00

0,
00

0
9

2
1

G
ra
du

al
dr
if
t

R
an
do

m
T
re
e-
dr
if
t

1,
00

0,
00

0
10

2
1

G
ra
du

al
dr
if
t

A
gr
w
-F
1t
oF

10
-d
ri
ft

1,
00

0,
00

0
9

2
1

G
ra
du

al
dr
if
t

R
an
do

m
T
re
e-
dr
if
t-
re
cu

1,
00

0,
00

0
10

2
1

R
ec
ur
re
nt

dr
if
t

A
gr
w
-F
1t
oF

10
-d
ri
ft
-s
lo
w

1,
00

0,
00

0
9

2
1

G
ra
du

al
dr
if
ts
lo
w

R
an
do

m
T
re
e-
dr
if
t-
fa
st

1,
00

0,
00

0
10

2
1

G
ra
du

al
dr
if
tf
as
t

A
gr
w
-F
1t
oF

10
-d
ri
ft
-f
as
t

1,
00

0,
00

0
9

2
1

G
ra
du

al
dr
if
tf
as
t

SE
A
-F
1

1,
00

0,
00

0
3

2
1

N
o
dr
if
t

A
gr
w
-F
1t
oF

10
-d
ri
ft
-s
ud

de
n

1,
00

0,
00

0
9

2
1

Su
dd

en
dr
if
t

SE
A
-F
2

1,
00

0,
00

0
3

2
1

N
o
dr
if
t

A
gr
w
-F
2F

4F
6F

8F
1F

3-
dr
if
t

1,
00

0,
00

0
9

2
1

Su
dd

en
dr
if
t

SE
A
-F
4

1,
00

0,
00

0
3

2
1

N
o
dr
if
t

A
gr
w
-F
3F

5F
3F

5F
3F

5-
dr
if
t

1,
00

0,
00

0
9

2
1

R
ec
ur
re
nt

dr
if
t

SE
A
-d
ri
ft
-s
ud

de
nt

1,
00

0,
00

0
3

2
1

Su
dd

en
dr
if
t

A
gr
w
-F
3F

5F
7F

3F
5F

7-
dr
if
t

1,
00

0,
00

0
9

2
1

R
ec
ur
re
nt

dr
if
t

SE
A
-d
ri
ft
-f
as
t

1,
00

0,
00

0
3

2
1

G
ra
du

al
dr
if
tf
as
t

A
gr
w
-F
3F

5F
7F

5F
3-
dr
if
t

1,
00

0,
00

0
9

2
1

Su
dd

en
dr
if
t

Si
ne
-F
1

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

123

190 Machine Learning (2020) 109:175–218

Ta
bl
e
2

co
nt
in
ue
d

D
at
as
et

In
st
an
ce
s

A
tts

C
la
ss
es

IR
Pr
op
er
tie
s

D
at
as
et

In
st
an
ce
s

A
tts

C
la
ss
es

IR
Pr
op
er
tie
s

A
gr
w
-F
7t
oF

2-
dr
if
t

1,
00

0,
00

0
9

2
1

G
ra
du

al
dr
if
t

Si
ne
-F
2

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

A
gr
w
-F
9F

7F
3F

5F
4F

2-
dr
if
t

1,
00

0,
00

0
9

2
1

Su
dd

en
dr
if
t

Si
ne
-F
3

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

A
gr
w
-F
-r
an
do

m
-d
ri
ft

1,
00

0,
00

0
9

2
1

Su
dd

en
dr
if
t

ST
A
G
G
E
R
-F
1

1,
00

0,
00

0
3

2
1

N
o
dr
if
t

A
ss
et
N
eg
ot
ia
tio

n-
F1

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

ST
A
G
G
E
R
-F
2

1,
00

0,
00

0
3

2
1

N
o
dr
if
t

A
ss
et
N
eg
ot
ia
tio

n-
F2

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

ST
A
G
G
E
R
-F
1t
oF

3-
dr
if
t

1,
00

0,
00

0
3

2
1

G
ra
du

al
dr
if
t

A
ss
et
N
eg
ot
ia
tio

n-
F3

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

W
av
ef
or
m

1,
00

0,
00

0
40

3
1

N
o
dr
if
t

A
ss
et
N
eg
ot
ia
tio

n-
F4

1,
00

0,
00

0
5

2
1

N
o
dr
if
t

W
av
ef
or
m
-d
ri
ft

1,
00

0,
00

0
40

3
1

G
ra
du

al
dr
if
t

123

Machine Learning (2020) 109:175–218 191

Ta
bl
e
3

Pr
op
er
tie
s
of

im
ba
la
nc
ed

da
ta
se
ts

D
at
as
et

In
st
an
ce
s

A
tts

C
la
ss
es

IR
D
at
as
et

In
st
an
ce
s

A
tts

C
la
ss
es

IR

A
gr
w
-I
R
-5

1,
00

0,
00

0
9

2
5

SE
A
-I
R
-5

1,
00

0,
00

0
3

2
5

A
gr
w
-I
R
-1
0

1,
00

0,
00

0
9

2
10

SE
A
-I
R
-1
0

1,
00

0,
00

0
3

2
10

A
gr
w
-I
R
-2
0

1,
00

0,
00

0
9

2
20

SE
A
-I
R
-2
0

1,
00

0,
00

0
3

2
20

A
gr
w
-I
R
-1
00

1,
00

0,
00

0
9

2
10

0
SE

A
-I
R
-1
00

1,
00

0,
00

0
3

2
10

0

A
ss
et
N
eg
ot
ia
tio

n-
IR

-5
1,
00

0,
00

0
5

2
5

A
gr
w
-F
1t
oF

10
-I
R
-1
to
20

1,
00

0,
00

0
9

2
1
to

20

A
ss
et
N
eg
ot
ia
tio

n-
IR

-1
0

1,
00

0,
00

0
5

2
10

A
ss
et
N
eg
-F
1t
oF

5-
IR

-1
to
10

1,
00

0,
00

0
5

2
1
to

10

A
ss
et
N
eg
ot
ia
tio

n-
IR

-2
0

1,
00

0,
00

0
5

2
20

R
B
F-
dr
if
t-
IR

-1
to
10

1,
00

0,
00

0
50

2
1
to

10

A
ss
et
N
eg
ot
ia
tio

n-
IR

-1
00

1,
00

0,
00

0
5

2
10

0
SE

A
-F
1t
oF

4-
IR

-1
to
5

1,
00

0,
00

0
3

2
1
to

5

H
yp

er
pl
an
e-
IR

-5
1,
00

0,
00

0
10

2
5

A
gr
w
-F
1t
oF

10
-I
R
-1
0t
o1

1,
00

0,
00

0
9

2
10

to
1

H
yp

er
pl
an
e-
IR

-1
0

1,
00

0,
00

0
10

2
10

A
ss
et
N
eg
-F
1t
oF

5-
IR

-1
0t
o1

0
1,
00

0,
00

0
5

2
10

to
1
to

10

H
yp

er
pl
an
e-
IR

-2
0

1,
00

0,
00

0
10

2
20

Po
ke
r-
1-
2v

sA
ll

1,
00

0,
00

0
11

2
13

H
yp

er
pl
an
e-
IR

-1
00

1,
00

0,
00

0
10

2
10

0
In
te
lL
ab
Se

ns
or
s-
1t
o9

vs
A
ll

2,
31

3,
15

3
6

2
7

R
B
F-
IR

-5
1,
00

0,
00

0
10

2
5

In
te
lL
ab
Se

ns
or
s-
1t
o5

vs
A
ll

2,
31

3,
15

3
6

2
13

R
B
F-
IR

-1
0

1,
00

0,
00

0
10

2
10

In
te
lL
ab
Se

ns
or
s-
1t
o3

vs
A
ll

2,
31

3,
15

3
6

2
17

R
B
F-
IR

-2
0

1,
00

0,
00

0
10

2
20

In
te
lL
ab
Se

ns
or
s-
1v

sA
ll

2,
31

3,
15

3
6

2
54

R
B
F-
IR

-1
00

1,
00

0,
00

0
10

2
10

0
C
ov
Ty

pe
-1
-2
vs
A
ll

58
1,
01

2
54

2
7

B
N
G
_b

ri
dg

es
-1
vs
A
ll

1,
00

0,
00

0
13

2
7

123

192 Machine Learning (2020) 109:175–218

Ta
bl
e
4

Pe
rf
or
m
an
ce

of
en
se
m
bl
e
cl
as
si
fie
rs
on

st
an
da
rd

da
ta
st
re
am

s:
av
er
ag
e
an
d
ra
nk

on
60

st
re
am

s

M
et
ri
c

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

A
vg

.a
cc
ur
ac
y

71
.0
0

75
.5
1

69
.7
5

69
.8
4

68
.4
1

79
.1
4

82
.9
3

84
.5
5

84
.4
9

79
.1
0

76
.9
7

83
.5
0

83
.6
7

83
.9
3

82
.8
0

85
.9
0

A
vg

.K
ap
pa

50
.6
9

58
.2
9

48
.9
3

49
.1
4

47
.9
1

65
.1
6

70
.7
7

73
.6
2

73
.6
0

64
.4
5

61
.8
7

71
.5
6

73
.2
3

72
.5
8

70
.3
6

76
.1
9

A
vg

.t
ra
in

tim
e
(s
)

3.
59

88
0.
01

23
0.
01

97
0.
05

22
0.
05

55
0.
74

07
0.
04

53
0.
26

68
1.
54

18
0.
03

20
0.
16

86
0.
37

09
0.
08

38
0.
17

31
0.
28

44
0.
05

97

A
vg

.t
es
tt
im

e
(s
)

0.
22

71
0.
01

04
0.
00

46
0.
00

76
0.
01

56
0.
01

59
0.
02

13
0.
01

36
0.
01

70
0.
01

18
0.
01

78
0.
01

62
0.
01

72
0.
01

67
0.
04

92
0.
01

57

A
vg

.R
A
M
-H

ou
rs

3.
2E

−1
1.
1E

−7
6.
5E

−7
6.
5E

−6
6.
8E

−4
5.
8E

−2
2.
4E

−4
4.
3E

−3
6.
6E

−2
9.
2E

−5
2.
1E

−4
3.
0E

−3
4.
7E

−4
4.
9E

−3
2.
8E

−4
8.
2E

−4
R
an
k
ac
cu
ra
cy

12
.8
9

11
.4
0

14
.6
7

14
.1
2

11
.2
9

9.
79

6.
94

3.
76

4.
71

11
.0
5

10
.0
7

6.
62

4.
08

5.
01

6.
75

2.
86

R
an
k
K
ap
pa

12
.8
0

11
.1
6

14
.7
2

14
.1
1

11
.3
8

9.
77

7.
07

3.
75

4.
66

10
.8
7

10
.0
2

6.
82

4.
14

5.
14

6.
72

2.
88

R
an
k
tr
ai
n
tim

e
15

.4
7

1.
15

2.
17

5.
16

6.
52

11
.5
3

4.
85

10
.7
2

14
.5
8

3.
45

10
.0
2

12
.4
7

7.
68

11
.1
8

12
.4
3

6.
63

R
an
k
te
st
tim

e
15

.0
9

4.
85

2.
56

4.
80

7.
80

9.
36

12
.0
3

7.
51

10
.1
2

5.
88

9.
19

8.
10

9.
34

11
.1
8

8.
43

7.
77

R
an
k
R
A
M
-H

ou
rs

15
.3
2

1.
00

2.
02

3.
35

7.
93

13
.4
8

6.
37

10
.8
8

13
.9
8

5.
33

5.
73

10
.8
7

7.
78

12
.8
5

9.
72

7.
38

M
et
a-
ra
nk

14
.3
1

5.
91

7.
23

8.
31

8.
98

10
.7
9

7.
45

7.
32

9.
61

7.
32

9.
01

8.
97

6.
60

9.
07

8.
81

5.
50

B
ol
d
va
lu
es

re
pr
es
en
tt
he

be
st
re
su
lts

123

Machine Learning (2020) 109:175–218 193

time), and memory consumption (RAM-Hours). Different metrics provide complementary
perspectives of the predictive power of the classifiers. Ranks of the classifiers according to
Friedman are reported for each metric. Finally, the meta-rank shows the average rank across
all metrics.

Table 5 shows the accuracy for each of the 60 standard data streams. The accuracy is
averaged through all the instances of the stream. Detailed results for all metrics and datasets
are available online (see footnote 1) including plots with the variation of the performance
metrics through the progress of the stream.

Table 6 presents the outcomes ofWilcoxon statistical test (García andHerrera 2008;García
et al. 2010) where the lower the p value the bigger differences between the algorithms, while
Figs. 1 and2depict the visualizations of ranks according to theBonferroni–Dunn test. Figure 3
presents the pairwise comparison between KUE and reference methods with the respect to
the number of wins, ties, and loses on all datasets. Figure 4 depicts the distribution of the
frequencies of ranks achieved by all of the ensemble classifiers over all datasets.

Finally, Figs. 5, 6 and 7 present detailed results over all processed instances in the stream
for three selected datasets with respect to accuracy, Kappa, chunk update time, and memory
consumption.

Comparisonwith other ensemblesKUEhas been comparedwith 15 other ensemble classifiers
on 60 standard data stream benchmarks. KUE is capable of outperforming in a statistically
significantmanner 11 out of 15 reference classifiers onmore than 45 datasets each. Therefore,
we will focus on a detailed analysis of the top 4 reference methods, which are OBAD, LB,
AUE2, and ARF.

OBAD returns the best performance on average among all classifiers for both accuracy
and Kappa metrics. From Fig. 3 one can see that OBAD returns better results than KUE on
15 datasets, and ties with KUE on 20 datasets. Figure 4 shows that OBAD does not score
the first rank as frequently as LB or KUE but at the same time is rarely in a lower position
than 5th. This makes it the most challenging reference method for KUE, as OBAD proves
to be a good all-purpose classifier. However, the superiority of KUE can be seen on Fig. 4,
as KUE never achieves a lower rank than 6th, while for certain datasets OBAD can position
itself on as low ranks as 9th or 10th. Additionally, the pairwise statistical analysis proves that
differences between KUE and OBAD are statistically significant.

LB is another challenging reference classifier. It is interesting to see that according to
Fig. 3, LB wins with KUE on a higher number of datasets than OBAD. At the same time,
KUE wins with LB more frequently than with OBAD, as ties here are very rare. This shows
that LB delivers unstable results that are highly dependent on the datasets. Analyzing Fig. 4,
we can see that LB scores a similar number of first positions asKUE, andmore thanOBAD.At
the same time, there are certain datasets on which LB achieves much lower scores, ultimately
leading to its lower overall average ranking. This shows that LB is not as data-invariant as
KUE, making it less reliable for general data stream mining purposes.

AUE2 is a natural counterpart of KUE, as they share similar roots in how to expand the
ensemble and use a predictive metric for weighting. Results clearly point to the superiority of
KUE over AUE2, which can be contributed to our proposed mechanisms. By using random
feature subsets we achieved a better multi-view grasp of data stream characteristics, and
by adding new classifiers only when they contribute to the ensemble we are able to avoid
updating the ensemble set-up when not necessary. Figure 3 shows that KUE outperforms
AUE2 on a similar number of datasets as it outperforms OBAD but is much more likely to tie
with AUE2 than lose to it. When analyzing the rank frequencies, one can see that AUE2 often
scores as the second best classifier, incapable of securing the first rank onmost of the datasets.

123

194 Machine Learning (2020) 109:175–218

Ta
bl
e
5

A
cc
ur
ac
y
of

en
se
m
bl
e
cl
as
si
fie
rs
on

ea
ch

of
th
e
st
an
da
rd

da
ta
st
re
am

s

A
cc
ur
ac
y

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

Po
w
er
su
pp
ly

4.
17

13
.0
3

7.
23

7.
23

2.
09

4.
17

15
.6
1

15
.6
0

16
.5
6

14
.2
5

15
.4
0

15
.4
0

15
.3
2

13
.5
4

14
.7
1

15
.9
9

E
le
ct
ri
ci
ty

59
.3
1

70
.9
8

56
.3
4

58
.3
0

74
.5
0

74
.7
0

76
.2
8

76
.0
6

75
.9
9

72
.0
8

70
.7
2

73
.1
3

76
.5
5

76
.8
6

69
.8
4

76
.9
0

Sh
ut
tle

93
.7
9

89
.9
1

92
.0
3

92
.1
1

74
.2
1

99
.6
7

97
.7
8

99
.1
3

99
.8
0

90
.2
4

97
.6
6

98
.3
5

98
.9
6

99
.7
4

98
.7
9

99
.4
1

C
on

ne
ct
-4

58
.3
2

67
.0
1

61
.0
5

61
.3
5

69
.1
2

67
.5
9

70
.5
3

67
.7
2

70
.2
1

62
.0
8

62
.0
6

66
.0
4

70
.0
8

67
.4
9

68
.9
6

72
.1
7

C
en
su
s

84
.1
4

91
.4
0

90
.3
7

92
.2
3

93
.4
7

93
.1
0

94
.6
6

94
.3
4

94
.0
4

90
.1
3

92
.9
8

93
.8
1

94
.3
3

94
.1
2

92
.3
3

94
.6
6

C
ov
Ty

pe
69

.9
7

71
.9
6

61
.7
0

55
.8
9

71
.2
9

85
.7
3

80
.7
9

84
.2
6

90
.1
1

76
.2
1

80
.0
3

83
.0
1

86
.6
8

86
.2
4

88
.2
7

87
.5
3

Po
ke
r

54
.5
5

57
.8
1

54
.5
3

54
.6
9

74
.6
2

84
.3
5

72
.1
9

63
.1
7

90
.9
9

56
.7
8

60
.0
1

60
.6
7

72
.0
6

68
.9
8

71
.0
1

90
.3
7

B
N
G
_b

ri
dg

es
68

.5
9

70
.2
2

59
.0
2

59
.0
2

20
.4
4

57
.2
7

69
.3
6

51
.5
9

43
.1
2

44
.1
9

46
.3
3

56
.4
0

62
.6
1

68
.1
9

74
.3
1

68
.1
8

B
N
G
_l
ym

ph
84

.5
1

83
.7
9

80
.2
1

80
.4
2

55
.1
9

88
.5
3

89
.7
3

91
.4
4

91
.5
2

84
.2
0

87
.0
4

90
.4
7

91
.2
0

91
.4
7

90
.2
6

91
.2
8

B
N
G
_z
oo

90
.2
3

91
.7
4

87
.2
4

87
.3
5

58
.6
7

91
.8
3

92
.4
9

92
.3
5

87
.0
4

84
.6
1

69
.7
7

91
.9
0

91
.9
8

93
.7
8

92
.7
2

92
.5
3

B
N
G
_w

in
e

91
.3
4

90
.9
9

87
.0
1

87
.1
2

68
.4
9

93
.0
3

93
.2
3

94
.4
1

94
.7
5

87
.8
0

92
.5
9

92
.3
7

93
.6
0

94
.3
2

93
.2
1

94
.3
0

B
N
G
_h
ep
at
iti
s

87
.0
5

86
.3
1

83
.9
7

84
.4
1

90
.6
3

87
.9
0

90
.0
1

92
.3
9

92
.7
7

87
.8
7

88
.8
6

90
.6
4

92
.2
3

92
.2
9

91
.5
0

92
.2
5

In
te
lL
ab
Se
ns
or
s

1.
82

87
.4
5

95
.2
8

93
.5
2

3.
75

54
.3
0

95
.2
0

97
.7
3

97
.7
9

87
.5
5

3.
84

98
.0
1

3.
63

97
.8
6

96
.6
6

98
.0
1

A
gr
w
-F
1

82
.3
2

87
.5
4

81
.0
5

83
.2
1

93
.6
3

90
.7
2

94
.6
3

94
.8
5

94
.3
3

90
.4
5

94
.2
7

94
.5
6

94
.9
5

93
.8
2

94
.9
2

94
.9
8

A
gr
w
-F
10

to
F1

-d
ri
ft

76
.4
8

76
.9
8

75
.1
9

75
.2
7

64
.3
0

77
.5
0

82
.6
6

86
.4
2

84
.2
1

82
.3
5

83
.4
7

87
.0
5

88
.5
8

85
.5
8

77
.4
8

89
.6
8

A
gr
w
-F
1t
oF

10
-d
ri
ft

68
.4
2

70
.7
8

66
.2
7

66
.6
7

88
.2
3

79
.8
0

88
.6
7

90
.9
3

89
.0
3

87
.0
9

83
.4
9

89
.0
5

92
.6
8

89
.0
3

85
.7
9

91
.7
9

A
gr
w
-F
1t
oF

10
-d
ri
ft
-s
lo
w

76
.5
3

77
.2
6

75
.0
6

75
.3
5

79
.4
6

79
.8
1

85
.7
5

88
.2
9

85
.4
0

83
.6
3

83
.3
6

86
.8
5

90
.2
9

86
.5
8

82
.8
0

90
.1
6

A
gr
w
-F
1t
oF

10
-d
ri
ft
-f
as
t

75
.2
4

76
.8
9

73
.5
8

73
.8
9

78
.1
0

77
.3
3

83
.1
9

85
.9
0

82
.5
6

83
.1
6

82
.0
6

85
.3
5

87
.6
1

83
.4
3

80
.3
1

87
.1
1

A
gr
w
-F
1t
oF

10
-d
ri
ft
-s
ud

de
n

76
.6
4

77
.7
1

75
.2
6

75
.5
5

79
.4
8

80
.7
6

84
.9
1

88
.6
6

86
.2
2

84
.8
6

83
.8
9

86
.8
9

90
.3
1

87
.0
4

82
.8
7

89
.3
5

A
gr
w
-F
2F

4F
6F

8F
1F

3-
dr
if
t

72
.9
8

74
.7
6

71
.9
4

72
.1
8

79
.6
0

76
.8
7

81
.0
3

85
.7
6

84
.9
6

83
.1
5

82
.9
2

88
.6
1

89
.1
1

85
.7
0

78
.7
5

90
.4
5

A
gr
w
-F
3F

5F
3F

5F
3F

5-
dr
if
t

61
.5
1

64
.2
2

58
.5
9

58
.5
9

74
.0
8

78
.6
1

79
.6
6

83
.1
5

81
.0
5

79
.6
0

79
.8
2

80
.9
6

84
.4
1

84
.2
2

76
.3
2

88
.5
3

A
gr
w
-F
3F

5F
7F

3F
5F

7-
dr
if
t

68
.9
3

70
.8
7

65
.9
4

66
.1
5

69
.6
8

83
.3
2

81
.7
5

86
.5
1

83
.5
8

82
.5
3

82
.5
6

84
.1
8

86
.9
7

85
.2
7

80
.0
2

89
.3
5

A
gr
w
-F
3F

5F
7F

5F
3-
dr
if
t

66
.5
5

68
.8
4

63
.7
6

63
.7
6

65
.8
4

82
.2
9

80
.1
8

85
.8
4

83
.0
1

84
.5
4

81
.4
6

83
.2
1

86
.3
1

86
.0
6

79
.0
2

89
.2
4

123

Machine Learning (2020) 109:175–218 195

Ta
bl
e
5

co
nt
in
ue
d

A
cc
ur
ac
y

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

A
gr
w
-F
7t
oF

2-
dr
if
t

76
.3
8

78
.2
3

72
.6
0

73
.0
1

82
.8
1

77
.4
5

83
.6
7

84
.4
4

81
.6
4

81
.6
8

80
.5
5

83
.6
0

85
.0
0

88
.3
9

85
.1
6

84
.4
8

A
gr
w
-F
9F

7F
3F

5F
4F

2-
dr
if
t

71
.4
1

72
.6
9

69
.0
9

69
.1
2

82
.5
5

78
.1
5

82
.3
0

85
.4
9

83
.6
1

82
.4
7

81
.9
1

86
.0
5

87
.6
7

85
.2
2

77
.0
3

88
.9
9

A
gr
w
-F
-r
an
do

m
-d
ri
ft

76
.5
0

77
.4
6

75
.3
8

75
.4
6

74
.7
4

76
.2
8

79
.7
0

82
.8
8

81
.6
0

80
.3
6

80
.6
7

83
.8
4

86
.1
5

82
.9
5

78
.4
2

88
.1
6

A
ss
et
N
eg
ot
ia
tio

n-
F1

85
.9
1

84
.0
5

82
.2
3

82
.7
1

93
.6
9

90
.6
6

93
.9
3

94
.1
6

93
.9
9

89
.7
2

94
.1
1

94
.0
4

94
.1
6

94
.0
5

94
.1
5

94
.1
6

A
ss
et
N
eg
ot
ia
tio

n-
F2

92
.7
0

92
.1
1

90
.7
0

90
.7
3

94
.6
9

92
.4
3

94
.8
4

94
.8
9

94
.7
6

90
.3
6

94
.8
4

94
.3
9

94
.8
8

94
.8
5

94
.8
7

94
.8
9

A
ss
et
N
eg
ot
ia
tio

n-
F3

90
.9
4

91
.5
6

87
.9
4

87
.9
2

94
.6
0

92
.0
5

94
.4
7

94
.8
1

94
.6
5

90
.2
7

94
.4
6

94
.7
0

94
.8
0

94
.7
6

94
.8
0

94
.8
1

A
ss
et
N
eg
ot
ia
tio

n-
F4

91
.4
8

92
.0
6

88
.5
0

88
.4
9

94
.4
8

91
.9
6

94
.4
1

94
.7
2

94
.4
7

90
.2
1

94
.4
3

94
.6
1

94
.7
1

94
.6
4

94
.7
0

94
.7
1

A
ss
et
N
eg
ot
ia
tio

n-
F5

92
.6
1

92
.3
8

90
.5
5

90
.4
4

94
.6
8

92
.4
3

94
.8
3

94
.9
0

94
.8
4

90
.4
1

94
.7
5

94
.6
5

94
.9
0

94
.8
5

94
.8
9

94
.9
0

H
yp

er
pl
an
e-
dr
if
t

86
.2
0

88
.0
6

80
.6
6

81
.1
6

85
.7
8

76
.2
6

88
.6
5

88
.0
1

86
.8
1

82
.6
7

86
.0
0

86
.5
1

88
.6
1

84
.5
2

92
.5
7

87
.4
0

L
E
D

67
.8
4

71
.1
5

48
.2
7

48
.3
5

17
.4
4

73
.6
2

73
.9
5

73
.9
4

73
.8
0

67
.6
0

73
.9
4

73
.9
6

73
.9
5

73
.7
8

73
.8
8

73
.9
6

L
E
D
-n
oi
se

30
.8
8

37
.6
5

20
.9
6

20
.9
6

5.
73

10
.0
1

41
.5
4

41
.5
2

38
.6
2

37
.6
0

41
.5
4

41
.1
6

41
.5
1

41
.3
5

41
.5
2

41
.5
4

L
E
D
-d
ri
ft

40
.5
4

50
.2
2

32
.7
1

32
.7
1

12
.5
6

41
.7
6

53
.1
5

53
.2
3

51
.3
1

48
.5
3

51
.7
0

52
.9
5

53
.3
2

52
.5
9

52
.9
3

53
.1
7

L
E
D
-d
ri
ft
-4

67
.8
4

71
.1
5

48
.3
6

48
.4
2

17
.4
4

73
.6
3

73
.9
5

73
.9
4

73
.8
0

67
.6
0

73
.9
4

73
.9
6

73
.9
5

73
.8
7

73
.8
9

73
.9
7

M
ix
ed
-i
m
ba
la
nc
ed

90
.7
6

91
.4
6

88
.6
1

88
.7
3

98
.9
4

99
.6
7

98
.1
5

99
.5
3

99
.7
9

93
.4
1

93
.5
4

99
.3
5

99
.4
2

99
.7
6

98
.3
4

99
.4
8

M
ix
ed
-b
al
an
ce
d

90
.9
1

91
.1
9

89
.1
6

89
.4
4

98
.9
8

99
.6
7

98
.2
8

99
.5
0

99
.7
9

93
.1
6

93
.5
0

99
.3
2

99
.3
9

99
.7
6

98
.3
1

99
.5
1

R
B
F

70
.2
8

70
.4
3

65
.0
1

65
.0
4

92
.0
8

93
.0
0

89
.4
1

94
.8
2

95
.1
0

89
.1
6

60
.6
2

94
.6
2

94
.7
3

94
.5
5

92
.6
3

94
.7
5

R
B
F-
dr
if
t

51
.1
4

52
.5
9

50
.5
4

50
.5
4

55
.1
6

51
.3
3

54
.1
3

56
.3
5

54
.8
9

53
.8
8

50
.1
6

51
.3
9

52
.8
0

54
.6
1

54
.1
7

55
.6
1

R
B
F-
dr
if
t-
fa
st

27
.6
2

29
.8
0

26
.9
5

26
.9
5

25
.3
9

31
.3
2

33
.8
4

29
.7
9

28
.5
1

32
.3
4

27
.8
5

30
.6
8

31
.2
0

33
.5
5

32
.8
9

34
.2
4

R
B
F-
dr
if
t-
gr
ad
ua
l

72
.8
7

74
.9
6

61
.9
1

61
.9
3

49
.6
2

96
.5
1

94
.8
0

97
.5
4

98
.1
6

88
.4
8

79
.1
5

96
.2
7

97
.2
3

97
.3
8

97
.7
8

97
.2
6

R
B
F-
dr
if
t-
re
cu

62
.4
1

63
.7
9

49
.4
2

49
.4
2

48
.8
8

96
.4
3

93
.3
9

97
.4
0

97
.8
0

84
.4
5

68
.1
7

96
.8
8

97
.0
6

97
.0
3

93
.9
7

96
.6
6

R
an
do

m
T
re
e

51
.6
0

56
.1
9

37
.9
3

37
.9
3

37
.9
7

93
.5
3

87
.5
7

95
.7
3

97
.7
4

85
.4
3

76
.8
4

95
.2
3

95
.3
4

89
.5
4

91
.9
0

95
.3
5

R
an
do

m
T
re
e-
dr
if
t

46
.8
1

57
.2
9

38
.1
7

38
.1
7

51
.9
2

62
.1
2

83
.3
6

91
.9
3

91
.4
5

80
.0
5

60
.2
4

69
.5
9

93
.5
0

53
.9
4

86
.2
5

92
.4
1

123

196 Machine Learning (2020) 109:175–218

Ta
bl
e
5

co
nt
in
ue
d

A
cc
ur
ac
y

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

R
an
do

m
T
re
e-
dr
if
t-
re
cu

45
.2
3

49
.4
4

34
.3
3

34
.3
3

22
.0
7

72
.0
4

66
.1
9

83
.7
0

86
.3
7

72
.3
4

61
.8
5

83
.2
1

83
.7
0

80
.0
7

62
.1
0

81
.8
9

R
an
do

m
T
re
e-
dr
if
t-
fa
st

43
.2
5

44
.2
3

32
.4
5

32
.4
5

22
.6
4

53
.2
2

67
.6
5

81
.2
6

84
.7
7

63
.3
0

50
.5
2

80
.8
7

80
.7
9

79
.6
1

65
.2
6

75
.8
8

SE
A
-F
1

85
.8
4

87
.2
1

83
.6
2

84
.0
2

88
.0
3

84
.6
0

89
.3
0

89
.7
7

89
.6
8

85
.6
0

82
.3
0

86
.5
2

89
.1
3

89
.8
2

89
.4
9

89
.7
8

SE
A
-F
2

85
.5
6

87
.0
3

83
.2
2

83
.7
0

88
.6
8

84
.2
9

89
.3
2

89
.7
7

89
.8
4

85
.5
9

87
.6
8

89
.3
5

89
.7
4

89
.7
9

89
.4
5

89
.7
4

SE
A
-F
4

85
.3
0

87
.6
9

83
.3
7

83
.6
4

88
.6
8

85
.4
1

89
.2
9

89
.7
6

89
.8
4

85
.6
0

87
.9
6

89
.3
3

89
.7
1

89
.7
9

89
.3
5

89
.7
7

SE
A
-d
ri
ft
-s
ud

de
nt

85
.7
7

86
.9
3

83
.7
3

83
.9
0

88
.2
3

83
.5
9

88
.0
3

89
.0
0

89
.4
6

85
.1
1

85
.6
2

88
.8
0

89
.0
0

89
.5
8

88
.2
7

88
.9
8

SE
A
-d
ri
ft
-f
as
t

85
.0
5

85
.0
1

82
.9
4

82
.8
9

87
.9
3

82
.0
3

87
.3
0

88
.1
4

89
.1
8

84
.2
1

86
.2
2

87
.8
1

88
.3
6

89
.3
5

88
.2
0

88
.3
5

Si
ne
-F
1

92
.5
5

93
.3
0

92
.2
0

92
.5
3

99
.5
1

99
.7
2

99
.4
7

99
.8
3

99
.8
6

94
.5
1

97
.9
9

99
.8
0

99
.8
3

99
.6
7

99
.5
9

99
.8
1

Si
ne
-F
2

92
.5
5

93
.3
4

92
.2
0

92
.5
3

99
.4
8

99
.7
1

99
.4
8

99
.8
3

99
.8
5

94
.5
7

97
.9
9

99
.7
9

99
.8
3

99
.6
7

99
.5
9

99
.8
1

Si
ne
-F
3

83
.2
2

82
.3
7

82
.0
5

81
.8
8

99
.0
5

99
.5
7

95
.4
4

99
.5
9

99
.7
7

93
.5
8

92
.2
5

99
.5
0

99
.5
3

99
.2
4

98
.5
4

99
.5
5

ST
A
G
G
E
R
-F
1

89
.8
2

10
0

99
.9
6

99
.9
6

10
0

10
0

10
0

10
0

10
0

95
.0
4

96
.1
1

99
.9
8

99
.9
9

10
0

10
0

10
0

ST
A
G
G
E
R
-F
2

44
.4
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

95
.0
2

99
.9
6

99
.9
6

99
.9
8

10
0

10
0

10
0

ST
A
G
G
E
R
-F
1t
oF

3-
dr
if
t

72
.3
5

72
.4
1

69
.3
3

69
.5
1

73
.3
2

67
.2
1

74
.7
0

75
.1
1

74
.8
8

71
.8
7

72
.2
9

74
.2
1

75
.0
3

74
.8
1

74
.9
9

75
.1
0

W
av
ef
or
m

80
.1
9

78
.3
9

73
.5
9

73
.6
5

55
.0
5

78
.3
7

83
.5
7

85
.5
2

84
.9
7

80
.1
8

81
.1
3

82
.9
4

85
.3
3

83
.6
0

83
.7
5

85
.2
9

W
av
ef
or
m
-d
ri
ft

80
.1
9

78
.4
2

73
.7
0

73
.7
2

55
.1
6

79
.4
6

83
.4
5

85
.5
1

85
.0
0

80
.0
6

81
.1
3

83
.2
5

85
.2
7

83
.4
2

83
.6
0

85
.1
5

A
vg

.a
cc
ur
ac
y

71
.0
0

75
.5
1

69
.7
5

69
.8
4

68
.4
1

79
.1
4

82
.9
3

84
.5
5

84
.4
9

79
.1
0

76
.9
7

83
.5
0

83
.6
7

83
.9
3

82
.8
0

85
.9
0

B
ol
d
va
lu
es

re
pr
es
en
tt
he

be
st
re
su
lts

123

Machine Learning (2020) 109:175–218 197

Table 6 Wilcoxon test for standard data streams

Metric KUE
versus

Accuracy
p value

Kappa
p value

Metric KUE
versus

Accuracy
p value

Kappa
p value

LNSE 1.8E−11 1.8E−11 LB 1.2E−02 1.2E−02

DWM 4.4E−11 1.2E−10 SAE2 1.7E−11 1.7E−11

DACC 2.5E−11 2.5E−11 AWE 2.5E−11 1.8E−11

ADACC 2.5E−11 2.5E−11 AUE1 4.9E−09 1.9E−09

OCB 6.0E−12 5.5E−11 AUE2 8.9E−03 5.2E−03

OBA 8.7E−11 1.2E−10 ARF 9.4E−05 4.4E−05

OBASHT 1.1E−09 4.8E−10 HEB 7.1E−08 5.7E−08

OBAD 1.8E−02 1.9E−02

2 3 4 5 6 7 8 9 10 11 12 13 14 15

LNSE

DWM

DACC

ADACC

OCBOBA

OBASHTOBAD

2EASBL

AWE

AUE1AUE2

ARF

HEBKUE

Fig. 1 Bonferroni–Dunn test for accuracy on standard data

2 3 4 5 6 7 8 9 10 11 12 13 14 15

LNSE

DWM

DACC

ADACC

OCBOBA

OBASHTOBAD

2EASBL

AWE

AUE1AUE2

ARF

HEBKUE

Fig. 2 Bonferroni–Dunn test for Kappa on standard data

Fig. 3 Comparison of KUE and reference ensemble classifiers with respect to the number of wins (green),
ties (yellow), and losses (red) over 60 standard data stream benchmarks datasets. A tie was considered, when
the difference in obtained metric values were ≤ 0.05 (Color figure online)

ARF is surprisingly the weakest of all top four methods. It wins with KUE on the same
number of datasets as AUE2 but is less likely to tie with it. Therefore, ARF loses to KUE
most frequently of all four top performing classifiers. Analyzing its rank frequencies shows
that they are evenly distributed between second and 11th rank, proving that ARF is subject
to the highest variance in its performance.

These results allow us to conclude that KUE is a suitable choice for a wide array of
data stream mining problems, always returning a satisfactory performance. Additionally,

123

198 Machine Learning (2020) 109:175–218

0

25

50

75

100

Rank

Fr
eq

ue
nc

y
[%

]
Accuracy

0

25

50

75

100

1 9 10 11 12 13 14 15 16 12 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rank

Fr
eq

ue
nc

y
[%

]

Kappa

LNSE
DWM

DACC
ADACC

OCB
OBA

OBASHT
OBAD

LB
SAE2

AWE
AUE1

AUE2
ARF

HEB
KUE

Fig. 4 Frequencies of ranks scored by ensemble classifiers on 60 standard data stream benchmarks

processed instances

A
cc

ur
ac

y
[%

]

processed instances

K
ap

pa
 [%

]

processed instances

C
hu

nk
 tr

ai
n

tim
e

[s
]

20
30

40
50

60
70

80

100000 300000 500000 700000 900000

20
30

40
50

60
70

80

100000 300000 500000 700000 900000

0.
05

0.
10

0.
20

0.
50

1.
00

1e
−1

0
1e

−0
8

1e
−0

6
1e

−0
4

processed instances

M
od

el
 c

os
t [

R
A

M
−H

ou
rs

]

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

OBAD LB AUE2 ARF KUE

Fig. 5 Performance of top 5 ensemble methods according to their prequential accuracy, prequential Kappa,
chunk update time, and memory consumption on LED generator with sudden concept drift

123

Machine Learning (2020) 109:175–218 199

processed instances

A
cc

ur
ac

y
[%

]

processed instances
K

ap
pa

 [%
]

processed instances

C
hu

nk
 tr

ai
n

tim
e

[s
]

processed instances

M
od

el
 c

os
t [

R
A

M
−H

ou
rs

]

20
25

30
35

40
45

100000 300000 500000 700000 900000

−1
0

−5
0

5
10

15
20

100000 300000 500000 700000 900000

0.
05

0.
10

0.
20

0.
50

100000 300000 500000 700000 900000 1e
−0

8
1e

−0
6

1e
−0

4
1e

−0
2

100000 300000 500000 700000 900000

OBAD LB AUE2 ARF KUE

Fig. 6 Performance of top 5 ensemble methods according to their prequential accuracy, prequential Kappa,
chunk update time, and memory consumption on RBF generator with gradual concept drift

the analysis of rank frequencies shows its high stability over all datasets, making KUE an
excellent off-the-shelf algorithm.

Computational complexity KUE offers both better predictive power and lower time com-
plexity. Not only does KUE outperform in both accuracy and Kappa metrics the top four
reference ensemble methods (OBAD, LB, AUE2, and ARF), but it is also characterized by
up to 10 times faster update time per chunk and using an order of magnitude less memory.
This shows that the proposed components of KUE are not only lightweight themselves but
also lead to gaining an advantage over reference ensembles.

Using feature subspaces speeds up the training of new classifiers, as the models are fitted
in a lower dimensional space. Additionally, the classifier selection procedure does not impose
any additional cost, as it simply measures the Kappa metric returned by new and existing
classifiers.

Figures 5, 6 and 7 allow us to analyze the time and memory requirements of KUE in more
details over three selected data streams. KUE displays a very stable utilization of computa-

123

200 Machine Learning (2020) 109:175–218

processed instances

A
cc

ur
ac

y
[%

]

processed instances
K

ap
pa

 [%
]

processed instances

C
hu

nk
 tr

ai
n

tim
e

[s
]

processed instances

M
od

el
 c

os
t [

R
A

M
−H

ou
rs

]

50
60

70
80

90
10

0

100000 300000 500000 700000 900000

0
20

40
60

80
10

0

100000 300000 500000 700000 900000

0.
01

0.
05

0.
20

0.
50

2.
00

5.
00

100000 300000 500000 700000 900000 1e
−0

8
1e

−0
6

1e
−0

4
1e

−0
2

100000 300000 500000 700000 900000

OBAD LB AUE2 ARF KUE

Fig. 7 Performance of top 5 ensemble methods according to their prequential accuracy, prequential Kappa,
chunk update time, and memory consumption on Agrawal generator with recurrent sudden concept drift

tional resources that does not display any significant variations over time. Furthermore, KUE
complexity is not influenced by the sudden presence of concept drift as can be seen for LED
and Agrawal streams.

All these characteristics show that KUE combines an accurate predictive power with low
computational resource consumption, making it a suitable choice for high-speed data stream
mining, as well as for applications in environments with constrained resources, like edge
computing on mobile devices.

Recovery rates after concept drift Recovery after a concept drift is crucial in every data stream
mining algorithm. It can be seen as a period of time (or a number of instances) after which
a classifier is capable of returning a stable performance, i.e., capturing the properties of a
new concept. This is especially important in case of a sudden change where base classifiers
need to be trained from scratch. The recovery period is a time in which classifiers cannot be
treated as a competent and thus the risk of making an incorrect prediction is increased.

123

Machine Learning (2020) 109:175–218 201

A popular way of analyzing the recovery rates is a visual analysis of error rates by plotting
the performance over an entire stream. This can be seen in Figs. 5, 6 and 7 for three selected
datasets: LED and Agrawal with a sudden concept drift, and RBF with a gradual concept
drift. Each of these datasets was prepared in such a way that clearly emphasizes the point of
change. LED has a single drift after 500,000 instances, Agrawal has 5 drifts after 175,000
instances each, and RBF has a drift present through the entire time. This allows us to analyze
the behavior of KUE and the top 4 reference ensembles on these challenging scenarios.

One can see that in all three cases KUE is capable of reducing its error in the smallest
amount of time.AUE2andARFare capable of satisfactory drift recovery, yet still being slower
than KUE in most of the cases. OBAD and LB require the highest number of instances to
reduce their error, invalidating them for high-speed data streams with frequent rapid changes.

The excellent adaptability of KUE can be contributed to two factors: usage of feature
subspaces by each classifier, and weighting base classifiers according to Kappa metric. The
former property offers interesting behavior on drifting streams, as only certain features may
be affected by concept drift. KUE holds a pool of diverse base classifiers, each using a
different subset of features. This allows them to better anticipate the direction of changes and
improves the probability of having a classifier that uses features less (or not at all) affected by
concept drift. The latter property offers capabilities for boosting the importance of the most
competent classifiers after concept drift presence. The Kappa metric promotes classifiers that
are most different from random decisions, thus allowing to assign them the highest weight
in the class prediction. This naturally combines with the fact that classifiers use different
features, allowing KUE to focus on classifiers that were least affected by concept drift, or
that are achieving the best recovery rates using new instances.

4.4 Experiment 2: Evaluation on imbalanced data streams

The aim of the second experiment was to examine the robustness of KUE to class imbalance,
as compared to the reference ensemble algorithms.While KUEwas not specifically designed
for the imbalanced data stream mining, we wanted to evaluate how KUE will respond to
skewed class distributions, especially when combined with the concept drift. We do not
compare KUE with specific methods designed for imbalanced data streams (Brzeziński and
Stefanowski 2018), as our work does not focus on this issue. We wanted to check if, by
simple alteration of the general streaming ensemble scheme and the Kappa statistic, we are
able to improve the performance on imbalanced data without using dedicated sampling or
algorithm-level modifications.

Table 7 shows the average performance and ranks of the classifiers on the 33 imbalanced
data streams. Results are provided for accuracy, AUC, Kappa, G-Mean, model update (train
time), prediction (test time), and memory consumption (RAM-Hours). Different metrics
provide complementary perspectives of the predictive power of the classifiers. Ranks of the
classifiers according to Friedman are reported for each metric. Finally, the meta-rank shows
the average rank across all metrics.

Table 8 shows the Kappa for each of the 33 standard data streams. The Kappa is averaged
through all the instances of the stream. Detailed results for all metrics and datasets are
available online1 including plots with the variation of the performance metrics through the
progress of the stream.

Table 9 presents the outcomes of Wilcoxon test (García and Herrera 2008; García et al.
2010) where the lower the p value the bigger differences between the algorithms, while
Figs. 8, 9, 10 and 11 depict the visualizations of ranks according to the Bonferroni–Dunn

123

202 Machine Learning (2020) 109:175–218

Ta
bl
e
7

Pe
rf
or
m
an
ce

of
en
se
m
bl
e
cl
as
si
fie
rs
on

im
ba
la
nc
ed

da
ta
st
re
am

s:
av
er
ag
e
an
d
ra
nk

on
33

st
re
am

s

M
et
ri
c

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

A
vg

.a
cc
ur
ac
y

78
.7
4

91
.0
8

89
.3
1

89
.2
4

93
.4
6

92
.3
8

93
.4
0

94
.5
3

94
.2
9

89
.7
4

80
.7
3

93
.8
6

83
.2
5

93
.9
8

94
.2
6

94
.6
2

A
vg

.A
U
C

71
.4
5

69
.5
4

75
.8
8

77
.7
7

80
.5
0

84
.2
3

87
.3
9

87
.3
7

85
.5
6

76
.8
3

72
.3
6

84
.8
2

80
.1
1

86
.6
2

81
.3
2

87
.8
6

A
vg

.K
ap
pp

a
30

.4
3

41
.9
3

38
.1
1

36
.8
6

64
.4
0

58
.5
8

56
.5
2

67
.3
2

64
.8
4

49
.0
6

31
.0
1

59
.0
7

51
.7
0

62
.6
3

67
.8
5

69
.8
4

A
vg

.G
-M

ea
n

46
.0
7

52
.9
1

56
.1
2

55
.5
6

75
.8
9

71
.0
4

65
.6
0

75
.0
5

72
.6
0

71
.4
2

37
.5
5

66
.5
1

59
.1
8

71
.0
1

76
.7
2

77
.1
8

A
vg

.t
ra
in

tim
e
(s
)

4.
39

63
0.
01

14
0.
02

30
0.
12

98
0.
07

90
5.
46

86
0.
04

26
0.
49

67
3.
37

64
0.
03

44
0.
09

51
0.
39

07
0.
09

40
0.
20

84
0.
43

38
0.
05

54

A
vg

.t
es
tt
im

e
(s
)

0.
68

92
0.
00

99
0.
01

08
0.
04

22
0.
01

48
0.
02

41
0.
01

47
0.
02

03
0.
02

94
0.
00

97
0.
00

73
0.
01

27
0.
01

47
0.
02

48
0.
06

16
0.
01

57

A
vg

.R
A
M
-H

ou
rs

5.
2E

−1
7.
0E

−8
4.
3E

−7
1.
8E

−5
8.
8E

−4
3.
2E

−1
1.
1E

−4
5.
4E

−3
1.
4E

−1
9.
4E

−5
1.
4E

−5
2.
7E

−3
3.
0E

−4
6.
3E

−3
3.
3E

−4
4.
3E

−4
R
an
k
ac
cu
ra
cy

13
.2
9

11
.0
8

14
.3
2

13
.6
5

8.
17

9.
68

7.
29

3.
24

4.
18

13
.7
6

10
.6
7

6.
80

5.
68

5.
42

5.
65

3.
12

R
an
k
A
U
C

12
.4
2

14
.7
3

12
.9
4

11
.9
8

10
.3
6

8.
36

4.
12

3.
17

5.
20

13
.1
5

10
.2
7

5.
56

5.
52

5.
50

9.
91

2.
80

R
an
k
K
ap
pa

13
.1
8

12
.4
8

13
.2
0

13
.0
2

6.
65

8.
30

8.
33

3.
55

4.
35

11
.4
8

12
.4
1

8.
06

6.
45

5.
73

5.
77

3.
03

R
an
k
G
-M

ea
n

12
.6
4

12
.5
2

12
.6
8

12
.8
9

6.
24

7.
68

9.
32

3.
83

4.
74

9.
18

12
.7
0

8.
89

7.
05

6.
15

5.
89

3.
59

R
an
k
tr
ai
n
tim

e
15

.0
9

1.
09

2.
61

8.
03

7.
45

13
.6
4

4.
06

11
.7
9

14
.6
4

3.
36

7.
58

11
.0
0

7.
64

10
.5
5

12
.1
2

5.
36

R
an
k
te
st
tim

e
14

.2
1

4.
83

5.
44

10
.3
8

7.
45

11
.0
3

8.
06

10
.7
1

13
.1
1

4.
68

4.
08

7.
15

8.
35

12
.3
6

6.
14

8.
02

R
an
k
R
A
M
-H

ou
rs

15
.4
5

1.
00

2.
14

5.
55

8.
73

14
.1
1

6.
36

11
.2
9

14
.0
3

4.
44

5.
03

10
.2
1

7.
55

12
.2
7

9.
15

8.
70

M
et
a-
ra
nk

13
.7
6

8.
25

9.
05

10
.7
9

7.
87

10
.4
0

6.
79

6.
80

8.
61

8.
58

8.
96

8.
24

6.
89

8.
28

7.
81

4.
95

B
ol
d
va
lu
es

re
pr
es
en
tt
he

be
st
re
su
lts

123

Machine Learning (2020) 109:175–218 203

Ta
bl
e
8

K
ap
pa

of
en
se
m
bl
e
cl
as
si
fie
rs
on

ea
ch

of
th
e
im

ba
la
nc
ed

da
ta
st
re
am

s

K
ap
pa

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

A
gr
w
-I
R
-5

34
.4
6

7.
70

35
.9
7

45
.6
7

81
.9
5

76
.8
9

85
.2
3

86
.9
9

85
.5
4

73
.9
5

85
.5
2

86
.6
5

87
.0
3

83
.4
0

87
.0
0

87
.2
0

A
gr
w
-I
R
-1
0

14
.3
3

0.
77

19
.1
0

26
.1
5

77
.5
8

61
.9
7

77
.8
8

84
.8
0

73
.6
0

63
.7
5

0.
32

84
.4
8

85
.0
0

62
.8
6

84
.8
7

85
.1
7

A
gr
w
-I
R
-2
0

5.
31

0.
15

7.
87

11
.7
9

63
.8
8

19
.3
9

74
.5
5

78
.3
6

0.
85

47
.9
3

0.
00

81
.2
6

81
.8
7

25
.0
2

82
.9
0

83
. 0
0

A
gr
w
-I
R
-1
00

1.
41

0.
15

1.
86

2.
06

27
.6
3

5.
09

15
.4
2

4.
45

1.
15

1.
24

0.
00

0.
00

0.
13

0.
28

46
.7
9

66
.0
2

A
ss
et
N
eg
ot
ia
tio

n-
IR
-5

68
.7
1

74
.6
2

62
.6
3

62
.1
8

84
.4
2

79
.0
5

82
.2
5

85
.1
6

84
.9
5

73
.0
4

84
.0
2

84
.5
7

85
.1
5

84
.9
0

85
.1
5

85
.1
6

A
ss
et
N
eg
ot
ia
tio

n-
IR
-1
0

58
.3
7

62
.8
9

52
.8
8

53
.1
3

75
.3
5

67
.2
8

71
.8
4

76
.3
2

75
.8
9

60
.4
3

74
.6
2

74
.9
7

76
.1
6

75
. 5
5

76
.2
1

76
.3
2

A
ss
et
N
eg
ot
ia
tio

n-
IR
-2
0

43
.3
3

51
.2
7

40
.6
8

41
.7
5

61
.6
8

51
.4
2

54
.2
7

61
.8
3

62
.4
4

43
.2
1

59
.2
5

58
.8
8

61
.6
6

61
.3
5

60
.5
1

62
.5
6

A
ss
et
N
eg
ot
ia
tio

n-
IR

-1
00

12
.2
2

20
.4
9

13
.7
7

14
.9
6

24
.7
8

15
.5
5

15
.3
5

23
.0
0

23
.7
7

12
.6
6

19
.2
2

19
.0
1

21
.3
0

23
.8
7

22
.1
9

22
.8
4

H
yp

er
pl
an
e-
IR

-5
48

.7
5

48
.2
1

34
.2
1

35
.1
4

72
.3
2

55
.1
6

61
.7
5

70
.6
6

68
.7
3

60
.1
1

3.
86

61
.0
8

70
. 0
5

59
.7
8

81
.6
6

70
.0
3

H
yp

er
pl
an
e-
IR

-1
0

23
.5
0

22
.1
2

15
.2
2

16
.1
8

59
.8
2

39
.8
1

40
.0
9

56
.6
3

53
.5
0

43
.3
2

0.
00

42
.7
7

55
.2
2

43
.8
6

71
.4
5

56
.0
3

H
yp

er
pl
an
e-
IR

-2
0

5.
66

3.
65

4.
55

4.
20

43
.0
0

26
.8
0

15
.1
7

37
.9
2

33
.6
6

23
.0
8

0.
00

2.
75

19
.1
3

25
.1
4

55
.9
8

38
.2
0

H
yp

er
pl
an
e-
IR

-1
00

0.
09

0.
00

0.
13

0.
13

7.
85

3.
49

0.
28

6.
29

4.
09

0.
77

0.
00

0.
00

0.
03

2.
77

16
.5
0

5.
25

R
B
F-
IR

-5
20

.9
5

18
.4
7

18
.1
5

18
.5
4

79
.7
1

84
.3
9

62
.6
7

87
.8
4

88
.2
6

71
.8
9

0.
03

85
.5
0

86
.7
4

86
.8
6

80
.0
1

86
.6
9

R
B
F-
IR

-1
0

8.
55

5.
98

10
.1
1

10
.2
6

75
.7
2

78
.8
3

26
.8
2

84
.8
1

85
.3
2

61
.5
0

0.
00

79
.1
5

83
.4
6

82
.6
9

77
.1
8

83
.8
3

R
B
F-
IR

-2
0

4.
25

0.
39

5.
09

4.
51

67
.3
1

71
.4
9

11
.8
1

80
.4
6

81
.1
0

45
.7
2

0.
00

30
.0
3

68
.1
9

77
.1
7

70
.6
0

79
.1
9

R
B
F-
IR

-1
00

1.
22

−0
.0
5

0.
57

0.
47

41
.7
0

38
.8
9

3.
84

68
.9
4

67
.6
0

1.
92

0.
00

0.
00

2.
91

61
.8
4

54
.8
0

63
.5
7

SE
A
-I
R
-5

57
.7
1

57
.7
5

52
.7
1

53
.0
3

69
.2
4

61
.0
5

68
.3
4

71
.1
6

71
.3
4

59
.2
4

61
.9
6

69
.8
5

70
.9
9

71
.2
8

70
.3
6

71
.0
9

SE
A
-I
R
-1
0

43
.6
5

44
.8
9

36
.3
3

36
.7
9

55
.8
7

47
. 7
4

54
.1
1

58
.0
7

58
.3
2

44
.3
5

39
.7
7

54
.6
2

57
.9
3

58
.3
2

57
.4
1

58
.0
9

SE
A
-I
R
-2
0

26
.8
6

30
.0
3

19
.5
9

19
.6
3

40
.0
0

32
.0
9

37
.4
6

42
.3
7

42
.6
2

29
.2
4

6.
26

32
.2
4

41
.4
2

42
.4
8

41
.1
3

42
.3
6

SE
A
-I
R
-1
00

1.
55

2.
60

1.
94

2.
10

12
.0
0

8.
36

6.
82

13
.0
8

13
.2
4

7.
00

0.
00

3.
71

10
.4
5

13
.0
6

12
.3
9

13
.0
9

123

204 Machine Learning (2020) 109:175–218

Ta
bl
e
8

co
nt
in
ue
d

K
ap
pa

L
N
SE

D
W
M

D
A
C
C

A
D
A
C
C

O
C
B

O
B
A

O
B
A
SH

T
O
B
A
D

L
B

SA
E
2

A
W
E

A
U
E
1

A
U
E
2

A
R
F

H
E
B

K
U
E

A
gr
w
-F
1t
oF

10
-I
R
-1
to
20

48
.8
0

54
.2
9

45
.3
9

45
.8
2

64
.0
6

59
.5
8

66
.4
9

76
.1
7

69
.4
7

63
.4
7

66
.4
5

69
.6
0

78
.8
7

68
.7
0

62
.3
5

77
.8
1

A
ss
et
N
eg
-F
1t
oF

5-
IR

-1
to
10

80
.9
4

81
.2
7

76
.6
3

76
.3
5

85
.6
4

81
.7
6

87
.1
6

87
.9
7

87
.9
3

77
.6
6

86
.5
0

85
.5
0

87
.8
4

87
.6
9

86
.5
4

87
.5
6

R
B
F-
dr
if
t-
IR

-1
to
10

16
.8
8

15
.0
0

17
.6
9

17
.7
3

18
.8
5

17
.6
3

15
.3
6

17
.3
2

16
.7
5

15
.9
1

11
.4
5

13
.5
8

15
.6
3

18
.2
5

14
.8
1

18
.3
6

SE
A
-F
1t
oF

4-
IR

-1
to
5

66
.3
5

66
.5
1

62
.0
2

62
.5
5

74
.8
1

67
.2
0

74
.1
9

76
.1
1

77
.6
0

67
.6
2

69
.8
2

75
.2
6

76
.1
9

77
.4
9

75
.5
1

76
.1
6

A
gr
w
-F
1t
oF

10
-I
R
-1
0t
o1

70
.6
4

81
.3
9

78
.1
6

79
.1
7

74
.3
5

82
.7
4

81
.5
6

88
.5
9

87
.7
9

72
.6
0

85
.7
1

88
.3
5

88
.4
9

84
.8
2

84
.5
2

88
.2
8

A
ss
et
N
eg
-F
1t
oF

5-
IR

-1
0t
o1

0
83

.2
5

81
.8
5

78
.9
0

79
.4
2

86
.5
4

83
.9
4

89
.2
7

89
.3
7

89
.6
8

80
.5
7

87
.6
7

88
.5
3

89
.5
4

89
.5
2

87
.6
5

89
.4
1

Po
ke
r-
1-
2v
sA

ll
22

.4
1

22
.1
3

18
.1
9

17
.2
4

47
.3
7

52
.3
0

17
.0
3

36
.1
5

72
.7
8

16
.1
3

17
.8
4

14
.1
2

31
.9
2

29
.2
7

32
.9
3

58
.5
7

In
te
lL
ab
Se
ns
or
s-
1t
o9
vs
A
ll

0.
00

97
.9
5

91
.4
6

84
.3
2

99
.8
2

99
.8
2

99
.8
2

99
.8
2

99
.8
2

81
.6
2

0.
01

99
.8
5

0.
01

99
.8
2

98
.8
2

99
.8
5

In
te
lL
ab
Se
ns
or
s-
1t
o5
vs
A
ll

0.
00

98
.5
0

85
.1
4

75
.8
9

99
.7
9

99
.7
9

99
.7
8

99
.7
9

99
.7
9

72
.0
2

0.
01

99
.8
3

0.
01

99
.7
7

95
.5
7

99
.7
9

In
te
lL
ab
Se
ns
or
s-
1t
o3
vs
A
ll

0.
00

95
.8
0

81
.1
4

67
.9
6

99
.4
6

99
.8
4

99
.7
5

99
.7
5

99
.7
5

66
.2
9

0.
01

99
.8
4

0.
01

99
.7
4

95
.3
0

99
.7
5

In
te
lL
ab
Se
ns
or
s-
1v
sA

ll
0.
00

90
.0
7

57
.1
4

36
.9
4

97
.3
0

98
.4
4

98
.4
4

98
.4
4

98
.4
4

38
.8
7

0.
00

98
.8
6

0.
00

98
.4
2

95
.8
9

98
.4
4

C
ov
Ty

pe
-1
-2
vs
A
ll

53
.6
3

66
.5
5

56
.6
0

38
.7
7

80
.6
9

84
.5
8

83
.6
3

88
. 2
3

89
.9
2

70
.8
1

75
.4
8

84
.0
8

86
.6
1

85
.9
5

88
.1
0

89
.1
6

B
N
G
_b
ri
dg
es
-1
vs
A
ll

80
.2
8

80
.2
1

75
.9
8

75
.4
4

74
.7
0

80
.8
9

86
.7
2

84
.5
5

73
.9
3

70
.9
7

87
.5
1

80
.3
1

86
.1
8

84
.9
4

85
.9
4

85
.8
9

A
vg

.K
ap
pp

a
30

.4
3

41
.9
3

38
.1
1

36
.8
6

64
.4
0

58
.5
8

56
.5
2

67
.3
2

64
.8
4

49
.0
6

31
.0
1

59
.0
7

51
.7
0

62
.6
3

67
.8
5

69
.8
4

B
ol
d
va
lu
es

re
pr
es
en
tt
he

be
st
re
su
lts

123

Machine Learning (2020) 109:175–218 205

Table 9 Wilcoxon test for imbalanced data streams

Metric KUE versus Accuracy p value AUC p value Kappa p value G-Mean p value

LNSE 2.3E−10 5.6E−07 2.3E−10 8.2E−07

DWM 2.3E−10 2.3E−10 2.3E−10 2.3E−09

DACC 2.3E−10 5.6E−07 2.3E−10 1.7E−06

ADACC 2.3E−10 2.3E−10 2.3E−10 1.6E−08

OCB 2.2E−06 5.6E−07 6.9E−04 3.0E−02

OBA 2.0E−06 1.8E−06 1.5E−06 1.7E−04

OBASHT 6.2E−06 1.2E−01 2.0E−06 1.8E−06

OBAD 6.2E−01 5.8E−01 5.5E−01 7.6E−01

LB 2.8E−01 3.1E−03 3.4E−01 3.0E−01

SAE2 5.6E−07 5.6E−07 2.3E−10 2.3E−04

AWE 4.4E−09 1.5E−06 1.2E−09 1.2E−09

AUE1 2.1E−06 8.8E−06 2.1E−06 3.3E−06

AUE2 3.5E−03 2.4E−04 1.6E−04 1.3E−05

ARF 8.0E−04 1.7E−03 4.0E−04 1.4E−03

HEB 2.9E−03 2.3E−10 2.7E−03 1.2E−02

2 3 4 5 6 7 8 9 10 11 12 13 14 15

LNSEDWM

DACCADACC

OCB

OBAOBASHTOBAD

LB SAE2

AWE

AUE1AUE2

ARF

HEBKUE

Fig. 8 Bonferroni–Dunn test for accuracy on imbalanced data

2 3 4 5 6 7 8 9 10 11 12 13 14 15

LNSE

DWM

DACC

ADACC

OCBOBA

OBASHT

OBAD

LB SAE2AWE

AUE1AUE2

ARF

HEBKUE

Fig. 9 Bonferroni–Dunn test for AUC on imbalanced data

2 3 4 5 6 7 8 9 10 11 12 13 14 15

NSEDWML DACC

ADACC

OCB OBA

OBASHTOBAD

SAE2LB

AWE

AUE1

AUE2ARF

HEBKUE

Fig. 10 Bonferroni–Dunn test for Kappa on imbalanced data

test. Figure 12 presents the pairwise comparison between KUE and reference methods with
the respect to the number of wins, ties, and loses on all datasets. Figure 13 depicts the
distribution of the frequencies of ranks achieved by all of the ensemble classifiers over all
imbalanced datasets.

Finally, Figs. 14, 15 and 16 present detailed results over all processed instances in the
stream for three selected datasets with respect to AUC, Kappa, chunk update time, and
memory consumption.

The role of class imbalance in data stream miningWhile this work does not focus on imbal-
anced data streammining, one must be aware that the issue of skewed class distributions may
appear in any data stream problem. As instances arrive over time and we have no control over

123

206 Machine Learning (2020) 109:175–218

2 3 4 5 6 7 8 9 10 11 12 13 14 15
LNSE

DWM DACC

ADACC

OCB OBA

OBASHTOBAD

LB

EWA2EAS

AUE1

AUE2ARF

HEBKUE

Fig. 11 Bonferroni–Dunn test for G-Mean on imbalanced data

HEB
ARF

AUE2
AUE1
AWE

SAE2
LB

OBAD
OBASHT

OBA
OCB

ADACC
DACC
DWM
LNSE

KUE vs ot her ensem bles (Accuracy)

no. of datasets

HEB
ARF

AUE2
AUE1
AWE

SAE2
LB

OBAD
OBASHT

OBA
OCB

ADACC
DACC
DWM
LNSE

KUE vs other ensembles (AU C)

no. of datasets
0 5 10 15 20 25 30 33 0 5 10 15 20 25 30 33

HEB
ARF

AUE2
AUE1
AWE

SAE2
LB

OBAD
OBASHT

OBA
OCB

ADACC
DACC
DWM
LNSE

KUE vs ot her ensem bles (Kappa)

no. of datasets

HEB
ARF

AUE2
AUE1
AWE

SAE2
LB

OBAD
OBASHT

OBA
OCB

ADACC
DACC
DWM
LNSE

KUE vs other ensembles (G−mean)

no. of datasets
0 5 10 15 20 25 30 33 0 5 10 15 20 25 30 33

Fig. 12 Comparison of KUE and reference ensemble classifiers with respect to the number of wins (green),
ties (yellow), and losses (red) over 33 imbalanced data stream benchmarks. A tie was considered, when the
difference in obtained metric values were ≤ 0.05 (Color figure online)

the source of data, periodically we may obtain more instances from one of the classes. Such
local class imbalance is usually not taken into account by the current solutions that either
assume that the stream is always roughly balanced or that the class imbalance is embedded
in the nature of the analyzed problem. However, such local distribution fluctuations may be
harmful to a classifier and lead to creating a bias towards one of the classes that will propagate
to new instances (even if they will not be imbalanced) and will be difficult to remove. As local
imbalance will affect all the classifiers in the ensemble, one cannot deal with it by simply
discarding one of the classifiers. Additionally, after a bias has been created, updating clas-
sifiers with new balanced distributions will not instantly remove it. Therefore, even shortly
appearing imbalanced distributions may have long-term effects on any ensemble algorithm.
That is why we postulate that even general-use data stream mining methods should display
a high robustness to skewed class distributions.

Performance comparison using skew-insensitive metrics As accuracy is not a proper metric
for evaluating imbalanced problems, we have selected three skew-insensitive prequential

123

Machine Learning (2020) 109:175–218 207

0

25

50

75

100

Rank

Fr
eq

ue
nc

y
[%

]
Accuracy

0

25

50

75

100

Rank

Fr
eq

ue
nc

y
[%

]

AUC

0

25

50

75

100

Rank

Fr
eq

ue
nc

y
[%

]

Kappa

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rank

Fr
eq

ue
nc

y
[%

]

G−mean

LNSE
DWM

DACC
ADACC

OCB
OBA

OBASHT
OBAD

LB
SAE2

AWE
AUE1

AUE2
ARF

HEB
KUE

Fig. 13 Frequencies of ranks scored by ensemble classifiers on 33 imbalanced data stream benchmarks

measures: AUC, Kappa, and G-mean (Jeni et al. 2013; Brzeziński et al. 2018). For the
purpose of evaluation, we have created 33 imbalanced benchmarks without and with concept
drift, as well as with static or changing class imbalance ratios.

For the AUC metric, KUE offers the highest average performance, with OBASHT and
OBAD following closely (87.86 vs. 87.39 and 87.37 respectively). This is confirmed by
the rank test, where KUE scores 2.80, OBASHT 4.12 and OBAD 3.17. It is interesting to
highlight that while the average AUC is higher for OBASHT, OBAD achieves a much better
rank. This shows that OBASHT is not stable and displays a high variance among different
datasets. On the contrary, KUE returns highly stable performance over all 33 benchmarks,
always achieving both high AUC values and high positions in rankings. All other ensemble
methods performed inferior to these three methods, showing that they are highly susceptible
to skewed class distributions. It is interesting to see that AUE1 and AUE2, very well perform-
ing methods for standard data streams, return sub-par performance when handling skewed
classes. Therefore, the only competitor for KUE is OBAD. While their AUC performance is
similar, OBAD is amuch slower and computationally expensivemethod thanKUE, as proven
by training time (0.4967 s vs. 0.0554 s) and memory consumption (5.43E−3 vs. 4.33E−4
RAM-Hours). This shows that when considering AUC as a metric, KUE offers an excellent
performance both in predictive power and computational complexity.

For the Kappa metric, we achieve the highest differences between KUE and reference
ensembles, which is to be expected as KUE optimizes this metric directly. Here, the three
follow-up performers to KUE are OBAD, LB, and HEB (67.32, 64.84, and 67.85 vs. 69.84).

123

208 Machine Learning (2020) 109:175–218

processed instances

AU
C

processed instances

K
ap

pa
 [%

]

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

processed instances

C
hu

nk
 tr

ai
n

tim
e

[s
]

0.
6

0.
7

0.
8

0.
9

20
40

60
80

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

1e
−0

8
1e

−0
6

1e
−0

4
1e

−0
2

processed instances

M
od

el
 c

os
t [

R
A

M
−H

ou
rs

]

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

OBAD LB AUE2 ARF KUE

Fig. 14 Performance of top 5 ensemble methods according to their prequential AUC, prequential Kappa,
chunk update time, and memory consumption on Hyperplane generator with imbalance ratio drift (1:1 to 1:20)

OBAD once again offers a stable performance when taking ranks into an account but at the
cost of increased resource consumption.

Finally, for the G-mean metric, we observe a different behavior. KUE is still the best
performing ensemble on average but OBASHT is not performing well for G-mean (with a
rank of 9.32). The best performing reference methods are OCB, OBAD, and HEB, following
closely the performance of KUE (75.89, 75.05, and 76.72 vs 77.18). However, this can be
perceived differently, when analyzing the ranks of these algorithms (6.24, 3.83 and 5.89 vs
3.59). Once again, we can see that among the top-performing reference methods only OBAD
offers a coherent performance between average G-mean and ranks but again at the cost of
higher computational resource consumption than KUE.

To summarize, KUEoffers themost stable performance on imbalanced data on all the three
skew-insensitive metrics. This proves its increased robustness to imbalanced distributions as
compared to reference ensemble methods. This is important from the perspective of potential
periodical (or local) imbalance appearing in standard data streams, as one cannot anticipate

123

Machine Learning (2020) 109:175–218 209

processed instances

AU
C

processed instances
K

ap
pa

 [%
]

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
05

0.
20

0.
50

2.
00

5.
00

processed instances

C
hu

nk
 tr

ai
n

tim
e

[s
]

0
20

40
60

80
1e

−0
8

1e
−0

6
1e

−0
4

1e
−0

2

processed instances

M
od

el
 c

os
t [

R
A

M
−H

ou
rs

]

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

OBAD LB AUE2 ARF KUE

Fig. 15 Performance of top 5 ensemble methods according to their prequential AUC, prequential Kappa,
chunk update time, and memory consumption on Hyperplane generator with imbalance ratio drift (1:10 to 1:1
to 10:1)

them and thus cannot employ efficiently dedicated algorithms to combat skewed classes.
KUE combines excellent performance on standard data streams while being more robust to
class imbalance, making it a highly attractive off-the-shelf algorithm for a diverse set of data
stream problems.

Role of Kappa statistic KUE derives its good performance from the usage of Kappa statistic
for both classifier selection and weighting. The advantage of Kappa lies in its applicability
to both standard and imbalanced problems, as it can handle multi-class datasets and displays
skew-insensitive characteristics. Therefore, contrary to other metrics, it can be seen as a more
universal tool for monitoring the ensemble performance and a good choice when one requires
an ensemble algorithm that can tackle a vast variety of data stream mining problems.

Role of feature subsets Another characteristic of KUE that improves its performance on
imbalanced data streams is the usage of feature subsets for each base classifier. In the case

123

210 Machine Learning (2020) 109:175–218

processed instances

AU
C

processed instances
K

ap
pa

 [%
]

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

processed instances

C
hu

nk
 tr

ai
n

tim
e

[s
]

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0
20

40
60

80
10

0

0.
01

0.
05

0.
20

0.
50

2.
00

1e
−0

8
1e

−0
6

1e
−0

4
1e

−0
2

processed instances

M
od

el
 c

os
t [

R
A

M
−H

ou
rs

]

100000 300000 500000 700000 900000 100000 300000 500000 700000 900000

OBAD LB AUE2 ARF KUE

Fig. 16 Performance of top 5 ensemble methods according to their prequential AUC, prequential Kappa,
chunk update time, and memory consumption on Agrawal generator with sudden concept drift and imbalance
ratio drift (1:1 to 1:20)

of imbalanced problems, not only the imbalance ratio itself is a source of learning difficulty
but also the instance-level characteristics. Even if the imbalance ratio is high but classes are
easily separable, there will be no bias towards the majority class. The problem appears when
instances are borderline or overlapping. These properties may be bounded with the features,
as some of them will be characterized by lower or higher probability of correct separation.
Therefore, base classifiers used in KUE have the possibility of discarding some of the more
difficult features in used subspaces and thus reducing the bias towards the majority class.
As our procedure for subspace creation is random, we cannot guide this as we would with a
feature selection approach. At the same time, the random subspace creation does not impose
additional computational costs on KUE, contrary to any feature selection. Therefore, using
random feature subsets offers a good trade-off between improved robustness to skew-sensitive
features and applicability to high-speed data streams.

123

Machine Learning (2020) 109:175–218 211

4.5 Experiment 3: Analysis of Kappa Updated Ensemble properties

The third and final experiment aimed at investigating the specific properties of KUE and
showcasing that our choice of its principles, components, and parameters is a valid one.
We investigate the impact of the six most important aspects of the KUE algorithm on its
performance: (1) the influence of Kappa vs accuracy to drive the ensemble components
weighting and selection, (2) the contribution of the abstainingmechanism, (3) the contribution
of the feature subspaces diversification, (4) the influence of the hybrid online architecture,
(5) the number of classifiers that are trained on each new data chunk, and (6) the size of
feature subsets that are used by each base classifier.

Influence of Kappa, abstaining, feature subspace diversification, and online architecture In
order to evaluate the impact of the four discussed mechanisms on KUE performance, we
have curated a set of experiments comparing different versions of KUE with one of the
mechanisms being switched off. This allows us to compare their individual contributions to
the KUE architecture. Figure 17 shows the comparison of performance among five different
versions of KUE, using five data streams and three performance metrics.

From the results one can see that the discussed complete KUE architecture obtains the
best performance, showcasing gains from embedding all four mechanisms into the learning
process. There is not a single case when switching off any of themechanismswould lead to an
improvement in performance. There is a case for each mechanism showing that it contributes
in a significant manner to overall KUE performance. Therefore, having all of them turned on
allows for KUE to return excellent performance on a wide range of data stream problems.
Thus, KUE can be seen as an off-the-shelf solution that could handle diverse classification
problems without a need for any tedious parameter tuning or selecting which mechanisms
should be switched off.

As for contributions of individual mechanisms, one can see that using online architecture
leads to greatest improvements on all of metrics. This shows that combining block-based
training of a new classifier with online updating of the ensemble members allows for better
capturing both short-term and long-term changes, aswell as adapting to local data characteris-
tics without losing generalization capabilities. Diversity (i.e., using random feature subspaces
of varying sizes) and Kappa-based weighting schemes are another big contributors, leading
to better anticipation of drifts and faster recovery after change a (as seen on Aggrawal and
Hyperplane datasets). Finally, abstaining is the least frequently used mechanism, but offers
significant benefit to KUE in specific scenarios (as seen in Aggrawal datasets). Therefore, it
protects KUE from relying its decision on non-competent classifiers in the ensemble, if such
would ever appear.

Role of the number of base classifiers trained on each chunk We investigate if training more
classifiers on each new chunk will lead to a predictive improvement in KUE. As we are using
random feature subspaces for each classifier, the intuition dictates that such an approach
should be fruitful. We examined the impact of training 1 (default parameter used in KUE)
to 10 (equal to the full KUE pool) classifiers whenever new data becomes available. The
trade-off between accuracy and computational cost averaged over all 93 used benchmarks is
depicted in Fig. 18. Surprisingly, providing more classifiers for the KUE selection procedure
does not lead to significant improvements in accuracy or Kappa for standard data streams,
as regardless of the number of components the gains were statistically insignificant. At the
same time, training each new classifiers and thus extending the KUE selection procedure
leads to a significant increase in the update time for each batch. For imbalanced data streams

123

212 Machine Learning (2020) 109:175–218

CUAappaKycaruccAtfirD
G
ra
du

al
-
A
gr
aw

al

80
85

90
95

10
0

processed instances

A
cc

ur
ac

y
[%

]

100000 300000 500000 700000 900000

0
20

40
60

80

processed instances

K
ap

pa
 [%

]

100000 300000 500000 700000 900000

0.
6

0.
7

0.
8

0.
9

1.
0

processed instances

AU
C

100000 300000 500000 700000 900000

G
ra
du

al
-
H
yp

er
pl
an

e

80
85

90
95

10
0

processed instances

A
cc

ur
ac

y
[%

]

100000 300000 500000 700000 900000

0
20

40
60

80

processed instances

K
ap

pa
 [%

]

100000 300000 500000 700000 900000

0.
6

0.
7

0.
8

0.
9

1.
0

processed instances

AU
C

100000 300000 500000 700000 900000

In
cr
em

en
ta
l
-
R
B
F

80
85

90
95

10
0

processed instances

A
cc

ur
ac

y
[%

]

100000 300000 500000 700000 900000

0
20

40
60

80

processed instances

K
ap

pa
 [%

]

100000 300000 500000 700000 900000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

processed instances

AU
C

100000 300000 500000 700000 900000

Su
dd

en
-
A
gr
aw

al

80
85

90
95

10
0

processed instances

A
cc

ur
ac

y
[%

]

100000 300000 500000 700000 900000

0
20

40
60

80

processed instances

K
ap

pa
 [%

]

100000 300000 500000 700000 900000

0.
6

0.
7

0.
8

0.
9

1.
0

processed instances

AU
C

100000 300000 500000 700000 900000

Su
dd

en
-
SE

A

82
84

86
88

90
92

processed instances

A
cc

ur
ac

y
[%

]

100000 300000 500000 700000 900000

0
20

40
60

80

processed instances

K
ap

pa
 [%

]

100000 300000 500000 700000 900000

0.
5

0.
6

0.
7

0.
8

0.
9

processed instances

AU
C

100000 300000 500000 700000 900000

Fig. 17 Comparison between KUE and its individualized mechanisms on accuracy, Kappa, and AUC

123

Machine Learning (2020) 109:175–218 213

Accuracy of KUE on standard data streams

no. of base classifiers trained on each chunk

A
cc

ur
ac

y
[%

]

85

86

87

0.0

0.1

0.2

0.3

0.4

K
U

E
 u

pd
at

e
tim

e
[s

.]

Kappa of KUE on standard data streams

no. of base classifiers trained on each chunk
K

ap
pa

 [%
]

76

77

78

0.0

0.1

0.2

0.3

0.4

K
U

E
 u

pd
at

e
tim

e
[s

.]

Accuracy of KUE on imbalanced data streams

no. of base classifiers trained on each chunk

A
cc

ur
ac

y
[%

]

9 10 9 101 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10

94

95

96

0.0

0.1

0.2

0.3

0.4

K
U

E
 u

pd
at

e
tim

e
[s

.]

AUC of KUE on imbalanced data streams

no. of base classifiers trained on each chunk

AU
C

87

88

89

0.0

0.1

0.2

0.3

0.4

K
U

E
 u

pd
at

e
tim

e
[s

.]

Kappa of KUE on imbalanced data streams

no. of base classifiers trained on each chunk

K
ap

pa
 [%

]

69

70

71

0.0

0.1

0.2

0.3

0.4

K
U

E
 u

pd
at

e
tim

e
[s

.]

G−mean of KUE on imbalanced data streams

no. of base classifiers trained on each chunk

G
−m

ea
n

[%
]

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

76

77

78

0.0

0.1

0.2

0.3

0.4

K
U

E
 u

pd
at

e
tim

e
[s

.]

Fig. 18 Influence of the number of newclassifiers trained for each newbatch of instances on theKUEpredictive
power and update time

Acccuracy of KUE on standard data streams

feature subspace size

A
cc

ur
ac

y
[%

]

Kappa of KUE on standard data streams

feature subspace size

K
ap

pa
 [%

]

Accuracy of KUE on imbalanced data streams

feature subspace size

A
cc

ur
ac

y
[%

]

AUC of KUE on imbalanced data streams

feature subspace size

AU
C

Kappa of KUE on imbalanced data streams

feature subspace size

K
ap

pa
 [%

]

G−mean of KUE on imbalanced data streams

feature subspace size

G
−m

ea
n

[%
]

55
60

65
70

75
80

85
90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20
30

40
50

60
70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

75
80

85
90

95
10

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
10

20
30

40
50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10
20

30
40

50
60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 19 Comparison between the proposed random feature subspace used in KUE (black line) and fixed size
feature subspace (blue points), results averaged over all 93 data stream benchmarks (Color figure online)

123

214 Machine Learning (2020) 109:175–218

and four different performance metrics used one can observe the same time dependencies as
for standard streams. However, we observe even smaller, if any, gains in performance when
more than a single classifier is trained per each chunk.

This may be explained by the fact that KUE does not forces addition of a new classifier to
the ensemble for every chunk if it does not positively contribute to the ensemble. Therefore,
with even a single classifier being trained, if the randomly selected features are of low quality,
then it is not incorporated into the ensemble. At the same time, as each base classifier in KUE
works in an online mode, each of them is updated with new instances, thus not losing the
information coming from the new batch. This allows us to conclude that training a single
new classifier on each batch of data leads to the best trade-off between predictive accuracy
and required update time.

Impact of the feature sampling on the base classifiersWe investigate if our proposed varying
size of the feature subspace is better than a fixed size subspace. Figure 19 depicts the differ-
ences between the used sampling and fixed subspaces for each of metric and independently
for standard and imbalanced data streams. We can see that the randomization in the size of
feature subspaces always works better than using a fixed subspace size. We can explain this
by the presence of feature drifts and the fact that the relevance of features evolves over time.
Thus, a fixed feature subspace size is not capable of adapting to such dynamics, leading to
either omitting important features (subspace too small) or incorporating too many redundant
ones (subspace too big). KUE employs a classifier selection mechanism that adds a new base
classifier to the ensemble only when it improves it. This indirectly alleviates the effects of
incorrectly sampled feature subspace size, as such a classifier will be discarded. This can be
seen as reducing the negative impact of variance in our randomized approach on the KUE
performance.

5 Conclusions and future works

In this work, we have presented KUE, a new ensemble classification algorithm for drifting
data streams. KUE offered a hybrid architecture, combining the advantages of online adap-
tation of base classifiers and block-based updating of the ensemble line-up. KUE used the
Kappa statistic for simultaneous selection and weighting of base classifiers, which allowed to
achieve a robust performance on standard and imbalanced data streams without the need for
dedicated skew-insensitive mechanisms. KUE offered a better predictive power and adap-
tation to concept drift by training base classifiers on random subsets of features, which
increased the diversity and capabilities for handling feature-based drifts. In order to reduce
the impact of incompetent classifiers at a given state of the stream, KUE was empowered
with an abstaining mechanism that removed selected classifiers from the voting procedure.

KUE was evaluated against 15 state-of-the-art ensemble algorithms on a wide set of 60
standard and 33 imbalanced data stream benchmarks. Such a wide-range study, backed-up
with a statistical analysis of results, showed that KUE offers most the stable performance of
all examined methods, regardless of data type and the metric used. Additionally, KUE was
characterized by a low decision and update times, as well as memory consumption, making
it a suitable choice for high-speed data stream mining. We showed an analysis of the KUE’s
main mechanisms and how the individually contribute to improving the predictive power.

We plan to continue our works on KUE and extend it to multi-label data streams, as
well as to implement it on Apache Spark to learn from multiple parallel data streams in
a distributed environment. Moreover, the exploration of the ROC metric for leading the

123

Machine Learning (2020) 109:175–218 215

selection, weighting of the classifiers, and heterogeneous ensemble schemes are promising
lines for future research.

Acknowledgements This research was partially supported by the 2018 VCU Presidential Research Quest
Fund and an Amazon AWS Machine Learning Research award.

References

Abdulsalam, H., Skillicorn, D. B., & Martin, P. (2011). Classification using streaming random forests. IEEE
Transactios on Knowledge and Data Engineering, 23(1), 22–36.

Almeida, P., Oliveira, L., de Souza, A., & Sabourin, R. (2016). Handling concept drifts using dynamic selection
of classifiers. In IEEE international conference on tools with artificial intelligence (pp. 989–995).

Balle, B., Castro, J., & Gavaldà, R. (2014). Adaptively learning probabilistic deterministic automata from data
streams. Machine Learning, 96(1), 99–127.

Barddal, J. P., Enembreck, F., Gomes, H. M., Bifet, A., & Pfahringer, B. (2019a). Boosting decision stumps
for dynamic feature selection on data streams. Information Systems, 83, 13–29.

Barddal, J. P., Enembreck, F., Gomes, H. M., Bifet, A., & Pfahringer, B. (2019b). Merit-guided dynamic
feature selection filter for data streams. Expert Systems with Applications, 116, 227–242.

Barddal, J. P., Gomes, H. M., Enembreck, F., & Pfahringer, B. (2017). A survey on feature drift adaptation:
Definition, benchmark, challenges and future directions. Journal of Systems and Software, 127, 278–294.

Barddal, J. P., Gomes, H.M., Enembreck, F., Pfahringer, B., & Bifet, A. (2016). On dynamic feature weighting
for feature drifting data streams. In European conference on machine learning (pp. 129–144).

Barros, R. S.M., & Santos, S. G. T. C. (2018). A large-scale comparison of concept drift detectors. Information
Sciences, 451, 348–370.

Bertini, J. R., & Nicoletti, M. (2019). An iterative boosting-based ensemble for streaming data classification.
Information Fusion, 45, 66–78.

Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In SIAM inter-
national conference on data mining (pp. 443–448).

Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Data stream mining: With practical examples in
MOA. Cambridge: MIT Press.

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA:Massive online analysis. Journal of Machine
Learning Research, 11, 1601–1604.

Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for evolving data streams. In European
conference on machine learning (pp. 135–150).

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavaldà, R. (2009). New ensemble methods for evolving
data streams. In ACM SIGKDD international conference on knowledge discovery and data mining (pp.
139–148).

Błaszczyński, J., Stefanowski, J., & Zajac, M. (2009). Ensembles of abstaining classifiers based on rule sets.
In International symposium on methodologies for intelligent systems (pp. 382–391).

Bonab, H. R., & Can, F. (2018). GOOWE: Geometrically optimum and online-weighted ensemble classifier
for evolving data streams. ACM Transactions on Knowledge Discovery from Data, 12(2), 25.

Brzeziński, D., & Stefanowski, J. (2011). Accuracy updated ensemble for data streams with concept drift. In
International conference on hybrid artificial intelligence systems (pp. 155–163).

Brzeziński, D., & Stefanowski, J. (2013). Classifiers for concept-drifting data streams: Evaluating things that
really matter. In ECML PKDD workshop on real-world challenges for data stream mining (pp. 10–14).

Brzeziński, D., & Stefanowski, J. (2014a). Combining block-based and online methods in learning ensembles
from concept drifting data streams. Information Sciences, 265, 50–67.

Brzeziński, D., & Stefanowski, J. (2014b). Reacting to different types of concept drift: The accuracy updated
ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 81–94.

Brzeziński, D., & Stefanowski, J. (2018). Ensemble classifiers for imbalanced and evolving data streams.Data
Mining in Time Series and Streaming Databases, 83(1), 44–68.

Brzeziński, D., Stefanowski, J., Susmaga, R., & Szczȩch, I. (2018). Visual-based analysis of classification
measures and their properties for class imbalanced problems. Information Sciences, 462, 242–261.

Cano, A., & Krawczyk, B. (2018). Learning classification rules with differential evolution for high-speed data
stream mining on GPUs. In IEEE congress on evolutionary computation (pp. 197–204).

Cano, A., & Krawczyk, B. (2019). Evolving rule-based classifiers with genetic programming on GPUs for
drifting data streams. Pattern Recognition, 87, 248–268.

123

216 Machine Learning (2020) 109:175–218

Cano, A., Zafra, A., &Ventura, S. (2013).Weighted data gravitation classification for standard and imbalanced
data. IEEE Transactions on Cybernetics, 43(6), 1672–1687.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys,
41(3), 15.

Chen, S., & He, H. (2013). Nonstationary stream data learning with imbalanced class distribution. In H. He
& Y. Ma (Eds.), Imbalanced learning: Foundations, algorithms, and applications (pp. 151–186).

Ditzler, G., Rosen, G., & Polikar, R. (2013). Discounted expert weighting for concept drift. In IEEE symposium
on computational intelligence in dynamic and uncertain environments (pp. 61–67).

Dong, Y., & Japkowicz, N. (2018). Threaded ensembles of autoencoders for stream learning. Computational
Intelligence, 34(1), 261–281.

Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. IEEE
Transactions on Neural Networks, 22(10), 1517–1531.

Faisal, M. A., Aung, Z., Williams, J. R., & Sanchez, A. (2015). Data-stream-based intrusion detection system
for advanced metering infrastructure in smart grid: A feasibility study. IEEE Systems Journal, 9(1),
31–44.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbal-
anced data sets. Berlin: Springer. https://doi.org/10.1007/978-3-319-98074-4.

Ferri, C., Hernández-Orallo, J., &Modroiu, R. (2009). An experimental comparison of performance measures
for classification. Pattern Recognition Letters, 30(1), 27–38.

Gaber, M. M. (2012). Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(1), 79–85.

Gama, J., & Castillo, G. (2006). Learning with local drift detection. In Advanced data mining and applications
(pp. 42–55).

Gama, J., & Kosina, P. (2014). Recurrent concepts in data streams classification. Knowledge and Information
Systems, 40(3), 489–507.

Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream learning algorithms.Machine Learn-
ing, 90(3), 317–346.

Gama, J., Žliobaite, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM Computing Surveys, 46(4), 44:1–44:37.

García, S., Fernández, A., Luengo, J., &Herrera, F. (2010). Advanced nonparametric tests formultiple compar-
isons in the design of experiments in computational intelligence and data mining: Experimental analysis
of power. Information Sciences, 180(10), 204–2064.

García, S., & Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple data sets
for all pairwise comparisons. Journal of Machine Learning Research, 9, 2677–2694.

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey on ensemble learning for data
stream classification. ACM Computing Surveys, 50(2), 23.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., et al. (2017). Adaptive random
forests for evolving data stream classification. Machine Learning, 106(9–10), 1469–1495.

Gomes, H. M., & Enembreck, F. (2014). SAE2: Advances on the social adaptive ensemble classifier for data
streams. In ACM symposium on applied computing (pp. 798–804).

Hoens, T. R., Polikar, R., & Chawla, N. V. (2012). Learning from streaming data with concept drift and
imbalance: An overview. Progress in Artificial Intelligence, 1(1), 89–101.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 97–106).

Jaber, G., Cornuéjols, A., & Tarroux, P. (2013). A new on-line learning method for coping with recurring
concepts: The ADACC system. In International conference on neural information processing (pp. 595–
604).

Jackowski, K. (2014). Fixed-size ensemble classifier system evolutionarily adapted to a recurring context with
an unlimited pool of classifiers. Pattern Analysis and Applications, 17(4), 709–724.

Jeni, L. A., Cohn, J. F., & De La Torre, F. (2013). Facing imbalanced data–recommendations for the use of per-
formance metrics. In Humaine association conference on affective computing and intelligent interaction
(pp. 245–251).

Kolter, J. Z., &Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for drifting concepts.
Journal of Machine Learning Research, 8, 2755–2790.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in
Artificial Intelligence, 5(4), 221–232.

Krawczyk, B. (2017). Active and adaptive ensemble learning for online activity recognition from data streams.
Knowledge-Based Systems, 138, 69–78.

Krawczyk, B., & Cano, A. (2018). Online ensemble learning with abstaining classifiers for drifting and noisy
data streams. Applied Soft Computing, 68, 677–692.

123

https://doi.org/10.1007/978-3-319-98074-4

Machine Learning (2020) 109:175–218 217

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017). Ensemble learning for data
stream analysis: A survey. Information Fusion, 37, 132–156.

Kuncheva, L. I. (2013). Change detection in streaming multivariate data using likelihood detectors. IEEE
Transactions on Knowledge and Data Engineering, 25(5), 1175–1180.

Liu, A., Lu, J., Liu, F., & Zhang, G. (2018). Accumulating regional density dissimilarity for concept drift
detection in data streams. Pattern Recognition, 76, 256–272.

Marrón, D., Ayguadé, E., Herrero, J. R., Read, J., & Bifet, A. (2017). Low-latency multi-threaded ensemble
learning for dynamic big data streams. In IEEE international conference on big data (pp. 223–232).

Matuszyk, P., & Spiliopoulou, M. (2017). Stream-based semi-supervised learning for recommender systems.
Machine Learning, 106(6), 771–798.

Mejri, D., Limam, M., & Weihs, C. (2018). A new dynamic weighted majority control chart for data streams.
Soft Computing, 22(2), 511–522.

Miller, Z., Dickinson, B., Deitrick, W., Hu, W., & Wang, A. H. (2014). Twitter spammer detection using data
stream clustering. Information Sciences, 260, 64–73.

Mimran, O., & Even, A. (2014). Data stream mining with multiple sliding windows for continuous prediction.
In European conference on information systems (pp. 1–15).

Minku, L. L., White, A. P., & Yao, X. (2010). The impact of diversity on online ensemble learning in the
presence of concept drift. IEEE Transactions on Knowledge and Data Engineering, 22(5), 730–742.

Morales, G. D. F., Bifet, A., Khan, L., Gama, J., & Fan, W. (2016). IoT big data stream mining. In ACM
SIGKDD international conference on knowledge discovery and data mining (pp. 2119–2120).

Nguyen, H. L., Woon, Y. K., Ng, W. K., & Wan, L. (2012). Heterogeneous ensemble for feature drifts in data
streams. In Pacific-Asia conference on knowledge discovery and data mining (pp. 1–12).

Olorunnimbe, M. K., Viktor, H., & Paquet, E. (2018). Dynamic adaptation of online ensembles for drifting
data streams. Journal of Intelligent Information Systems, 50(2), 291–313.

Oza, N. C. (2005). Online bagging and boosting. In IEEE international conference on systems, man and
cybernetics (pp. 2340–2345).

Pears, R., Sakthithasan, S., & Koh, Y. S. (2014). Detecting concept change in dynamic data streams.Machine
Learning, 97(3), 259–293.

Pelossof, R., Jones, M., Vovsha, I., & Rudin, C. (2009). Online coordinate boosting. In IEEE international
conference on computer vision (pp. 1354–1361).

Pesaranghader, A., & Viktor, H. (2016). Fast hoeffding drift detection method for evolving data streams. In
European conference on machine learning and knowledge discovery in databases (pp. 96–111).

Pesaranghader, A., Viktor, H., & Paquet, E. (2018). Reservoir of diverse adaptive learners and stacking fast
hoeffding drift detection methods for evolving data streams. Machine Learning, 107(11), 1711–1743.

Pietruczuk, L., Rutkowski, L., Jaworski, M., & Duda, P. (2017). How to adjust an ensemble size in stream
data mining? Information Sciences, 381, 46–54.

Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., Benítez, J., & Herrera, F. (2017). Nearest
neighbor classification for high-speed big data streams using spark. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 47(10), 2727–2739.

Ramirez-Gallego, S., Krawczyk, B., Garcia, S., Woźniak, M., & Herrera, F. (2017). A survey on data prepro-
cessing for data stream mining: Current status and future directions. Neurocomputing, 239, 39–57.

Ren, S., Liao, B., Zhu, W., & Li, K. (2018). Knowledge-maximized ensemble algorithm for different types of
concept drift. Information Sciences, 430, 261–281.

Ren, S., Liao, B., Zhu, W., Li, Z., Liu, W., & Li, K. (2018). The gradual resampling ensemble for mining
imbalanced data streams with concept drift. Neurocomputing, 286, 150–166.

Sethi, T. S., & Kantardzic, M. (2017). On the reliable detection of concept drift from streaming unlabeled
data. Expert Systems with Applications, 82, 77–99.

Sobolewski, P., &Woźniak, M. (2013). Comparable study of statistical tests for virtual concept drift detection.
In International conference on computer recognition systems (pp. 329–337).

Sobolewski, P.,&Woźniak,M. (2017). SCR:Simulated concept recurrence—Anon-supervised tool for dealing
with shifting concept. Expert Systems, 34(5), 1–12.

Srinivasan, A., & Bain, M. (2017). An empirical study of on-line models for relational data streams.Machine
Learning, 106(2), 243–276.

Sun, Y., Tang, K., Minku, L. L., Wang, S., & Yao, X. (2016). Online ensemble learning of data streams with
gradually evolved classes. IEEE Transactions on Knowledge and Data Engineering, 28(6), 1532–1545.

Triantafyllopoulos, D., Korvesis, P., Mporas, I., & Megalooikonomou, V. (2016). Real-time management
of multimodal streaming data for monitoring of epileptic patients. Journal of Medical Systems, 40(3),
45:1–45:11.

Van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2018). The online performance estimation
framework: Heterogeneous ensemble learning for data streams. Machine Learning, 107(1), 149–176.

123

218 Machine Learning (2020) 109:175–218

Vicente, R., Kinouchi, O., & Caticha, N. (1998). Statistical mechanics of online learning of drifting concepts:
A variational approach.Machine Learning, 32(2), 179–201.

Wang, B., & Pineau, J. (2016). Online bagging and boosting for imbalanced data streams. IEEE Transactions
on Knowledge and Data Engineering, 28(12), 3353–3366.

Wang, H., Fan,W., Yu, P. S., &Han, J. (2003).Mining concept-drifting data streams using ensemble classifiers.
In ACM SIGKDD international conference on knowledge discovery and data mining (pp. 226–235).

Wang, S., Minku, L. L., & Yao, X. (2015). Resampling-based ensemble methods for online class imbalance
learning. IEEE Transactions on Knowledge and Data Engineering, 27(5), 1356–1368.

Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class imbalance learning with concept
drift. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4802–4821.

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Characterizing concept drift. Data
Mining and Knowledge Discovery, 30(4), 964–994.

Webb, G. I., Lee, L. K., Goethals, B., & Petitjean, F. (2018). Analyzing concept drift and shift from sample
data. Data Mining and Knowledge Discovery, 32(5), 1179–1199.

Woźniak, M., Kasprzak, A., & Cal, P. (2013). Weighted aging classifier ensemble for the incremental drifted
data streams. In International conference on flexible query answering systems (pp. 579–588).

Woźniak, M., Ksieniewicz, P., Cyganek, B., & Walkowiak, K. (2016). Ensembles of heterogeneous concept
drift detectors—Experimental study. In Computer information systems and industrial management (pp.
538–549).

Yuan, L., Pfahringer, B., & Barddal, J. P. (2018). Iterative subset selection for feature drifting data streams. In
33rd annual ACM symposium on applied computing (pp. 510–517).

Zhai, T., Gao, Y., Wang, H., & Cao, L. (2017). Classification of high-dimensional evolving data streams via a
resource-efficient online ensemble. Data Mining and Knowledge Discovery, 31(5), 1242–1265.

Zhang, L., Lin, J., & Karim, R. (2017). Sliding window-based fault detection from high-dimensional data
streams. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2), 289–303.

Zhang, Q., Zhang, P., Long, G., Ding, W., Zhang, C., & Wu, X. (2016). Online learning from trapezoidal data
streams. IEEE Transactions on Knowledge and Data Engineering, 28(10), 2709–2723.

Zhu, X., Zhang, P., Wu, X., He, D., Zhang, C., & Shi, Y. (2008). Cleansing noisy data streams. In IEEE
international conference on data mining (pp. 1139–1144).

Žliobaite, I., Bifet, A., Read, J., Pfahringer, B., & Holmes, G. (2015). Evaluation methods and decision theory
for classification of streaming data with temporal dependence.Machine Learning, 98(3), 455–482.

Žliobaite, I., Budka, M., & Stahl, F. T. (2015). Towards cost-sensitive adaptation: When is it worth updating
your predictive model? Neurocomputing, 150, 240–249.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Kappa Updated Ensemble for drifting data stream mining
	Abstract
	1 Introduction
	2 Data stream mining
	2.1 Overview
	2.2 Ensemble learning for data stream mining
	2.3 Imbalanced data streams

	3 Kappa Updated Ensemble
	3.1 Ensemble structure and initialization
	3.2 Ensemble model update
	3.3 Weighted voting
	3.4 Complexity analysis
	3.5 Contribution, novelty, and advantages over existing ensembles

	4 Experimental study
	4.1 Algorithms
	4.2 Datasets
	4.3 Experiment 1: Evaluation on standard data streams
	4.4 Experiment 2: Evaluation on imbalanced data streams
	4.5 Experiment 3: Analysis of Kappa Updated Ensemble properties

	5 Conclusions and future works
	Acknowledgements
	References

