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Abstract
In this study, we consider a transfer-learning problem using the parameter transfer approach,
in which a suitable parameter of feature mapping is learned through one task and applied to
another objective task.We introduce the notion of local stability and parameter transfer learn-
ability of parametric feature mapping, and derive an excess risk bound for parameter transfer
algorithms. As an application of parameter transfer learning, we discuss the performance of
sparse coding in self-taught learning. Although self-taught learning algorithms with a large
volume of unlabeled data often show excellent empirical performance, their theoretical anal-
ysis has not yet been studied. In this paper, we also provide a theoretical excess risk bound
for self-taught learning. In addition, we show that the results of numerical experiments agree
with our theoretical analysis.

Keywords Transfer learning · Sparse coding · Risk bound

1 Introduction

In traditional machine learning, it is assumed that data are identically drawn from a sin-
gle distribution. However, this assumption does not always hold in real-world applications.
Therefore, it is imperative to develop methods that are capable of incorporating samples
drawn from different distributions. In this case, transfer learning provides a general way
to accommodate these situations. In transfer learning, apart from the few samples that are
available related to an objective task, abundant samples from another domain that are not
necessarily drawn from an identical distribution can be used. The domain related to the
objective task is called the target domain and the other domain is called the source domain.
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Transfer learning aims to extract some useful knowledge from the source domain and apply
this knowledge to achieve high task performance in the target domain.

Transfer learning is categorized in Pan and Yang (2010) into three areas: inductive transfer
learning, transductive transfer learning, and unsupervised transfer learning. Inductive transfer
learning corresponds to the setting inwhich labeled samples are available in the target domain.
In addition, when labeled samples in the source domain are unavailable, the setting is called
self-taught learning (Raina et al. 2007). In particular, self-taught learning can be applied to
the case in which tasks are different in the source and target domains. Transductive transfer
learning corresponds to the setting in which labeled samples are available only in the source
domain. Then, tasks in both domains are typically assumed to be the same as in a covariate
shift (Shimodaira 2000; Sugiyama et al. 2008) and sample selection bias (Zadrozny 2004;
Huang et al. 2007). Domain adaptation (Daume and Marcu 2006; Blitzer et al. 2006) can
be regarded as transfer learning in which tasks are the same in both domains; this is closely
related to transductive transfer learning. Unsupervised transfer learning corresponds to the
setting where labeled samples are unavailable in both domains. In this setting, the purpose is
not to achieve high predictive performance but to perform an unsupervised task well in the
target domain.

In accordance with the type of knowledge that is transferred, approaches for solving
transfer-learning problems can be classified into types such as instance transfer, feature
representation transfer, and parameter transfer (Pan and Yang 2010). In recent years, the
parameter transfer approach has particularly attracted much attention in fine-tuning network
weights of a deep neural network trained on source domains. In the setting of the parameter
transfer approach, some kind of parametric models are supposed in both domains and the
transferred knowledge is encoded into parameters. Biased regularization has been studied
as a typical method in the parameter transfer approach, where the regularization term to
an empirical loss has a non-zero center (e.g., ‖w − w0‖2 instead of ‖w‖2) and the center
is learnt on the source domain (Ben-David and Urner 2013; Pentina and Lampert 2014;
Tommasi et al. 2014). Recently, generalization of the biased regularization was proposed
and theoretically analyzed (Kuzborskij and Orabona 2013, 2017). Owing to its flexibility,
the parameter transfer approach can be applied to other algorithms such as sparse coding
(Raina et al. 2007; Maurer et al. 2013), multiple kernel learning (Duan et al. 2012), and deep
learning (Yosinski et al. 2014).

As the parameter transfer approach typically requires many samples to accurately learn
a suitable parameter in the source domain, unsupervised methods are often utilized for the
learning process. In this sense, self-taught learning is compatible with the parameter transfer
approach. The sparse coding-based method was used in Raina et al. (2007), in which self-
taught learning was first introduced. Moreover, in this work, the parameter transfer approach
was used with regard to a dictionary learnt from images as the parameter to be transferred.
However, although self-taught learning has been studied in various contexts (Dai et al. 2008;
Lee et al. 2009; Wang et al. 2013; Zhu et al. 2013) and many algorithms based on the param-
eter transfer approach have empirically demonstrated impressive performance in self-taught
learning, some fundamental problems remain. First, the theoretical aspects of the parame-
ter transfer approach have not been sufficiently studied. For example, in the context of the
parameter transfer approach, the generalization error bound applicable to self-taught learn-
ing has not been considered except in a few studies (Kuzborskij and Orabona 2013, 2017).
Furthermore, existing studies only treat restricted hypothesis sets, limiting applicability in
areas such as sparse coding, multiple kernel learning, and neural network. Second, although
it is believed that a large amount of unlabeled data helps improve the performance of the
objective task in self-taught learning, the exact sample size has not been sufficiently clarified.
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Third, although sparsity-based methods are typically employed in self-taught learning, it is
unknown how the sparsity works to guarantee the performance of self-taught learning.

In this study, we aimed to shed light on the above problems.1 In this paper, we focus on
inductive transfer learning and consider a general model of parametric feature mapping in
the parameter transfer approach. We newly formulate the local stability of parametric feature
mapping and the parameter transfer learnability for this mapping, and provide an excess
risk bound for parameter transfer learning algorithms based on the notions. Furthermore, we
consider the stability of sparse coding. Finally, we discuss parameter transfer learnability by
dictionary learning under the sparse model. By applying the excess risk bound for parameter
transfer learning algorithms, we derive an excess risk bound for the sparse coding algorithm
in self-taught learning. Moreover, we show that the results of numerical experiments on
handwritten digits datasets are in good agreement with the theoretical analysis of transfer
learning with sparse coding. Note that our setting differs from the environment-based setting
(Baxter 2000;Maurer 2009), where distribution over a set of distributions on labeled samples,
known as an environment, is assumed. In our formulation, the existence of the environment
is not assumed and presence of labeled data in the source domain is not required.

The remainder of the paper is organized as follows. In Sect. 2, we formulate the stability
and parameter transfer learnability of the parametric feature mapping. Then, we present an
excess risk bound for parameter transfer learning. In Sect. 3, we show the stability of sparse
coding under perturbation of the dictionaries. By imposing sparsity assumptions on samples
and considering dictionary learning, we derive the parameter transfer learnability for sparse
coding. In particular, an excess risk bound is obtained for sparse coding in the setting of
self-taught learning. Section 4 is devoted to numerical experiments of transfer learning with
sparse coding. We conclude the paper with Sect. 5.

2 Excess risk bound for parameter transfer learning

2.1 Problem setting of parameter transfer learning

We formulate parameter transfer learning in this section. We first briefly introduce notations
and terminology in transfer learning (Pan and Yang 2010). Let X and Y represent a sample
space and label space, respectively. In addition, letH = {h : X → Y} be a hypothesis space
and � : Y × Y → R≥0 represent a loss function. Then, the expected risk and the empirical
risk are defined as R(h) := E(x,y)∼P [�(y, h(x))] and ̂Rn(h) := 1

n

∑n
j=1 �(y j , h(x j )),

respectively. In the transfer learning setting, it is assumed that, apart from samples from a
domain of interest (i.e., target domain), samples from another domain (i.e., source domain)
are also available.Wedistinguish between the target and source domains by adding a subscript
T or S to each notation introduced above, (e.g., PT , RS ). The homogeneous setting (i.e.,
XS = XT ) is not assumed in general, and thus, the heterogeneous setting (i.e., XS �= XT )
is used here. We note that self-taught learning, which is discussed in Sect. 3, corresponds to
the case in which the label space YS in the source task is the set of a single element.

We consider the parameter transfer approach in which the knowledge to be transferred is
encoded in a parameter. The parameter transfer approach aims to learn a hypothesis with low
expected risk for the target task by obtaining some knowledge about an effective parameter

1 A short version of this article was published as a conference paper (Kumagai 2016). In this article, we
present new theoretical results that extend our previous work, and include more detailed analysis of excess
risk bound. Furthermore, results are provided from numerical experiments conducted to confirm the validity
of the theoretical analysis in practical situations.
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in the source domain and transferring it to the target domain. We suppose that there are
parametric models on both the source and target domains and their parameter spaces are
partly shared. Our strategy is to learn an effective parameter in the source domain and then
transfer a part of the parameter to the target domain. Next, we describe the formulation.
In the target domain, we assume that YT ⊂ R and there is a parametric feature mapping
ψθ : XT → R

m on the target domain such that each hypothesis hT ,θ,w : XT → YT is
represented by

hT ,θ,w(x) := 〈w, ψθ (x)〉, (1)

with parameters θ ∈ Θ and w ∈ WT , where Θ is a subset of a normed space with norm ‖ · ‖
andWT is a subset of Rm . Then, the hypothesis set in the target domain is parameterized as

HT = {hT ,θ,w|θ ∈ Θ,w ∈ WT }.
In the following discussion, we simply denoteRT (hT ,θ,w) and ̂RT ,n(hT ,θ,w) byRT (θ ,w)

and ̂RT ,n(θ ,w), respectively. In the source domain, we suppose that there exists some kind of
parametricmodel such as a sample distribution PS,θ ,w or a hypothesis hS,θ,w with parameters
θ ∈ Θ and w ∈ WS , and a part Θ of the parameter space is shared with the target domain.
Then, let θ∗

S ∈ Θ and w∗
S ∈ WS be parameters that are supposed to be effective in the

source domain (e.g., the true parameter of the sample distribution, the parameter of the
optimal hypothesis with respect to the expected risk RS ). Here, the parameters θ∗

S and w∗
S

may be taken mathematically arbitrarily (i.e. there are no mathematical restrictions) and
we do not use any specific property on θ∗

S and w∗
S . Then, the parameter transfer algorithm

treated in this paper is described as follows. Let N - and n-samples be available in the source
and target domains, respectively. First, a parameter transfer algorithm outputs the estimator
̂θN ∈ Θ of θ∗

S by using N -samples. Next, for the parameter

w∗
T := argmin

w∈WT
RT

(

θ∗
S ,w

)

(2)

in the target domain, the algorithm outputs its estimator

ŵN ,n := argmin
w∈WT

̂RT ,n(̂θN ,w) + ρr(w) (3)

by using n-samples, where r(w) is a 1-strongly convex function with respect to ‖ · ‖2 and
ρ > 0. If the source domain relates to the target domain in some sense, the effective parameter
θ∗
S in the source domain is also expected to be useful for the target task. In the next section,

we regardRT
(

θ∗
S ,w∗

T
)

as the baseline of predictive performance and derive an excess risk
bound. The validity of the baseline is discussed in Sect. 2.2.

2.2 Excess risk bound based on stability and learnability

We introduce two new metrics, the local stability and parameter transfer learnability, as
described below. These notions are essential to derive an excess risk bound in Theorem 1.

Definition 1 (Local Stability) A parametric feature mapping ψθ is said to be locally stable if
there exist εθ : X → R>0 for each θ ∈ Θ and Lψ > 0 such that, for θ ′ ∈ Θ ,

‖θ − θ ′‖ ≤ εθ (x) ⇒ ‖ψθ (x) − ψθ ′(x)‖2 ≤ Lψ‖θ − θ ′‖.
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Local stability implies that the feature is not significantly affected by the parameter shift. We
term εθ (x) as the permissible radius of perturbation for θ at x. For samplesXn = {x1, . . . xn},
we have εθ (Xn) := min j∈[n] εθ (x j ), where [n] := {1, . . . , n} for a positive integer n.

Next, we formulate the parameter transfer learnability based on the local stability.

Definition 2 (Parameter Transfer Learnability) Suppose that N -samples are available in the
source domain and a sample x is available in the target domain. Let the parametric feature
mapping {ψθ }θ∈Θ be locally stable. For δ̄N ∈ [0, 1), {ψθ }θ∈Θ is said to be parameter transfer
learnable with probability 1− δ̄N if there exists an algorithm that depends only on N -samples
in the source domain such that the output̂θN of the algorithm satisfies

Pr
[

‖̂θN − θ∗
S‖ ≤ εθ∗

S
(x)
]

≥ 1 − δ̄N .

The parameter δ̄N is written as δ̄ for short as long as no conflict arises.

The parameter transfer learnability describes whether the effective parameter is properly
transformed on the target domain with high probability. For n-samples Xn = {x1, . . . xn} in
the target domain, the union bound ensures that the inequality ‖̂θN − θ∗

S‖ ≤ εθ∗
S
(Xn) holds

with probability greater than or equal to 1 − nδ̄N .
Given training samples {(x j , y j ) : j = 1, . . . , n} in the target domain, let us consider the

learning method

min
w∈WT

1

n

n
∑

j=1

�(y j , 〈w, ψ
̂θN

(x j )〉) + ρr(w),

wherêθN is the estimated parameter in the source domain using N training samples. The
optimal parameter in WT is denoted as ŵN ,n . Then, the following excess risk bound is
obtained.

Theorem 1 (Excess Risk Bound)We assume the following conditions.

1. The parametric feature mappingψθ(x) is bounded and locally stable with the parameter
Lψ . Suppose that supθ∈Θ,x∈X ‖ψθ (x)‖2 ≤ Rψ holds for some positive constant Rψ .

2. The estimator̂θN on the source domain satisfies the transfer learnability with probability
1 − δ̄.

3. The non-negative loss �(·, ·) on the target domain is L�-Lipschitz and convex in the
second argument. Moreover, we assume that supy �(y, 0) is bounded above by a positive
constant L0.

4. The non-negative regularization term r(w) is 1-strongly convex and r(0) = 0 holds.

Then, the excess risk is bounded above by

Rexcess := RT (̂θN , ŵN ,n) − RT (θ∗
S , w∗

T )

≤ c

{

‖̂θN − θ∗
S‖√

ρ
+ 1√

n′ρ
+ ‖̂θN − θ∗

S‖1/2
ρ3/4 + 1

nρ
+ ρ

}

(4)

with probability 1−δ− (n+n′)δ̄, where n′ is an arbitrary natural number and c is a positive
constant expressed as a polynomial in Lψ, Rψ, L�, L0, r(w∗

T ), and log(1/δ).

Proof In the proof, we define ci (i = 1, 2, 3, 4, 5) as a positive number depending on
Lψ, Rψ, L�, L0, and log(1/δ).
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Using the boundedness of the non-negative loss �(·, ·) and the strong convexity of r(w)

with some other conditions, we have

ρ

2
‖ŵN ,n‖2 ≤ 1

n

n
∑

j=1

�(y j , 〈ŵN ,n, ψ
̂θN

(x j )〉) + ρr(ŵN ,n)

≤ 1

n

n
∑

j=1

�(y j , 0) + ρr(0) ≤ L0.

Thus, ‖ŵN ,n‖ is bounded above by
√
2L0/ρ. Let ŵ∗

n be the optimal solution of

min
w∈WT

1

n

n
∑

j=1

�(y j , 〈w, ψθ∗
S
(x j )〉) + ρr(w).

Likewise, we see that the norm of ŵ∗
n has the same upper bound.

The excess risk is decomposed to the following three terms.

RT (̂θN , ŵN ,n) − RT (θ∗
S , w∗

T )

= E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψ̂θN
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψθ∗
S
(x)〉)

]

+ E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψθ∗
S
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈ŵ∗
n, ψθ∗

S
(x)〉)

]

+ E(x,y)∼PT

[

�(y, 〈ŵ∗
n, ψθ∗

S
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈w∗
T , ψθ∗

S
(x)〉)

]

.

Let us consider the upper bound of each term.
For the first term of the excess risk, the following inequality holds:

E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψ̂θN
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψθ∗
S
(x)〉)

]

≤ L�

√

2L0

ρ
E(x,y)∼PT

[

‖ψ
̂θN

(x) − ψθ∗
S
(x)‖

]

. (5)

Here, for an arbitrary natural number n′, we introduce independent random variables
x̄1, ..., x̄n′ (called ghost samples) such that the probability distribution of each x̄ j is the
marginal distribution of PT . Then, we have the following bound with probability greater
than 1 − δ/2 by Hoeffding’s inequality:

E(x,y)∼PT

[

‖ψ
̂θN

(x) − ψθ∗
S
(x)‖

]

≤ 1

n′
n′
∑

i=1

‖ψ
̂θN

(x̄i ) − ψθ∗
S
(x̄i )‖ + Rψ

√

2 log(2/δ)

n′ . (6)

Moreover, since it holds that ‖ψ
̂θN

(x̄i )−ψθ∗
S
(x̄i )‖ ≤ Lψ‖̂θN −θ∗

S‖with probability greater
than 1− δ̄ by local stability and parameter transfer learnability, we have the following bound
with probability greater than 1 − n′δ̄ by the union bound:

1

n′
n′
∑

i=1

‖ψ
̂θN

(x̄i ) − ψθ∗
S
(x̄i )‖ ≤ Lψ‖̂θN − θ∗

S‖. (7)

123



Machine Learning (2019) 108:1975–2008 1981

From (5)–(7), with probability greater than 1 − δ/2 − n′δ̄, we obtain

E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψ̂θN
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψθ∗
S
(x)〉)

]

≤ L�Lψ

√

2L0

ρ
‖̂θN − θ∗

S‖ + L�Rψ

√

2L0

ρ

√

2 log(2/δ)

n′

= c1
‖̂θN − θ∗

S‖√
ρ

+ c2
1√
n′ρ

.

Next, we provide an upper bound of the second term of the decomposed excess risk. To do
so, we first provide an upper bound of ‖ŵ∗

n − ŵN ,n‖ in the following. The 1-strong convexity
of r leads to ρ-strong convexity of the empirical loss with the regularization term in the
parameter w. Hence, we have

1

n

n
∑

j=1

�(y j , 〈ŵ∗
n, ψθ∗

S
(x j )〉) + ρr(ŵ∗

n) + ρ

2
‖ŵ∗

n − ŵN ,n‖2

≤ 1

n

n
∑

j=1

�(y j , 〈ŵN ,n, ψθ∗
S
(x j )〉) + ρr(ŵN ,n)

and

1

n

n
∑

j=1

�(y j , 〈ŵN ,n, ψ̂θN
(x j )〉) + ρr(ŵN ,n) + ρ

2
‖ŵ∗

n − ŵN ,n‖2

≤ 1

n

n
∑

j=1

�(y j , 〈ŵ∗
n, ψ̂θN

(x j )〉) + ρr(ŵ∗
n).

Summing up the above two inequalities, we have

ρ‖ŵ∗
n − ŵN ,n‖2 ≤ 1

n

n
∑

j=1

(

�(y j , 〈ŵ∗
n, ψ̂θN

(x j )〉) − �(y j , 〈ŵ∗
n, ψθ∗

S
(x j )〉)

)

+ 1

n

n
∑

j=1

(

�(y j , 〈ŵN ,n, ψθ∗
S
(x j )〉) − �(y j , 〈ŵN ,n, ψ̂θN

(x j )〉)
)

≤ 2L�Lψ

√

2L0

ρ

∥

∥̂θN − θ∗
S
∥

∥ .

The last inequality holdswith probability greater than or equal to 1−nδ̄ owing to the parameter
transfer learnability and local stability. Thus, ‖ŵ∗

n − ŵN ,n‖ ≤ 23/4(L�Lψ L1/2
0 )1/2‖̂θN −

θ∗
S‖1/2/ρ3/4 holds. Hence, the second term of the decomposed excess risk is bounded above

by

E(x,y)∼PT

[

�(y, 〈ŵN ,n, ψθ∗
S
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈ŵ∗
n, ψθ∗

S
(x)〉)

]

≤ L�Rψ‖ŵN ,n − ŵ∗
n‖

≤ 23/4L3/2
� L1/2

ψ L1/4
0 Rψ

‖̂θN − θ∗
S‖1/2

ρ3/4 = c3
‖̂θN − θ∗

S‖1/2
ρ3/4

with probability 1 − nδ̄.
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For the third term of the excess risk, we obtain the following upper bound with probability
1 − δ/2 by Theorem 1 of Sridharan et al. (2009):

E(x,y)∼PT

[

�(y, 〈ŵ∗
n, ψθ∗

S
(x)〉)

]

− E(x,y)∼PT

[

�(y, 〈w∗
T , ψθ∗

S
(x)〉)

]

≤ 8L2
�R

2
ψ(32 + log(2/δ))

nρ
+ ρr(w∗

T ) = c4
nρ

+ c5ρ.

Combining the above results, we obtain

Rexcess ≤ c

{

‖̂θN − θ∗
S‖√

ρ
+ 1√

n′ρ
+ ‖̂θN − θ∗

S‖1/2
ρ3/4 + 1

nρ
+ ρ

}

with probability of at least 1 − δ − (n + n′)δ̄. ��

We mention the relation between our formulation and a fast rate result of the excess risk
in “Appendix A”. The optimal ρ is obtained by minimizing the upper bound of the excess
risk.

Corollary 1 Suppose that the conditions 1, 3, and 4 in Theorem 1 hold. In addition, we assume
that there exist a real number β ≥ 1 and a sequence τN such that

E
[

εθ∗
S
(x)−β

]

< ∞, and E[‖̂θN − θ∗
S‖β ] ≤ τ

β
N −→ 0 (N → ∞). (8)

When nτ
β
N is sufficiently small, the asymptotic upper bound of the excess risk is given as

Rexcess ≤ cmax{n−1/2, τ
2/7
N },

by setting ρ = Θ(max{n−1/2, τ
2/7
N }).

Proof The assumptions (8) andMarkov’s inequality lead to Pr
[‖̂θN − θ∗

S‖/τN ≥ a
] ≤ a−β

and

Pr
[

‖̂θN − θ∗
S‖ ≥ εθ∗

S
(x)
]

≤ Cτ
β
N , (9)

whereC is a positive constant.Here, the independenceof the source and target samples is used.
The second inequality denotes that parameter transfer learnability holds by setting δ̄N = Cτ

β
N .

From the first inequality, we have ‖̂θN −θ∗
S‖/√ρ = Op(τN /

√
ρ) and ‖̂θN −θ∗

S‖1/2/ρ3/4 =
Op(τ

1/2
N /ρ3/4), where Op denotes the probabilistic order. Let δ be a small positive constant,

and define n′ by n′ = δ/δ̄N = δ/(Cτ
β
N ). We have

‖̂θN − θ∗
S‖√

ρ
+ 1√

n′ρ
= Op(τ

min{1,β/2}
N /

√
ρ).

Suppose that ρ → 0 and nρ → ∞ hold as n → ∞ and τN → 0 while keeping nδ̄N = Cnτ
β
N

sufficiently small. For large n and small τN , we have τ
min{1,β/2}
N /

√
ρ ≤ τ

1/2
N /ρ3/4. Hence,

we obtain

123



Machine Learning (2019) 108:1975–2008 1983

Rexcess ≤ c

{

τ
1/2
N

ρ3/4 + 1

nρ
+ ρ

}

with probability greater than 1 − 2δ − nδ̄N . Substituting

ρ = Θ
(

max
{

n−1/2, τ
2/7
N

})

which satisfies the above condition, we have Rexcess ≤ cmax{n−1/2, τ
2/7
N } with high prob-

ability. ��
Theupper boundof the excess risk is expressed by the bias term τN induced from the source

domain and the sample complexity bound on the target domain. If τN is large, additional
training samples on the target domain will not help attain high prediction accuracy. On the
contrary, when the bias term τN is sufficiently small, the excess risk is bounded above by
O(n−1/2), which is the standard asymptotic order of the supervised learning using n i.i.d.
samples.

Remark 1 Suppose that the bias τN on the source domain is of the order N−1/2, which is the
standard order in the parameter estimation.2 When nτ

β
N is sufficiently small for some β ≥ 1,

we have n = O(Nβ/2). If c′N 2/7 ≤ n ≤ c′′Nβ/2 holds for some constants c′, c′′, the excess
risk is of the order O(N−1/7). For n = O(N 2/7), we have Rexcess = O(n−1/2). Given an
acceptable level of the excess risk, the above result provides a rough estimate of the required
sample size on both the source and target domains.

One can regardR∗
T = minθ ,w RT (θ,w) as the baseline instead ofRT

(

θ∗
S ,w∗

T
)

. In this
case, the risk bound is decomposed into

RT (̂θN , ŵN ,n) − R∗
T = (

RT (̂θN , ŵN ,n) − RT (θ∗
S ,w∗

T )
)

︸ ︷︷ ︸

Rexcess

+ (RT (θ∗
S ,w∗

T ) − R∗
T
)

︸ ︷︷ ︸

Rgap

.

The first term, Rexcess, denotes the excess risk to transfer learning with optimal parameter
on the source domain and its upper bounded is presented in Theorem 1 and Corollary 1. The
second term, Rgap, is interpreted as the difference between the source and target domains.

In an ideal situation, transfer learning is regarded as a method to reduce the bias of the
model; this is explained next. Suppose that Rgap is close to zero and N is sufficiently large.
Then, self-taught learningwith the optimal parameter θ∗

S is approximately realized. However,
in the common learning setup using samples from only the target domain, the optimal feature
representation ψθ∗

S
will not be available. This is thought to be the main reason why transfer

learning is advantageous over the standard learning methods.
On the contrary, ifRgap is much larger thanRexcess, negative transfer can occur easily, i.e.,

transfer learning actually decreases the prediction performance. This is because the parameter
θ that is superior to θ∗

S will be effortlessly found.

2 For example, let us consider the case of fine-tuning of deep learning, which is a typical transfer learning
method. Then, probabilistic models constructed by neural networks are pre-trained in the source domain and
fine-tuned in the target domain. We note that deep neural networks with Lipschitz activation functions (e.g.
ReLU, sigmoid and softmax) satisfy local stability and parameter transfer learnability for εθ (x) ≡ ∞. If the
models satisfy regularity conditions around the optimal parameter θ∗ in the source domain, the bias τN can
attain the orderO(N−1/2). However, the models based on neural networks are known to have many singular
points. Then, the bias around a singular point is thought to have a different order and its evaluation is the future
work which relates to parameter transfer learning.
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Example 1 As an example of Rgap, let us consider the regression analysis using the basis
function ψθ . We assume that the labels in source and target domains are given as y =
w�
SψθS + ξ and y = w�

T ψθT + ε respectively, where ξ and ε are noise random variables
with mean 0. In addition, let the loss function be �(y, y′) := |y− y′| and effective parameters
in source domain be θ∗

S = θS , w∗
S = wS . Then, it holds that

Rgap :=RT (θ∗
S ,w∗

T ) − R∗
T

= ET [|w�
T ψθT (x) + ε − w∗�

T ψθS (x)|] − ET [|w�
T ψθT (x) + ε − w�

T ψθT (x)|]
≤ ET [|w�

T ψθT (x) − w∗�
T ψθS (x)|] + E[|ε|] − E[|ε|]

≤ ET [|w�
T (ψθT (x) − ψθS (x))|] + ET [|(wT − w∗

T )�ψθS (x)|]
≤ ‖wT ‖ET [‖ψθT (x) − ψθS (x)‖] + Rψ‖wT − w∗

T ‖.
Thus, it is found from this upper bound of Rgap that, if the parameter θS of the optimal
feature map in source domain is distant from that θT in target domain, the first term can be
large, and accordingly, the second term can be also large since w∗

T depends on θS .

A simple way to avoid the negative transfer is to assess the Rgap. A naive statistic,

̂Rgap = ̂RT ,n(̂θN , ŵN ,n) − min
θ ,w

̂RT ,n(θ ,w),

is available to estimateRgap.When ̂Rgap is significantly larger than the order ofO(n−1/2), we
will needmore elaborate learning on the source domain or fine tuning (Goodfellow et al. 2016,
Sec. 8.7.4) of the parameter θ using samples on the target domain. The domain adaptation is
also another promising method to avoid a large Rgap when samples in the source and target
domains are simultaneously available. We do not go into the details for this case here. In this
paper, we assume that Rgap is sufficiently small and we focus on the excess risk Rexcess via
local stability and parameter transfer learnability.

3 Stability and learnability in sparse coding

In this section, we consider sparse coding in self-taught learning, where the source domain
essentially consists of the sample space XS without the label space YS . We assume that
the sample spaces in both domains are Rd . Then, the sparse coding method considered here
consists of a two-stage procedure, where a dictionary is learnt on the source domain, and then
sparse coding with the learnt dictionary is used for a predictive task in the target domain.

First, we show that sparse coding satisfies the local stability in Sect. 3.1 and then explain
how appropriate dictionary learning algorithms satisfy the parameter transfer learnability in
Sect. 3.3. As a consequence of Theorem 1, we obtain the excess risk bound of self-taught
learning algorithms based on sparse coding. We note that the results in this section are useful
independent of transfer learning.

Next, we summarize the notations used in this section. Let ‖ · ‖p be the p-norm on R
d .

We define supp(a) := {i ∈ [m]|ai �= 0} for a ∈ R
m . We denote the number of elements of a

set S by |S|. When a vector a satisfies ‖a‖0 = |supp(a)| ≤ k, a is said to be k-sparse. We set
D := {D = [d1, . . . ,dm] ∈ R

d×m | ‖d j‖2 = 1 (i = 1, . . . ,m)} and each D ∈ D represents
a dictionary of size m.
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Definition 3 (Induced matrix norm)3 For an arbitrary matrix E = [e1, . . . , em] ∈ R
d×m , the

induced matrix norm is defined by ‖E‖1,2 := maxi∈[m] ‖ei‖2.
We adopt ‖ · ‖1,2 to measure the difference in dictionaries since it is typically used in the
framework of dictionary learning.Wenote that‖D−D̃‖1,2 ≤ 2 holds for arbitrary dictionaries
D, D̃ ∈ D.

3.1 Local stability of sparse representation

In this section, we show the local stability of sparse representation under a sparse model.
A sparse representation with dictionary parameter D of a sample x ∈ R

d is expressed as
follows:

ϕD(x) := argmin
z∈Rm

1

2
‖x − Dz‖22 + λ‖z‖1, (10)

where λ > 0 is a regularization parameter that induces sparsity. This situation corresponds
to the case where θ = D and ψθ = ϕD in the setting of Sect. 2.1.

We define some notions used in the discussion on stability of sparse representation. The
following k-margin was introduced by Mehta and Gray (2013).

Definition 4 (k-margin) Given a dictionary D = [d1, . . . ,dm] ∈ D and a point x ∈ R
d , the

k-margin of D on x is

Mk(D, x) := max
I⊂[m],|I|=m−k

min
j∈I

{

λ − |〈d j , x − DϕD(x)〉|} .

The followingμ-incoherence is not equal to the k-incoherence defined inMehta and Gray
(2013), although these are related to each other as stated in Remark 2.

Definition 5 (μ-incoherence) A dictionary matrix D = [d1, . . . ,dm] ∈ D is said to be
μ-incoherent if |〈di ,d j 〉| ≤ μ/

√
d for all i �= j .

Then, the following theorem is obtained.

Theorem 2 (Local Stability of Sparse Coding) Let D ∈ D be μ-incoherent for μ <
√
d/k

and ‖D − D̃‖1,2 ≤ λ. When

‖D − D̃‖1,2 ≤ εk,D(x) := Mk(D, x)2λ
64max{1, ‖x‖}4 , (11)

the following stability bound holds.

∥

∥ϕD(x) − ϕD̃(x)
∥

∥

2 ≤ 2
√
k (1 + 2‖x‖2/λ) ‖x‖2

1 − μk/
√
d

‖D − D̃‖1,2
From Theorem 2, εk,D(x) becomes the permissible radius of perturbation in Definition 1.

Remark 2 We mention the relation between the μ-incoherence defined above and k-
incoherence of a dictionary, which is the assumption of the sparse coding stability in Mehta
and Gray (2013). For k ∈ [m] and D ∈ D, the k-incoherence sk(D) is defined as

sk(D) := (min{ςk(DΛ)|Λ ⊂ [m], |Λ| = k})2,
3 In general, the (p, q)-induced norm for p, q ≥ 1 is defined by ‖E‖p,q := supv∈Rm ,‖v‖p=1 ‖Ev‖q . Then,
‖ · ‖1,2 in this general definition coincides with that in Definition 3 by Lemma 17 of Vainsencher et al. (2011).
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where ςk(DΛ) is the kth singular value of DΛ = [di1 , . . . ,dik ] for Λ = {i1, . . . , ik}. From
Lemma 9 in “Appendix B”, when a dictionary D is μ-incoherent, the k-incoherence of D
satisfies

sk(D) ≥ 1 − μk√
d

.

Thus, a μ-incoherent dictionary has positive k-incoherence when d > (μk)2. On the other
hand, when k ≥ 2, if a dictionary D has positive k-incoherence sk(D), there is 0 < μ <

√
d

such that the dictionary isμ-incoherent.4 However, we note that positive k-incoherence sk(D)

does not imply that D is μ-incoherent and μ <
√
d/k in general.5

Here, we refer to the relation with the sparse coding stability (Theorem 4) of Mehta and
Gray (2013) in which the difference of dictionaries was measured by ‖·‖2,2 instead of ‖·‖1,2
and the permissible radius of perturbation was given by Mk(D, x)2λ except for a constant
factor. Applying the simple inequality ‖E‖2,2 ≤ √

m‖E‖1,2 for E ∈ R
d×m , we can obtain

a variant of the sparse coding stability with norm ‖ · ‖1,2. However, then the dictionary size
m affects the permissible radius of perturbation and the stability bound of sparse coding
stability. On the other hand, the factor ofm does not appear in Theorem 2, and thus, the result
is effective even for a large m. In addition, whereas ‖x‖ ≤ 1 is assumed in Mehta and Gray
(2013), Theorem 2 does not assume that ‖x‖ ≤ 1 and clarifies the dependency for the norm
‖x‖. The Lipschitz constant Lψ is obtained independent of x for a bounded sample space.

In existing studies related to sparse coding, the sparse representation ϕD(x) is modified as
ϕD(x) ⊗ x (Mairal et al. 2009) or ϕD(x) ⊗ (x−DϕD(x)) (Raina et al. 2007), where ⊗ is the
tensor product. Owing to the stability of sparse representation (Theorem 2), it can be shown
that such modified representations also have local stability.

3.2 Sparsemodeling andmargin bound

In this section, we assume a sparse structure for samples x ∈ R
d and specify a lower bound

for the k-margin used in (11). The result obtained in this section plays an essential role in
demonstrating the parameter transfer learnability in Sect. 3.3.

Assumption 1 (Model) There exists a dictionary matrix D∗ such that every sample x is
independently generated by a representation a and noise ξ as

x = D∗a + ξ .

Moreover, we impose the following three assumptions on the above model.

Assumption 2 (Dictionary) The dictionary matrix D∗ = [d1, . . . ,dm] ∈ D is μ-incoherent.

Assumption 3 (Representation) The representation a is a random variable that is k-sparse
(i.e., ‖a‖0 ≤ k) and the non-zero entries are lower bounded by C > 0 (i.e., ai �= 0 satisfies
|ai | ≥ C).

4 Since sk (D)2 = minb:k-sparse b�D�Db, we have s2(D) ≥ sk (D) if k ≥ 2. Moreover, s2(D)2 = 1 −
maxi �= j |〈di , d j 〉| from the direct calculation. Thus, if sk (D) is positive, maxi �= j |〈di , d j 〉| < 1. In other

words, it holds that |〈di , d j 〉| ≤ μ/
√
d for all i �= j when μ := √

d maxi �= j |〈di ,d j 〉| <
√
d.

5 For example, when d = k = 2 and D = 1√
2

[

1 4/3
1

√
2/3

]

, it holds that sk (D) > 0. However, there is no μ

such that D is μ-incoherent and μ <
√
d/k.
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Assumption 4 (Noise) The noise ξ is independent across coordinates and Gaussian with zero
mean and a maximum variance σ 2k/d on each component, where σ > 0 is a constant.

Remark 3 Note that Assumption 4 is valid under Assumptions 1–3 and the condition
μ ≤ √

d/k if we assume a situation where dictionary learning is possible. To learn the
true dictionary D∗ and true signal a from a sample x, it is necessary that the noise ξ must
be much smaller than the signal D∗a with high probability. This condition is represented by
‖ξ‖ ≤ ‖D∗a‖. Here, it holds that

‖ξ‖2 ≤ ‖Da‖2 ≤ |a|�
(

I + μ√
d
1
)

|a| ≤ a2maxk

(

1 + μ
k√
d

)

≤ 2a2maxk, (12)

where |a| is the vector whose components are absolute values of those of a and amax :=
max1≤i≤m |ai |. Then, each component ξi of ξ approximately satisfies, with high probability,

|ξi |2 � ‖ξ‖2
d

= Õ(k/d). (13)

Thus, since each component is Gaussian, its variance should be Õ(k/d).

In transfer learning, samples on the source and target domains are not necessarily iden-
tically distributed. Indeed, independent but non-identical distributions are allowed under
Assumptions 3 and 4. This is essential because samples in the source and target domains
cannot be assumed to be identically distributed in transfer learning.

Theorem 3 (Margin Bound) Let 0 < t < 1. We set

δt,λ := 2σ
√
km

(1 − t)
√
dλ

exp

(

− (1 − t)2dλ2

8σ 2k

)

+ 2σ
√
km√

dλ
exp

(

− dλ2

8σ 2k

)

+ 4σk3/2

C
√

d(1 − μk/
√
d)

exp

(

−C2d(1 − μk/
√
d)

8σ 2k

)

+ 8σ
√
k(d − k)√
dλ

exp

(

− dλ2

32σ 2k

)

. (14)

We assume that d ≥
{(

1 + 6
(1−t)

)

μk
}2

and λ = d−τ for arbitrary 1/4 ≤ τ ≤ 1/2.

Under Assumptions 1–4, the following inequality holds with a probability of at least 1−δt,λ.

Mk(D∗, x) ≥ tλ (15)

We provide the proof of Theorem 3 in “Appendix C”.
Note that the failure probability of the margin bound in (14) decreases as the dimension

increases since the variance of the noise gets smaller because of Assumption 4.
Next, we analyze the regularization parameter λ. An appropriate reflection of the sparsity

of samples requires the regularization parameter λ to be set suitably. This is according to
Theorem 4 of Zhao and Yu (2006)6 when samples follow the sparse model as in Assump-
tions 1–4 and λ ∼= d−τ for 1/4 ≤ τ ≤ 1/2. The representation ϕD(x) reconstructs the true

6 Theorem4 of Zhao andYu (2006), whichwas stated forGaussian noise. However, it can be easily generalized
to sub-Gaussian noise. Our setting corresponds to the case in which c1 = 1/2, c2 = 1, c3 = (log κ +
log log d)/ log d for some κ > 1 (i.e., ed

c3 ∼= dκ ) and c4 = c in Theorem 4 of Zhao and Yu (2006). Note that
our regularization parameter λ corresponds to λd/d in Zhao and Yu (2006).
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sparse representation a of sample x with a small error. In particular, when τ = 1/4 (i.e.,
λ ∼= d−1/4) in Theorem 3, the failure probability δt,λ ∼= e−√

d on the margin is guaranteed
to become sub-exponentially small with respect to dimension d and is negligible for the
high-dimensional case. On the other hand, the typical choice τ = 1/2 (i.e., λ ∼= d−1/2) does
not provide a useful result because δt,λ is not small at all.

3.3 Parameter transfer learnability for dictionary learning

When a true dictionary D∗ exists as in Assumption 1, we show that the output ̂DN of a
suitable dictionary learning algorithm from N -unlabeled samples satisfies the parameter
transfer learnability for the sparse coding ϕD. Then, Theorem 1 guarantees the excess risk
bound in self-taught learning since the discussion in this section does not assume the label
space in the source domain. This situation corresponds to the case where θ∗

S = D∗,̂θN = ̂DN

and ‖ · ‖ = ‖ · ‖1,2 in Sect. 2.1.
We show that an appropriate dictionary learning algorithm satisfies parameter transfer

learnability for the sparse coding ϕD by focusing on the permissible radius of perturbation in
(11) under some assumptions.WhenAssumptions 1–4 hold and λ = d−τ for 1/4 ≤ τ ≤ 1/2,
the margin bound (15) for x ∈ X holds with probability 1 − δt,λ, and we have

εk,D∗(x) ≥ t2λ3

64max{1, ‖x‖}4 = Θ(d−3τ ).

Thus, if a dictionary learning algorithm outputs the estimator ̂DN such that

‖̂DN − D∗‖1,2 = O(d−3τ ) (16)

with probability 1 − δN , the estimator ̂DN of D∗ satisfies the parameter transfer learnability
for the sparse coding ϕD with probability δ̄N := δN + δt,λ. Then, by local stability of sparse
representation and parameter transfer learnability of such a dictionary learning, Theorem 1
guarantees that sparse coding in self-taught learning satisfies the excess risk bound in (4). For
n-samplesXn = {x1, . . . xn} in the target domain, detailed analysis reveals that the inequality
‖̂θN −θ∗

S‖ ≤ εθ∗
S
(Xn) holds with probability 1−(δN +nδt,λ), which is sharper than 1−nδ̄N .

Theorem 1 applies to any dictionary learning algorithm as long as (16) is satisfied. For
example, from Theorem 12 in Arora et al. (2015), when some conditions7 including Assump-
tions 1–4 are assumed, there is an iterative algorithm [Algorithm 5 in Arora et al. (2015)]
whose output Ds at iteration s satisfies

‖Ds − D∗‖21,2 ≤ γ s‖D0 − D∗‖21,2 + O(d−2) (17)

for some 1/2 < γ < 1. When s ≥ C log d for a large constant C and dimension d is large
enough, it holds that

‖Ds − D∗‖1,2 = O(d−1).

We note that the algorithm requires infinite number of samples at each iteration. However,
modifying Appendix G of Arora et al. (2015), it is expected that there is a large constant C ′
and an alternative stochastic algorithm whose output ̂Ds ∼= Ds at each iteration s ≥ C ′ log d
satisfies (16) for 1/4 < τ < 1/3.

Note that, although we imposed the hard-sparsity assumption (Assumption 3) as in Arora
et al. (2015),we focused on theLASSO-based encoderϕD instead of the hard-sparsity encoder

7 See the page 4 in Arora et al. (2015).
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treated in Arora et al. (2015). Under the hard-sparsity assumption, we could derive the lower
bound of the permissible radius of perturbation εk,D about the LASSO-based encoder and
use the result about the estimation error in dictionary learning in Arora et al. (2015).

4 Numerical experiments

We report numerical experiments using US postal service (USPS) and MNIST handwritten
digits datasets and compare the results with our theoretical conclusions. Especially, we inten-
sively investigate the relationship among N , n, ‖̂θ N −θ∗

S‖, ρ, and the prediction performance
of the transfer learning.

The USPS dataset is composed of d = 256 dimensional 7291 training images and 2007
test images, and each element of data vectors ranges from − 1 to 1. The MNIST data set has
60,000 training images and 10,000 test images of dimension d = 784, and each element of
the data vectors range from 0 to 255. In numerical experiments, the MNIST data is scaled
such that each element takes a value in the interval [0, 1]. In both datasets, each image with
the �∞-norm 1 has a label in {0, 1, . . . , 9}.

4.1 Prediction accuracy of learning with sparse representation

Let us describe the setup of numerical experiments in which the self-taught learning was
applied to the USPS dataset. N images out of USPS training images were randomly chosen
as training samples on the source domain. In the experiments, N was set to 3000. The data
matrix of the source domain was represented by XS = (̃x1, . . . , x̃N ) ∈ R

d×N .
The dictionary ̂D ∈ R

d×m was obtained by solving the problem

min
D,Z

1

2
‖XS − DZ‖22 + λ‖Z‖1, s.t. D ∈ D, Z ∈ R

m×N ,

where ‖A‖p was (
∑

i, j |ai j |p)1/p for the matrix A = (ai j ). The feature map was defined

by the sparse representation of x ∈ R
d in (10). The regularization parameter λ for the

sparse representation was set to λ = 1. The dimension m of the dictionary varied from
16 to 512. The problem on the target domain was a 10-class digits classification of the
image data. In experiments, n images were randomly chosen out of the remaining 4291
USPS training images. Here, n was varied from 500 to 3000. The prediction accuracy of the
classifierwas evaluated using all test images. The sparse representation of the training images,
{(ϕ

̂D(xi ), yi ) : i = 1, . . . , n}, was used to train the linear SVM (Huang and Aviyente 2006;
Yang et al. 2009). The Lasso-type sparse representation (10) was employed, since it is quite
popular in the dictionary learning Zhang et al. (2015). In addition, a computationally efficient
implementation of the dictionary learning called spams is available as an R package (Mairal
et al. 2009). The classifier was provided by kernlab package of R language (Karatzoglou
et al. 2004; R Core Team 2016), and a one-vs-one strategy was used to deal with multi-class
classification problems.

In addition, we evaluated the influence of the dictionary shift by analyzing how the esti-
mation error on the source domain affected learning results on the target domain. A shifted
dictionary of ̂D was obtained by adding a random matrix M to ̂D. In experiments, each
element of M was assumed to be an i.i.d. copy of Gaussian noise with mean 0 and standard
deviation σ . Each column of the perturbedmatrix̂D+Mwas normalized to obtain the shifted
dictionary ˜D ∈ D. The feature map ϕ

˜D(x) with the shifted dictionary was used to obtain the
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sparse representation. Numerical experiments were conducted to reveal the relation among
the test error, regularization parameter ρ, and noise level σ .

For the MNIST dataset, N was set to 30,000 and n was varied from 500 to 10,000. The
dimension of the dictionary, m, was varied from 16 to 1568. All test images were used to
evaluate the test error on the target domain. Furthermore, the effect of the dictionary shift
was evaluated.

The results are shown in Figs. 1 and 2. The test error on the target domain is plotted in the
left column of each figure. Furthermore, the test error of the linear SVM using only samples
on the target domain are reported. The regularization parameter ρ in the linear SVM was set
to an optimal value that achieved the smallest test error. In the right column, the optimal ρ

of learning with sparse representation is shown as a function of the sample size n.
When large dictionaries were used, we found that the test error of the SVM using sparse

representation was smaller than that got by implementing standard SVM that used only
target samples without the sparse representation. Hence, samples on the source domain were
effectively used to improve the prediction accuracy.

Furthermore, we investigated the usefulness of samples on the source domain by compar-
ing with a variant of supervised dictionary learning (SDL) proposed by Mairal et al. (2009).
In the common SDL, the dictionary and classifier are simultaneously optimized based on
only samples from the target domain. In the experiments, we employed a simple variant of
the SDL to reduce the computational cost. In the simplified SDL, the dictionaryD and feature
Z were obtained using the data matrix of the target domain instead of the source domain.
Then, the sparse feature representation, Z, was fed into the linear SVM as training input with
the output label.

Table 1 shows the result. The column “source and target” shows the test error of transfer
learning using information on the source and target domains. On the other hand, the column
“target (SDL)” shows the results of simplified SDL using only samples on the target domain.
For the MNIST dataset, the SDL with m = 1568 was dropped, because the computational
cost of training D in each iteration was too high. Overall, learning using both the source and
target domains performed better than the simplified SDL, especially for small n. Therefore,
transfer learning using D trained on the source domain is expected to be practically useful.

4.2 Setting of regularization parameters

Next, we investigate the relationship between the dictionary shift on the source domain and
the regularization parameter ρ on the target domain. For m = 16 of USPS data in Fig. 1, a
large optimal regularization parameter ρ was required to deal with the large noise level σ .
Theoretical analysis in Sect. 2.2 showed that a large regularization parameter was needed
to suppress the large perturbation of the feature map. Hence, numerical results for small
m agreed with our theoretical results. On the contrary, when m = 512, the small optimal
regularization parameter efficiently worked to suppress the large noise level σ . The same
tendency was observed in the result on MNIST dataset in Fig. 2. In summary, when the
dictionary is small, a larger regularization parameter is required to deal with larger noise
level. For a large dictionary, the opposite is true.

Next, we explain the relation between the noise level σ and regularization parameter
ρ. Theorem 2 shows the relation between the sensitivity of the sparse representation and
the dictionary shift. The upper bound of the sensitivity depends mainly on the degree of
incoherence and amount of dictionary shift. LetμD be the degree of incoherence for dictionary
D; see Definition 5. For D = [d1, . . . ,dm], μD is computed as

√
d max{|〈di ,d j 〉| : i �= j}.
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Fig. 1 Plot of test errors (left column) and optimal regularization parameters (right column) on USPS dataset.
The dimension of dictionary D ∈ R

d×m with d = 256 was set to m = 16, 64, and 512 and the noise level, σ ,
was varied from 0 to 0.1. Curves “svm” in the left column show test error of SVM using only target samples

Then, the difference ‖ϕ
̂D(x) − ϕ

˜D(x)‖2 is bounded above by ‖̂D −˜D‖1,2/(1 − μ
˜D/

√
d) up

to a positive factor depending on x when the 1-margin is used. We numerically confirmed
that the upper bound using μ

˜D is tighter than the upper bound using μ
̂D. This is because

̂D includes some similar column vectors and the random noise relaxes such similarity. As
shown in the proof of Theorem 1, the shift of the feature map ‖ϕ

̂D(x) − ϕ
˜D(x)‖2 directly

affects the upper bound of the generalization ability. Figure 3 depicts the average value of
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Fig. 2 Plot of test errors (left column) and optimal regularization parameters (right column) onMNIST dataset.
The dimension of dictionary D ∈ R

d×m with d = 784 was set to m = 16, 196, and 1568, and the noise level,
σ , was varied from 0 to 0.1. Curves “svm” in the left column show test error of SVM using only target samples

‖̂D−˜D‖1,2/(1− μ
˜D/

√
d) over 20 different random matrices as a function of σ . Generally,

larger σ leads to larger ‖̂D − ˜D‖1,2 and smaller μ
˜D. When the size of the dictionary, m, is

small, the effect of ‖̂D−˜D‖1,2 dominates that of μ
˜D. On the contrary, for a large dictionary,

the decrease of μ
˜D dominates the increase of ‖̂D − ˜D‖1,2. As a result, the upper bound of

‖ϕ
̂D(x) − ϕ

˜D(x)‖2 becomes small for large noise level.
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Table 1 Test errors and standard deviation of transfer learning in percent. The dictionary D and feature Z are
trained using samples on “source and target” domain or only “target” domain. In the latter method, samples
on the target domain are used to learn the dictionary

Data Source and target Target (SDL)

m 16 64 512 16 64 512

USPS data

n = 500 14.2 ± 0.58 10.2 ± 0.40 10.1 ± 0.86 15.7 ± 0.60 12.1 ± 0.68 10.8 ± 0.72

n = 1000 12.7 ± 0.48 9.0 ± 0.34 7.3 ± 0.46 13.7 ± 0.68 9.9 ± 0.61 7.7 ± 0.50

n = 3000 11.3 ± 0.23 7.4 ± 0.23 5.7 ± 0.27 11.9 ± 0.58 7.7 ± 0.33 5.9 ± 0.29

Data Source and target Target (SDL)

m 16 196 16 196

MNIST data

n = 1000 18.0 ± 0.22 7.2 ± 0.30 18.7 ± 0.75 9.0 ± 0.44

n = 2000 16.9 ± 0.24 5.9 ± 0.18 17.2 ± 0.75 7.0 ± 0.27

n = 10,000 15.6 ± 0.15 4.3 ± 0.11 15.6 ± 0.38 4.6 ± 0.17
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Fig. 3 Plot of average of upper bound, ‖̂D−˜D‖1,2/(1−μ
˜D/

√
d), for USPS andMNIST datasets. Horizontal

axis denotes the noise level σ . The size of the dictionary was varied from 16 to 512 for USPS and from 16 to
1568 for MNIST

Based on the above consideration, the numerical results in Figs. 1 and 2 can be interpreted
as follows. Let D∗ be the true dictionary. The difference ‖ϕD∗(x) − ϕ

˜D(x)‖2 will affect
the test error and optimal regularization parameter. Let us consider the upper bound of the
difference, ‖ϕD∗(x) − ϕ

̂D(x)‖2 + ‖ϕ
̂D(x) − ϕ

˜D(x)‖2. In numerical experiments, the first
term ‖ϕD∗(x) − ϕ

̂D(x)‖2 is fixed and the second term ‖ϕ
̂D(x) − ϕ

˜D(x)‖2 affects the learning
results. As shown above, the effect of the dictionary shift presented in Figs. 1 and 2 agree
with our theoretical findings.

5 Conclusion

Wederived an excess risk bound (Theorem 1) for a parameter transfer learning problem based
on local stability and parameter transfer learnability, which were newly introduced in this
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paper. By applying the proposed model to a sparse coding-based algorithm under a sparse
model (Assumptions 1–4), we obtained the first theoretical guarantee of excess risk bound
in self-taught learning. Numerical experiments in Sect. 4 showed that transfer learning with
appropriate regularization parameter worked efficiently to achieve high prediction accuracy
on the target domain. Moreover, we confirmed that the theoretical analysis of local stability
for sparse coding was useful for understanding the relationship between size of the dictionary
and regularization parameter and prediction accuracy.

The framework of parameter transfer learning included not only sparse coding, but also
other promising algorithms such as multiple kernel learning and deep neural networks. Our
results are expected to be effective in analyzing the theoretical performance of these algo-
rithms. Finally, we noted that our excess risk bound could be applied to applications other
than self-taught learning because Theorem 1 included a case in which labeled samples were
available in the source domain.

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers 16K00044, 15H03636,
15H01678, 17K12653.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
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A Fast rate in hypothesis transfer learning

We have been studied the two-step learning algorithm, where first an effective parameter θ∗
S

is learnt in the source domain, and then, the optimal parameter w∗
T based on an estimator of

θ∗
S is learnt in the target domain. Here, we consider hypothesis transfer learning inKuzborskij

and Orabona (2017) as a special case of the setting introduced in Sect. 2.1, and show that the
expected risk of the two-step algorithm has a fast rate when the number of samples in the
target domain is not large.

Let the sample space X ⊂ R
d and the label space Y = [−1, 1] be common in the source

and target domains. In addition, let r : R
d → R and r ′ : R

K → R be non-negative 1-
strongly convex functions and satisfy r(0) = 0 and r ′(0) = 0, respectively. We set W :=
{

w ∈ R
d |r(w) ≤ D

}

and Θ := {

θ ∈ R
K |r ′(θ) ≤ B

}

. Kuzborskij and Orabona (2017), it is
supposed that there exist finite hypotheses {hk : X → Y}Kk=1 such that the source hypothesis
is represented by

hS,θ (x) :=
K
∑

k=1

θkhk(x) (18)

and the target hypothesis is represented by

hT ,θ,w(x) := 〈w, x〉 + hS,θ (x), (19)

for θ ∈ Θ and w ∈ W .
Here, we set the feature mapping

ψθ (x) :=
(

x
hS,θ (x)

)
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and the set

WT :=
{(

w
1

) ∣

∣

∣

∣

w ∈ W
}

.

Then, identifying w ∈ W with (w�, 1)� ∈ WT , the hypothesis in (1) coincides with that in
(19). In this sense, the formulation in Kuzborskij and Orabona (2017) is covered by ours.

In the above setting, let us consider the excess risk:

Rexcess := RT (̂θN , ŵN ,n) − RT (θ∗
S , w∗

T )

= (RT (̂θN , ŵN ,n) − RT (θ∗
S , ŵN ,n))

+ (RT (θ∗
S , ŵN ,n) − RT (θ∗

S , w∗
T )), (20)

where

θ∗
S := argmin

θ∈Θ

RS(hS,θ ) (21)

and w∗
T was defined in (2). The first term in (20) is bounded above as follows:

RT (̂θN , ŵN ,n) − RT (θ∗
S , ŵN ,n) ≤ L�DE[|hS,̂θN

(x) − hS,θ∗
S
(x)|]

= L�DE[|〈̂θN − θ∗
S , h(x)〉|]

≤ L�D‖̂θN − θ∗
S‖1E[‖h(x)‖∞]

≤ L�D‖̂θN − θ∗
S‖1,

where h(x) = [h1(x), . . . , hK (x)]�, where we used ‖h(x)‖∞ ≤ 1 because of hk(x) ∈ Y =
[−1, 1]. The second term in (20) can be evaluated by the following theorem.

Theorem 4 [Theorem 2 of Kuzborskij and Orabona (2017)] LetRsrc := RT
(

θ∗
S , 0

)

. When
the loss function � is κ-smooth, it holds that

RT
(

θ∗
S , ŵN ,n

)− min
r(w)≤B

̂RT ,n
(

θ∗
S ,w

)

= O

(

Cn max

{

Rsrc,
1

n

}1/8 R1/8
src

n1/4
+ 1

n

)

, (22)

where

Cn := √
κB

(

R1/4
src + B1/4

)

+ κ1/4
√
B
(

R1/8
src + B1/8

)

+ R3/8
src

n1/8

which is positive and has a constant order for a small Rsrc.
We assume that ‖̂θN − θ∗

S‖1 = O(1/n) holds.8 Then, from the above discussion, as long

as the number of samples in the target domain satisfies n = O(1/R1/5
src ), the excess risk has

the following order:

Rexcess = O(1/n).

In otherwords,when the estimation error in the source domain is small enough and the number
of samples n in the target domain is not so large, the excess risk decreases in the order of
O(1/n), which is faster than the conventional asymptotic order O(1/

√
n) in a non-transfer

setting.

8 When the number of samples N is large enough, this condition typically holds for an appropriate estimator
̂θN .
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B Proof of sparse coding stability

The proof of Theorem 2 is almost the same as that of Theorem 1 in Mehta and Gray (2012).
However, since a part of the proof cannot be applied to our setting, we provide the full proof
of Theorem 2 in this section.

Lemma 1 Let a ∈ R
m and E ∈ R

d×m. Then, ‖Ea‖2 ≤ ‖E‖1,2‖a‖1.
Proof

‖Ea‖2 = ‖
m
∑

i=1

aiei‖2 ≤
m
∑

i=1

|ai |‖ei‖2 ≤ ‖E‖1,2
m
∑

i=1

|ai | = ‖E‖1,2‖a‖1.

��
Lemma 2 The sparse representation ϕD(x) satisfies ‖ϕD(x)‖1 ≤ ‖x‖22

2λ .

Proof

λ ‖ϕD(x)‖1 ≤ 1

2
‖x − DϕD(x)‖22 + λ ‖ϕD(x)‖1

= min
z∈Rm

1

2
‖x − Dz‖22 + λ ‖z‖1

≤ 1

2
‖x‖22

��
We prepare the following notation:

vD(z) := 1

2
‖x − Dz‖22 + λ‖z‖1.

Let a∗ and ã∗ denote the solutions to the LASSO problems for the dictionary D and D̃,
respectively.

a∗ := argmin
z∈Rm

vD(z) ã∗ := argmin
z∈Rm

vD̃(z)

Then, the following equation holds owing to the subgradient of vD(z) with respect to z
[e.g. (2.8) of Osborne et al. (2000)].

Lemma 3

λ‖a∗‖1 = 〈x − Da∗,Da∗〉
Let vD and vD̃ be the optimal values of the LASSO problems for dictionary D and D̃.

vD := min
z∈Rm

vD(z) = 1

2
‖x − Da∗‖22 + λ‖a∗‖1,

vD̃ := min
z∈Rm

vD̃(z) = 1

2
‖x − D̃ã∗‖22 + λ‖ã∗‖1

Lemma 4 (Optimal Value Stability) If ‖D − D̃‖1,2 ≤ λ, then

|vD − vD̃| ≤ 1

2

(

1 + ‖x‖2
4

)

‖x‖32
‖D − D̃‖1,2

λ
.
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Proof

vD̃ ≤ 1

2
‖x − D̃a∗‖22 + λ‖a∗‖1

= 1

2
‖x − Da∗ + (D − D̃)a∗‖22 + λ‖a∗‖1

≤ 1

2
(‖x − Da∗‖22 + 2‖x − Da∗‖2‖(D − D̃)a∗‖2 + ‖(D − D̃)a∗‖22) + λ‖a∗‖1

≤ 1

2
‖x − Da∗‖22 + λ‖a∗‖1 + ‖x‖2

(

‖x‖22‖D − D̃‖1,2
2λ

)

+ 1

2

(

‖x‖22‖D − D̃‖1,2
2λ

)2

≤ vD +
(

1 + ‖x‖2
4

) ‖x‖32
2λ

‖D − D̃‖1,2,

where we use

‖x − Da∗‖2 =
√

‖x − Da∗‖2 ≤
√

‖x − Da∗‖2 + λ‖a∗‖1 ≤
√

‖x‖22 = ‖x‖2.
��

The following Lemma 5 is obtained by the proof of Lemma 11 in Mehta and Gray (2012).

Lemma 5 (Stability of Norm of Reconstructor) If ‖D − D̃‖1,2 ≤ λ, then

∣

∣

∣‖Da∗‖22 − ‖D̃ã∗‖22
∣

∣

∣ = 2|vD − vD̃| ≤
(

1 + ‖x‖2
4

)

‖x‖32
‖D − D̃‖1,2

λ
.

Lemma 6 If ‖D − D̃‖1,2 ≤ λ, then

∣

∣‖Da∗‖22 − ‖Dã∗‖22
∣

∣ ≤ (‖x‖2 + 3) ‖x‖32
‖D − D̃‖1,2

λ
.

Proof First, note that

‖(D̃ − D)ã∗‖2 ≤ ‖(D̃ − D)‖1,2‖ã∗‖1 ≤ ‖x‖22
‖D − D̃‖1,2

2λ

and

‖Dã∗‖2 ≤ ‖(D − D̃)ã∗‖2 + ‖D̃ã∗ − x‖2 + ‖x‖2
≤ ‖x‖22

‖D − D̃‖1,2
2λ

+ 2‖x‖2

≤
(

1

2
‖x‖2 + 2

)

‖x‖2,

where we use Lemma 2. Then, we have
∣

∣

∣‖Dã∗‖22 − ‖D̃ã∗‖22
∣

∣

∣

≤ 2
∣

∣

∣〈Dã∗, (D̃ − D)ã∗〉
∣

∣

∣+ ‖(D̃ − D)ã∗‖22
≤ 2‖Dã∗‖2‖(D̃ − D)ã∗‖2 + ‖(D̃ − D)ã∗‖22
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≤ 2

(

1

2
‖x‖2 + 2

)

‖x‖2
(

‖x‖22‖D − D̃‖1,2
2λ

)

+
(

‖x‖22‖D − D̃‖1,2
2λ

)2

≤
(

3

4
‖x‖2 + 2

)

‖x‖32
‖D − D̃‖1,2

λ
.

Combining this fact with Lemma 5, we have
∣

∣‖Da∗‖22 − ‖Dã∗‖22
∣

∣

≤
∣

∣

∣‖Da∗‖22 − ‖D̃ã∗‖22
∣

∣

∣+
∣

∣

∣‖D̃ã∗‖22 − ‖Dã∗‖22
∣

∣

∣

≤
(

1 + ‖x‖2
4

)

‖x‖32
‖D − D̃‖1,2

λ
+
(

3

4
‖x‖2 + 2

)

‖x‖32
‖D − D̃‖1,2

λ

= (‖x‖2 + 3) ‖x‖32
‖D − D̃‖1,2

λ
.

��
Lemma 7 (Reconstructor Stability) If ‖D − D̃‖1,2 ≤ λ, then

‖Da∗ − Dã∗‖22 ≤ 2
(

3‖x‖22 + 9‖x‖2 + 2
) ‖x‖22

‖D − D̃‖1,2
λ

.

Proof We set ā∗ := 1
2 (a

∗ + ã∗). From the optimality of a∗, it follows that vD(a∗) ≤ vD(ā∗),
i.e.,

1

2
‖x − Da∗‖22 + λ‖a∗‖1 ≤ 1

2
‖x − Dā∗‖22 + λ‖ā∗‖1. (23)

We denote ε := ‖D − D̃‖1,2, cx :=
(

1 + ‖x‖2
4

)

‖x‖32 and c′
x := (‖x‖2 + 3) ‖x‖32.

By the convexity of the l1-norm, the RHS of (23) obeys:

1

2

∥

∥

∥

∥

x − D
(

a∗ + ã∗

2

)∥

∥

∥

∥

2

2
+ λ

∥

∥

∥

∥

a∗ + ã∗

2

∥

∥

∥

∥

1

≤ 1

2

∥

∥

∥

∥

x − 1

2
(Da∗ + Dã∗)

∥

∥

∥

∥

2

2
+ λ

2

∥

∥a∗∥
∥

1 + λ

2

∥

∥ã∗∥
∥

1

= 1

2

(

‖x‖22 − 2

〈

x,
1

2
(Da∗ + Dã∗)

〉

+ 1

4
‖Da∗ + Dã∗‖22

)

+ λ

2
‖a∗‖1 + λ

2
‖ã∗‖1

= 1

2
‖x‖22 − 1

2

〈

x,Da∗〉− 1

2

〈

x,Dã∗〉+ 1

8
(‖Da∗‖22 + ‖Dã∗‖22 + 2〈Da∗,Dã∗〉)

+ λ

2
‖a∗‖1 + λ

2
‖ã∗‖1

≤ 1

2
‖x‖22 − 1

2

〈

x,Da∗〉− 1

2

〈

x,Dã∗〉+ 1

4
‖Da∗‖22 + 1

4
〈Da∗,Dã∗〉

+ λ

2
‖a∗‖1 + λ

2
‖ã∗‖1 + c′

x

8

ε

λ

= 1

2
‖x‖22 − 1

2

〈

x,Da∗〉− 1

2

〈

x,Dã∗〉+ 1

4
‖Da∗‖22 + 1

4
〈Da∗,Dã∗〉

+ 1

2

〈

x − Da∗,Da∗〉+ 1

2
〈x − D̃ã∗, D̃ã∗〉 + c′

x

8

ε

λ
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≤ 1

2
‖x‖22 − 1

2

〈

x,Da∗〉− 1

2

〈

x,Dã∗〉+ 1

4
‖Da∗‖22 + 1

4
〈Da∗,Dã∗〉

+ 1

2
〈x,Da∗〉 − 1

2
‖Da∗‖22 + 1

2
〈x, D̃ã∗〉 − 1

2
‖Da∗‖22 +

(

c′
x

8
+ cx

4

)

ε

λ

= 1

2
‖x‖22 − 3

4
‖Da∗‖22 + 1

4
〈Da∗,Dã∗〉 + 1

2
〈x, (D̃ − D)ã∗〉 +

(

c′
x + 2cx

8

)

ε

λ
, (24)

where we use Lemma 3 in (24).
Now, taking the (expanded) LHS of (23) and the newly derived upper bound of the RHS

of (23) yields the inequality:

1

2
‖x‖22 − 〈x,Da∗〉 + 1

2
‖Da∗‖22 + λ‖a∗‖1

≤ 1

2
‖x‖22 − 3

4
‖Da∗‖22 + 1

4
〈Da∗,Dã∗〉 + 1

2
〈x, (D̃ − D)ã∗〉 +

(

c′
x + 2cx

8

)

ε

λ
.

Replacing λ‖a∗‖1 with 〈x − Da∗,Da∗〉 by Lemma 3 yields:

−〈x,Da∗〉 + 1

2
‖Da∗‖22 + 〈x − Da∗,Da∗〉

≤ −3

4
‖Da∗‖22 + 1

4
〈Da∗,Dã∗〉 + 1

2
〈x, (D̃ − D)ã∗〉 +

(

c′
x + 2cx

8

)

ε

λ
.

Hence,

‖Da∗‖22 ≤ 〈Da∗,Dã∗〉 + 2〈x, (D̃ − D)ã∗〉 +
(

c′
x + 2cx

2

)

ε

λ

≤ 〈Da∗,Dã∗〉 + 2
‖x‖32ε
2λ

+
(

c′
x + 2cx

2

)

ε

λ

= 〈Da∗,Dã∗〉 +
(

c′
x + 2cx + 2‖x‖32

2

)

ε

λ
.

Then, we obtain

‖Da∗ − Dã∗‖22
= ‖Da∗‖22 + ‖Dã∗‖22 − 2〈Da∗,Dã∗〉
≤ ‖Da∗‖22 +

(

‖Da∗‖22 + c′
x
ε

λ

)

+
(

−2‖Da∗‖22 + (c′
x + 2cx + 2‖x‖32)

ε

λ

)

≤ 2(c′
x + cx + ‖x‖32)

ε

λ
.

��
Lemma 8 (Preservation of Sparsity) If

Mk(D, x) >

(

1 + ‖x‖2
λ

)

‖x‖2‖D − D̃‖1,2

+
√

2
(

3‖x‖22 + 9‖x‖2 + 2
) ‖x‖22

‖D − D̃‖1,2
λ

, (25)

then

‖ϕD(x) − ϕD̃(x)‖0 ≤ k. (26)
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Proof In this proof, we denote ϕD(x) and ϕD̃(x) by a∗ = [a∗
1 , . . . , a

∗
m]� and ã∗ =

[ã∗
1 , . . . , ã

∗
m]�, respectively. When D̃ = D, Lemma 8 obviously holds. In the following,

we assume D̃ �= D. Since Mk(D, x) > 0 from (25), there is a I ⊂ [m] with |I| = m − k,
such that, for all j ∈ I,

0 < Mk(D, x) ≤ λ − |〈d j , x − Da∗〉|. (27)

To obtain (26), it is enough to show that a∗
i = 0 and ã∗

i = 0 for all i ∈ I.
First, we show a∗

i = 0 for all i ∈ I. From the optimality conditions for the LASSO (Fuchs
2004), we have

〈d j , x − Da∗〉 = sign(a∗
j )λ if a∗

j �= 0,

|〈d j , x − Da∗〉| ≤ λ otherwise.

Note that the above optimality conditions imply that, if a∗
j �= 0, then

|〈d j , x − Da∗〉| = λ. (28)

Combining (28) with (27), it holds that a∗
i = 0 for all i ∈ I.

Next, we show ã∗
i = 0 for all i ∈ I. To do so, it is sufficient to show that

|〈d̃i , x − D̃ã∗〉| < λ (29)

for all i ∈ I. Note that

|〈d̃i , x − D̃ã∗〉| = |〈di + d̃i − di , x − D̃ã∗〉|
≤ |〈di , x − D̃ã∗〉| + ‖d̃i − di‖2‖x − D̃ã∗‖2
≤ |〈di , x − D̃ã∗〉| + ‖D̃ − D‖1,2‖x‖2

and

|〈di , x − D̃ã∗〉| = |〈di , x − (D + D̃ − D)ã∗〉|
≤ |〈di , x − Dã∗〉| + |〈di , (D̃ − D)ã∗〉|
≤ |〈di , x − Dã∗〉| + ‖D̃ − D‖1,2‖ã∗‖1.

Hence,

|〈d̃i , x − D̃ã∗〉| ≤ |〈di , x − Dã∗〉| +
(

1 + ‖x‖2
λ

)

‖x‖2‖D − D̃‖1,2.

Now,

|〈di , x − Dã∗〉| = |〈di , x − Da∗ + Da∗ − Dã∗〉|
≤ |〈di , x − Da∗〉| + |〈di ,Da∗ − Dã∗〉|
≤ λ − Mk(D, x) + ‖Da∗ − Dã∗‖2

≤ λ − Mk(D, x) +
√

2
(

3‖x‖22 + 9‖x‖2 + 2
) ‖x‖22

‖D − D̃‖1,2
λ

,

(30)

where (30) is because of Lemma 7. Then, (29) is obtained from (25). ��
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Lemma 9 When a dictionary D is μ-incoherent, the following bound holds for an arbitrary
k-sparse vector b.

b�D�Db ≥
(

1 − μk√
d

)

‖b‖22.

Proof We setG := D�D− I, where I is the m ×m identity matrix. Since D is μ-incoherent,
the absolute value of each component ofG is less than or equal to μ/

√
d , and thus, b�Gb ≥

−μ/
√
d‖b‖21. Then, we obtain

b�D�Db = b�(I + G)b ≥ ‖b‖22 − μ√
d

‖b‖21 ≥
(

1 − μk√
d

)

‖b‖22, (31)

where we use ‖b‖1 ≤ √
k‖b‖2 for the k-sparse vector b in the last inequality. ��

Proof of Theorem 2 Following the notations of Mehta and Gray (2012), we denote ϕD(x) and
ϕD̃(x) by z∗ and t∗, respectively. From (23) of Mehta and Gray (2012), we have

(z∗ − t∗)�D�D(z∗ − t∗)
≤ (z∗ − t∗)�

(

(D̃�D̃ − D�D)t∗ + 2(D − D̃)�x
)

= (z∗ − t∗)�(D̃�D̃ − D�D)t∗ + 2(z∗ − t∗)�(D − D̃)�x. (32)

Note that the assumption (25) of Lemma 8 follows from (11), and thus, ‖z∗ − t∗‖0 ≤ k
holds from Lemma 8. Then, ‖z∗ − t∗‖1 ≤ √

k‖z∗ − t∗‖2.
When E := D − D̃, the first term in (32) is evaluated as follows.

(z∗ − t∗)�(D�D − D̃�D̃)t∗
≤ |(z∗ − t∗)�(E�D̃ + D̃�E + E�E)t∗|
≤ |(z∗ − t∗)�E�D̃t∗| + |(z∗ − t∗)�D̃�Et∗| + |(z∗ − t∗)�E�Et∗|
≤ ‖E(z∗ − t∗)‖2‖D̃t∗‖2 + ‖D̃(z∗ − t∗)‖2‖Et∗‖2 + ‖E(z∗ − t∗)‖2‖Et∗‖2
≤ (‖E‖1,2‖D̃‖1,2‖t∗‖1 + ‖D̃‖1,2‖E‖1,2‖t∗‖1 + ‖E‖1,2‖E‖1,2‖t∗‖1)‖z∗ − t∗‖1
≤
(

‖x‖22‖E‖1,2
λ

+ ‖x‖22‖E‖1,2
λ

+ ‖x‖22‖E‖21,2
λ

)√
k‖z∗ − t∗‖2

≤
(

4‖x‖22
λ

)

‖E‖1,2
√
k‖z∗ − t∗‖2,

where we use ‖E‖1,2 ≤ 2 in the last inequality. The second term in (32) is evaluated as
follows:

2(z∗ − t∗)�E�x ≤ 2‖E(z∗ − t∗)‖2‖x‖2
≤ 2‖E‖1,2‖z∗ − t∗‖1‖x‖2
≤ 2

√
k‖E‖1,2‖z∗ − t∗‖2‖x‖2.

Thus, we have

(z∗ − t∗)�D�D(z∗ − t∗) ≤ 2
√
k

(

1 + 2‖x‖2
λ

)

‖x‖2‖E‖1,2‖z∗ − t∗‖2. (33)
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On the other hand, we have the following lower bound of (32) from the μ-incoherence of
D and Lemma 9:

(z∗ − t∗)�D�D(z∗ − t∗) ≥
(

1 − μk√
d

)

‖z∗ − t∗‖22. (34)

From (33) and (34), we obtain

‖z∗ − t∗‖2 ≤ 2
√
k (1 + 2‖x‖2/λ) ‖x‖2

1 − μk/
√
d

‖D − D̃‖1,2.
��

C Proof of margin bound

In this proof, we set

δ1 := 2σ
√
km

(1 − t)
√
dλ

exp

(

− (1 − t)2dλ2

8σ 2k

)

,

δ2 := 2σ
√
km√

dλ
exp

(

− dλ2

8σ 2k

)

,

δ′
3 := 4σk3/2

C
√

d(1 − μk/
√
d)

exp

(

−C2d(1 − μk/
√
d)

8σ 2k

)

δ′′
3 := 8σ

√
k(d − k)

dλ
exp

(

− d2λ2

32σ 2k

)

,

δ3 := δ′
3 + δ′′

3 .

Then, δt,λ = δ1 + δ2 + δ3.
The column vectors for aμ-incoherent dictionary are in general position. Thus, a solution

of LASSO for a μ-incoherent dictionary is unique as per Lemma 3 in Tibshirani (2013).
The following notions are introduced in Zhao and Yu (2006). Let a be a k-sparse vec-

tor. Without loss of generality, we can assume that a = [a1, . . . , ak, 0, . . . , 0]�. Then,
a(1) = [a1, . . . , ak]�, D(1) = [d1, . . . ,dk] and D(2) = [dk+1, . . . ,dm]. We define
Ci j := 1

dD(i)�D( j) for i, j ∈ {1, 2}.When a dictionaryD isμ-incoherent and (μk)2/d < 1,
C11 is positive definite owing to Lemma 9 and hence invertible.

Definition 6 (Strong Irrepresentation Condition) There exists a positive vector η such that

|C21C
−1
11 sign(a(1))| ≤ 1 − η,

where sign(a(1)) maps positive entry of a(1) to 1, negative entry to −1 and 0 to 0, 1 is the
(d − k) × 1 vector of 1’s, and the inequality holds element-wise.

Then, the following lemma is derived by modifying the proof of Corollary 2 of Zhao and
Yu (2006).

Lemma 10 (Strong Irrepresentation Condition) When a dictionary D is μ-incoherent and√
d > μ(2k − 1) holds, the strong irrepresentation condition holds with η = (1 − μ(2k −

1)/
√
d)1.

The following lemma is given in the proof of Theorem 3 and Theorem 4 of Zhao and Yu
(2006).
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Lemma 11 When Assuptions 1–4 hold and D is μ-incoherent and
√
d > 2μ(2k − 1), there

exist Gaussian random variables {zi }ki=1 and {ζi }d−k
i=1

9 such that their variances are bounded
as E[z2i ] ≤ σ 2k/d(1 − μk/

√
d) and E[ζ 2

i ] ≤ σ 2k/d2 and

Pr
[

sign(ϕD(x)) = sign(a)
]

≥ 1 −
k
∑

i=1

Pr

[

|zi | ≥ √
d

(

|ai | −
√
kλ

2(1 − μk/
√
d)d

)]

−
d−k
∑

i=1

Pr

[

|ζi | ≥ (1 − μ(2k − 1)/
√
d)λ

2
√
d

]

. (35)

Proof The following is derived in Proposition 1 of Zhao and Yu (2006).

Proposition 1 Assume Strong Irrepresentable Condition holds with a constant η > 0 then

Pr(sign(ϕD(x)) = sign(a)) ≥ Pr(Ad ∩ Bd),

where

W (1) := 1√
d
D(1)�ξ and W (2) := 1√

d
D(2)�ξ ,

Ad :=
{

‖(C11)
−1Wd(1)‖2 <

√
d

(

‖a(1)‖2 − λ

2d
‖(Cd

11)
−1sign(a(1))‖2

)}

,

Bd :=
{

‖C21(C11)
−1Wd(1) − Wd(2)‖2 <

λ

2
√
d

(

1 − μ(2k − 1)√
d

)}

.

Here, we have

Pr(Ad ∩ Bd) ≥ 1 − Pr(Ac
d) − Pr(Bc

d).

From Lemma 10, we obtain ‖(Cd
11)

−1sign(a(1))‖2 ≤ √
k/(1−μk/

√
d). Thus, it holds that

Pr(Ac
d) ≤

k
∑

i=1

Pr

[

|zi | ≥ √
d

(

|ai | − λ

2d

√
k

(1 − μk/
√
d)

)]

, (36)

Pr(Bc
d) ≤

d−k
∑

i=1

Pr

[

|ζi | ≥ λ

2
√
d

(

1 − μ(2k − 1)√
d

)]

, (37)

where z = (z1, ..., zm)� := (Cd
11)

−1Wd(1) and ζ = (ζ1, ..., ζm)� := Cd
21(C

d
11)

−1Wd(1) −
Wd(2). Thus, it is enough to show that E[z2i ] ≤ σ 2k/d(1 − μk/

√
d) and E[ζ 2

i ] ≤ σ 2k/d2.

If we write z = H�
Aξ where H�

A = (hA
1 , ...,hA

k )� = (C11)
−1

√
d

−1
D(1), then

H�
AHA = 1

d
(C11)

−1 ≤ 1

1 − μk/
√
d
I .

9 The notations in Zhao and Yu (2006) and this paper relate as follows: zni := zi , ζ
n
i := ζi , β

n
i := ai , b

n
i ≤√

k
1−μk/

√
d
, ηni := 1 − μ(2k − 1)/

√
d, εn := ξ , p := m, q := k, λn := λ, M1 := 1/d, M2 := 1 − μk/

√
d,

respectively.
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Therefore zi = hA�
1 ξ with

E[z2i ] = 1

1 − μk/
√
d
E[‖ξ‖22] ≤ σ 2k

d(1 − μk/
√
d)

.

Similarly if wewrite ζ = H�
B ξ whereH�

B = (hB
1 , ...,hB

k )� = C21(C11)
−1

√
d

−1
D(1)�−√

d
−1

D(2)�, then

H�
B HB = 1

d
D(2)�(I − D(1)�(D(1)�D(1))−1D(1)�)D(2).

Then

‖hB
i ‖22 ≤ 1

d
d�
i (I − D(1)�(D(1)�D(1))−1D(1)�)di ≤ 1

d
d�
i di = 1

d
,

where we used the fact that I −D(1)�(D(1)�D(1))−1D(1)� has eigenvalues between 0 and
1. Therefore ζi = hB�

i ξ with

E[ζ 2
i ] ≤ E[‖ξ‖22‖hB

i ‖22] ≤ σ 2k

d2
.

��
Lemma 12 Under Assuptions 1–4, when D is μ-incoherent and

√
d > 2μ(2k − 1), the

following holds:

Pr
[|supp(a − ϕD(x))| ≤ k

] ≥ 1 − δ3.

Proof The following inequality obviously holds:

Pr
[|supp(a − ϕD(x))| ≤ k

] ≥ Pr
[

sign(a) = sign(ϕD(x))
]

.

From Lemma 11, there exist Gaussian random variables {zi }ki=1 and {ζi }d−k
i=1 such that

their variances are bounded as E[z2i ] ≤ σ 2k/d(1 − μk/
√
d) and E[ζ 2

i ] ≤ σ 2k/d2 and (35).

When λ ≤ (1 − μk/
√
d)Cd/

√
k, the inequality |ai | −

√
kλ

2(1−μk/
√
d)d

≥ C/2 holds since

|ai | ≥ C . Then, since 1 − μ(2k − 1)/
√
d ≥ 1/2 holds, we obtain

Pr

[

|zi | ≥ √
d

(

|ai | −
√
kλ

2(1 − μk/
√
d)d

)]

≤ Pr
[

|zi | ≥ C
√
d

2

]

≤ δ′
3,

Pr

[

|ζi | ≥ (1 − μ(2k − 1)/
√
d)λ

2
√
d

]

≤ Pr
[

|ζi | ≥ λ

4
√
d

]

≤ δ′′
3 ,

where we use the fact that zi and ζi are sub-Gaussian. Thus, the proof is completed. ��
Lemma 13 Let D be a dictionary. When ξ satisfies Assumption 4, the following holds:

Pr[λ ≥ 2‖D�ξ‖∞] ≥ 1 − δ2.

Proof Let ξ be a 1-dimensional Gaussian with variance σ 2k/d . Then, it holds that, for t > 0,

Pr [|ξ | > λ] ≤ σ
√
k√

dλ
exp

(

− dλ2

2σ 2k

)

. (38)
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Note that 〈d j , ξ〉 is Gaussian with variance σ 2k/d because ‖d j‖2 = 1 for every j ∈ [m]
and components of ξ are independent and Gaussian with variance σ 2k/d . Thus,

Pr[λ < 2‖D�ξ‖∞] = Pr
[

∪m
j=1{λ < 2|〈d j , ξ 〉|}

]

≤
m
∑

j=1

Pr[λ < 2|〈d j , ξ〉|] ≤ δ2,

where we used (38) in the last inequality. ��
Lemma 14 Under Assuptions 1–4,

Pr

[

‖a − ϕD(x)‖2 ≤ 3
√
k

(1 − μk/
√
d)

λ

]

≥ 1 − δ2 − δ3.

Proof By Assumption 1, x = Da+ ξ . We denote ϕD(x) by a∗ and a− a∗ by Δ. We have the
following inequality by the definition of a∗:

1

2
‖x − Da∗‖22 + λ‖a∗‖1 ≤ 1

2
‖x − Da‖22 + λ‖a‖1.

Substituting x = Da + ξ , we have

1

2
‖DΔ‖22 ≤ −〈D�ξ ,Δ〉 + λ(‖a‖1 − ‖a∗‖1)

≤ ‖D�ξ‖∞‖Δ‖1 + λ(‖a‖1 − ‖a∗‖1). (39)

Let Δk be the vector whose i th component equals that of Δ, if i is in the support of a, and
equals 0, otherwise. In addition, let Δ⊥

k = Δ − Δk . Using Δ = Δk + Δ⊥
k , we have

‖a∗‖ = ‖a − Δ⊥
k − Δk‖1 ≥ ‖a‖1 + ‖Δ⊥

k ‖1 − ‖Δk‖1.
Substituting the above inequality into (39), we have

1

2
‖DΔ‖22 ≤ ‖D�ξ‖∞‖Δ‖1 + λ(‖Δk‖1 − ‖Δ⊥

k ‖1).

The inequality λ ≥ 2‖D�ξ‖∞ holds with probability 1− δ2 due to Lemma 13, and then,
the following inequality holds:

1

2
‖DΔ‖22 ≤ 1

2
λ(‖Δk‖1 + ‖Δ⊥

k ‖1) + λ(‖Δk‖1 − ‖Δ⊥
k ‖1)

= 3

2
λ‖Δk‖1 − 1

2
λ‖Δ⊥

k ‖1

≤ 3

2
λ‖Δk‖1

≤ 3

2
λ
√
k‖Δk‖2.

Thus, we have

‖DΔ‖22 ≤ 3λ
√
k‖Δk‖2 ≤ 3λ

√
k‖Δ‖2.

Here, ‖supp(Δ)‖0 ≤ k with probability 1 − δ3 due to Lemma 12 and the following
inequality holds by the μ-incoherence of the dictionary D:

(1 − μk/
√
d)‖Δ‖22 ≤ ‖DΔ‖22.
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Thus,

‖Δ‖2 ≤ 3λ
√
k

(1 − μk/
√
d)

.

��
Proof of Theorem 3 FromAssumption 1, an arbitrary sample x is represented as x = D∗a+ξ .
Then,

〈d j , x − D∗ϕD(x)〉 = 〈d j , ξ + D∗(a − ϕD(x))〉
= 〈d j , ξ〉 + 〈D∗�d j , a − ϕD(x)〉.

We evaluate the probability that the first and second terms shown above are bounded by 1−t
2 λ.

We evaluate the probability for the first term. Since ‖d j‖ = 1 by definition, and ξ is drawn
from a Gaussian distribution with variance σ 2k/d , we have

Pr

[

max
1≤ j≤m

〈d j , ξ 〉 ≤ 1 − t

2
λ

]

≥ 1 − δ1.

With probability 1 − δ2 − δ3, the second term is evaluated as follows:

|〈D∗�d j , a − ϕD(x)〉| = |〈[〈d1,d j 〉, . . . , 〈dm,d j 〉]�, a − ϕD(x)〉|
= |〈1supp(a−ϕD(x)) ◦ [〈d1,d j 〉, . . . , 〈dm,d j 〉]�, a − ϕD(x)〉|
≤ ‖1supp(a−ϕD(x)) ◦ [〈d1,d j 〉, . . . , 〈dm,d j 〉]�‖2‖a − ϕD(x)‖2
≤ μ√

d

√|supp(a − ϕD(x))|‖a − ϕD(x)‖2

≤ 3μk

(1 − μk/
√
d)

√
d

λ (40)

≤ 1 − t

2
λ, (41)

where we used Lemmas 12 and 14 in (40) and d ≥
{(

1 + 6
(1−t)

)

μk
}2

in (41). Thus, with

probability 1 − (δ1 + δ2 + δ3) = 1 − δt,λ,

Mk(D∗, x) ≥ min
1≤ j≤m

{λ − |〈d j , x − D∗ϕD(x)〉|} ≥ tλ.

Thus, the proof of Theorem 3 is completed. ��
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