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Abstract
This paper introduces a novel feature selection and classification method, based on vertical
data partitioning and a distributed searching architecture. The features are divided into sub-
sets, each of which is associated to a dedicated processor that performs a local search. When
all local selection processes are completed, each processor shares the features of its locally
selected model with all other processors, and the local searches are repeated until conver-
gence. Thanks to the vertical partitioning and the distributed selection scheme, the presented
method is capable of addressing relatively large scale examples. The procedure is efficient
since the local processors perform the selection tasks in parallel and on much smaller search
spaces. Another important feature of the proposed method is its tendency to produce simple
model structures, which is generally advantageous for the interpretability and robustness of
the classifier. The proposed approach is evaluated and compared to other well-known fea-
ture selection and classification approaches proposed in the literature on several benchmark
datasets. The obtained results demonstrate the effectiveness of the proposed approach, both
in terms of classification accuracy and computational time.

Keywords Feature selection · Classification · Model selection · Distributed optimization ·
Parallel processing

1 Introduction

In the supervised learning framework, the classification task aims at predicting the class label
of unseen input instances, basedon the knowledgeobtained from theperusal of a set of training
instances (training set), whose labels are known. This set of available input-output instances is
used to train a model in a process called learning, that typically includes two stages, namely
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a feature selection (FS) and a classifier design phase. FS is a combinatorial optimization
problem, that aims at reducing the input space, by detecting the smallest possible set of
features that allows proper classification. It is a crucial and computationally demanding task
for high dimensional problems. Reducing the size of the input space yields a series of benefits,
such as a reduced cost associated to data acquisition, a reduced computational demand and
thus a shorter training time, a reduced model size and thus a simpler classifier structure. It
may ultimately result in an improved classification accuracy, since the classification design
process may be adversely affected by the presence of redundant features (Inza et al. 2000).

FS methods can be broadly divided into filter and wrapper methods. The former (see,
e.g., Chandrashekar and Sahin 2014) select features based on information contained in the
features themselves, independently of the classifier learning phase. In the majority of filter
methods, features are considered individually, not taking into account the mutual interaction
among different features. This is an important limitation, as features that are individually
significant are not necessarily so in combination with others, and viceversa (Xue et al. 2013).
Wrapper methods perform the FS task simultaneously with the classifier construction. As a
consequence, they are typically more accurate than filter methods, at the price of an increased
computational cost. They may also suffer from overfitting problems (Liu and Motoda 2012).
Most of the literature on wrapper methods concerns either sequential FS (SFS) algorithms
based on incremental model building procedures (Ferri et al. 1994; Sorjamaa et al. 2007), or
evolutionary methods, such as genetic algorithms (Smith and Bull 2005; Yang and Honavar
1998), ant colony optimization (Kabir et al. 2012), particle swarm optimization (PSO) (Xue
et al. 2013, 2014), harmony search (Diao and Shen 2012).

The main challenge with FS algorithms is to maintain effectiveness when dealing with
datasets of increasing size, since the complexity of the combinatorial problem grows expo-
nentially. This adversely affects both the time required to solve the problem and the actual
quality of the solution (due, e.g., to local minima issues). To improve the effectiveness and
speed up the FS process, several approaches based on a parallelization of the processing have
been proposed in the literature (see, e.g., López et al. 2006; de Souza et al. 2006; Guillén
et al. 2009). For example, in de Souza et al. (2006) multiple processors perform independent
FS tasks on the same data and the final local best results are sent to a master process, which
selects the best one in terms of performance. Guillén et al. (2009) propose a parallelized ver-
sion of the Forward–Backward (FB) SFS. Several feature sets are constructed which differ
from the original one by one feature (either added or removed), and an FB run is carried out
on each of them. Then, the best of the local solutions is selected.

While parallelization can mitigate the local minima problem by searching for multiple
different solutions at the same time, it does not reduce the complexity of the problem if
the computational effort is not distributed among the available processors. In this direction,
Chu et al. (2007) showed that dividing the dataset either vertically (along the features) or
horizontally (along the data samples) can significantly improve the efficiency of the process,
resulting in a linear speed-up with the increase of computing resources. In Bolón-Canedo
et al. (2014, 2015a) the authors proposed a distributed FS approach with vertical partitioning.
Each processor operates on a different subset of features (which configures a much smaller
problem than the original one) and the local solutions are eventually merged. A variant of
the distributed scheme of Bolón-Canedo et al. (2014) is proposed in Bolón-Canedo et al.
(2015b) and Morán-Fernández et al. (2015), where the final feature subset is selected based
on a complexity measure (the inverse of the Fisher rate), rather than the classification error.
The algorithm is repeated multiple times and employs a voting mechanism governed by the
complexity measure, whereby at the end all features with more votes than the computed
threshold are eliminated. A distributed algorithm based on a similar reasoning is proposed in
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Prasad et al. (2016). A vertical partitioning is applied initially and a feature ranking procedure
based on the information gain criterion is applied to each individual subset. The best local
results are merged into a final feature set, on which the feature ranking procedure is applied
again to obtain the final selection.

All the mentioned distributed approaches are based on a two-stage sequential scheme
where a first selection is carried out separately on different feature subsets, and a merging
phase is finally applied, whereby the local selected features are aggregated and further pro-
cessed. In this way, however, the local search processes are completely independent and do
not share any information. This may lead to poor results if the relevant features are scattered
in the different subsets and their actual importance emerges only if they appear combined
together (Xue et al. 2014).

Alternative distributed architectures for supervised FS with horizontal and vertical parti-
tioning have been proposed in Zhao et al. (2013) andBanerjee andChakravarty (2011), where
local best solutions are shared among all processors. More in detail, horizontal partitioning
is used in Zhao et al. (2013) so that different processors operate on different data samples.
At each iteration, the processors independently select one feature to add to the current model
(using an SFS method) and then a master processor picks only one of these locally selected
features and adds it to the current model. This approach introduces an important element,
i.e. that the local searches are repeated after a common knowledge is established (the cur-
rent model), that is based on aggregating the local results. However, this method cannot be
extended to exploit vertical partitioning as well, and therefore it might be ineffective for verti-
cally large problems.Moreover, it also carries over the defects of the SFS procedure (see, e.g.,
the discussion in Piroddi and Spinelli (2003)). In Banerjee and Chakravarty (2011) a super-
vised FS approach based on a filtering method is developed that works for both horizontally
and vertically partitioned data, in which local results are shared among all processors before
a final (centralized) FS step. A shortcoming of this method is related to the fact that the local
selections are not iterated based on common knowledge. Another drawback is typical of filter
methods based on univariate feature ranking, which neglect the interaction between features.
In particular, features that are considered individually irrelevant are eliminated, although it
may well occur that they become relevant in combination with other features (Xue et al.
2014).

This paper presents a novel distributed algorithm for FS, that exploits the benefits asso-
ciated to parallelization, vertical data partitioning, and information exchange (among the
different processors). The features are initially partitioned into subsets, each of which is
associated to a dedicated processor that operates a local FS. The algorithm is executed itera-
tively, and at every round the local solutions (containing the most promising local features)
are shared by all the processors to be considered in the subsequent local searches. The itera-
tion of the process allows new useful features to emerge locally, if they combine well with the
features shared from the other processors. Notice that each processor operates on a feature
subset that includes the best local model found so far. Therefore, it should provide either the
same or an improved solution. The iterative procedure terminates when all processors con-
verge on the same selected features or when there is no improvement in terms of performance
with respect to the previous round of the algorithm.

Besides the obvious savings in computational cost, the proposed algorithmdisplays several
promising features regarding the performance:

(i) Unlike other distributed algorithms (see e.g. Bolón-Canedo et al. 2014; Prasad et al.
2016; Zhao et al. 2013), where the aggregation of the local solutions is not used to refine
the local FS processes, the described iterative process allows combinations of features
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to emerge even if their components are originally scattered among the local FS search
spaces, and so it results in a “deeper” space search overall.

(ii) Operating separately on smaller feature sets generally leads to a more accurate func-
tioning of the FS algorithm, since the solution space is smaller. It also helps preventing
overfitting (especiallywith heavily unbalanced datasets, such asmicroarrays) and redun-
dancy (especially when employed with ranking-based filter FS methods).

(iii) The proposed method combines a huge reduction in the problem complexity (achieved
through feature distribution), without paying an excessive cost for the corresponding
reduction of the search space. Indeed, the information feedback ensures that promis-
ing feature combinations are considered in all local processes. Furthermore, a random
feature reshuffling at the beginning of each round guarantees that all possible feature
combinations can be explored during the full course of the algorithm, even if the search
space is reduced for each individual round. This mechanism also allows the algorithm
to occasionally escape from local minima.

The presented distributed optimization scheme can in principle be combined with any
FS method of choice. In this paper, we employ for this purpose the SFS and the recently
introduced RFSC (Randomized Feature Selection and Classifier) algorithm (Brankovic et al.
2018) as representatives of wrapper methods, and the ReliefF algorithm as a representative
of filter methods.

The rest of the paper is organized as follows. Section 2 provides the problem formulation
and reviews the basics of the SFS, RFSC, and ReliefF methods. Then, Sect. 3 introduces
the proposed distributed FS scheme. Several numerical studies on benchmark datasets are
discussed in Sect. 4. Finally, some concluding remarks are given in Sect. 5.

2 Preliminaries: Problem definition and FSmethods

2.1 The classification problem

We here consider the classification problem in the context of supervised learning. In this
framework, a setD = {d1, . . . , dN }of N observations is assumedavailable, each consisting of
an input-output pair dk = (uk, ck), k = 1, . . . , N , where the components u p , p = 1, . . . , N f

of vector u are the features and c ∈ {1, . . . , Nc} is the corresponding class. These observations
are used to construct a model that relates the features to the classes and that can be used to
estimate the class corresponding to the feature values u associated to a previously unseen
sample. This model, referred to as the classifier, has the general form:

ĉ = f (u), (1)

where ĉ denotes the class estimate and f is a suitable function of the feature values. The
latter is the result of a learning process that requires the set of features U = {u1, . . . , uN f }
and the set of data D.

To facilitate the classification process, since first order interactions among the features
may be insufficient to derive satisfactory results, the original features are here preprocessed to
obtain non-linear expansions (Guyon and Elisseeff 2006) such that a generic extended feature

is a monomial of the original features up to a given degree, i.e. ul11 · ul22 · . . . · ulN f
N f

where
l1, l2, . . . , lN f are non-negative integers such that l1 + l2 + . . . + lN f ≤ L . The cardinality

of the extended feature set can be obtained as Ne = (N f +L
N f

)
.
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Accordingly, in the classifier design we will look for a map from the extended features to
the class:

ĉ = f ′(ϕ) = f ′(ϕ(u)), (2)

In the following, we will denote as R = {ϕ1, . . . , ϕNe } the set of extended features and we
will refer to the latter simply as features, for brevity sake. Notice that U ⊆ R provided that
L ≥ 1.

Classification performance is evaluated as the ratio of the correct classifications over the
total number of tested samples

J = 1

N

N∑

k=1

1{ĉk=ck }, (3)

where 1 is the indicator function, or equivalently with the percentage error index, PE =
(1− J )100. Depending on how the training process is carried out, the classifier performance
can be calculated on the total or on a part of the training data (e.g., the validation data).
For ease of notation we will denote simply as J the performance index used in the training
process (in our case the accuracy ratio on the validation data). The notation Jte will be used
to indicate the calculation of the same index on the test data (not used during training) for
classifier assessment and comparison.

2.2 Feature selection algorithms

FS is typically at the core of the classifier design process, and is employed to reduce the
set of features required to perform successfully the classification task. FS addresses the
combinatorial problem of finding the smallest subset of features M ⊆ R required by the
classifier to maximize the classification accuracy, over the set of all possible 2Ne − 1 subsets
of features.

In the following we briefly review the main characteristics of some FS algorithms that will
be employed in the subsequent developments, namely the SFS, the ReliefF, and the recently
introduced RFSC.

SFS algorithms

Sequential algorithms (Pudil et al. 1994) are deterministic and step-optimal iterative FS
algorithms of the wrapper category. The Forward SFS algorithm starts from an empty subset
and adds one feature at each iteration, selecting the one which combined with the previously
selected features maximizes the classifier performance. Features are added over iterations
as long as the classifier performance is improving or until the required number of features
has been obtained. Conversely, the Backward SFS algorithm starts from the full feature set
and discards one feature at every iteration, selecting the one whose removal deteriorates
the classifier performance the least. Various combinations of the two mentioned strategies
are also possible. SFS strategies are step-optimal, and there is no guarantee of reaching the
optimal solution due to their incremental nature (Pudil et al. 1994). Indeed, each individual
decision regarding the inclusion or elimination of a feature depends on the current model
structure, so that early decisions (taken when the structure is still largely inaccurate) will
influence the final outcome, and the initialization is critical. In this paper we employed the
Forward SFS variant in combination with the k-NN classifier. k-NN is a non-parametric
method, that attributes the class label to an input sample based on a majority voting among
the k closest training instances.
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ReliefF algorithm

The Relief algorithm (Kira and Rendell 1992) is a filter method, originally developed for
binary classification problems. A weight is attributed to each feature, which evaluates its
capability of discriminating between different classes. This weight is progressively updated
based on the information that can be extracted from the available samples. More precisely, a
sample is extracted from the dataset and for every feature one measures the smallest absolute
difference between that sample and those of the same and of the opposite class. These two
quantities are referred to as nearest hit (nH ) and nearest miss (nM), respectively. Good
features for classification should be such that samples of the same class have similar values,
while samples from opposite classes have distant values. In this perspective, a large nH
implies that the examined feature is not a good discriminator for the class. On the other
hand, a large nM indicates that the examined feature well separates the sample from the
members of the opposite class. Accordingly, nH is used to decrease the feature weight,
while nM increases it. The procedure is repeated for a sufficient number of samples. Finally,
the features with higher weights are returned.

Notice that Relief is a univariate filter method, in that it considers the features only as
individuals and does not explore combinations of features. As a consequence it may miss
features that are of low significance on their own, but become important in combination with
other features. Furthermore, the method does not detect redundant features.

We here employ the ReliefF algorithm (Kononenko 1994), that extends the original Relief
to deal with multi-class problems, and incomplete or noisy data. It is also reported to be more
robust. The classifier design is again carried out with the k-NN method.

RFSC algorithm

The RFSC (Brankovic et al. 2018) is a wrapper algorithm, based on a probabilistic reformu-
lation of the FSC problem. At each iteration, a number of different models (i.e., subsets of
features) are extracted from a model distribution and used to assess the importance of each
feature. The latter is evaluated as a function of the performance of the classifiers associated
to the various models. A feature is considered important if the average performance of the
classifiers associated to models that include the feature is greater than the average perfor-
mance of the remaining classifiers. The rationale is that a “good” feature appears in accurate
classifiers more often than not, or, stated otherwise, that it is generally more convenient to
include it in the model than to keep it out.

Once the features have been evaluated, the distribution is updated, by reinforcing the
probability to extract the more significant features, and the procedure is iterated.

The process terminates when the distribution converges to a limit distribution, correspond-
ing to a specific model.

Differently from most approaches, the evaluation of each feature is not established based
on its importance in a specific model, but rather based on the aggregate information that can
be extracted on that term from the population of extracted models. In this sense, the feature
importance is assessed based on its global contribution as opposed to a local evaluation. The
randomized nature of the method can also alleviate the problem associated to local minima.

Unlike the k-NN, the RFSC classifier is a parameterized model, which ultimately amounts
to a linear regression of the type:

y =
Ne∑

j=1

ϑ jϕ j . (4)

123



Machine Learning (2019) 108:2009–2034 2015

The sign of y determines the class associated to the sample. For non-binary classification
tasks a vector output is employed.

3 A distributed FS algorithm

3.1 Introduction

The complexity of the combinatorial problem inherent in the FS task increases rapidly with
the number of features, and may easily become prohibitive for large-sized problems. This is
particularly true for wrapper methods that require to perform the classifier design to evaluate
and rank any examined set of features. More importantly, besides the obvious increase in
computational complexity, the ability of FS algorithms to reach the optimal feature subset
diminishes as the number of features grows, due to the corresponding exponential growth of
the search space. This occurs for all FS methods, although with different incidence levels.

To explore the model space more efficiently, we here suggest a distributed combinatorial
optimization approach, that exploits vertical partitioning and information exchange. The basic
idea is to perform separate independent FS tasks on smaller subsets of features, and share
the local results among the different optimization processors so that they can improve their
selection by combining the locally available features with the most promising ones found
elsewhere. As illustrated in Sect. 4, this strategy yields systematically more accurate results,
as opposed to non-distributed FS, and significant savings in computational time as well. It
is important to notice that any FS method can be employed in the illustrated optimization
scheme to perform the local model selection tasks.

The next subsections review in detail the various steps of the proposed DFS (distributed
FS) algorithm.

3.2 Generation and updating of the feature bins

The feature set is divided into a desired number of subsets Rb, b = 1, . . . , Nb, denoted
feature bins in the rest of the paper. A partition of the set of features is first carried out,
obtaining R = ∪Nb

b=1R̄b, where R̄m ∩ R̄n = ∅ for m 
= n. Then, at the beginning of each
round of the distributed scheme, the feature bins are obtained as:

Rb = R̄b ∪ M, (5)

for b = 1, . . . , Nb, where M is a special subset of features selected at the previous round
(M = ∅ at the onset of the algorithm).

Given the purpose of the distributed scheme to break the complexity of the problem by
reducing the size of the elementary FS task, it is a reasonable rule of thumb to partition the set
of featuresR in subsets of approximately the same size. Different criteria can be adopted for
assigning the features to the bins. In the following a random assignment policy is employed.
The number of bins is also a crucial design parameter as discussed later on.

Each feature binRb is assigned to a different processor pb (as schematically represented
in Fig. 1), which is in charge of performing the FS task over Rb. The processors perform
an independent optimization over their own feature bins with an FS algorithm of choice (or
evenwith different algorithms), selecting the best feature subset compatiblewith the available
data. In principle, compatibly with the available computing machinery, the Nb FS tasks can
be run in parallel. LetMb denote the feature subset selected by processor pb, b = 1, . . . , Nb.
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Fig. 1 Flowchart of the proposed distributed FS algorithm

The best of these local models is stored as current best solution. Then, the local models are
merged into a unique feature subsetM = ∪Nb

b=1Mb, which is used to augment all the feature
bins at the next round, and the distributed selection process is iterated. For large Nb values,
it is sometimes convenient to limit this merging to the top ranked local models, as explained
below.

In this way the most promising features are shared among the processors with the aim
of improving the local bests. In principle, at the next round each processor should either
retrieve the best of the local models obtained at the previous round (given that its feature
bin now contains all the required features) or produce an improving solution. The latter
outcome typically occurs when features not previously selected (because judged irrelevant
or of smaller importance than others) actually combine well with the newly added features.
When no improving solution is found, all processors settle on the same model structure (or
possibly on different but equivalent ones).

The convergence of all the local processors on the same solution terminates the process.
For practical purposes, other termination conditions are enforced as well. For example, if any
of the local best solutions is also a global optimizer (i.e, it achieves perfect classification),
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the process is terminated. Failure to improve the current best solution over a number (e.g.,
3) of subsequent rounds or the exceeding of a prescribed number of rounds (Nr ) are also
employed as premature termination conditions.

The number of bins Nb is a critical parameter. If the number of bins is chosen too sparingly,
the bin size will be large. This may lead to insufficient search space reduction, ultimately
defying the very purpose of the distributed scheme, i.e. to break the problem complexity.
Conversely, if one employs many small bins other problemsmay occur. Indeed, if the number
of bins exceeds the size of the target model, most of the bins will initially not contain any
feature of that model and presumably return inaccurate results, whereas only the processors
associated to bins that contain features of the true model will typically produce meaningful
results. As a consequence, the aggregation phase will produce a very large M, with mostly
irrelevant features, and propagating it to the various bins will overload them, slowing down
convergence significantly and possibly even deteriorating the accuracy of the FS task. This
effect can be addressed in various ways. For example, one can apply a further FS stage limited
to the features inM, to filter out the irrelevant terms. Alternatively, one can aggregate inM
only the top local best models obtained at each round. The latter solution has been adopted
here.

In the discussed version of the algorithm the partition of the feature set is executed at the
beginning, thus fixing the most part of the feature bins during the algorithm execution. It
is also possible to reshuffle the feature partition at every round. This randomization has the
important effect of allowing new feature combinations to emerge from round to round, so that
the reduction of the search space incurred by applying the distributed scheme does not imply
that certain feature combinations are never explored. Besides allowing a richer exploration
of the search space, this variation may occasionally allow the algorithm to escape from a
local optimum, and for this reason it will be always used in the experimental section. We
introduce a flag R (Reshuffling) to distinguish the two versions: if R = true, the partition is
reshuffled at every round, otherwise it is performed only at the very beginning.

A pseudocode of the proposed DFS scheme is given in Algorithm 1. As the proposed
scheme can be combined with the FS method of choice (represented by function FS(·) in
the pseudocode, which returns a feature subset and the accuracy performance index of the
associated classifier), we synthetically denote with Ψ the corresponding vector of input
parameters (which is algorithm-dependent). The main loop goes from line 3 to 20. The
vertical partitioning in Nb bins is carried out at line 2 or 4 (depending on the value of the
R flag), by means of function Distribute(·). Lines 5 to 13 describe the local selection
processes, while the aggregation stage is at line 14. Finally, the termination conditions are
given from line 15 to 19 (plus line 10).

3.3 Discussion on algorithm convergence

As already explained, at the onset of each DFS round each feature bin is augmented with
the features of the best solution found so far, so that—at least in principle—each processor
should be capable either to retrieve the same solution or find an even better one by combining
the added features with those already present in the bin. Therefore, it is apparent that the
convergence properties of the DFS rest on the ability of the FS algorithm operating on the
local bins to reach the optimal solution on the subset of features they are in charge of. In turn,
the task of retrieving the optimal solutions over the local feature bins is greatly facilitated
by the fact that the local processors operate on a relatively small subset of features, so that
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Algorithm 1 DFS
Input: D, R, Nb , Nr , Ψ , R.
Output: M�, J �.

1: M = ∅, J � = 0, M� = ∅
2: if R = false then (R̄1, · · · , R̄Nb ) = Distribute(R, Nb) end if
3: for r = 1 to Nr do
4: if R = true then (R̄1, · · · , R̄Nb ) = Distribute(R, Nb) end if
5: for b = 1 to Nb do
6: Rb = R̄b ∪ M
7: (Mb, Jb) = FS(D, Rb , Ψ )
8: if Jb > J � then
9: M� ← Mb , J

� ← Jb
10: if J � = 1 then return end if � The current best cannot be improved.
11: end if
12: end for
13: J �

vec(r) = J �

14: M = ∪Nb
b=1Mb

15: if M = ∩Nb
b=1Mb then return end if � All local models are equal.

16: if r = Nr then return � Maximum number of rounds reached.
17: else if r ≥ 3 then
18: if (J �

vec(r − 1) = J �) ∧ (J �
vec(r − 2) = J �) then return end if

19: end if � No appreciable improvement over the last 3 rounds.
20: end for

the corresponding local search space is easily manageable. Accordingly, we will make the
following

Assumption 1 The FS method employed by Algorithm 1 guarantees the optimality of the
solutions of the local problems.

A feature subsetM�
b ⊆ Rb is optimal for the bth local FS problem if there does not exist

another feature subset M ⊆ Rb (M 
= M�
b) with strictly greater value of the performance

index. We will denote the corresponding optimal performance as J �
b . Notice that while there

may be multiple optimal solutions due to the discrete nature of the performance index, J �
b is

uniquely defined. Assumption 1 implies that the FS algorithm will always yield a solution
with performance equal to J �

b .

Lemma 1 Let J �
b (r−1) and J �

b (r) be the performance values of the solutions obtained by the
bth processor in two consecutive rounds of the DFS. Then, it holds that J �

b (r) ≥ J �
b (r − 1).

Proof Let J �(r − 1) = max
b

(J �
b (r − 1)) be the maximum performance among the solutions

of the Nb local problems at round r − 1, and let M�(r − 1) be the corresponding feature
subset. Obviously, J �(r − 1) ≥ J �

b (r − 1), b = 1, . . . , Nb. At round r , each local problem
feature space Rb, b = 1, . . . , Nb will include M�(r − 1), by construction. Therefore, in
view of Assumption 1, the optimal local solution will have J �

b (r) ≥ J �(r − 1), from which
the thesis directly follows. ��
Lemma 2 Let J �(r − 1) and J �(r) be the performance values of the best local solutions
obtained among the Nb processors in two consecutive rounds of the DFS. Then, it holds that
J �(r) ≥ J �(r − 1).

Proof Indeed, by Lemma 1 it holds that J �(r) = max
b

(J �
b (r)) ≥ max

b
(J �

b (r − 1))

= J �(r − 1). ��
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Theorem 1 Under Assumption 1, let N be the number of samples on which the performance
index is evaluated in the training process. Then, the DFS will converge (in performance) in
not more than N rounds.

Proof Convergence (in performance) is achieved if J �(r) = J �(r − 1). Now, since J can
take only N + 1 different values (J equals the ratio of correctly classified samples), and
the sequence J �(r) is monotonically non-decreasing (by Lemma 2) and limited from above
(it cannot exceed 1), it will converge in a finite number of rounds. Indeed, if there is an
improvement, the performance index will increase at least by δ J = 1/N , i.e. by a quantum
corresponding to a single sample. Since, at most there can be N such consecutive increments,
it follows that the algorithm will converge at most in N rounds. ��

Notice that, due to the discrete nature of the performance index J , there might be multiple
models with equal accuracy. Thanks to the convergence condition J �(r) = J �(r − 1) (the
last termination condition of Algorithm 1, which is extended to 3 consecutive rounds for
greater robustness), the DFS will converge to one of the equivalent locally optimal solutions.
Notice also that the alternative termination conditions (included in Algorithm 1 for practical
reasons), are all subsumed by the previously mentioned convergence condition formulated
on the performance index. For instance, if all local processors return the same model, at the
next round they will operate on the same subset of features and, therefore, they will not be
able to improve the local solutions.

A final remark is due regarding the version of the algorithm with R = true, which
involves a reshuffling of the feature partition at the beginning of each round. When the
condition J �(r) = J �(r − 1) is reached with the basic version of the algorithm, it is no
use protracting the algorithm for further rounds, since the feature bins will not be modified
anymore. On the other hand, applying reshuffling allows the algorithm to explore new feature
combinations, and possibly escape from the previous local optimum. As such it greatly
enhances the probability of finding the actual global optimum.

4 Experimental study

4.1 Experiment design

This section reports the results of various tests carried out to assess the performance of the
proposed distributed FS architecture. Twelve numerical datasets, collected from the UCI
machine learning repository (Newman et al. 1998), are used in the experiments. In the fol-
lowing tests, the original datasets are preprocessed as follows.

All original features are first normalized in the [0, 1] range, according to the following
expression:

u p(k) = u p,orig(k) − u pmin

u pmax − u pmin

,

for k = 1, . . . , N , where u p,orig(k) is the original numeric value of the kth observation of a
feature p in a given dataset, and u pmax and u pmin are the maximum and minimum value of
the pth attribute in the dataset, respectively.

Then, as already mentioned, the original features are polynomially expanded, so that the
final search space ranges from80 to 14000 features. A differentmaximumnonlinearity degree
is adopted depending on the size of the considered problem. More precisely, we used L = 3
for small datasets (Bupa and Iris) and L = 2 for medium- and big-sized datasets, with the
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Table 1 Main characteristics of
the considered datasets

Dataset Nc N Sample distribution N f Ne

Bupa 2 345 145/200 6 84

Colon 2 62 22/40 2000 2000

HillValley 2 606 301/305 100 5151

Ionosphere 2 351 225/126 33 595

Iris 3 150 50/50/50 4 70

Madelon 2 4400 2200/2200 500 500

Musk1 2 476 207/269 166 14028

Ovarian 2 253 162/91 15154 15154

Sonar 2 208 111/97 60 1891

Vehicle 4 846 199/217/218/212 18 190

WDBC 2 569 212/357 30 496

Wine 3 178 59/71/48 13 105

only exception of the Madelon dataset. Finally, for the largest datasets (Colon and Ovarian)
we set L = 1. The FS task was carried out on the resulting extended feature setR. The main
characteristics of these datasets are presented in Table 1, where N f , Ne and Nc denote the
size of the original feature set, the number of extended features and the number of classes,
respectively.

To evaluate the performance of the proposed algorithm and provide a fair comparison with
the literature, two validationmethods are used, namely 10-fold cross validation (10-FCV) and
random 70–30 horizontal data partitioning (70% of the samples used for training and 30% for
testing). For 10-FCV, the data are randomly split into 10 disjoint and non-overlapping sets,
called folds. The selection procedure is repeated 10 times, each time using a different fold
for testing and the remaining ones for training. The algorithm performance for UCI datasets
is computed averaging the performance on the testing set over the 10 runs.

For the 70–30 validation, 10-FCV was performed as an inner loop on the training data. To
account for the non-determinism of the algorithm the procedure is further repeated 10 times
and the performance averaged. To allow a fair comparison with Bolón-Canedo et al. (2014),
the algorithm is performed 5 times on microarray data.

Besides evaluating the performance in terms of classification accuracy, we also considered
the Cohen’s Kappa rate (Ben-David 2008), which is particularly indicated when dealing with
imbalanced data and random hits (Cano et al. 2013). Such index is based on the concept
of confusion matrix, which is a square matrix C of size Nc × Nc, Nc being the number of
classes, where Ci j is the number of samples of class i attributed to class j . The diagonal
elements of C represent the number of correct classifications, while the non-diagonal terms
account for misclassified samples. The Kappa rate is then defined as:

K = N
∑Nc

i=1 Cii − ∑Nc
i=1 Ci ·C·i

N 2 − ∑Nc
i=1 Ci ·C·i

,

where Cii is the total number of correct classifications for the class i , Ci · = ∑
j 
=i Ci j is

the number of samples of class i that have been misclassified (false negatives), and C· j =∑
i 
= j Ci j number of samples that have been wrongly attributed to class i (false positives).

As a result, K ranges from −1 (total disagreement) to 0 (random classification) to 1 (total
agreement).
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4.2 Algorithm settings

In the following we study the DFS scheme in combination with different FS algorithms,
namely the SFS, the RFSC and the ReliefF. Accordingly, we will refer to the corresponding
DFS schemes as dSFS, dRFSC and dReliefF, respectively. We next list the main settings for
the SFS, the RFSC and the ReliefF algorithms, followed by some remarks on the setup of
the distributed scheme.

At each iteration, the SFS operates by testing each available feature for inclusion in the
selected subset and actually adding only the most improving one. The iterative procedure
is repeated as long as improvements are obtained by adding further features. Since in our
framework improvements are discrete, no parameters are required to operate the algorithm.

The RFSC requires a careful setting of various parameters. Using the notation reported in
Brankovic et al. (2018), the initial model distribution was defined so that the probability of
selecting any given feature is equal to μ0 = 1/Ne. The number of models generated at each
iteration was set to Np = 10. The significance confidence interval for rejecting redundant
features was set to α = 0.998. This parameter influences the model size, in that the closer
it is to 1, the more terms are rejected by the statistical test. To constrain the computational
time of the processors in case of slow convergence, the maximum number of iterations was
set to Ni = 100. The probability threshold for extracting the selected model structure from
the feature distribution was set to μ̄ = 0.7. We redirect the interested reader to Brankovic
et al. (2018) for a full explanation of the role and settings of the RFSC parameters.

The only parameter to design for the ReliefF algorithm is the number of features to be
retained after ranking. This parameter is set to Ne

Nb

rperc
100 , where rperc denotes the percentage

of retained features. Parameter rperc was set to 35 for all datasets, i.e. the 35% top ranked
features are extracted from each bin, at every iteration, to generate the local model Mb,
b = 1, . . . , Nb.

Another important parameter for theDFS is the number of bins Nb (or equivalently the size
of the bins). This parameter is influenced by many factors (such as the adopted FS algorithm,
Ne, and N ), so that there is no straightforward rule that can be invoked for its setting, and
some degree of trial-and-error is necessary for its correct dimensioning. Some rules of thumb
are reported below.

The SFS algorithm, due to its greedy and exhaustive searching nature, works better with
small sets of features. Accordingly, we used 10 bins for datasets with Ne ≤ 1000, in order to
get less than 100 features per bin. Larger Nb values were used for the other datasets. Notice
also, that the number of features in a bin should be less or equal to the number of samples to
avoid numerical issues such as overfitting. This implies that Nb ≥ Ne/N .

ReliefF is relatively insensitive to the bin size (the computational complexity grows lin-
early with the number of features). However, splitting the feature set will favor the emergence
of other features, besides those that are individually ranked as the best. In this way, features
that are not individually significant but that are crucial for good classification when suitably
combined with others may be detected. With ReliefF we employed 5, 10, and 15 bins, for
small, medium, and large datasets, respectively.

As for the RFSC, since a very small number of models is extracted at each iteration (Np =
10) and the probability of selecting any given feature is also set to a small value (μ0 = 1/Ne),
a relatively small bin size is indicated in order to ensure an adequate representativeness of all
the features in the population of extracted models. If one wants to operate with larger bins,
it is necessary to increase Np (or μ0) accordingly, for the same reason. On the other hand, if
the bin size is too small, the RFSC may fail to converge in a reasonable time. With respect to
the considered datasets the number of bins was set so as to generate bins of approximately
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Table 2 Number of bins (Nb)
employed for each dataset, as a
function of the FS algorithm

Dataset SFS RFSC ReliefF

Bupa 10 4 5

Colon 66 40 47

HillValley 50 51 15

Ionosphere 10 12 10

Iris 10 3 5

Madelon 10 10 10

Musk1 100 56 15

Ovarian 80 303 86

Sonar 20 18 15

Vehicle 10 4 5

WDBC 10 10 10

Wine 10 2 5

size 25 and 50 for small and medium cases, respectively. Larger bins are used for the other
datasets.

Table 2 reports the settings for Nb adopted in this study.
In the cases where a large number of bins is adopted, bin overloading typically occurs

at the first iterations of the distributed algorithm, since in the aggregation phase a lot of
regressors are added to each bin. To avoid this, information sharing is limited to the five top
ranked local models.

The proposed DFS algorithm was implemented in Matlab (version 2016a) and executed
on an Intel(R) Core i7-3630QM machine, with 4.3GHz CPU, 32GB of RAM, and a 64-bit
Operating System.

4.3 Algorithm sensitivity tests

4.3.1 Effects of the randomized nature of the DFS scheme

The DFS scheme involves a random shuffling and distribution of the features in the Nb bins
at every iteration. To get a better insight on the effects related to the randomized nature of the
algorithm, we analyzed the variability of the classification performance results by means of
a Monte Carlo test on the same problem. We considered the WDBC dataset employing the
same training-test partitioning of the data for this purpose, and tested both the centralized and
distributed architectures for all 3 FS methods. In the latter case 10 feature bins are employed.
The total feature set amounts to Ne = 496 terms (30 original features, polynomial expansion
of degree Nd = 2). Overall, 100 Monte Carlo simulations have been performed for each
method.

Regarding in particular the dRFSC, it is important to note that an additional source of
randomization is present besides that related to the distribution of the features in the feature
bins, due to the randomized nature of the RFSC algorithm. It is therefore important to assess
the robustness of the selection results especially with reference to large search spaces. Fur-
thermore, notice that in the distributed scheme the RFSC operates on much smaller feature
subsets, and can therefore tolerate a smaller number of extracted models at each iteration. In
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Fig. 2 Test error performance of the RFSC, dRFSC, SFS, dSFS, ReliefF and dReliefF over 100 Monte Carlo
runs performed on the same training/test data split of the WDBC dataset

view of this, we used Np = 100 for the centralized scheme and Np = 10 for the distributed
one. The maximum number of RFSC iterations was set to Ni = 100 in both cases.

Figure 2 shows the distribution of the classification error on the test set with the centralized
(RFSC, SFS, ReliefF) and the distributed (dRFSC, dSFS, dReliefF) approaches. A strong
dominance of the distributed approach over the centralized one is apparent in all three cases.
Nearly half of the times (46%) the dRFSC algorithm picked solutions with 0 classification
error on the test data, while this figure falls to just 2% for the centralized RFSC. In general,
the RFSC displays a higher variance of the error, which is probably related to the complexity
of the search space, that grows exponentially with size (the centralized RFSC operates on a
search space of 2Ne possible model structures, while the local RFSC instances used in the
dRFSC approach work on sets which are several orders of magnitude smaller). Even if the
centralized RFSC employs a much higher Np value, this is not enough to explore the huge
search space efficiently.

The dSFS algorithm outperformed the SFS 90%of the times, while the dReliefF algorithm
had 100% dominance over ReliefF. Among the distributed algorithms, dRFSC displays the
smallest variance of the error.

4.3.2 Effects of the training/test data partitioning

The classification accuracy depends on how the partitioning of the dataset in the training and
testing sets is performed. To analyze this effect we carried out 100 Monte Carlo simulations
on the WDBC dataset, regenerating every time the training-testing partition. In this analysis,
we compared the results obtained with the distributed RFSC, SFS and ReliefF architectures.
To provide a fair comparison, all 3 algorithms were trained and tested on the same data for
each Monte Carlo simulation. Figure 3 reports the distribution of the classification error for
the dRFSC, dSFS and dReliefF on the test data. Once again, the error distribution of the
dRFSC is mainly concentrated near zero, and 99% of the times it is below 4%, which shows
the robustness of the proposed approach with respect to the data division issue.
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Fig. 3 Monte Carlo evaluation of the test error with dRFSC (top), dSFS (middle) and dReliefF (bottom) for
100 different training/test data partitions

Both the dSFS and dReliefF present a much larger average error and also a much wider
spread of the results, with occasionally very bad classification performance.

4.3.3 Performance dependence on the number of bins

In the DFS scheme, the number of bins has a strong impact on the classification performance.
To explore the variability of the classification error performancewith respect to the number of
generated bins, we tested the dSFS algorithm on theWDBC dataset using a fixed training-test
data split, but different bin settings, Nb = 10, 20, . . . , 80).

Twenty simulations were carried out for each case, assuming a fixed maximum number of
rounds. The results are reported in Fig. 4, emphasizing for each case the range of performances
and the median, which indicates the “typical” result for a given number of bins. Apparently,
the typical performance is best for an intermediate value of Nb. In other words, one generally
obtains worse performance when there are either too few bins (because their size is too large)
or too many (because many unnecessary features are shared at the end of each DFS round).

4.3.4 Analysis of algorithm’s runtime

In order to characterize the algorithm’s runtime scaling as a function of the number of available
processors (Nb) and the number of features (N f ) we performed an exhaustive test on the
Musk1 and Ovarian datasets. The results are shown in Fig. 5. The runtime is measured as the
total time required by the DFS algorithm to converge. In our experiments we used the 8 cores
of the machine to run 8 FS local problems at a time (using Matlab parfor loops). Obviously,
additional time savings can be obtained with more powerful computing machinery that can
fully leverage the parallelism of the proposed scheme.
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Fig. 4 Test error dependence on Nb: range and median
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Fig. 5 DFS algorithm runtime as a function of the number of available processors (Nb) and the number of
features (N f ) for the Musk1 (top) and Ovarian dataset (bottom)
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As shown in Fig. 5, the runtime decreases exponentially with Nb down to an inflection
point where its starts increasing again. This confirms the importance of a correct sizing of
the Nb parameter (see Sect. 3.2). If too small a value is applied, the bin size will be large
and hence the advantages of the distributed scheme will not be fully exploited. In particular,
in the low value range adding further processors greatly affects the runtime. After a certain
value it doesn’t pay off to increase Nb, since what is gained by reducing the size of the local
FS problems is lost due to the corresponding increase of the number of rounds of the DFS
algorithms that are required to reach convergence.

A slightly different pattern is observed with the Ovarian dataset for N f = 1000. Appar-
ently, for this problem size the distributed approach is already effective for a very small
number of processors (Nb = 10), and adding further ones does not reduce the runtime (the
minimum of the curve is not shown).

4.4 Comparative analysis

4.4.1 Centralized versus distributed FS scheme

Table 3 reports extensive simulation results obtained on the twelve considered datasets using
all the mentioned centralized and distributed FS algorithms. For each case we report the
number of selected original (N f s) and extended (Nes) features (clearly, N f s ≤ N f and
Nes ≤ Ne), the accuracy performance index J , the Kappa rate K , and the elapsed time
ET . Apparently, there is a systematic gain in using the distributed scheme as opposed to the
centralized one, independently of the adopted FS algorithm. This is generally due to the fact
that the complexity of the FS task increases exponentially with the number of considered
features, and all wrapper methods tend to perform better when the search space is smaller.
The distributed approach is ultimately beneficial also for a filter method like ReliefF, since
in the centralized case it just picks the individually top ranked features, which, as mentioned
before, do not necessarily coincide with the best features to combine in the classifier design.

The inspection of Table 3 reveals that dSFS and dRFSC generally provide smaller models
than their centralized counterparts. Besides having less extended features, these models also
contain less original features. As for the dReliefF method the final model size depends on
the rperc parameter which is set in the same way for the centralized and distributed schemes.
dSFS typically returns the smaller models, whereas dRFSC and dReliefF provide more often
the most accurate results.

Finally, there appears to be a significant gain (sometimes even an order of magnitude) in
computational time inherent in the adoption of the DFS scheme, implying that the searching
mechanism is much more efficient than in the centralized case.

4.4.2 Proposed distributed FS scheme versus off-the-shelf methods

Table 4 below reports the results of a comparative analysis of some off-the-shelf nonlin-
ear classifiers (kernelized SVM (kSVM), random forests (RF), and gradient boosting trees
(xgBoost, denoted GBT)), and sparse linear models (L1-penalized models (L1), Elastic Net
(EN)) against the proposed DFS algorithm (in the three versions dRFSC, dSFS, dReliefF).
The mentioned off-the-shelf algorithms are executed using a standard nested kFCV scheme
for algorithm evaluation. More precisely, for each training-test data partition resulting from
the outer 10-FCV loop, a further (inner) 5-FCV loop is carried out on the training part to
find the optimal hyperparametrization (for that particular partition). Then, the model is re-
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Table 3 Comparative analysis of the centralized and distributed schemes for the RFSC, SFS and ReliefF
algorithms (Jte and Kte)

Method Dataset N f s Nes Jte Kte ET [s] Dataset N f s Nes Jte Kte ET [s]

RFSC Bupa 5.8 7.4 0.7884 0.4950 14.6 Musk1 46.2 23.2 0.8132 0.6201 51.6

dRFSC 5.8 4.3 0.7945 0.5701 1.9 48 22.5 0.8216 0.6372 40.7

SFS + 5NN 3.9 4.2 0.6228 0.2104 24.2 20 11 0.8531 0.7049 11712.2

dSFS + 5NN 3.4 2.7 0.6576 0.3424 12.6 15 7.5 0.8671 0.7360 1328.9

ReliefF + 5NN 3 6 0.5704 0.1154 0.4 84 327 0.8461 0.6937 41.9

dReliefF + 5NN 5 6 0.6724 0.4348 0.2 84 327 0.8559 0.7143 4.2

RFSC Colon – – – – – Ovarian – – – – –

dRFSC 2.3 2.3 0.8421 0.6209 0.3 5 5 0.9653 0.9251 2.23

SFS + 5NN 3 3 0.7579 0.2963 605 2 42 0.9868 0.9710 3344

dSFS + 5NN 1.25 1.25 0.8026 0.4673 15.8 2.25 2.25 0.9868 0.9710 130

ReliefF + 5NN 21 21 0.5529 0.5529 0.37 62 62 1 1 16.4

dReliefF + 5NN 21 21 0.8526 0.6211 0.01 62 62 1 1 14.4

RFSC HillValley 8.3 3.7 0.9277 0.8552 18.6 WDBC 11.5 10.3 0.9827 0.9621 66.0

dRFSC 5.6 2.8 0.9859 0.9846 7.7 8.1 5.2 0.9860 0.9674 8.5

SFS + 5NN 5.6 4.5 0.5549 0.1095 658.7 6.1 3.5 0.9507 0.8942 129.9

dSFS + 5NN 4.3 4.5 0.5604 0.1214 250.4 4.4 2.5 0.9597 0.9129 32.2

ReliefF + 5NN 39 120 0.4890 -0.0207 30.4 10 17 0.9596 0.9116 4.1

dReliefF + 5NN 39 120 0.5274 0.0616 2.8 21 17 0.9825 0.9621 0.8

RFSC Ionosphere 16.4 14.7 0.9330 0.8541 57.0 Sonar 25.8 18.7 0.8806 0.8101 72.0

dRFSC 13.5 11.8 0.9487 0.8861 2.4 9.6 5.1 0.9090 0.8164 1.21

SFS + 5NN 4.7 2.8 0.9028 0.7818 129.8 8.5 4.8 0.7167 0.5346 624.6

dSFS + 5NN 3.9 2.1 0.9198 0.8215 21.6 6.9 3.7 0.8073 0.6093 131.1

ReliefF + 5NN 10 20 0.9004 0.7699 2.3 19 44 0.7753 0.5460 3.1

dReliefF + 5NN 18 20 0.9403 0.8653 0.5 42 44 0.8075 0.7640 1.4

RFSC Iris 3.2 6.1 0.9666 0.9500 10.0 Vehicle 10.9 16.6 0.7888 0.7186 162.4

dRFSC 2.8 4.5 0.9902 0.9900 1.3 8.1 5.2 0.8003 0.7339 25.3

SFS + 5NN 2.6 2.2 0.9600 0.9480 6.8 10.3 8.5 0.7010 0.6558 130.2

dSFS + 5NN 1.7 1.7 0.9800 0.9745 2.10 9.6 7.8 0.7292 0.6886 57.6

ReliefF + 5NN 2 5 0.9600 0.9457 0.08 9 13 0.6913 0.6436 3.3

dReliefF + 5NN 4 5 0.9800 0.9740 0.06 10 13 0.7671 0.7314 1.2

RFSC Madelon 3.5 3.5 0.6160 0.2212 370.3 Wine 7.3 7.5 0.9944 0.9916 12.0

dRFSC 3.5 3.5 0.6347 0.2692 34.5 3.6 2.2 0.9944 0.9916 1.16

SFS + 5NN 7.5 7.5 0.8966 0.7933 326.1 6.7 4.6 0.9493 0.9306 40.1

dSFS + 5NN 7.4 7.4 0.9021 0.8043 60.3 5.6 3.6 0.9777 0.9698 11.2

ReliefF + 5NN 18 18 0.8910 0.7820 42.2 6 7 0.9323 0.9080 0.2

dReliefF + 5NN 18 18 0.9083 0.8166 4.7 8 7 0.9944 0.9916 0.1
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Table 4 Comparison of the DFS
with various off-the-shelf FS
methods on nine UCI
benchmarks

Dataset Bupa Iris Vehicle

Method Jte Kte Jte Kte Jte Kte

SVM 0.7137 0.3976 0.9533 0.9300 0.8465 0.7952

RF 0.7361 0.4473 0.9533 0.9300 0.7566 0.6755

GBT 0.7101 0.3967 0.9400 0.9100 0.7644 0.6859

L1 0.5975 0.1455 0.8733 0.8100 0.7057 0.6074

EN 0.5945 0.1359 0.8933 0.8400 0.7212 0.6277

dRFSC 0.7945 0.5701 0.9902 0.9900 0.8003 0.7339

dSFS 0.6576 0.3424 0.9800 0.9745 0.7292 0.6886

dReliefF 0.6724 0.4348 0.9800 0.9740 0.7671 0.7314

Dataset HillValley Musk1 WBCD

Method Jte Kte Jte Kte Jte Kte

SVM 0.6766 0.3507 0.9348 0.8675 0.9738 0.9428

RF 0.5460 0.0911 0.8889 0.7731 0.9615 0.9169

GBT 0.5576 0.1148 0.8932 0.7817 0.9596 0.9129

L1 0.5033 0.0000 0.7462 0.4863 0.9581 0.9082

EN 0.5066 0.0087 0.7310 0.4406 0.9649 0.9245

dRFSC 0.9859 0.9864 0.8216 0.6372 0.9860 0.9674

dSFS 0.5604 0.1214 0.8671 0.7360 0.9597 0.9129

dReliefF 0.5274 0.0616 0.8559 0.7143 0.9825 0.9621

Dataset Ionosphere Sonar Wine

Method Jte Kte Jte Kte Jte Kte

SVM 0.9402 0.8680 0.8187 0.6360 0.9667 0.9667

RF 0.9289 0.8438 0.7982 0.5933 0.9719 0.9576

GBT 0.9289 0.8420 0.8712 0.7412 0.9660 0.9484

L1 0.7892 0.5267 0.7404 0.4759 0.9719 0.9571

EN 0.8291 0.5970 0.6841 0.3536 0.9719 0.9573

dRFSC 0.9487 0.8861 0.9090 0.8164 0.9944 0.9916

dSFS 0.9198 0.8215 0.8073 0.6093 0.9777 0.9698

dReliefF 0.9403 0.8653 0.8075 0.7640 0.9944 0.9916

estimated with that value of the hyperparameters on the training data and evaluated on the
test data for that data partition, and the whole procedure is repeated for all the other folds
of the outer 10-FCV loop. The hyperparameter optimization is carried out with a gridding
approach. For this purpose, the GridSearchCV routine of the scikit-learn Python environ-
ment is employed on every fold of the outer loop, with the refit option.

All algorithms are tested on nineUCI benchmarks using 10-FCV,1 in terms of performance
(Jte) and Kappa rate (Kte) on the test data, using the same training-test data partitions used
for the DFS.

1 For ease of comparison, we considered for this analysis only the datasets for which 10-FCV results are
available also for other methods in the literature.
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With the exception of two datasets (out of nine) the DFS algorithm in the dRFSC version
provides the best results both in terms of Jte and Kte. Notice that in those cases the DFS
outperformed also ensemble approaches such as RF and xgBoost. This demonstrates the
possible advantages of the distributed scheme in general, and also the effectiveness of the
randomized scheme of the dRFSC in particular, which has an increased chance to escape
from local minima.

4.4.3 Proposed distributed FS scheme versus literature methods

This section compares the results obtained with the proposed DFS scheme (in the 3 versions,
namely dRFSC, dSFS and dReliefF) to those reported in the literature (see, in particular, Xue
et al. 2013, 2014; Sreeja and Sankar 2015; Cano et al. 2013; Lin and Chen 2009; Bolón-
Canedo et al. 2015a). Tables 5 and 6 report respectively the performance (both in terms of
classification accuracy andKappa rate) and themodel size (in terms of the number of selected
features Nes) of the obtained classifiers for 10 UCI datasets (the larger Colon and Ovarian
datasets are considered separately). Table 9 in “Appendix A” provides the references for all
the methods considered in this comparative analysis.

The best results in terms of classifier performance are typically associated to one of the
3 distributed schemes. A similar pattern is observed also regarding the classifier size. The
results (see Table 6) also support the choice of extending the original set of features with a
polynomial expansion, in that in general the obtained models outperform the literature while
using a very limited number of the original features.

To appreciate the robustness of the proposed distributed scheme, we report in Table 7 the
average ( J̄te) and standard deviation (std(Jte)) of the classification performance obtained by
the dRFSC on the test data over 10 independent runs. In most cases the standard deviation is
as low as 1%, indicating the good robustness properties of the algorithm. The highest standard
deviation value is obtained for the Musk1 dataset. In terms of the J̄te ± std(Jte) range, the
presented algorithm still outperforms most of the methods from the literature presented in
Table 5, and most markedly the Bupa, HillValley, Ionosphere and Sonar datasets.

Finally, Table 8 reports the results (in terms of model size and classification performance)
obtained for the two large microarray datasets (Colon and Ovarian). Besides the good per-
formance in terms of accuracy (see the dReliefF algorithm in particular), the obtained results
also demonstrate the improvements that can be gained with the proposed methods in terms
of model size with respect to the distributed FS approaches discussed in Bolón-Canedo et al.
(2015a).

5 Conclusions

We proposed a novel distributed scheme for feature selection and classification problems,
applicable in combination with any FS algorithm of choice, that exploits the benefits of
parallel processing, vertical data partitioning, and information exchange. To the authors’
knowledge, this is the first time that all these features are included into a unique algorithm.

The distributed scheme does not employ any a priori filtering, so that all features are
considered equally important at the beginning. The features are distributed among different
processors which perform separate independent FS tasks limited to the portion of features
they have access to. The results of these selection processes are aggregated and the selected
features fed back to the processors to be merged with the local features before a new round
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Table 5 Comparative analysis: performance (Jte and Kte)

FS Method + Classifier Bupa HillValley Ionosphere Iris Madelon

Jte Kte Jte Kte Jte Kte Jte Kte Jte Kte

ACO + PMC 0.6725 0.3259 – – 0.9373 0.8604 0.9600 0.9400 – –

Att.-Cls.WM + DGC+ 0.6744 0.3076 – – 0.9311 0.8487 0.9533 0.9300 – –

Att. WV + DGC 0.6525 0.2220 – – 0.6724 0.1142 0.9533 0.9300 – –

− + KNN 0.6066 0.1944 – – 0.8518 0.6494 0.9400 0.9100 – –

− + KNN-A 0.6257 0.2021 – – 0.9372 0.8595 0.9533 0.9300 – –

− + DW-KNN 0.6376 0.2645 – – 0.8747 0.7083 0.9400 0.9100 – –

− + Cam-NN 0.5962 0.1024 – – 0.7379 0.5145 0.9467 0.9200 – –

− + CNN 0.6316 0.2571 – – 0.8917 0.7526 0.9267 0.8900 – –

SSMA + SFLDS 0.6426 0.2731 – – 0.9088 0.7986 0.9533 0.9300 – –

forward FS + LDA 0.6110 – – – 0.8530 – 0.9630 – – –

backward FS + LDA 0.6430 – – – 0.9090 – 0.9370 – – –

PSO + LDA 0.6520 – – – 0.9220 – 0.9700 – – –

PSO(4-2) + 5NN – – 0.5777 – 0.8727 – – – 0.7886 –

PSOMulti + 5NN – – 0.5757 – 0.9050 – – – 0.7652 –

(DCF) + RFSC 0.7884 0.4950 – – 0.9330 0.8541 0.9666 0.9500 – –

dRFSC 0.7945 0.5701 0.9859 0.9864 0.9487 0.8861 0.9902 0.9900 0.6347 0.2692

dSFS + 5NN 0.6576 0.3424 0.5604 0.1214 0.9198 0.8215 0.9800 0.9745 0.9021 0.8043

dReliefF + 5NN 0.6724 0.4348 0.5274 0.0616 0.9403 0.8653 0.9800 0.9740 0.9083 0.8166

FS Method + Classifier Musk1 Sonar Vehicle WDBC Wine

Jte Kte Jte Kte Jte Kte Jte Kte Jte Kte

ACO + PMC – – 0.9087 0.8164 – – – – 0.9755 0.9659

Att.-Cls. WM + DGC + – – 0.8487 0.6943 0.7116 0.6152 – – 0.9731 0.9590

Att. WV + DGC – – 0.7694 0.5187 0.6572 0.5437 0.9619 – 0.9706 0.9552

− + KNN – – 0.8307 0.6554 0.7175 0.6233 – – 0.9549 0.9318

− + KNN-A – – 0.8798 0.7549 0.6879 0.5844 – – 0.9663 0.9491

− + DW-KNN – – 0.8648 0.7248 0.7258 0.6342 - – 0.9438 0.9152

− + Cam-NN – – 0.7743 0.5364 0.6170 0.4905 – – 0.9497 0.9228

− + CNN – – 0.8940 0.7861 0.7423 0.6563 – – 0.9663 0.9491

SSMA + SFLDS – – 0.8079 0.6100 0.9145 0.5273 – – 0.9438 0.9145

forward FS + LDA – – 0.7610 – 0.7500 – – – 0.9660 –

backward FS + LDA - – 0.8550 – 0.7900 – – – 0.9990 –

PSO + LDA – – 0.9050 – 0.7940 – – – 1.0000 –

PSO(4-2) + 5NN 0.8494 – 0.7816 – – – 0.9398 – – –

PSOMulti + 5NN 0.8454 – – – – – – – – –

(DCF) + RFSC – – 0.8806 0.8101 – – 0.9827 0.9621 0.9944 0.9916

dRFSC 0.8216 0.6372 0.9090 0.8164 0.8003 0.7339 0.9860 0.9674 0.9944 0.9916

dSFS + 5NN 0.8671 0.7360 0.8073 0.6093 0.7292 0.6886 0.9597 0.9129 0.9777 0.9698

dReliefF + 5NN 0.8559 0.7143 0.8075 0.7640 0.7671 0.7314 0.9825 0.9621 0.9944 0.9916
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Table 6 Comparative analysis: model size (average number of selected features N f s )

FS Method + Classifier Bupa Ionosphere Iris HillValley Madelon Musk1 Sonar Vehicle WDBC Wine

FW FS + LDA 3.6 4.8 2.3 – – – 10.7 11.5 – 7.1

BW FS + LDA 4.7 30.4 3.9 – – – 56.4 16.5 – 12.8

PSO + LDA 4.6 21.7 3.6 – – – 38.1 15.5 – 12.3

PSO(4-2) + 5NN – 3.26 – 12.22 203.32 76.54 11.24 10.16 3.46 6.84

dRFSC 5.8 13.5 2.8 5.6 3.5 48 9.6 8.1 8.1 3.6

dSFS + 5NN 3.4 3.9 1.7 4.3 7.4 15 6.9 9.6 4.4 5.6

dRelief + 5NN 5 18 4 39 18 84 42 10 21 8

Table 7 Average and standard deviation of the performance for the dRFSC algorithm

FS Method + Classifier Bupa HillValley Ionosphere Iris Madelon

J̄te std(Jte) J̄te std(Jte) J̄te std(Jte) J̄te std(Jte) J̄te std(Jte)

dRFSC 0.7672 0.0105 0.9804 0.0167 0.9332 0.0062 0.9700 0.0080 0.5894 0.0245

FS Method + Classifier Musk1 Sonar Vehicle WDBC Wine

J̄te std(Jte) J̄te std(Jte) J̄te std(Jte) J̄te std(Jte) J̄te std(Jte)

dRFSC 0.8153 0.0377 0.9033 0.0139 0.7721 0.0213 0.9816 0.0023 0.9792 0.0090

Table 8 Comparative analysis:
performance (N f s and Jte)

FS Method + Classifier Colon Ovarian

N f s Jte N f s Jte

INT DF + 1NN 16 0.7700 27 0.9786

INT DRF + 1NN 16 0.7000 27 1.000

INT DRF0 + 1NN 16 0.8500 27 1.000

IG10 DF + 1NN 200 0.8000 1516 0.9905

IG10 DRF + 1NN 200 0.7000 1516 1.000

IG10 DRF0 + 1NN 200 0.8000 1516 1.000

Rel10 DF + 1NN 200 0.8300 1516 0.9810

Rel10 DRF + 1NN 200 0.7000 1516 1.000

Rel10 DRF0 + 1NN 200 0.8000 1516 1.000

dRFSC (avrg) 2.3 0.8421 5 0.9653

dRFSC (best) 3 0.8947 7 1.000

dSFS + 1NN (avrg) 1.25 0.8026 2.25 0.9868

dSFS + 1NN (best) 1 0.8421 3 1.000

dReliefF + 1NN (avrg) 21 0.8526 62 1.000

dReliefF + 1NN (best) 21 0.8947 62 1.000
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of FS. For increased robustness, the local features are reshuffled among the processors at the
beginning of every round, while all the selected features are transmitted to all the processors.
This scheme allows to perform the FS task on datasets with a large number of features, by
breaking the complexity of the problem and distributing over the processors. The information
exchange, the feature re-shuffling and the process iteration ensure that the whole search space
is adequately explored.

An extensive analysis on various public datasets of various dimensions revealed the advan-
tages of the proposed distributed scheme over the corresponding centralized approaches,
independently of the employed FS algorithms. Indeed, three very different FS algorithms
have been tested, namely SFS, RFSC, and ReliefF, and all resulted in improved performance
when used according to the distributed approach. Significant gains are observed also in terms
of computational time, which is an indirect confirmation of the increased efficiency of the
searching process. Another interesting feature of the DFS scheme is that, when used in com-
bination with wrapper methods as SFS and RFSC, it yields more compact classifier models
compared to the non-distributed methods.

The proposed DFS scheme has also been evaluated against some of the most effective
recent algorithms from the literature with quite promising results. Indeed, for each of the
studied datasets the best performing method is generally one of the DFS schemes.

A. References for FSmethodsmentioned in the paper

See Table 9.

Table 9 FS methods and
corresponding references

FS method References

ACO + PMC Sreeja and Sankar (2015)

Att.-Cls. WM + DGC + Cano et al. (2013)

Att. WV + DGC Cano et al. (2013)

− + KNN Cano et al. (2013)

− + KNN-A Cano et al. (2013)

− + DW-KNN Cano et al. (2013)

− + Cam-NN Cano et al. (2013)

− + CNN Cano et al. (2013)

SSMA + SFLDS Cano et al. (2013)

forward FS + LDA Lin and Chen (2009)

backward FS + LDA Lin and Chen (2009)

PSO + LDA Lin and Chen (2009)

PSO(4-2) Xue et al. (2014)

PSOMulti Xue et al. (2013)

INT DF Bolón-Canedo et al. (2015a)

INT DRF Bolón-Canedo et al. (2015a)

INT DRF0 Bolón-Canedo et al. (2015a)

IG10 DF Bolón-Canedo et al. (2015a)

IG10 DRF Bolón-Canedo et al. (2015a)

IG10 DRF0 Bolón-Canedo et al. (2015a)
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Table 9 continued FS method References

Rel10 DF Bolón-Canedo et al. (2015a)

Rel10 DRF Bolón-Canedo et al. (2015a)

Rel10 DRF0 Bolón-Canedo et al. (2015a)
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