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Abstract
We introduce a new unsupervised learning problem: clustering wide-sense stationary ergodic
stochastic processes. A covariance-based dissimilarity measure together with asymptotically
consistent algorithms is designed for clustering offline and online datasets, respectively. We
also suggest a formal criterion on the efficiency of dissimilarity measures, and discuss an
approach to improve the efficiency of our clustering algorithms, when they are applied to
cluster particular type of processes, such as self-similar processes with wide-sense stationary
ergodic increments. Clustering synthetic data and real-world data are provided as examples
of applications.
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1 Introduction

Cluster analysis, as a core category of unsupervised learning techniques, allows to discover
hidden patterns in data where one does not know the true answer upfront. Its goal is to assign
a heterogeneous set of objects into non-overlapping clusters, where in each cluster any two
objects are more related to each other than to objects in other clusters. Given its exploratory
nature, clustering has nowadays a number of applications in various fields of both industry and
scientific research, such as biological and medical research (Damian et al. 2007; Zhao et al.
2014; Jääskinen et al. 2014), information technology (Jain et al. 1999; Slonim et al. 2005),
signal and image processing (Rubinstein et al. 2013), geology (Juozapavičius andRapsevicius
2001) and finance (Pavlidis et al. 2006; Bastos and Caiado 2014; Ieva et al. 2016). There
exists a rich literature of cluster analysis on random vectors, where the objects, waiting to
be clustered, are sampled from high-dimensional joint distributions. There is no shortage of
such clustering algorithms (Xu and Wunsch 2005). However, stochastic processes are quite
a different setting from random vectors, since their observations (sample paths) are sampled
from processes distributions. While the cluster analysis on random vectors has developed
aggressively, clustering on stochastic processes receives much less attention. Today cluster
analysis on stochastic processes deserves increasingly intense study, thanks to their vital
importance to many applied areas, where the collected information are indexed by real time
and are especially long. Examples of these time-indexed information include biological data,
financial data,marketing data, surfaceweather data, geological data and video/audio data, etc.

Recall that in the setting of random vectors, a process of clustering often consists of two
steps:

Step 1 One suggests a suitable dissimilarity measure to describe the distance between 2
objects, under which “two objects are close to each other” becomes meaningful.

Step 2 One designs an enough accurate and computationally efficient clustering function
based on the above dissimilarity measure.

Clustering stochastic processes is performed in a similar way but new challenges may arise in
both Step 1 and Step 2. Intuitively, one can always apply existing random vectors clustering
approaches to cluster arbitrary stochastic processes, such as non-hierarchical approaches
(K -means clustering methods) and hierarchical approaches (agglomerative method, divisive
method) (Hartigan 1975), based on “naive” dissimilarity measures (e.g., Euclidean distance,
Manhattan distance or Minkowski distance). However, one faces at least 2 potential risks
when applying the above approaches to clustering stochastic processes:

Risk 1 These approaches might suffer from their huge complexity costs, due to the great
length of their sample paths. As a result classical clustering algorithms are often
computationally forbidding (Ieva et al. 2016; Peng and Müller 2008).

Risk 2 These approaches might suffer from over-fitting issues. For example, clustering
stationary or periodic processes based on Euclidean distance between the paths,
without considering their path properties will result in “over fitting, bad clusters”
situation.

In summary, classical dissimilarity measures or clustering strategies would fail in clustering
stochastic processes.

Fortunately, the complexity cost and the over-fitting errors of clustering processes could
be largely reduced, if one is aware of the fact that a stochastic process often possesses fine
paths features (e.g., stationarity, Markov property, self-similarity, sparsity, seasonality, etc.),
which is unlike an arbitrary random vector. An appropriate dissimilarity measure then should

123



Machine Learning (2019) 108:2159–2195 2161

be chosen to be able to capture these paths features. Clustering processes is then performed
to group any two sample paths into one group, if they are relatively close to each other under
that particular dissimilarity measure. Below are some examples provided in the literature.

Peng and Müller (2008) proposed a dissimilarity measure between two special sample
paths of processes. In their setting it is supposed that, for each path only sparse and irregu-
larly spaced measurements with additional measurement errors are available. Such features
occur commonly in longitudinal studies and online trading data. Based on this particular
dissimilarity measure, classification and cluster analysis could be made. Ieva et al. (2016)
developed a new algorithm to perform clustering of multivariate and functional data, based
on a covariance-based dissimilarity measure. Their attention is focused on the specific case of
a set of observations from two populations, whose probability distributions have equal mean
but differ in terms of covariances. Khaleghi et al. (2016) designed consistent algorithms for
clustering strict-sense stationary ergodic processes [see the forthcoming Eq. (4) for the defi-
nition of strict-sense ergodicity], where the dissimilarity measure is proposed as distance of
process distributions. It is worth noting that the consistency of their algorithms is guaranteed
thanks to the assumption of strict-sense ergodicity.

In this framework, we aim to design asymptotically consistent algorithms to cluster a
general class of stochastic processes, i.e., wide-sense stationary ergodic processes (see Defi-
nition 1 below). Asymptotically consistent algorithms can be obtained for this setting, since
the covariance stationarity and ergodicity allow the process to present some featured asymp-
totic behavior with respect to their length, rather than to the total number of paths.

Definition 1 (Wide-sense stationary ergodic process) A stochastic process X = {Xt }t∈T
(the time indexes set T can be either R+ = [0,+∞) or N = {1, 2 . . .}) is called wide-sense
stationary if its mean and covariance structure are finite and time-invariant: E(Xt ) = μ for
any t ∈ T , and for any subset (Xi1 , . . . , Xir ), its covariance matrix remains invariant subject
to any time shift h > 0:

Cov(Xi1 , . . . , Xir ) = Cov(Xi1+h, . . . , Xir+h).

Denote by γ the auto-covariance function of X . Then X is further called weakly ergodic (or
wide-sense ergodic) if it is ergodic for the mean and the second-order moment:

– If X is a continuous-time process (e.g., T = R+), then it satisfies for any s ∈ R+,

1

h

∫ s+h

s
Xu du

a.s.−−−−→
h→+∞ μ,

and

1

h

∫ s+h

s
(Xu+τ − μ)(Xu − μ) du

a.s.−−−−→
h→+∞ γ (τ), for all τ ∈ R+,

where
a.s.−−→ denotes the almost sure convergence (convergence with probability 1).

– If X is a discrete-time process (e.g., T = N), then it satisfies for any s ∈ N ∪ {0},
Xs + Xs+1 + . . . + Xs+h

h + 1
a.s.−−−−−−−−→

h∈N, h→+∞ μ,

and ∑s+h
u=s(Xu+τ − μ)(Xu − μ)

h + 1
a.s.−−−−−−−−→

h∈N, h→+∞ γ (τ), for all τ ∈ N ∪ {0}.
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Wide-sense stationarity and ergodicity are believed to be a very general assumption, at least
in the following senses:

1. The assumption that each process is generated by some mean and covariance structure is
sufficient for capturing all features of a wide-sense stationary ergodic process. In other
words, our algorithms intend to cluster means and auto-covariance functions, not process
distributions.

2. Wide-sense stationary ergodic process partially extends the strict-sense one. A finite-
variance strict-sense stationary ergodic process [see Eq. (4) for its definition] is also
wide-sense stationary ergodic. However strict-sense stationary ergodic stable processes
are not wide-sense stationary, because their variances explode (Cambanis et al. 1987;
Samorodnitsky 2004).

3. AGaussian process can be fully identified only by itsmean and covariance structure. Then
a wide-sense stationary ergodic Gaussian process is also strict-sense stationary ergodic.

4. In the clustering problem, the dependency among the sample paths can be arbitrary.

There is a long list of processes which are wide-sense stationary ergodic, but not necessarily
stationary in the strict sense. The examples of wide-sense stationary processes below are not
exhausted.

Example 1 Non-independent White Noise.
Let U be a random variable uniformly distributed over (0, 2π) and define

Z(t) := √
2 cos(tU ), for t ∈ N.

The process Z = {Z(t)}t∈N is then a white noise because it verifies

E(Z(t)) = 0, Var(Z(t)) = 1 and Cov(Z(s), Z(t)) = 0, for s �= t .

We claim that Z is wide-sense stationary ergodic, which can be obtained by using the Kol-
mogorov’s strong law of large numbers, see e.g. Theorem 2.3.10 in Sen and Singer (1993).
However Z is not strict-sense stationary since

(Z(1), Z(2)) �= (Z(2), Z(3)) in law.

Indeed, it is easy to see that

0 < E
(
Z(1)2Z(2)

) �= E
(
Z(2)2Z(3)

) = 0.

Example 2 Auto-regressive Models.
It is well-known that an auto-regressive model {Y (t)}t ∼ AR(1) in the form:

Y (t) = aY (t − 1) + Z(t), |a| < 1, a �= 0, for t ∈ N (1)

is wide-sense stationary ergodic. However it is not necessarily strict-sense stationary ergodic,
when the joint distributions of the white noise {Z(t)}t are not invariant with time-shifting
(e.g., take {Z(t)}t to be the white noise in Example 1).

Example 3 Increment Process of Fractional Brownian Motion.
Let {BH (t)}t be a fractional Brownian motion with Hurst index H ∈ (0, 1) (see Mandel-

brot and van Ness 1968). For each h > 0, its increment process {Zh(t) := BH (t + h) −
BH (t)}t is finite-variance strict-sense stationary ergodic (Magdziarz and Weron 2011). As a
result it is also wide-sense stationary ergodic. More detail will be discussed in Sect. 4.
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Example 4 Increment Process of More General Gaussian Processes.
Peng (2012) introduced a general class of zero-mean Gaussian processes X = {X(t)}t∈R

having stationary increments. Its variogram ν(t) := 2−1
E(X(t)2) satisfies:

(1) There is a non-negative integer d such that ν is 2d-times continuously differentiable over
[−2, 2], but not 2(d + 1)-times continuously differentiable over [−2, 2].

(2) There are 2 real numbers c �= 0 and s0 ∈ (0, 2), such that for all t ∈ [−2, 2],
ν(t) = ν(2d)(0) + c|t |s0 + r(t),

where the remainder r(t) satisfies:

– r(t) = o(|t |s0), as t → 0.
– There are two real numbers c′ > 0, ω > s0 and an integer q > ω + 1/2 such that
r is q-times continuously differentiable on [−2, 2]\{0} and for all t ∈ [−2, 2]\{0},
we have

|r (q)(t)| � c′|t |ω−q .

It is shown that the process X extends fractional Brownian motion and it also has wide-
sense (and strict-sense) stationary ergodic incrementswhen d+s0/2 ∈ (0, 1) (see Proposition
3.1 in Peng 2012).
The problem of clustering processes via their means and covariance structures leads us to
formulating our clustering targets in the following way.

Definition 2 (Ground truth G of covariance structures) Let

G = {
G1, . . . ,Gκ

}
be a partitioning of N = {1, 2, . . .} into κ disjoint sets Gk , k = 1, . . . , κ , such that the
means and covariance structures of xi , i ∈ N are identical, if and only if i ∈ Gk for some
k = 1, . . . , κ . Such G is called ground truth of covariance structures. We also denote by
G|N the restriction of G to the first N sequences:

G|N = {
Gk ∩ {1, . . . , N } : k = 1, . . . , κ

}
.

Our clustering algorithms will aim to output the ground truth partitioning G, as the sample
length grows. Before stating these algorithms, we introduce the inspiring framework done
by Khaleghi et al. (2016).

1.1 Preliminary results: clustering strict-sense stationary ergodic processes

Khaleghi et al. (2016) considered the problem of clustering strict-sense stationary ergodic
processes. The main fruit in Khaleghi et al. (2016) is obtaining the so-called asymptotically
consistent algorithms to cluster processes of that type. We briefly state their work below.
Depending on how the information is collected, the stochastic processes clustering problems
consist of dealing with two models: offline setting and online setting.

Offline setting The observations are assumed to be a finite number N of paths:

x1 =
(
X (1)
1 , . . . , X (1)

n1

)
, . . . , xN =

(
X (N )
1 , . . . , X (N )

nN

)
.

Each path is generated by one of the κ different unknown process distribu-
tions. In this case, an asymptotically consistent clustering function should
satisfy the following.
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Definition 3 (Consistency: offline setting) A clustering function f is consistent for a set of
sequences S if f (S, κ) = G. Moreover, denoting n = min{n1, . . . , nN }, f is called strongly
asymptotically consistent in the offline sense if with probability 1 from some n on it is
consistent on the set S, i.e.,

P

(
lim
n→∞ f (S, κ) = G

)
= 1.

It is called weakly asymptotically consistent if lim
n→∞P( f (S, κ) = G) = 1.

Online setting In this setting the observations, having growing length and number of sce-
narios with respect to time t , are denoted by

x1 =
(
X (1)
1 , . . . , X (1)

n1

)
, . . . , xN (t) =

(
X (N (t))
1 , . . . , X (N (t))

nN (t)

)
,

where the index function N (t) is non-decreasing with respect to t .

Then an asymptotically consistent online clustering function is defined below:

Definition 4 (Consistency: online setting) A clustering function is strongly (RESP. weakly)
asymptotically consistent in the online sense, if for every N ∈ N the clustering f (S(t), κ)|N
is strongly (RESP. weakly) asymptotically consistent in the offline sense, where f (S(t), κ)|N
is the clustering f (S(t), κ) restricted to the first N sequences:

f (S(t), κ)|N = { f (S(t), κ) ∩ {1, . . . , N } : k = 1, . . . , κ} .

There is a detailed discussion on the comparison of offline and online settings in Khaleghi
et al. (2016), stating that these two settings have significant differences, since using the offline
algorithm in the online setting by simply applying it to the entire data observed at every time
step, does not result in an asymptotically consistent algorithm. Therefore separately and
independently studying these two settings becomes necessary and meaningful.

As the main results in Khaleghi et al. (2016), asymptotically consistent clustering algo-
rithms for both offline and online settings are designed. They are then successfully applied
to clustering synthetic and real data sets.

Note that in the framework of Khaleghi et al. (2016), a key step is introduction to the
so-called distributional distance (Gray 1988): the distributional distance between a pair of
process distributions ρ1, ρ2 is defined to be

d(ρ1, ρ2) =
∞∑

m,l=1

wmwl

∑
B∈Bm,l

|ρ1(B) − ρ2(B)| , (2)

where:

– The sets Bm,l , m, l ≥ 1 are obtained via the partitioning of Rm into cubes of dimension
m and volume 2−ml , starting at the origin.

– The sequence of weights {w j } j≥1 is positive and decreasing to zero. Moreover it should
be chosen such that the series in (2) is convergent. Theweights are often suggested to give
precedence to earlier clusterings, protecting the clustering decisions from the presence
of the newly observed sample paths, whose corresponding distance estimates may not
yet be accurate. For instance, it is set to be w j = 1/ j( j + 1) in Khaleghi et al. (2016).

Further, the distance between two sample paths x1, x2 of stochastic processes is given by

d̂(x1, x2) =
mn∑
m=1

ln∑
l=1

wmwl

∑
B∈Bm,l

|ν(x1, B) − ν(x2, B)|, (3)
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where:

– mn, ln (� n) can be arbitrary sequences of positive integers increasing to infinity, as
n → ∞.

– For a process path x = (X1, . . . , Xn), and an event B, ν(x, B) denotes the average times
that the event B occurs over n − mn + 1 time intervals. More precisely,

ν(x, B) := 1

n − mn + 1

n−mn+1∑
i=1

1{(Xi , . . . , Xi+mn−1) ∈ B}.

The process distribution X from which x is sampled is called strictly ergodic if

P

(
lim
n→∞ ν(x, B) = P(X ∈ B)

)
= 1, for all B. (4)

The assumption that the processes are ergodic leads to that d̂ is a strongly consistent estimator
of d:

P

(
lim
n→∞ d̂(x1, x2) = d(ρ1, ρ2)

)
= 1,

where ρ1, ρ2 are the process distributions corresponding to x1, x2, respectively.
Based on the distances d and their estimates d̂ , the asymptotically consistent algorithms for

clustering stationary ergodic processes in each of the offline and online settings are provided
(see Algorithms 1, 2 and Theorems 11, 12 in Khaleghi et al. 2016). Khaleghi et al. (2016)
also show that their methods can be implemented efficiently: they are at most quadratic in
each of their arguments, and are linear (up to log terms) in some formulations.

1.2 Statistical setting: clustering wide-sense stationary ergodic processes

Inspired by the framework of Khaleghi et al. (2016), we consider the problem of clustering
wide-sense stationary ergodic processes. We first introduce the following covariance-based
dissimilarity measure, which is one of the main contributions of this paper.

Definition 5 (Covariance-based dissimilarity measure) The covariance-based dissimilarity
measure d∗ between a pair of processes X (1), X (2) (in fact X (1), X (2) denote two covariance
structures, each may contain different process distributions) is defined as follows:

d∗(X (1), X (2)) :=
∞∑

m,l=1

wmwl

×M
((

E
(
X (1)
l...l+m−1

)
,Cov

(
X (1)
l...l+m−1

))
,
(
E

(
X (2)
l...l+m−1

)
,Cov

(
X (2)
l...l+m−1

)))
, (5)

where:

– For j = 1, 2, {X ( j)
l }l∈N denotes some path sampled from the process X ( j). We assume

that all possible observations of the process X ( j) is a subset of {X ( j)
l }l∈N. For l ′ ≥ l ≥ 1,

we define the shortcut notation X ( j)
l...l ′ := (X ( j)

l , . . . , X ( j)
l ′ ).

– The function M is defined by: for any p1, p2, p3 ∈ N, any 2 vectors v1, v2 ∈ R
p1 and

any 2 matrices A1, A2 ∈ R
p2×p3 ,

M((v1, A1), (v2, A2)) := |v1 − v2| + ρ∗ (A1, A2) . (6)
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– The distance ρ∗ between 2 equal-sized matrices M1, M2 is defined to be

ρ∗(M1, M2) := ‖M1 − M2‖F , (7)

with ‖ · ‖F being the Frobenius norm:
for an arbitrary matrix M = {Mi j }i=1,...,m; j=1,...,n ,

‖M‖F :=
√√√√ m∑

i=1

n∑
j=1

|Mi j |2.

Introduction to the matrices distance ρ∗ is inspired by Herdin et al. (2005). The matrices
distance given inHerdin et al. (2005) is used tomeasure the distance between 2 correlation
matrices. However, our distance ρ∗ is a modification of the one in the latter paper. Indeed,
unlike Herdin et al. (2005), ρ∗ is a well-defined metric distance, as it satisfies the triangle
inequalities.

– The sequence of positive weights {w j } is chosen such that d∗(X (1), X (2)) is finite.
Observe that the distances | · | and ρ∗ in (5) do not depend on l, as a result we nec-
essarily have

∞∑
l=1

wl < +∞. (8)

In practice a typical choice of weights we suggest isw j = 1/ j( j+1), j = 1, 2, . . .. This
is because, for most of the well-known covariance stationary ergodic processes (causal
ARMA(p, q), increments of fractional Brownian motions, etc.), their auto-covariance
functions are absolutely summable: denote by γX the auto-covariance function of {Xt }t ,

+∞∑
h=−∞

|γX (h)| < +∞. (9)

Śęlzak (2017) pointed out that (9) is a sufficient condition for {Xt } being mean-ergodic.
However (9) does not necessarily imply that {Xt } is covariance-ergodic. It becomes a
sufficient and necessary condition if {Xt } is Gaussian. Therefore subject to (9), taking
w j = 1/ j( j + 1), we obtain for any integer N > 0,

N∑
m,l=1

wmwl

∣∣∣E
(
X (1)
l...l+m−1

)
− E

(
X (2)
l...l+m−1

)∣∣∣

=
N∑

m,l=1

wmwl
√
m|μ1 − μ2| = |μ1 − μ2|

N∑
m,l=1

1√
m(m + 1)l(l + 1)

� |μ1 − μ2|
+∞∑
m,l=1

1√
m(m + 1)l(l + 1)

< +∞, (10)

with μ j = E
(
X ( j)
1

)
, for j = 1, 2; and

N∑
m,l=1

wmwlρ
∗ (

Cov
(
X (1)
l...l+m−1

)
,Cov

(
X (2)
l...l+m−1

))
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�
N∑

m,l=1

wmwl

√√√√2
m∑

k1=1

m∑
k2=1

(γX (|k1 − k2|))2

=
N∑

m,l=1

wmwl

√√√√√2
m−1∑

q=−(m−1)

(m − |q|) (γX (|q|))2

�
N∑

m,l=1

wmwl

√√√√√2m
m−1∑

q=−(m−1)

(γX (|q|))2

� c
N∑

m,l=1

√
2m

m(m + 1)l(l + 1)
� c

+∞∑
m,l=1

√
2m

m(m + 1)l(l + 1)
< +∞, (11)

where the constant c = ∑∞
q=−∞ |Cov(X1, X1+|q|)| < +∞. Therefore combining (10)

and (11) leads to

d∗(X (1), X (2)) < +∞.

Hence d∗(X (1), X (2)) in (5) is well-defined.

In (5) and (6) we see that the behavior of the dissimilarity measure d∗ is jointly explained
by the Euclidean distance of means and the matrices distance of covariance matrices. If the
means of the processes X (1) and X (2) are priorly known to be equal, the distance d∗ can be
simplified to:

d∗(X (1), X (2)) =
∞∑

m,l=1

wmwlρ
∗ (

Cov
(
X (1)
l...l+m−1

)
,Cov

(
X (2)
l...l+m−1

))
. (12)

Note that this dissimilarity measure can be applied on self-similar processes, since they are
all zero-mean (see Sect. 3).

Next we provide consistent estimator of d∗(X (1), X (2)). For 1 � l � n andm � n− l+1,
define μ∗(Xl...n,m) to be the empirical mean of a process X ’s sample path (Xl , . . . , Xn):

μ∗(Xl...n,m) := 1

n − m − l + 2

n−m+1∑
i=l

(Xi . . . Xi+m−1)
T , (13)

and define ν∗(Xl...n,m) to be the empirical covariance matrix of (Xl , . . . , Xn):

ν∗(Xl...n,m) := 1

n − m − l + 2

n−m+1∑
i=l

(Xi . . . Xi+m−1)
T (Xi . . . Xi+m−1)

−μ∗(Xl...n,m)μ∗(Xl...n,m)T , (14)

where MT denotes the transpose of the matrix M .
Recall that the notion of wide-sense ergodicity is given in Definition 1. The ergodicity

theorem concerns what information can be derived from an average over time about the
ensemble average at each point of time. For the wide-sense stationary ergodic process X ,
being either continuous-time or discrete-time, the following statement holds: every empirical
mean μ∗(Xl...n,m) is a strongly consistent estimator of the path mean E(Xl...l+m−1); and
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every empirical covariance matrix ν∗(Xl...n,m) is a strongly consistent estimator of the
covariance matrix Cov(Xl...l+m−1) under the Frobenius norm, i.e., for all m ≥ 1, we have

P

(
lim
n→∞

∣∣μ∗(Xl...n,m) − E(Xl...l+m−1)
∣∣ = 0

)
= 1

and

P

(
lim
n→∞

∥∥ν∗(Xl...n,m) − Cov(Xl...l+m−1)
∥∥
F = 0

)
= 1.

Next we introduce the empirical covariance-based dissimilarity measure d̂∗, serving as a
consistent estimator of the covariance-based dissimilarity measure d∗.

Definition 6 (Empirical covariance-based dissimilarity measure) Given two processes’ sam-
ple paths x j = (X ( j)

1 , . . . , X ( j)
n j ), j = 1, 2. Let n = min{n1, n2}, we define the empirical

covariance-based dissimilarity measure between x1 and x2 by

d̂∗(x1, x2) :=
mn∑
m=1

n−m+1∑
l=1

wmwl

×M
((

μ∗(X (1)
l...n,m), ν∗(X (1)

l...n,m)
)

,
(
μ∗(X (2)

l...n,m), ν∗(X (2)
l...n,m)

))
. (15)

The empirical covariance-based dissimilaritymeasure between a sample path xi and a process
X ( j) (i, j ∈ {1, 2}) is defined by

d̂∗(xi , X ( j)) :=
mn∑
m=1

n−m+1∑
l=1

wmwl

×M
((

μ∗(X (i)
l...n,m), ν∗(X (i)

l...n,m)
)

,
(
E

(
X ( j)
l...l+m−1

)
,Cov

(
X ( j)
l...l+m−1

)))
. (16)

Unlike the dissimilarity measure d∗ which describes some distance between stochastic pro-
cesses, the empirical covariance-based dissimilarity measure is some distance between two
sample paths (finite-length vectors). We will show in the forthcoming Lemma 1 that d̂∗ is a
consistent estimator of d∗.

Two observed sample paths possibly have distinct lengths n1, n2, therefore in (15) we
consider computing the distances between their subsequences of length n = min{n1, n2}. In
practice we usually take mn = �log n�, the floor number of log n.

It is easy to verify that both d∗ and d̂∗ satisfy the triangle inequalities, thanks to the fact
that both the Euclidean distance and ρ∗ satisfy the triangle inequalities. More precisely, the
following holds.

Remark 1 Thanks to (7) and the definitions of d∗ [see (5)] and d̂∗ [see (15)], we see that the
triangle inequality holds for the covariance-based dissimilarity measure d∗, as well as for
its empirical estimate d̂∗. Therefore for arbitrary processes X (i), i = 1, 2, 3 and arbitrary
finite-length sample paths xi , i = 1, 2, 3, we have

d∗(X (1), X (2)) ≤ d∗(X (1), X (3)) + d∗(X (2), X (3)),
d̂∗(x1, x2) ≤ d̂∗(x1, x3) + d̂∗(x2, x3),

d̂∗(x1, X (1)) ≤ d̂∗(x1, X (2)) + d∗(X (1), X (2)).
Remark 1 together with the fact that the processes are weakly ergodic, leads to Lemma 1
below, which is the key to demonstrate that our clustering algorithms in the forthcoming
section are asymptotically consistent.

123



Machine Learning (2019) 108:2159–2195 2169

Lemma 1 Given two paths

x1 =
(
X (1)
1 , . . . , X (1)

n1

)
and x2 =

(
X (2)
1 , . . . , X (2)

n2

)
,

sampled from the wide-sense stationary ergodic processes X (1) and X (2) respectively, we
have

P

(
lim

n1,n2→∞ d̂∗ (x1, x2) = d∗ (
X (1), X (2)

))
= 1 (17)

and

P

(
lim

ni→∞ d̂∗ (
xi , X ( j)

)
= d∗ (

X (1), X (2)
))

= 1, for i, j ∈ {1, 2}, i �= j . (18)

Proof We take n = min{n1, n2}. To show (17) holds it suffices to prove that for arbitrary
ε > 0, there is an integer N > 0 such that for any n ≥ N , with probability 1,∣∣∣d̂∗ (x1, x2) − d∗(X (1), X (2))

∣∣∣ < ε.

Define the sets of indexes

S1(n) = {
(m, l) ∈ N

2 : m � mn, l � n − m + 1
}
and S2(n) = N

2\S1(n).

To be more convenient we also denote by

V
(
X ( j)
l...l+m−1

)
:=

(
E

(
X ( j)
l...l+m−1

)
,Cov

(
X ( j)
l...l+m−1

))
(19)

and

V̂
(
X ( j)
l...n,m

)
:=

(
μ∗ (

X ( j)
l...n,m

)
, ν∗ (

X ( j)
l...n,m

))
, (20)

for (m, l) ∈ N
2 and j = 1, 2. By using the definitions of d∗ [see (5)], of d̂∗ [see (15)] and

the triangle inequality∣∣∣∣∣
∑
i∈I

ai

∣∣∣∣∣ �
∑
i∈I

|ai |, for any indexes set I and any real numbers a′
i s,

we obtain

∣∣∣d̂∗(x1, x2) − d∗(X (1), X (2))∣∣∣
=

∣∣∣∣
∑

(m,l)∈S1(n)

wmwl

(
M

(
V̂ (X (1)

l...n,m), V̂ (X (2)
l...n,m)

)

−
∑

(m,l)∈S1(n)∪S2(n)

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

) ∣∣∣∣

�
∣∣∣∣

∑
(m,l)∈S1(n)

wmwl

(
M

(
V̂ (X (1)

l...n,m), V̂ (X (2)
l...n,m)

)

−M
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)) ∣∣∣∣
+

∑
(m,l)∈S2(n)

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)
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�
∑

(m,l)∈S1(n)

wmwl

∣∣∣∣M
(
V̂ (X (1)

l...n,m), V̂ (X (2)
l...n,m)

)

−M
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

) ∣∣∣∣
+

∑
(m,l)∈S2(n)

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)
. (21)

Next note that the metric M satisfies the following triangle inequality:

∣∣∣∣M
(
V̂ (X (1)

l...n,m), V̂ (X (2)
l...n,m)

)
− M

(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

) ∣∣∣∣
≤ M

(
V̂ (X (1)

l...n,m), V (X (1)
l...l+m−1)

)
+ M

(
V̂ (X (2)

l...n,m), V (X (2)
l...l+m−1)

)
. (22)

It follows from (21) and (22) that
∣∣∣d̂∗(x1, x2) − d∗(X (1), X (2))∣∣∣

�
∑

(m,l)∈S1(n)

wmwl

(
M

(
V̂ (X (1)

l...n,m), V (X (1)
l...l+m−1)

)

+M
(
V̂ (X (2)

l...n,m), V (X (2)
l...l+m−1)

))

+
∑

(m,l)∈S2(n)

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)
. (23)

Next we show that the right-hand side of (23) converges to 0 as n → ∞. First observe that
the weights {wm}m≥1 have been chosen such that

∞∑
m,l=1

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)
< +∞. (24)

Then for arbitrary fixed ε > 0, we can find an index J such that for n ≥ J ,

∑
(m,l)∈S2(n)

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)
≤ ε

3
. (25)

Next, the weak ergodicity of the processes X (1) and X (2) implies that: for each (m, l) ∈ N
2,

V̂ (X ( j)
l...n,m) ( j = 1, 2) is a strongly consistent estimator of V (X ( j)

l...l+m−1), under the metric
M, i.e., with probability 1,

lim
n→∞M

(
V̂ (X ( j)

l...n,m), V (X ( j)
l...l+m−1)

)
= 0. (26)

Thanks to (26), for any (m, l) ∈ S1(J ), there exists some Nm,l (which depends on m, l) such
that for all n ≥ Nm,l , we have, with probability 1,

M
(
V̂ (X ( j)

l...n,m), V (X ( j)
l...l+m−1)

)
≤ ε

3wmwl#S1(J )
, for j = 1, 2, (27)
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where #A denotes the number of elements included in the set A. Denote by NJ =
max

(m,l)∈S1(J )
Nm,l . Then observe that, for n ≥ max{NJ , J },

∑
(m,l)∈S2(n)

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)

�
∑

(m,l)∈S2(J )

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)
. (28)

It results from (23), (28), (27) and (25) that, for n ≥ max{NJ , J },∣∣∣d̂∗(x1, x2) − d∗(X (1), X (2))∣∣∣
≤

∑
(m,l)∈S1(n)

wmwlM
(
V̂ (X (1)

l...n,m), V (X (1)
l...l+m−1)

)

+
∑

(m,l)∈S1(n)

wmwlM
(
V̂ (X (2)

l...n,m), V (X (2)
l...l+m−1)

)

+
∑

(m,l)∈S2(J )

wmwlM
(
V (X (1)

l...l+m−1), V (X (2)
l...l+m−1)

)

� ε

3
+ ε

3
+ ε

3
= ε,

which proves (17). The statement (18) can be proved analogously. ��

2 Asymptotically consistent clustering algorithms

2.1 Offline and online algorithms

In this sectionwe introduce the asymptotically consistent algorithms for clustering offline and
online datasets respectively. We explain how the two algorithms work, and prove that both
algorithms are asymptotically consistent. It is worth noting that the asymptotic consistency
of our algorithms relies on the assumption that the number of clusters κ is priorly known.
The case for κ being unknown has been studied in Khaleghi et al. (2016) in the problem
of clustering strictly stationary ergodic processes. However in the setting of wide-sense
stationary ergodic processes, this problem remains open.

Algorithm 1 below presents the pseudo-code for clustering offline datasets. It is a centroid-
based clustering approach. One of its main features is that the farthest 2-point initialization
applies. The algorithm selects the first two cluster centers by picking the two “farthest”
observations among all observations (Lines 1–3), under the empirical dissimilarity measure
d̂∗. Then each next cluster center is chosen to be the observation farthest to all the previously
assigned cluster centers (Lines 4–6). Finally the algorithmassigns each remaining observation
to its nearest cluster (Lines 7–11).
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Algorithm 1: Offline clustering, with known κ

Input: sample paths S = {x1, . . . , xN }; number κ of clusters; weights w j ,
j = 1, . . . , N (t).

1 (c1, c2) ←− argmax
(i, j)∈{1,...,N }2,i< j

d̂∗(xi , x j );

2 C1 ←− {c1};
3 C2 ←− {c2};
4 for k = 3, . . . , κ do
5 ck ←− argmax

i=1,...,N
min

j=1,...,k−1
d̂∗(xi , xc j );

6 end
7 Assign each remaining point to its nearest cluster center:
8 for i = 1, . . . , N do
9 k ←− argmin

k∈{1,...,κ}
{
d̂∗(xi , x j ) : j ∈ Ck

}
;

10 Ck ←− Ck ∪ {i};
11 end

Output: The κ clusters {C1,C2, . . . ,Cκ }.
We point out that Algorithm 1 is different from Algorithm 1 in Khaleghi et al. (2016) at

two points:

1. As mentioned previously, our algorithm relies on the covariance-based dissimilarity d̂∗,
in lieu of the process distributional distances.

2. Our algorithm suggests 2-point initialization, while Algorithm 1 in Khaleghi et al. (2016)
randomly picks 1-point as the first cluster center. The latter initialization was proposed
for use with k-means clustering by Katsavounidis et al. (1994). Algorithm 1 in Khaleghi
et al. (2016) requires κN distance calculations, while our algorithm requires N (N −1)/2
distances calculations. It is very important to point out that, to reduce the computational
complexity cost of our algorithm, it is fine to replace our 2-point initializationwith the one
in Khaleghi et al. (2016). However there are two reasons based on which we recommend
using our approach of initialization:

Reason 1 In the forthcoming Sect. 4.1, our empirical comparison to Khaleghi et al. (2016)
shows that the 2-point initialization turns out to be more accurate in clustering
than the 1-point initialization.

Reason 2 Concerning the complexity cost, we have the following loss and earn: on one hand,
the 2-point initialization requires more steps of calculations than the 1-point ini-
tialization; on the other hand, in our covariance-based dissimilarity measure d̂∗
defined in (15), the matrices distance ρ∗ requires m2

n computations of Euclidean
distances, while the distance

∑
B∈Bm,l |ν(x1, B)−ν(x2, B)| given in (3) requires

at least n1 + n2 − 2mn + 2 computations of Euclidean distances [see Eq. (33)
in Khaleghi et al. 2016]. Note that we take mn = �log n� (�·� denotes the floor
integer number) though this framework. Therefore the computational complexity
of the covariance-based dissimilarity d̂∗ makes the overall complexity of Algo-
rithm 1 quite competitive to the algorithm in Khaleghi et al. (2016), especially
when the paths lengths ni , i = 1, . . . , n are relatively large, or when the database
of all distance values are at hand.

Next we present the clustering algorithm for online setting. As mentioned in Khaleghi et al.
(2016), one regards recently-observed paths as unreliable observations, for which sufficient
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information has not yet been collected, and for which the estimators of the covariance-based
dissimilarity measures are not accurate enough. Consequently, farthest-point initialization
would not work in this case; and clustering on all available data results in not only mis-
clustering unreliable paths, but also in clustering incorrectly those for which sufficient data
are already available. The strategy is presented in Algorithm 2 below: clustering based on a
weighted combination of several clusterings, each obtained by running the offline algorithm
(Algorithm 1) on different portions of data.

More precisely, Algorithm 2 works as follows. Suppose the number of clusters κ is
known. At time t , a sample S(t) is observed (Lines 1–2), the algorithm iterates over
j = κ, . . . , N (t) where at each iteration Algorithm 1 is utilized to cluster the first j
paths in S(t) into κ clusters (Lines 6–7). For each cluster its center is selected as the
observation having the smallest index among that cluster, and their indexes are ordered
increasingly (Line 8). The minimum inter-cluster distance γ j (see Cesa-Bianchi and
Lugosi 2006) is calculated as the minimum distance d̂∗ between the κ cluster centers
obtained at iteration j (Line 9). Finally, every observation in S(t) is assigned to the
nearest cluster, based on the weighted combination of the distances between this obser-
vation and the candidate cluster centers obtained at each iteration on j (Lines 14–17).

Algorithm 2: Online clustering, with known κ

Input: sample paths
{
S(t) = {xt1, . . . , xtN (t)}

}
t
; number of clusters κ; weights β( j),

j = 1, . . . , N (t).
1 for t = 1, . . . ,∞ do

2 Obtain new sequences: S(t) ←−
{
xt1, . . . , x

t
N (t)

}
;

3 Initialize the normalization factor: η ←− 0;
4 Initialize the final clusters: Ck(t) ←− ∅, k = 1, . . . , κ;
5 Generate N (t) − κ + 1 candidate cluster centers:
6 for j = κ, . . . , N (t) do
7

{
C j
1 , . . . ,C j

κ

} ←− Alg1
({
xt1, . . . , x

t
j

}
, κ

)
;

8 (c j1 , . . . , c
j
κ ) ←− sort(min

{
i ∈ C j

k

}
, k = 1, . . . , κ);

9 γ j ←− min
k,k′∈{1,...,κ},k �=k′ d̂

∗(xt
c jk

, xt
c j
k′

)
;

10 w j ←− β( j);
11 η ←− η + w jγ j ;
12 end
13 Assign each point to a cluster:
14 for i = 1, . . . , N (t) do

15 k ←− argmin
k′∈{1,...,κ}

1
η

N (t)∑
j=κ

w jγ j d̂∗(xti , xtc j
k′

)
;

16 Ck(t) ←− Ck(t) ∪ {i};
17 end
18 end

Output: The κ clusters {C1(t), . . . ,Cκ (t)}, t = 1, 2, . . . ,∞.

In Algorithm 2, β( j) denotes a function indexed by j , which is the value chosen for
the weight w j . Remark that for online setting, our algorithm requires the same number of
distance calculations as in Algorithm 2 in Khaleghi et al. (2016). They are both bounded by
O(N (t)2). Using 2-point initialization, our Algorithm 2 then takes advantage in the overall
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computational complexity cost. Finally we note that both Algorithm 1 and Algorithm 2
require κ ≥ 2. When κ is known, this restriction is not a practical issue.

2.2 Consistency and computational complexity of the algorithms

In this section we prove the asymptotic consistency of Algorithms 1 and 2. They are stated
in the 2 theorems below.

Theorem 1 Algorithm 1 is strongly asymptotically consistent (in the offline sense), provided
that the true number κ of clusters is known, and each sequence xi , i = 1, . . . , N is sampled
from some wide-sense stationary ergodic process.

Proof Similar to the idea used in the proof of Theorem 11 in Khaleghi et al. (2016), to prove
the consistency statement we will need Lemma 1 to show that if the sample paths in S are
long enough, the sample paths that are generated by the same process covariance structure are
“closer” to each other than to the rest. Therefore, the sample paths chosen as cluster centers
are each generated by a different covariance structure, and since the algorithm assigns the
rest to the closest clusters, the statement follows. More formally, let nmin denote the shortest
path length in S:

nmin := min {ni : i = 1, . . . , N } .

Denote by δmin the minimum non-zero covariance-based dissimilarity measure between any
2 covariance structures:

δmin := min
{
d∗ (

X (k), X (k′)
)

: k, k′ ∈ {1, . . . , κ}, k �= k′} . (29)

Fix ε ∈ (0, δmin/4). Since there are a finite number N of observations, by Lemma 1 there is
n0 such that for nmin ≥ n0 we have

max
l∈{1,...,κ}

i∈Gl∩{1,...,N }
d̂∗ (

xi , X (l)
)

≤ ε, (30)

where Gl , l = 1, . . . , κ denote the covariance structure ground-truth partitions given by
Definition 2.

On one hand, by using (30), the triangle inequality (see Remark 1) and the fact that

max
i∈I (ai + bi ) � max

i∈I ai + max
i∈I bi

for any indexes set I and any real numbers ai ’s and bi ’s, we obtain

max
l∈{1,...,κ}

i, j∈Gl∩{1,...,N }
d̂∗ (

xi , x j
)

≤ max
l∈{1,...,κ}

i, j∈Gl∩{1,...,N }
d̂∗ (

xi , X (l)
)

+ max
l∈{1,...,κ}

i, j∈Gl∩{1,...,N }
d̂∗ (

x j , X
(l)

)

= max
l∈{1,...,κ}

i∈Gl∩{1,...,N }
d̂∗ (

xi , X (l)
)

+ max
l∈{1,...,κ}

j∈Gl∩{1,...,N }
d̂∗ (

x j , X
(l)

)

� 2ε <
δmin

2
. (31)
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On the other hand, by using the triangle inequality (see Remark 1), (29) and (30), we have
for nmin ≥ n0,

min
k,k′∈{1,...,κ},k �=k′
i∈Gk∩{1,...,N }
j∈Gk′ ∩{1,...,N }

d̂∗(xi , x j )

≥ min
k,k′∈{1,...,κ},k �=k′
i∈Gk∩{1,...,N }
j∈Gk′ ∩{1,...,N }

{
d∗ (

X (k), X (k′)
)

− d̂∗ (
xi , X (k)

)
− d̂∗ (

x j , X
(k′)

)}

≥ δmin − 2ε >
δmin

2
. (32)

In words, (31) together with (32) indicates that the sample paths in S that are generated by
the same covariance structure are closer to each other than to the rest of sample paths. Then
by (31) and (32), for nmin ≥ n0, we necessarily have each sample path should be “close”
enough to its cluster center, i.e.,

max
i=1,...,N

min
k=1,...,κ−1

d̂∗(xi , xck ) >
δmin

2
, (33)

where the κ cluster centers’ indexes c1, . . . , cκ are given by Algorithm 1 as

(c1, c2) := argmax
i, j=1,...,N , i< j

d̂∗(xi , x j ),

and

ck := argmax
i=1,...,N

min
j=1,...,k−1

d̂∗(xi , xc j ), k = 3, . . . , κ.

Hence, the indexes c1, . . . , cκ will be chosen to index the sample paths generated by different
process covariance structures. Then by (31) and (32), each remaining sample path will be
assigned to the cluster center corresponding to the sample path generated by the same process
covariance structure. Finally Theorem 1 results from (31), (32) and (33). ��
Theorem 2 Algorithm 2 is strongly asymptotically consistent (in the online sense), provided
the true number of clusters κ is known, and each sequence xi , i ∈ N is sampled from some
wide-sense stationary ergodic process.

Proof The idea of the proof is similar to that of Theorem 12 in Khaleghi et al. (2016).
The main differences between the 2 proofs are made by the fact that our covariance-based
dissimilarity measure d̂∗ is not bounded by some constant. Although it is not mentioned in
the pseudo-codeAlgorithm 2, the notations γ j ’s and η are dependent of t , therefore we denote
γ t
j := γ j and ηt := η through this proof. In the first step, by using the triangle inequality we

can show that for any t > 0, any N ∈ N,

sup
j∈{1,...,N }
k∈{1,...,κ}

d̂∗ (
xtj , X

(k)
)

� sup
j∈{1,...,N }
k∈{1,...,κ}

(
d∗ (

X (k), X (k′
j )
)

+ d̂∗ (
xtj , X

(k′
j )
))

� sup
j∈{1,...,N }
k∈{1,...,κ}

d∗ (
X (k), X (k′

j )
)

+ sup
j∈{1,...,N }
k∈{1,...,κ}

d̂∗ (
xtj , X

(k′
j )
)

= sup
j∈{1,...,N }
k∈{1,...,κ}

d∗ (
X (k), X (k′

j )
)

+ sup
j∈{1,...,N }

d̂∗ (
xtj , X

(k′
j )
)

, (34)
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where for each j , k′
j is chosen such that x

t
j is sampled from the process covariance structure

X (k′
j ). On one hand, let

δmax := max
{
d∗ (

X (k), X (k′)
)

: k, k′ ∈ {1, . . . , κ}, k �= k′} , (35)

then the first term on the right-hand side of (34) can be bounded by the constant δmax, which
neither depends on t nor on N :

sup
j∈{1,...,N }
k∈{1,...,κ}

d∗ (
X (k), X (k′

j )
)

� δmax. (36)

On the other hand, since xtj is sampled from X (k′
j ), by using the weak ergodicity (see

Lemma 1), for j = 1, . . . , N , with probability 1,

lim
t→∞ d̂∗ (

xtj , X
(k′

j )
)

= 0.

This together with the fact that a convergent sequence is also bounded, leads to, for each
j ∈ {1, . . . , N }, there is b j (not depending on t) such that

d̂∗ (
xtj , X

(k′
j )
)

� b j , for all t ≥ 0.

Therefore the second term on the right-hand side of (34) can be bounded as:

sup
j∈{1,...,N }

d̂∗ (
xtj , X

(k′
j )
)

� max{b1, . . . , bN }. (37)

Let

B(N ) := δmax + max{b1, . . . , bN }. (38)

It is important to point out that B(N ) depends only on N but not on t . It follows from (34),
(36), (37) and (38) that

sup
j∈{1,...,N }
k∈{1,...,κ}

d̂∗ (
xtj , X

(k)
)

� B(N ). (39)

Let δmin be the one given in (29). Fix ε ∈ (0, δmin/4). By using (8), we can choose some
J > 0 so that

∞∑
j=J+1

w j � ε. (40)

Recall that in online setting, the i th sample path’s length ni (t) grows with time, for each i .
Therefore, by the wide-sense ergodicity (see Lemma 1), for every j ∈ {1, . . . , J } there exists
some T1( j) > 0 such that for all t ≥ T1( j) we have

max
k∈{1,...,κ}

i∈Gk∩{1,..., j}
d̂∗ (

xti , X
(k)

)
� ε. (41)

For k = 1, . . . , κ , define sk(N (t)) to be the index of the first path in S(t) sampled from the
covariance structure X (k), i.e.,

sk(N (t)) := min {i ∈ Gk ∩ {1, . . . , N (t)}} . (42)
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Note that sk(N (t)) depends only on N (t). Then denote

m(N (t)) := max
k∈{1,...,κ} sk(N (t)). (43)

By Theorem 1 for every j ∈ {m(N (t)), . . . , J } there exists some T2( j) such that

Alg1(S(t)| j , κ) is asymptotically consistent for all t ≥ T2( j), where S(t)| j =
{
xt1, . . . , x

t
j

}
denotes the subset of S(t) consisting of the first j sample paths. Let

T := max
i=1,2

j∈{1,...,J }
Ti ( j).

Recall that, by the definition of m(N (t)) in (43), S(t)|m(N (t)) contains sample paths from all
κ distinct covariance structures. Therefore, similar to obtaining (32), for all t ≥ T , we use
the triangle inequality, (29) and (41) to obtain

min
k,k′∈{1,...,κ}

k �=k′
d̂∗

(
xt
cm(N (t))
k

, xt
cm(N (t))
k′

)

≥ min
k,k′∈{1,...,κ}

k �=k′

(
d∗ (

X (k), X (k′)
)

−
(
d̂∗

(
xt
cm(N (t))
k

, X (k)
)

+ d̂∗
(
xt
cm(N (t))
k′

, X (k′)
)))

≥ δmin − 2ε ≥ δmin

2
. (44)

From Algorithm 2 (see Lines 9, 11) we see

ηt :=
N (t)∑
j=1

w jγ
t
j , with γ t

j := min
k,k′∈{1,...,κ}

k �=k′
d̂∗

(
xt
c jk

, xt
c j
k′

)
.

Hence, by (44), for all t ≥ T ,

ηt ≥ wm(N (t))δmin

2
. (45)

For j ∈ {J + 1, . . . , N (t)}, by the triangle inequality and (39), we have for all t ≥ T ,

γ t
j = min

k,k′∈{1,...,κ}
k �=k′

d̂∗
(
xt
c jk

, xt
c j
k′

)

� min
k,k′∈{1,...,κ}

k �=k′

(
d∗ (

X (k), X (k′)
)

+
(
d̂∗

(
xt
c jk

, X (k)
)

+ d̂∗
(
xt
c j
k′
, X (k′)

)))

≤ δmax + 2B(N (t)). (46)

Denote by

M(N (t)) := δmax + 2B(N (t)),

then (46) can be interpreted as: for all t ≥ T ,

sup
j∈{J+1,...,N (t)}

γ t
j � M(N (t)). (47)
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By (39), (45) and (47), for every k ∈ {1, . . . , κ} we obtain

1

ηt

N (t)∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

= 1

ηt

J∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

+ 1

ηt

N (t)∑
j=J+1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

≤ 1

ηt

J∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

+ 2B(N (t))M(N (t))

wm(N (t))δmin

N (t)∑
j=J+1

w j

= 1

ηt

m(N (t))−1∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

+ 1

ηt

J∑
j=m(N (t))

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

+ 2B(N (t))M(N (t))ε

wm(N (t))δmin
. (48)

Next we provide upper bounds of the first 2 items in the right-hand side of (48). On one
hand, by the definition of m(N (t), the sample paths in S(t)| j for j = 1, . . . ,m(N (t)) − 1
are generated by at most κ − 1 out of the κ process covariance structures. Therefore for each
j ∈ {1, . . . ,m(N (t)) − 1} there exists at least one pair of distinct cluster centers that are
generated by the same process covariance structure. Consequently, by (41) and the definition
of ηt , for all t ≥ T and k ∈ {1, . . . , κ},

1

ηt

m(N (t))−1∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

≤ ε

ηt

m(N (t))−1∑
j=1

w jγ
t
j ≤ ε. (49)

On the other hand, since the clusters are ordered in the order of appearance of the distinct
covariance structures, we have xt

c jl
= xtsl (N (t)) for all j = m, . . . , J and l = 1, . . . , κ , where

the index sl(N (t)) is defined in (42). Therefore, by (41) and the definition of ηt , for all t ≥ T
and every l = 1, . . . , κ we have

1

ηt

J∑
j=m(N (t))

w jγ
t
j d̂

∗
(
xt
c jl

, X (l)
)

= d̂∗ (
xtsl (N (t)), X

(l)
) 1

ηt

J∑
j=m(N (t))

w jγ
t
j ≤ ε. (50)

Combining (48), (49), (50) and (41) we obtain, for t ≥ T ,

1

ηt

N (t)∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

� ε

(
2 + 2B(N (t))M(N (t))

wm(N (t))δmin

)
(51)

for all l = 1, . . . , κ .
Now we explain how to use (51) to prove the asymptotic consistency of Algorithm 2.

Consider an index i ∈ Gk′ for some k′ ∈ {1, . . . , κ}. Then on one hand, using (49) and (50),
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we get for k ∈ {1, . . . , κ}, k �= k′,

1

ηt

N (t)∑
j=1

w jγ
t
j d̂

∗
(
xti , x

t
c jk

)

≥ 1

ηt

N (t)∑
j=1

w jγ
t
j d̂

∗ (
xti , X

(k)
)

− 1

ηt

N (t)∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

≥ 1

ηt

N (t)∑
j=1

w jγ
t
j

(
d∗ (

X (k), X (k′)
)

− d̂∗ (
xti , X

(k′)
))

− 1

ηt

N (t)∑
j=1

w jγ
t
j d̂

∗
(
xt
c jk

, X (k)
)

≥ δmin − 2ε

(
2 + 2B(N (t))M(N (t))

wm(N (t))δmin

)
. (52)

On the other hand, for any N ∈ N, by using the wide-sense ergodicity, there is T (N ) such
that for all t ≥ T (N ),

max
k∈{1,...,κ}

i∈Gk∩{1,...,N }
d̂∗ (

xti , X
(k)

)
� ε. (53)

Since ε can be arbitrarily chosen, it follows from (52) and (53) that

argmin
k∈{1,...,κ}

1

ηt

N (t)∑
j=1

w jγ j d̂
∗
(
xti , x

t
c jk

)
= k′ (54)

holds almost surely for all i = 1, . . . , N and all t ≥ max{T , T (N )}. Theorem 2 is proved. ��
The next part involves discussion of the complexity costs of the above two algorithms.

1. For offline setting, our Algorithm 1 requires N (N − 1)/2 calculations of d̂∗, against
κN calculations of d̂ in the offline algorithm in Khaleghi et al. (2016). In each d̂∗, the
matrices distance ρ∗ consists of m2

n calculations of Euclidean distances. Then iterating
overm, l in d̂∗ we see that at mostO(nm3

n) computations of Euclidean distances, against
O(nmn/| log s|) computations of d̂ for the offline algorithm in Khaleghi et al. (2016),
where

s = min
X (1)
i �=X (2)

j
i∈{1,...,n1}; j∈{1,...,n2}

∣∣∣X (1)
i − X (2)

j

∣∣∣ .

It is known that efficient searching algorithm can be utilized to determine s, with at most
O(n log(n)) (n = min{n1, n2}) computations. Therefore our Algorithm 1 is computa-
tionally competitive to the one in Khaleghi et al. (2016).

2. For online setting, we can hold a similar discussion as in Khaleghi et al. (2016), Sec-
tion 5.1. There it shows the computational complexity of updates of d̂∗ for both our
Algorithm 2 and the online algorithm in Khaleghi et al. (2016) is at most O(N (t)2 +
N (t) log3 n(t)) (here we take mn(t) = �log n(t)�). Therefore the overall difference of
computational complexities between the 2 algorithms are reflected by the complexity of
computing d̂∗ and d̂ (see Point 1).
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2.3 Efficient dissimilarity measure

Kleinberg (2003) presented a set of three simple properties that a good clustering function
should have: scale-invariance, richness and consistency. Further, he demonstrated that there
is no clustering function that satisfies these properties at the meanwhile. He pointed out, as
one particular example, that the centroid-based clustering basically does not satisfy the above
consistency property (note that this is a different concept from our asymptotic consistency).
In this section we show that, although the consistency property is not satisfied, there exists
some other criterion of efficiency of dissimilarity measure in a particular setting. It is the
so-called efficient dissimilarity measure.

Definition 7 (Efficient dissimilarity measure) Assume that the samples S = {x(ξ) : ξ ∈ H}
(H ⊂ R

q for some q ∈ N), meaning that all the paths x(ξ) are indexed by a set of real-valued
parameters ξ . Then a clustering function is called efficient if its dissimilarity measure d
satisfies that, there exists c > 0 so that for any x(ξ1), x(ξ2) ∈ S,

d(x(ξ1), x(ξ2)) = c‖ξ1 − ξ2‖,
where ‖ · ‖ denotes some norm defined over Rq .

Mathematically, efficient dissimilarity measure is a metric induced by some norm. Clustering
processes based on efficient dissimilarity measure will then be equivalent to clustering under
classical distances in R

q , such as Euclidean distance, Manhattan distance, or Minkowski
distance. The latter setting has well-known advantages in cluster analysis. For example,
Euclidean distance performs well when deployed to datasets that include compact or isolated
clusters (Jain andMao 1996; Jain et al. 1999); when the shape of clusters is hyper-rectangular
(Xu and Wunsch 2005), Manhattan distance can be used; Minkowski distance, including
Euclidean and Manhattan distances as its particular cases, can be utilized to solve clustering
obstacles (Wilson andMartinez 1997). There is a rich literature on comparing the above three
distances to each other through discussing of their advantages and inconveniences. We refer
to Hirkhorshidi et al. (2015) and the references therein.

In the next section we present an excellent example, to show how to improve the efficiency
of our consistent algorithms, for clustering self-similar processes with wide-sense stationary
ergodic increments.

3 Self-similar processes and logarithmic transformation

In this section we introduce a non-linear transformation of the covariance matrices in d̂∗,
in order to improve the efficiency of clustering. This transformation is based on logarithmic
function. We use one example to explain how this transformation works. We show this
transformationmaps d̂∗ to some covariance-based dissimilaritymeasure similar to an efficient
one, when applied to clustering self-similar processes.

Definition 8 (Self-similar process, see Samorodnitsky and Taqqu (1994)) A process X (H) =
{X (H)

t }t∈T (e.g., T = R or Z) is self-similar with index H ∈ (0, 1) if, for all n ∈ N, all
t1, . . . , tn ∈ T , and all c �= 0 such that cti ∈ T (i = 1, . . . , n),

(
X (H)
t1 , . . . , X (H)

tn

)
law=

(
|c|−H X (H)

ct1 , . . . , |c|−H X (H)
ctn

)
.
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It can be shown that a self-similar process has necessarily zero mean and its covariance
structure is indexed by its self-similarity index H , in the following way (Embrechts and
Maejima 2000).

Theorem 3 Let
{
X (H)
t

}
t∈T be a zero-mean self-similar process with index H ∈ (0, 1) and

with wide-sense stationary ergodic increments. Assume E|X (H)
1 |2 < +∞, then for any

s, t ∈ T ,

Cov
(
X (H)
s , X (H)

t

)
= E|X (H)

1 |2
2

(
|s|2H + |t |2H − |s − t |2H

)
.

The corollary below follows.

Corollary 1 Let {X (H)
t }t∈T be a zero-mean self-similar process with index H and weakly sta-

tionary increments. Assume E|X (H)
1 |2 < +∞. For h > 0 small enough, define the increment

process Z (H)
h (s) = X (H)

s+h − X (H)
s , then for s, t ∈ T such that s − t ≥ h, we have

Cov
(
Z (H)
h (s), Z (H)

h (t)
)

= E|X (H)
1 |2
2

(
(s − t − h)2H + (s − t + h)2H − 2(s − t)2H

)
.

(55)

Applying three times the mean value theorem to (55) leads to

Cov
(
Z (H)
h (s), Z (H)

h (t)
)

= HE|X (H)
1 |2

(
(v

(H)
1 )2H−1 − (v

(H)
2 )2H−1

)
h

= H(2H − 1)E|X (H)
1 |2(v(H))2H−2h, (56)

for some v
(H)
1 ∈ (s − t, s − t + h), v(H)

2 ∈ (s − t − h, s − t) and v(H) ∈ (v
(H)
2 , v

(H)
1 ). We

see that the item Cov
(
Z (H)
h (s), Z (H)

h (t)
)
is a non-linear function of H . Next we would find

a function g such that g
(
Cov

(
Z (H)
h (s), Z (H)

h (t)
))

is linearly dependent of H . To this end

we introduce the following log∗-transformation: for x ∈ R, define

log∗(x) := sgn(x) log |x | =
⎧⎨
⎩
log(x) if x > 0;
− log(−x) if x < 0;
0 if x = 0.

Introduction to log∗-transformation is driven by the following 2 motivations:

Motivation 1 The log∗ function transforms the current dissimilarity measure to the one
which “linearly” depends on its variable H .

Motivation 2 The value log∗(x) preserves the sign of x , which leads to the consequence
that larger distance between x, y yields larger distance between log∗(x) and
log∗(y).

Applying log∗-transformation to the covariances of Z (H)
h given in (56), we obtain

log∗ (
Cov

(
Z (H)
h (s), Z (H)

h (t)
))

= sgn(2H − 1)
(
(2H − 2) log v(H) + log h + log(H |1 − 2H |Var(X (H)

1 ))
)

.

When v(H) and h are small the items log v(H) and log h are significantly large so log(H |1−
2H |Var(X (H)

1 )) becomes negligible. Thus we can write

log∗ (
Cov

(
Z (H)
h (s), Z (H)

h (t)
))

≈ sgn(2H − 1)
(
(2H − 2) log v(H) + log h

)
.
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In conclusion,

– When H1, H2 ∈ (0, 1/2] or H1, H2 ∈ [1/2, 1), the item log∗
(
Cov

(
Z (H)
h (s), Z (H)

h (t)
))

is “approximately linear” on H ∈ (0, 1/2] or on H ∈ [1/2, 1).
Using the approximation log v(H1) ≈ log v(H2) for H1, H2 ∈ (0, 1/2] or H1, H2 ∈
[1/2, 1), we have

log∗ (
Cov

(
Z (H1)
h (s), Z (H1)

h (t)
))

− log∗ (
Cov

(
Z (H2)
h (s), Z (H2)

h (t)
))

≈ 2 sgn(2H1 − 1)(H1 − H2) log v(H1).

– When H1 ∈ (0, 1/2] and H2 ∈ (1/2, 1), log∗
(
Cov

(
Z (H)
h (s), Z (H)

h (t)
))

turns out to be

relatively large, because we have

log∗ (
Cov

(
Z (H1)
h (s), Z (H1)

h (t)
))

− log∗ (
Cov

(
Z (H2)
h (s), Z (H2)

h (t)
))

≈ −(2H1 − 2) log v(H1) − (2H2 − 2) log v(H2)

≥ 2(2 − H1 − H2)min
{
log v(H1), log v(H2)

}
.

Taking advantage of the above facts we define the new empirical covariance-based dissimi-
larity measure (based on the definition (12)) to be

d̂∗∗(z1, z2) :=
mn∑
m=1

n−m+1∑
l=1

wmwlρ
∗ (

ν∗∗(Z (H1)
l...n ,m), ν∗∗(Z (H2)

l...n ,m)
)

,

where ν∗∗(Z (H1)
l...n ,m) is the empirical covariance matrix of Z (H1)

h , ν∗(Z (H1)
l...n ,m), with each

of its coefficients transformed by log∗: let M = {Mi, j }i=1,...,m; j=1,...,n be an arbitrary real-
valued matrix, define

log∗ M := {
log∗ Mi j

}
i=1,...,m; j=1,...,n .

Then we have

ν∗∗(Z (H1)
l...n ,m) := log∗ (

ν∗(Z (H1)
l...n ,m)

)
.

Now given 2 wide-sense stationary ergodic processes X (1), X (2), we choose {w j } j∈N to
satisfy

∞∑
m,l=1

wmwlρ
∗ (

log∗(Vl,l+m−1(X
(1))), log∗(Vl,l+m−1(X

(2))
)

< +∞, (57)

where we denote by

Vl,l+m−1(X
(1)) := Cov

(
X (1)
l , . . . , X (1)

l+m−1

)
.

Then define the log∗-transformation of the covariance-based dissimilarity measure to be

d∗∗(X (1), X (2)) :=
∞∑

m,l=1

wmwlρ
∗ (

log∗(Vl,l+m−1(X
(1))), log∗(Vl,l+m−1(X

(2))
)

. (58)
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Using the fact that log∗ is continuous over R\{0} and the weak ergodicity of Z (H)
h , we have

the following version of ergodicity:

d̂∗∗(z1, z2)
a.s.−−−→

n→∞ d∗∗(Z (H1)
h , Z (H2)

h

)
.

Unlike d̂∗, the dissimilarity measure d̂∗∗ is approximately linear with respect to the self-
similarity index H . Indeed, it is easy to see that

d̂∗∗(z1, z2) ∼
{ |H1 − H2| < 1, for H1, H2 ∈ (0, 1/2] or H1, H2 ∈ [1/2, 1);
2(2 − H1 − H2) > 1, for H1 ∈ (0, 1/2) and H2 ∈ [1/2, 1), (59)

where H1, H2 correspond to the self-similarity indexes of X (H1), X (H2) respectively. In fact,
from (59) we can say that d̂∗∗ satisfies Definition 7 in the wide sense: it is approximately
linearly dependent of |H1 − H2| when H1, H2 are in the same group out of (0, 1/2] and
[1/2, 1); it is approximately larger than |H1 − H2| when H1, H2 are in different groups out
of (0, 1/2] and [1/2, 1). This fact allows our asymptotically consistent algorithms to be more
efficient when clustering self-similar processes with weakly stationary increments, having
different values of H . In Sect. 4.2 we provide an example of clustering using our consistent
algorithms with and without the log∗-transformation, when the observed paths are from a
well-known self-similar process with stationary increments – fractional Brownian motion.

4 Simulation and empirical study

This section is devoted to applying our clustering algorithms to several synthetic data and
real-world data. It is worth noting that, in our statistical setting, the auto-covariance functions
are supposed to be unavailable, then the prior choice of theweightsw j presents some trade-off
between the convergence of the dissimilarity measure and practical application. On one hand,
low rate of convergence (e.g. w j = 1/ j( j + 1)) risks to a divergent dissimilarity measure
d∗ [see (5)]. On the other hand, high rate of convergence (e.g., w j = 1/ j3( j + 1)3) will
only make use of some first observations in the sample paths. We believe that the first issue
is a minor one in practice, because for most of the wide-sense stationary ergodic processes
(especially Gaussian) taking w j = 1/ j( j + 1) can lead to convergent d∗. Also, in practice,
instead of (5) it is fine to regard

d∗ (
X (1), X (2)

)
:=

N∑
m,l=1

wmwlρ
∗ (

Vl,l+m−1(X
(1)), Vl,l+m−1(X

(2))
)

,

for some N large enough.
Therefore, through this entire section we take w j = 1/ j( j + 1) and mn = �log n� (recall

that �·� denotes the floor number) in the covariance-based dissimilarity measure d̂∗. Next we
explain how to prepare offline and online datasets in this simulation study.

[Offline dataset simulation] For each scenario, we simulate 5 groups of sample paths,
each consists of 10 paths with length N (t) = 5t , for the time steps t = 1, 2, . . . , 50.
Algorithm 1 is performed over 100 such scenarios, and the misclassification rate is
calculated.

[Online dataset simulation] For each scenario, we simulate 5 groups of sample paths. Let
the total number of sample paths be N (t) = 30 + �(t − 1)/10� at each time step t .
That is, there are 6 sample paths in each of the 5 groups when t = 1. And the number
of sample paths in each group will increase by 1 once the time t increases by 10. For
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i = 1, 2, . . ., the i th sample path in each group has length ni (t) = 5[t − (i −6)+], where
x+ = max(x, 0).

We then apply the proposed clustering algorithms to both offline and online settings, and
determine their corresponding misclassification rates. These misclassification rates are uti-
lized to intuitively illustrate the asymptotic consistency of our clustering algorithms, or to
compare the performances of our clustering approaches to other ones. Recall that the mis-
classification rate (i.e. mean clustering error rate, see Section 6 in Khaleghi et al. 2016) is
obtained by dividing the number of misclassified paths by the total number of paths per
scenario, then average all these fractions:

p := Ave

(
# of misclassified sample paths

# of total sample paths collected

)
.

More precisely, let (C1, . . . ,Cκ ) denote the ground truth clusters of the N sample paths
x1, . . . , xN . We define the ground truth cluster labels by

Lk = (k, . . . , k)︸ ︷︷ ︸
#Ck times

, for k = 1, . . . , κ.

Let (l1, . . . , lN ) denote the cluster labels of (x1, . . . , xN ) output by some clustering approach.
Then the misclassification rate p of this approach is computed by

p = min
σ∈Sκ

(π1,...,πN )=(Lσ(1),...,Lσ(κ))

N∑
i=1

1{πi �=li }

N
, (60)

where Sκ denotes the group of all possible permutations over the set {1, . . . , κ}.
For example, in one scenario of 7 sample paths, if the ground truth cluster labels of

(x1, . . . , x7) satisfy

(L1, L2, L3) = ((1, 1), (2), (3, 3, 3, 3)),

while the clustering algorithm output cluster labels corresponding to (x1, . . . , x7) are given
by

(l1, . . . , l7) = (2, 1, 1, 2, 3, 2, 1) ,

then according to Eq. (60), the misclassification rate is 4/7. This can be explained as, at least
4 changes of labels are needed to let the output cluster labels match that of the ground truth
ones (1, 1, 3, 2, 2, 2, 2):

l1 ← 1; l3 ← 3; l5 ← 2; l7 ← 2.

We provide the implementation of the misclassification rate [see Eq. (60)] in MATLAB
publicly online asmisclassify_rate.m.1

4.1 Clustering non-Gaussian discrete-time stochastic processes

In Khaleghi et al. (2016) a simulation study on a non-Gaussian strictly stationary ergodic
discrete-time stochastic process (see also Shields (1996)) has been performed. Since this

1 https://github.com/researchcoding/clustering_stochastic_processes/blob/master/misclassify_rate.m.
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process has finite covariance structure, it is also wide-sense stationary ergodic. As a result
we can test our clustering algorithms over the same dataset and compare their performances
to the ones in Khaleghi et al. (2016). Recall that this process {Xt }t∈N is generated in the
following way. Fix some irrational-valued parameter α ∈ (0, 1).

Step 1. Draw a uniform random number r0 ∈ [0, 1].
Step 2. For each index i = 1, 2, . . . , N :

Step 2.1. Define ri = ri−1 + α − �ri−1 + α�.
Step 2.2. Define Xi =

{
1 when ri > 0.5,

0 otherwise.

We simulate 5 groups of sample paths {Xt }t∈N indexed by the irrational values α1 = 0.31 . . .,
α2 = 0.33 . . ., α3 = 0.35 . . ., α4 = 0.37 . . ., α5 = 0.39 . . . (αi , i = 1, . . . , 5, each is
simulated by a longdouble with a long mantissa, see Khaleghi et al. (2016)), respectively.

4.1.1 Offline dataset

We demonstrate the asymptotic consistency of Algorithm 1 by conducting offline clustering
on the simulated offline datasets of {Xi }i∈N.

The valid blue line in Fig. 1 illustrates the asymptotic consistency of Algorithm 1 through
the fact that itsmisclassification rate decreases as time t increases. Compared to the simulation
study over the same dataset in Khaleghi et al. (2016), the misclassification rate provided by
our proposed algorithm converges at a comparable speed (see Figure 2 in Khaleghi et al.
2016), even though Algorithm 1 aims to cluster “covariance structures” but not “process
distributions”.

The dot-dashed red line in Fig. 1 presents the performance of Algorithm 2 and compares
its misclassification rates with the ones from Algorithm 1. Applied to offline dataset, the
offline algorithm’s misclassification rates are consistently lower than the online algorithm,
i.e., the offline dataset clustering algorithm performs better than the online dataset clustering
algorithm, when dealing with offline datasets.

4.1.2 Online dataset

In our simulated online datasets the number of sample paths and the length of each sample
path increase as t increases. This type of setting is mimicking the situation such as modeling
financial asset prices, where new assets are launched at each time step. The offline and online
clustering algorithms are applied at each time t with 100 runs, their misclassification rates at
each time t are then obtained.

Figure 2 compares the misclassification rates of offline algorithm and online algorithm
applied to the online dataset described above. The periodical pattern, that misclassifica-
tion rate increases per 10 time steps using offline algorithm, matches the timing of adding
new observations. That is, the misclassification rate spikes whenever new observations are
obtained. We observe that the misclassification rate of the online algorithm is overall lower
than that of offline algorithm in this dataset, reflecting the advantage of online algorithm
against the offline one in the case where new observations are expected to occur. It is worth
pointing out that our online setting is different from the one inKhaleghi et al. (2016), therefore
the two clustering results are not comparable.
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Fig. 1 The graph compares the misclassification rates of Algorithm 1 and Algorithm 2 applied to offline
dataset of non-Gaussian discrete-time processes. 100 runs are performed at each time step t to compute the
misclassification rate

Finally, all the codes in MATLAB that reproduce the main conclusions in this subsection
can be found publicly online.2

4.2 Clustering fractional Brownianmotions

In this section, we present the performance of proposed offline (Algorithm 1) and online
(Algorithm 2) methods, on a synthetic dataset sampled from continuous-time Gaussian
processes. The wide-sense stationary ergodic processes that we choose are the first order
increment processes of fractional Brownian motions (see Mandelbrot and van Ness 1968).
Denote by {BH (t)}t≥0 a fractional Brownian motion with Hurst index H ∈ (0, 1). It is well-
known that BH is a zero-mean self-similar Gaussian process with self-similarity index H
and with covariance function

Cov
(
BH (s), BH (t)

)
= 1

2

(
s2H + t2H − |s − t |2H

)
, for s, t ≥ 0. (61)

Fix h > 0, define its increment process (with time variation h) to be

Z (H)
h (t) = BH (t + h) − BH (t), for t ≥ 0.

Z (H)
h is also called fractional Gaussian noise. Using the covariance function (61) we obtain

the auto-covariance function of Z (H)
h below: for τ ≥ 0,

γ (τ) = Cov
(
Z (H)
h (s), Z (H)

h (s + τ)
)

= 1

2

(
|τ + h|2H + |τ − h|2H − 2|τ |2H

)
. (62)

2 https://github.com/researchcoding/clustering_WSSP_with_cov_distance.
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Fig. 2 The graph compares the misclassification rates of Algorithm 1 and Algorithm 2 applied to online
dataset of non-Gaussian discrete-time processes. 100 runs are performed at each time step t to compute the
misclassification rate

Recall that for stationary Gaussian processes such as Z (H)
h , the strict ergodicity can be

fully expressed in the language of its auto-covariance function γ , i.e., the following result
(Maruyama 1970; Śęlzak 2017) provides a sufficient and necessary condition for a stationary
Gaussian process to be strictly ergodic.

Theorem 4 (Strict ergodicity of Gaussian processes) A continuous-time Gaussian stationary
process X is strictly ergodic if and only if

lim
t→∞

1

t

∫ t

0
|γX (u)| du = 0, (63)

where γX denotes the auto-covariance function of X.

In view of (62) we can deduce that the auto-covariance function γ of Z (H)
h satisfies (63). This

together with Theorem 4 yields that Z (H)
h is second-order strict-sense stationary ergodic, so

it is also wide-sense stationary ergodic.
To test our algorithms we simulate κ = 5 groups of independent fractional Brownian

paths, with the i th group containing 10 paths as {BHi (1/n), . . . , BHi ((n − 1)/n), BHi (1)},
for the self-similarity indexes

H1 = 0.3, H2 = 0.4, . . . , H5 = 0.7.

Remark that clustering a zero-mean fractionalBrownianmotion BH is equivalent to clustering
its increments Z (H)

1/n (t) = BH (t + 1/n) − BH (t). These total number of 50 observed paths

of Z (H)
1/n (t), each of length 150, compose an offline dataset and an online one. The clustering

algorithms are applied to the dataset at each time step t . 100 runs are made to compute the
misclassification rates. we use offline (RESP. online) dataset clustering algorithm to cluster
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offline (RESP. online) dataset. The purpose is to compare the algorithms with and without
log∗-transformations.

Figure 3 presents the comparisons of 2 algorithms: one is using the dissimilarity measure
d̂∗, the other one is using the dissimilarity measure d̂∗∗, based on the behavior of mis-
classification rates as time increases. We conclude that, both algorithms with and without
the log∗-transformations are asymptotically consistent. However in both offline and online
settings, the covariance-based dissimilarity measure algorithms with log∗-transformation
(dashed red lines) have 30% lower misclassification rates on average than that of algorithms
without log∗-transformation (solid blue lines). This simulation study proves the necessity
of utilizing log∗-transformed covariance-based dissimilarity measure when the underlying
observations have nonlinear, especially power based, covariance-based dissimilaritymeasure,
such as observations sampled from self-similar processes.

The codes in MATLAB used in this subsection are provided publicly online.3

4.3 Clustering AR(1) processes: non strict-sense stationary ergodic

To show that our algorithms can be applied to clustering non strict-sense stationary ergodic
processes,we consider a simulation study on the non-Gaussian AR(1)process {Y (t)}t defined
in Example 2, Eq. (1).We then conduct the cluster analysis with κ = 5, and specify the values
of a in Eq. (1) as

a1 = −0.4, a2 = −0.15, a3 = 0.1, a4 = 0.35, a5 = 0.6.

Wemimic the procedure in Sect. 4.2 to generate the offline and online datasets of {X(t)}t . Fig-
ure 4 illustrates the consistent converging property of offline algorithm and online algorithm
under different dataset settings.

All the codes in MATLAB that reproduce the main conclusions in this subsection can be
found publicly online.4

4.4 Application to the real world: clustering global equity markets

4.4.1 Data andmethodology

In this section we apply the clustering algorithms to real-world datasets. The application
involves in dividing equity markets of major economic entities in the world into different
subgroups. In financial economics, researchers usually cluster global equity markets accord-
ing to either geographical regionor the development stage of the underlying economic entities.
The reasoning of these clustering methods is that entities with less geographical distance and
closer development level involve in more bilateral economic activities. Impacted by similar
economic factors, entities with less “distance” tend to have higher correlation in stock mar-
ket performance. This correlation then measures the level of “comovement” of stock market
indexes on global capital market.

However, the globalization is breaking the barriers of region and development level. For
instance, in 2016 China became the largest trader partner with the U.S. (besides EU).5 China

3 https://github.com/researchcoding/clustering_stochastic_processes.
4 https://github.com/researchcoding/clustering_nonGaussian_processes.
5 Source: U.S. Department of Commerce, Census Bureau, Economic Indicators Division.
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Fig. 3 The top graph illustrates the misclassification rates by offline algorithm applied to offline datasets of
increments of fractional Brownianmotions. The bottom graph plots misclassification rates by online algorithm
applied to online datasets

is not a regional neighbor of the U.S., and is categorized as a developing country by World
Bank, in opposite to the U.S. as a developed country.

We cluster the equity markets in the world according to the empirical covariance structure
of their performance, using Algorithms 1 and 2 as purposed in this paper. Then we compare
our clustering results with the traditional clustering methodologies. The index constituents
of MSCI ACWI (All Country World Index) are selected as the sample data. Each of the
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Fig. 4 The top graph plots the misclassification rates of (log∗) covariance-based dissimilarity measure along
with the increase of time using offline and online algorithms on offline dataset. The bottom graph shows
misclassification rates with both algorithms on online dataset

observations is a sample path representing the historical monthly returns of underlying eco-
nomic entities. Through empirical study it is proved that these indexes returns exhibit the
“long memory” path feature hence they can be modeled by self-similar processes such as
fractional Brownian motions (see e.g. Comte and Renault 1998; Bianchi and Pianese 2008).
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Table 1 The categories of major equity markets in the MSCI ACWI (All Country World Index)

Developed markets Emerging markets

Americas Europe and
Middle East

Pacific Americas Europe and Middle
East and Africa

Asia

Canada Austria Australia Brazil Czech Republic China (Mainland)

USA Belgium Hong Kong Chile Greece India

Denmark Japan Colombia Hungary Indonesia

Finland New Zealand Mexico Poland Korea

France Singapore Peru Russia Malaysia

Germany Turkey Pakistan

Ireland Egypt Philippines

Israel South Africa Taiwan

Italy Qatar Thailand

Netherlands United Arab Emirates

Norway

Portugal

Spain

Sweden

Switzerland

United Kingdom

There are 23 markets from developed economic entities, and 24 markets from emerging countries or areas.
The geographical clustering contains Americas, EMEA (Europe, Middle East and Africa), Pacific and Asia.
Source: MSCI ACWI (All Country World Index) market allocation. https://www.msci.com/acwi

Therefore similar to Sect. 4.2 we may cluster the increments of the indexes returns with the
log∗-transformed dissimilarity measure d̂∗∗. MSCI ACWI is the leading global equity market
index and has $3.2 billion in underlying market capitalization.6 MSCI ACWI contains 23
developed markets, 24 emerging markets from 4 regions: Americas, EMEA (Europe, Middle
East and Africa), Pacific and Asia. Table 1 lists all markets included in this empirical study.
We exclude Greece market due to its bankruptcy after the global financial crisis.

We construct both offline and online datasets starting from different dates. For offline
dataset we let it start from Jan. 30, 2009 to exclude the financial crisis period in 2007 and
2008. This is because, under global stockmarket crisis, the (downside) performance of equity
market is contagious and thus blurs the cluster analysis. The online dataset starts on Jan. 31,
1989, which covers 1997 Asian financial crisis, 2003 dot-com bubble and 2007 subprime
mortgage crisis. Another key feature is that 14markets are added to theMSCIACWI index (at
different time) since 1989, including 1 developedmarket and 13 emergingmarkets. Therefore,
the case where new time series are observed is handled in online dataset.

4.4.2 Clustering results

We compare the clustering outcomes of both offline and online datasets with separations
suggested by region (4 groups) and development level (2 groups). The factor with the lowest
misclassification rate is proved to be the corresponding factor that contributes to increase

6 As of June 30, 2017, as reported on September 30, 2017 by eVestment, Morningstar and Bloomberg.
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Table 2 The misclassification rates of clustering algorithms on datasets, comparing to clusters suggested by
geographical region and development levels

Offline algorithm Online algorithm

Region (%) Development level (%) Region (%) Development level (%)

Offline dataset 63.04 28.26 60.87 23.91

Online dataset 59.57 44.68 57.45 38.30

covariance-based dissimilarity measure the most. In other words, this corresponding factor
leads to the clustering of stock markets with the most significant impact.

Table 2 shows that the misclassification rates by development level are significantly and
consistently lower than that by geographical region, for both algorithms (offline and online
algorithms) and datasets (offline and online datasets). The clustering results seem to infer
that the geographical distance is less dominating than the development level of underlying
economic entities, when analyzing different groups of equity markets.

The global minimum of the misclassification rate occurs when we use online algorithm on
offline dataset. Table 3 presents the detailed clustering outcome under this circumstance. In
each group, the correctly and incorrectly categorized equity markets are listed respectively.
For instance, China (Mainland) market is correctly categorized along with other emerg-
ing market. Meanwhile Austria market, though being developed market in MSCI ACWI, is
categorized to the groupwheremost of the equitymarkets are emergingmarkets. Themisclas-
sified markets in the emerging group are Austria, Finland, Italy, Norway and Spain markets.
The misclassified markets in the developed group are Malaysia, Philippines, Taiwan, Chile
and Mexico markets. These empirical results thus suggest that several capital markets have
irregular post-crisis performance which blurs the barrier between emerging and developed
markets.

The contribution of this real-world dataset cluster analysis is twofold. First, we explored
and determined the principal force that brings structural difference in global capital markets,
which potentially predicts the “comovement” pattern of future index performance. Second,
we provided new evidence on the impact of globalization on breaking geographical barriers
between economic entities.

5 Conclusion and future perspectives

Inspired by Khaleghi et al. (2016), we introduce the problem of clustering wide-sense sta-
tionary ergodic processes. A new covariance-based dissimilarity measure is proposed to
obtain asymptotically consistent clustering algorithms for both offline and online settings.
The recommended algorithms are competitive for at least two reasons:

1. Our algorithms are applicable to clustering a wide class of stochastic processes, including
any strict-sense stationary ergodic processes whose covariance structures are finite.

2. Our algorithms are efficient enough in terms of their computational complexity cost.
In particular, a so-called log∗-transformation is introduced to improve the efficiency of
clustering, for self-similar processes.

The above advantages have been supported through the simulation study on non-Gaussian
discrete-time processes, fractional Brownian motions, non-Gaussian non strict-sense station-
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Table 3 The clustering outcome of equity markets using offline dataset (starting from Jan. 30, 2009) and
online algorithm

Group 1 (emerging markets) Group 2 (developed markets)

Correct Incorrect Correct Incorrect

China (Mainland) Austria Belgium Malaysia

India Finland Denmark Philippines

Indonesia Italy France Taiwan

Korea Norway Germany Thailand

Pakistan Spain Ireland Chile

Brazil Israel Mexico

Colombia Netherlands

PERU Portugal

Czech Republic Sweden

Hungary Switzerland

Poland United Kingdom

Russia Australia

Turkey Hong Kong

Egypt Japan

South Africa New Zealand

Qatar Singapore

United Arab Emirates Canada

USA

The algorithm divides the whole dataset (excluding Greece) into two groups, and in each group the correctly
and correctly separated markets are listed, respectively

ary ergodic AR(1) processes, and a real-world application: clustering global equity markets.
The implementations in MATLAB of our clustering algorithms are provided publicly online.

Finally we note that, the clustering framework proposed in our paper focuses on the cases
where the true number of clusters κ is known. The case for which κ is unknown is still
open and left to future research. Another interesting problem is that, many stochastic pro-
cesses are not wide-sense stationary but they get a tight relationship with the wide-sense
stationarity. For example, a self-similar process does not necessarily have wide-sense sta-
tionary increments, but their Lamperti transformations are strict-sense stationary (Lamperti
1962); locally asymptotically self-similar processes are generally not self-similar but their
tangent processes are self-similar (Boufoussi et al. 2008). Our cluster analysis sheds light on
clustering the above processes. These topics can be left for future research.
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