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Abstract
A twin support vector machine (TWSVM) is a classic distance metric learning method for
classification problems. The TWSVM criterion is formulated based on the squared L2-norm
distance, making it prone to being influenced by the presence of outliers. In this paper, to
develop a robust distance metric learning method, we propose a new objective function,
called L1-TWSVM, for the TWSVM classifier using the robust L1-norm distance metric.
The optimization strategy is to maximize the ratio of the inter-class distance dispersion to the
intra-class distance dispersion by using the robust L1-normdistance rather than the traditional
L2-norm distance. The resulting objective function is much more challenging to optimize
because it involves a non-smooth L1-norm term. As an important contribution of this paper,
we design a simple but valid iterative algorithm for solving L1-norm optimal problems.
This algorithm is easy to implement, and its convergence to an optimum is theoretically
guaranteed. The efficiency and robustness of L1-TWSVM have been validated by extensive
experiments on both UCI datasets as well as synthetic datasets. The promising experimental
results indicate that our proposal approaches outperform relevant state-of-the-art methods in
all kinds of experimental settings.

Keywords L1-norm distance · L1-TWSVM · L2-norm distance · Outliers · TWSVM

1 Introduction

A support vector machine (SVM) (Bradley and Mangasarian 2000; Cortes and Vapnik 1995;
Liu et al. 2002; Tian and Huang 2000; Vapnik 1995) plays a critical role in data classification
and regression analysis. It operates under the constraint that two support planes are parallel,
and the maximum interval classification is implemented by solving quadratic programming
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problems (QPPs). Based on structural risk minimization and Vapnik–Chervonenkis dimen-
sion, SVM has good generalization performance. SVM has been extensively used in many
practical problems, such as image classification (Song et al. 2002), scene classification (Yin
et al. 2015), fault diagnosis (Muralidharan et al. 2014) and bioinformatics (Subasi 2013).

The advantages of SVM are remarkable, but in some cases, deep learning and shallow
approaches such as random forests give competitive results compared to SVM on several
application domains. In particular, the performance of deep learning may be superior to
that of SVM when handling large samples, and SVM may cost more computational burden
than random forests on the same samples, so SVM still has a lot of space for improve-
ment. There are two main shortcomings: exclusive OR (XOR) problems cannot be handled
smoothly (Mangasarian andWild 2006), and QPPs suffer from high computational complex-
ity (Chang and Lin 2011; Deng et al. 2012). To alleviate these problems, Mangasarian and
Wild proposed a proximal support vector machine via generalized eigenvalues (GEPSVM)
based on the concept of proximal support vector machine (PSVM) (Fung and Mangasarian
2001) for binary classification problems (Mangasarian and Wild 2006). According to the
geometric interpretation of GEPSVM, the numerator should be as small as possible, while
the denominator should be as large as possible to minimize the objective function value.
GEPSVM relaxes the requirement of PSVM that the planes be parallel and can solve XOR
problem smoothly. Moreover, GEPSVM attempts to find two nonparallel planes by solving
a pair of generalized eigenvalue problems instead of complex QPPs, which can reduce the
computation time and improve the generalization ability over that of PSVM (Mangasarian
and Wild 2006). The advantages of GEPSVM play an important role in this improvement
(Guarracino et al. 2007; Shao et al. 2013, 2014; Ye and Ye 2009). However, it should be
noted that GEPSVM and its variants are sensitive to outliers because the L2-norm distance
exaggerates the effect of outliers by the square operation (Kwak 2008), which reduces the
classification performance. Outliers are defined as the data points that deviate significantly
from the majority of the data points or those do not have a regular distribution over the data
points (Wang et al. 2014b). In view of this limitation, many researches have been carried
out to improve the robustness of machine learning models by using the L1-norm distance
(Gao et al. 2011; Li et al. 2015a, b; Wang et al. 2014a, b; Ye et al. 2016, 2017). To promote
the robustness, Li et al. (2015a) reformulated the optimization problems of a nonparallel
proximal support vector machine using the L1-norm distance (L1-NPSVM). To solve the
formulated objective, a gradient ascent (GA) iterative algorithm is proposed, which is simple
to execute but may not guarantee the optimality of the solution due to both the need of intro-
ducing a non-convex surrogate function and the difficulty in selecting the step-size (Kwak
2014). Wang et al. (2014a) optimized Fisher linear discriminant analysis (LDA) by taking
advantage of the L1-norm distance instead of the conventional L2-norm distance; this opti-
mized LDA is denoted as LDA-L1. The utilization of the L1-norm distance makes LDA-L1
robust to outliers, and LDA-L1 does not suffer from the problems of small sample size and
rank limit that existed in the traditional LDA. Nevertheless, in LDA-L1, a gradient ascent
iterative algorithm is applied, which suffers from the difficulty in choosing the step-size.

As a successful improvement of GEPSVM, Jayadeva et al. proposed a twin support vec-
tor machine (Jayadeva and Chandra 2007)_(TWSVM) based on the concept of GEPSVM.
TWSVM solves two QPPs (the scale is relatively small compared to that of standard SVM) to
replace generalized eigenvalue problems (Mangasarian and Wild 2006). As TWSVM inher-
its the advantages of GEPSVM, it can handle the XOR problem smoothly. At present, the
research on TWSVM is still in its infancy, and many improved methods have been devel-
oped based on the concept of TWSVM, such as smooth TWSVM (Kumar and Gopal 2008),
localized TWSVM (LCTSVM) (Ye et al. 2011b), twin bounded SVM (TBSVM) (Shao et al.
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2011), and robust TWSVM (R-TWSVM) (Qi et al. 2013a). Ye et al. (2011a) introduced a
regularization technique for optimizing TWSVM and proposed a feature selection method
for TWSVM via the regularization technique (RTWSVM), which is a convex programming
problem, to overcome the possible singular problem and improve the generalization abil-
ity. Kumar and Gopal (2009) reformulated the optimization problems of TWSVM by using
constraints in the form of equalities to replace inequalities to modify the primal QPPs in
least-squares sense and proposed a least-squares version of TWSVM (LSTSVM). The solu-
tions of LSTSVM follow directly from solving two linear equations, as opposed to solving
two QPPs. Therefore, LSTSVM effectively addresses large samples without any external
optimization. Moreover, its computational cost is much lower than that of TWSVM. Qi et al.
(2013b) optimized TWSVM by applying the structural information of data, which may con-
tain useful prior domain knowledge for training the classifier, and proposed a new structural
TWSVM (S-TWSVM). S-TWSVM utilizes two hyperplanes to decide the category of new
data, and each model only considers the structural information of one class. Each plane is
closer to one of the two classes and as far away as possible from the other class. This allows
S-TWSVM to fully exploit the prior knowledge to directly improve its generalization ability.

It is worth noting that TWSVM and its variants are also sensitive to outliers. L1-norm
distance is more robust to outliers than the squared L2-norm distance in distance metric
learning (Cayton and Dasgupta 2006; Ke and Kanade 2005; Li et al. 2015a; Lin et al. 2015;
Pang et al. 2010; Wang et al. 2012, 2014a; Zhong and Zhang 2013). The utilization of the
L1-norm distance is considered to be a simple and effective way to reduce the impact of
outliers (Li et al. 2015b; Wang et al. 2014a) and can improve the generalization ability and
flexibility of the model, as with L1-NPSVM and LDA-L1. Following the same motivations
as these prior studies, we propose replacing the squared L2-norm distance in TWSVM with
the robust L1-norm distance to improve the robustness; the resulting TWSVM is called L1-
TWSVM. L1-TWSVM seeks two nonparallel optimal planes by solving two QPPs. The
optimization goal of L1-TWSVM is to minimize the intra-class distance and maximize the
inter-class distance simultaneously. Moreover, L1-TWSVM seamlessly integrates the merits
of TWSVM with those of the robust L1-norm-based distance metric, which improves the
classification performance and robustness. In summary, this paper makes the following con-
tributions: (1) An iterative algorithm is presented to solve L1-norm distance optimization
problems. The iterative optimization technique is simple and convenient to implement. We
theoretically prove that the objective function value of L1-TWSVM is reduced at each step
of iteration. This means that the convergence of the iterative algorithm to a local optimal
solution is theoretically guaranteed. (2) In L1-TWSVM, the conventional L2-norm distance
is replaced bymore robust L1-norm distance to reduce the effect of outliers, whichmakes L1-
TWSVM robust to outliers. L1-TWSVM can efficiently decrease the impact of the outliers,
even if the ratio of outliers is large. (3) The proposed method is evaluated with relevant algo-
rithms (SVM, GEPSVM, TWSVM, LSTSVM and L1-NPSVM) on both synthetic datasets
and UCI datasets. Extensive experimental results confirm that L1-TWSVM and L1-NPSVM
effectively reduce the effect of the outliers, which improves the generalization ability and
flexibility of the model. (4) The proposed method can be conveniently extended to solve
other improved methods based on TWSVM.

The remainder of this paper is organized as follows. Section 2 briefly introduces GEPSVM
and TWSVM. Section 3 proposes L1-TWSVM, discusses its feasibility and presents the
theoretical analysis. All the experimental results are shown in Sect. 4, and conclusions are
presented in Sect. 5.
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2 Related works

In this paper, all vectors are column vectors unless a superscript T is present, which denotes
transposition. We use bold uppercase letters to represent matrices and bold lowercase ones
to represent vectors. The vectors e1 and e2 of appropriate lengths are represented by identity
column vectors. Furthermore, I denotes an identity matrix of appropriate dimension. We
consider a binary classification problem in the n-dimensional real space Rn , and the dataset

is denoted by T �
{(

x(i)
j , yi

)
|i � 1, 2, j � 1, 2, . . . ,mi

}
, where x(i)

j ∈ Rn and yi ∈
{−1, 1}, and x(i)

j denotes the i-th class and j-th sample. We suppose that matrix A �(
a(1)
1 , a(1)

2 , . . . , a(1)
m1

)T
of size m1 × n represents the data points of Class 1 (Class +1),

while matrix B �
(

b(2)
1 , b(2)

2 , . . . , b(2)
m2

)T
of size of m2 × n represents the data points of

Class 2 (Class -1), where matrices A and B represent all the data points, m1 represents the
number of positive class samples, m2 represents the number of negative class samples, and
m1 +m2 � m. In the following, we review two well-known nonparallel proximal classifiers:
GEPSVM (Mangasarian and Wild 2006) and TWSVM (Jayadeva and Chandra 2007).

2.1 GEPSVM

GEPSVM is an excellent classifier for binary classification problems and is widely used
for pattern classification problems. The primary aim of GEPSVM is to find two nonparallel
proximal planes

xT w1 + b1 � 0, xT w2 + b2 � 0 (1)

where w1, w2 ∈ Rn and b1, b2 ∈ R. The geometric interpretation of GEPSVM is that each
plane is closer to one of the two classes and as far away as possible from the other class. This
produces the following two optimization problems of GEPSVM:

min
w1,b1

||Aw1 + e1b1||22+δ||(wT
1 b1)

T ||22
||Bw1 + e2b1||22

(2)

min
w2,b2

||Bw2 + e2b2||22+δ||(wT
2 b2)

T ||22
||Aw2 + e1b2||22

(3)

where ||·||2 denotes the L2-norm, δ||(wT
1 b1)

T ||22 is a Tikhonov regularization term, and δ

is a regularization factor. The regularization terms are introduced to address the singular
problem when solving the generalized eigenvalue problems, which can improve the stability
of GEPSVM. Then, optimization problems (2) and (3) become

min
z1

zT1 Ez1
zT1 Fz1

(4)

min
z2

zT2 Lz2
zT2 Mz2

(5)

where H � (A e1), G � (B e2) are matrices and z1 � (
wT
1 b1)T , z2 � (

wT
2 b2)T are

augmented vectors, E � HT H + δI, L � GT G + δI, F � GT G, and M � HT H.
E, F and L, M are symmetric matrices in R(n+1)×(n+1). The objective functions in (4)

and (5) are Rayleigh quotient problems (Parlett 1998) and have some very useful properties,
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as we now state. It is easy to derive the solutions of (4) and (5) by solving the generalized
eigenvalue problems

Ez1 � λ1Fz1, z1 �� 0 (6)

Lz2 � λ2Mz2, z2 �� 0 (7)

where the minimum of (4) is attained at an eigenvector corresponding to the smallest eigen-
value λ1 of (6). Consequently, if z1 denotes the eigenvector corresponding to λ1, then the
augmented vector z1 � (

wT
1 b1)

T determines the plane xT w1 + b1 � 0, which is close to
data points of Class 1. Similarly, the augmented vector z2 � (

wT
2 b2)

T determines the plane
xT w2 + b2 � 0, which is close to data points of Class 2.

2.2 TWSVM

In this section, after a brief review ofGEPSVM,we introduce TWSVM,which is an improved
version of GEPSVM. To obtain two planes, TWSVM solves two convex programming prob-
lems rather than solving a system of two linear equations as GEPSVM does (Mangasarian
and Wild 2006). The two objective functions of TWSVM are expressed as follows:

min
w1,b1

1

2
||Aw1 + e1b1||22+c1eT2 q1

s.t . − (Bw1 + e2b1) + q1 ≥ e2, q1 ≥ 0 (8)

min
w2,b2

1

2
||Bw2 + e2b2||22+c2eT1 q2

s.t . (Aw2 + e1b2) + q2 ≥ e1, q2 ≥ 0 (9)

where ||·||2 denotes the L2-norm, q1 and q2 are slack vectors, and c1 and c2 are nonnegative
penalty coefficients, which are the balance factors of the positive and negative samples,
respectively, and can overcome the problem of sample imbalance in TWSVM. It should be
noted that in TWSVM, the distance ismeasured by the L2-norm,which is likely to exaggerate
the effect of outliers by the square operation. The optimization strategy of TWSVM is that
points of the same class are clustered as compactly as possible and are as far as possible
from data in the other class, which guarantees the minimization of the objective function. By
solving formulas (8) and (9), we can obtain two nonparallel planes:

xT w1 + b1 � 0, xT w2 + b2 � 0 (10)

A new data point x is assigned to Class 1 or Class 2 depending on its proximity to each
of the two nonparallel planes. We can obtain the corresponding Wolfe dual problems of
formulas (8) and (9):

max
α

eT2 α − 1

2
αT G

(
HT H

)−1
GTα

s.t . 0 ≤ α ≤ c1e2 (11)

max
β

eT1 β − 1

2
βT H

(
GT G

)−1
HT β

s.t . 0 ≤ β ≤ c2e1 (12)
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where α ∈ Rm2 and β ∈ Rm1 are Lagrange multipliers, we can derive two nonparallel planes
using α and β:

z1 �
(

wT
1 b1

)T � −
(

HT H
)−1

GTα

z2 �
(

wT
2 b2

)T �
(

GT G
)−1

HT β (13)

Note that the inverse matrices
(
HT H

)−1
and

(
GT G

)−1
in Eq. (13) easily encounter

singularity problems. To prevent matrix singularity, the regularization term εI, where ε is
a positive scalar that is small enough to preserve the structure of the data, is introduced

(Jayadeva and Chandra 2007; Mangasarian and Wild 2006). Because
(
HT H + εI

)−1
and(

GT G + εI
)−1

are positive definite, they do not suffer from singularity problems.

3 Efficient and robust TWSVM based on L1-norm distance

TWSVM has become a hotspot in the research of data classification due to its good clas-
sification performance. However, in TWSVM, the distance is measured by the L2-norm. It
is well known that the squared L2-norm distance is sensitive to outliers, which implies that
abnormal observations may affect the solution obtained by TWSVM. In the literature (Ding
et al. 2006; Gao 2008; Kwak 2008; Li et al. 2015a; Nie et al. 2015; Wright et al. 2009), the
L1-norm distance is usually considered as a robust alternative to the L2-norm distance for
improving the generalization ability and flexibility of the model. Motivated by the basic idea
of L1-norm-based modeling, we propose a robust classifier based on the L1-norm distance
metric, which replaces the squared L2-norm distance in the distancemetric learning objective
functions in formulas (8) and (9), thereby leading to the following optimization problems:

min
w1,b1

1

2
||Aw1 + e1b1||1+c1eT2 q1

s.t . − (Bw1 + e2b1) + q1 ≥ e2, q1 ≥ 0 (14)

min
w2,b2

1

2
||Bw2 + e2b2||1+c2eT1 q2

s.t . (Aw2 + e1b2) + q2 ≥ e1, q2 ≥ 0 (15)

where ||·||1 denotes the L1-norm. In a solution that minimizes the objective functions, each
plane is as close as possible to one of the two classes and as far as possible from the other
class. Because formulas (14) and (15) are convex optimization problems with non-convex
constraints in the form of inequalities, they have the local optimal solutions, and we can
obtain two nonparallel planes by solving them:

xT w1 + b1 � 0, xT w2 + b2 � 0 (16)

The original problems in formulas (14) and (15) can be optimized in the following forms:

min
w1,b1

1

2

(
m1∑
i�1

(
aTi w1 + ei1b1

)

di

2)
+ c1eT2 q1

s.t . − (Bw1 + e2b1) + q1 ≥ e2, q1 ≥ 0 (17)
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min
w2,b2

1

2

⎛
⎜⎝

m2∑
j�1

(
bT
j w2 + e j2b2

)2

d j

⎞
⎟⎠ + c2eT1 q2

s.t . (Aw2 + e1b2) + q2 ≥ e1, q2 ≥ 0 (18)

where di � ∣∣aTi w1 + ei1b1
∣∣ �� 0 and d j �

∣∣∣bT
j w2 + e j2b2

∣∣∣ �� 0, ei1,e
j
2 denote the i-th and

j-th element of e1 and e2 respectively. It is difficult to directly solve formulas (17) and (18)
because they each contain an absolute value operation, which makes the optimization of
objective function (17) intractable. To solve these problems, we propose an iterative convex
optimization strategy. The basic idea of this method is to iteratively update the augmented
vector z1 until its objective values in (17) of two successive iterations is less than a fixed value
(0.001); then, z1 is the local minimum solution. Assume that zp

1 is the solution for iteration

p. Then, the solution z(p+1)
1 for iteration p + 1 is defined as the solution to the following

problems:

min
z1

1

2

(
m1∑
i�1

(
hT
i z1

)

d1i

2)
+ c1eT2 q1

s.t . − Gz1 + q1 ≥ e2, q1 ≥ 0 (19)

min
z2

1

2

⎛
⎜⎝

m2∑
j�1

(
gTj z2

)2

d2 j

⎞
⎟⎠ + c2eT1 q2

s.t . Hz2 + q2 ≥ e1, q2 ≥ 0 (20)

where d1i � ∣∣hT
i zp1

∣∣, d2 j �
∣∣∣gTj zp2

∣∣∣, hT
i � (

aTi ei1
)
, and gTj �

(
bT
j e j2

)
. Then, formulas (19)

and (20) are rewritten as

min
z1

1

2
zT1 HT D1Hz1 + c1eT2 q1

s.t . − Gz1 + q1 ≥ e2, q1 ≥ 0 (21)

min
z2

1

2
zT2 GT D2Gz2 + c2eT1 q2

s.t . Hz2 + q2 ≥ e1, q2 ≥ 0 (22)

where D1 � diag
(
1
/
d11, 1

/
d12, . . . , 1

/
d1m1

)
and D2 �

diag
(
1
/
d21, 1

/
d22, . . . , 1

/
d2m2

)
are diagonal matrices.

We rewrite the problems (21) and (22) with the following equivalent formulation,

min
z1

1

2
‖Hz1‖1 + c1eT2 q1

s.t . − Gz1 + q1 ≥ e2, q1 ≥ 0 (23)

min
z2

1

2
‖Gz2‖1 + c2eT1 q2

s.t . Hz2 + q2 ≥ e1, q2 ≥ 0 (24)
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Formula (14) is a convex optimization problem with inequality constraints (non-convex);
therefore, it has a closed-form solution. The Lagrange function of (14) is constructed to solve
this problem:

L1(w1, b1, q1,α, β) � 1

2
(Aw1 + e1b1)T D1(Aw1 + e1b1)

+ c1eT2 q1 − αT (−(Bw1 + e2b1) + q1 − e2) − βT q1 (25)

where α � (
α1, α2, α3, . . . , αm2

)T and β � (
β1, β2, β3, . . . , βm1

)T are Lagrange multipli-
ers, and α ≥ 0, β ≥ 0. The partial derivatives of w1, b1 and q1 are obtained with Lagrange
function L1 separately, and their derivatives are set equal to zero. Then, the Karush–Kuhn—
Tucker (KKT) conditions can be obtained:

∂L

∂w1
� AT D1(Aw1 + e1b1) + BTα � 0 (26)

∂L

∂b1
� eT1 D1(Aw1 + e1b1) + eT2 α � 0 (27)

∂L

∂q1
� c1e2 − α − β � 0 (28)

−(Bw1 + e2b1) + q1 ≥ e2, q1 ≥ 0 (29)

αT (−(Bw1 + e2b1) + q1 − e2) � 0, βT q1 � 0 (30)

We can obtain 0 ≤ α ≤ c1e2 from Eq. (28) since α ≥ 0, β ≥ 0. Next, Eqs. (26) and (27)
are combined: (

AT eT1
)

D1(A e1)(w1 b1)
T +

(
BT eT2

)
α � 0 (31)

We have previously defined matrices (H, G) and augmented vectors (z1, z2). With these
notations, the solution of z(p+1)

1 can be obtained based on the conditions above:

HT Dp
1 Hz(p+1)

1 + GTα � 0 (32)

Equation (32) is equivalent to Eq. (33):

z(P+1)
1 � −

(
HT Dp

1 H
)−1

GTα (33)

In Eq. (33), it is necessary to calculate inverse matrix
(
HT Dp

1 H
)−1

to obtain z(p+1)
1 .

HT Dp
1 H is a positive semi-definite matrix that may be ill-conditioned in some situations, so

wemay obtain an inaccurate or unstable solution. In real applications, we can use themethods
described in Jayadeva and Chandra (2007),Mangasarian andWild (2006). The regularization
term is introduced to address this problem, where ε is a small perturbation.

(
HT Dp

1 H + εI
)

is a positive definite matrix and does not suffer from the singularity problem. Moreover,

inverse matrix
(
HT Dp

1 H
)−1

is approximately replaced by
(
HT Dp

1 H + εI
)−1

. Therefore, we

can derive the final solution of z(p+1)
1 :

z(p+1)
1 � −

(
HT Dp

1 H + εI
)−1

GTα (34)

Similarly,

z(p+1)
2 �

(
GT Dp

2 G + εI
)−1

HT β (35)
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Augmented vectors z(p+1)
1 and z(p+1)

2 are substituted into Lagrange function (25) sep-
arately. Under KKT conditions, the original optimization problems (14) and (15) can be
transformed into Wolfe dual problems:

max
α

eT2 α − 1

2
αT G

(
HT D1H

)−1
GTα

s.t . 0 ≤ α ≤ c1e2 (36)

max
β

eT1 β − 1

2
βT H

(
GT D2G

)−1
HT β

s.t . 0 ≤ β ≤ c2e1 (37)

We can obtain the Lagrange multipliers α ∈ Rm2×1 and β ∈ Rm1×1 by solving the dual
problems and substitute α and β into Eqs. (34) and (35), respectively. In addition, weight
vectors w1, w2 and deviations b1, b2 can be obtained. That is, we acquire two nonparallel
planes (16).

A new point x ∈ Rn is assigned to Class 1 or Class 2, according to which of the two
nonparallel planes given by (16) lies closest to the decision function

f (x) � arg min
i�1,2

(∣∣∣xT wi + bi
∣∣∣
/

‖wi‖
)

(38)

Here, |·| is the absolute value operation.
The new objective function in (14) is a convex problem with non-convex constraint, so

z(p+1)
1 is the local optimal solution to the problem. Note that in Eq. (33), Dp

1 is dependent

on z(p+1)
1 ; thus, it is an unknown variable and can be viewed as the potential variable of

the objective in (14), which can be solved using the same iterative algorithm by alternating
optimization. We calculate Dp

1 based on the solution z(p+1)
1 that was obtained in the previous

iteration and iteratively update Dp
1 to change z(p+1)

1 , increase p until the objective values
of two successive iterations is less than a fixed value. Besides, proper initialization can
effectually expedite the convergence of the algorithm. In practice, we solve formulas (8) and
(9) to obtain initial solutions, which empirically works very well in our experiments. The
iterative procedure of L1-TWSVM is summarized in Algorithm 1.

p = p + 1.
    End while
     Output: The learned solution of z1.

Algorithm 1 is an efficient iterative algorithm for solving the optimization problem defined
by formula (14), which implies that each updating step decreases the value of the objective
function, whose convergence is guaranteed by Theorem 1. To prove this, we first introduce
Lemma 1.
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Lemma 1 For any nonzero vector u, up ∈ R1, the following inequality is established:

‖u‖1 − ‖u‖21
2‖up‖1 ≤ ∥∥up

∥∥
1 − ‖up‖21

2‖up‖1 (40)

Proof Starting with the inequality
(√

v − √
vp

)2 ≥ 0, we have
(√

v − √
vp

)2 ≥ 0 ⇒ v − 2
√

vvp + vp ≥ 0

⇒ √
v − v

2
√

vp
≤

√
vp

2
⇒ √

v − v

2
√

vp
≤ √

vp − vp

2
√

vp
(41)

By replacing v and vp in (41) with ‖u‖21 and ‖up‖21, respectively, we obtain (40). �
Theorem 1 Algorithm 1 monotonously decreases the objective of problem (23) in each iter-
ation.

Proof First, we rewrite the problem in (39) with the following equivalent formulation:

z(p+1)
1 � argmin

z1

1

2
zT1 HT Dp

1 Hz1 + c1eT2 max(0, e2 + Gz1) (42)

That is,

z(p+1)
1 � argmin

z1

1

2
(Hz1)T Dp

1 Hz1 + c1eT2 max(0, e2 + Gz1) (43)

Thus, in the (p + 1)-th iteration, according to (39) in Algorithm 1, we have

1

2

(
Hz(p+1)

1

)T
Dp
1

(
Hz(p+1)

1

)
+ c1eT2 max

(
0, e2 + Gz(p+1)

1

)

≤ 1

2

(
Hzp1

)T Dp
1

(
Hzp

1

)
+ c1eT2 max

(
0, e2 + Gzp1

)
(44)

Substituting u and up in (40) by
∥∥∥Hz(p+1)

1

∥∥∥
2

1
and

∥∥Hzp1
∥∥2
1, respectively, leads to

∥∥∥Hz(p+1)
1

∥∥∥
1
−

∥∥∥Hz(p+1)
1

∥∥∥
2

1

2
∥∥Hzp1

∥∥
1

≤ ∥∥Hzp1
∥∥
1 −

∥∥Hzp1
∥∥2
1

2
∥∥Hzp

1

∥∥
1

(45)

Therefore, the following inequality holds:

m1∑
i�1

⎛
⎜⎝

∣∣∣hT
i z(p+1)

1

∣∣∣ −
(

hT
i z(p+1)

1

)2

2
∣∣hT

i zp1
∣∣

⎞
⎟⎠ ≤

m1∑
i�1

(∣∣∣hT
i zp1

∣∣∣ −
(
hT
i zp1

)2
2
∣∣hT

i zp1
∣∣
)

(46)

(46) can be simplified to (47)
∥∥∥Hz(p+1)

1

∥∥∥
1
− 1

2

(
Hz(p+1)

1

)T
DP
1

(
Hz(p+1)

1

)

≤ ∥∥Hzp1
∥∥
1 − 1

2

(
Hzp

1

)T DP
1

(
Hzp1

)
(47)

Combining inequalities (44) and (47), we obtain∥∥∥Hz(p+1)
1

∥∥∥
1
+ c1eT2 max

(
0, e2 + Gz(p+1)

1

)

≤ ∥∥Hzp
1

∥∥
1 + c1eT2 max

(
0, e2 + Gzp

1

)
(48)
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As the problem in (23) is bounded below 0, Algorithm 1 converges. The inequality in (48)
holds when the algorithm converges. This indicates that the objective value of (23) decreases
in each iteration till the algorithm converges. �
Theorem 2 Algorithm 1 converges to a local minimal solution to problem (23).

Proof The Lagrange function of problem (23) is as follows,

L2(z1, q1) � 1

2
‖Hz1‖1 + c1eT2 q1 − αT (−Gz1 + q1 − e2) − βT q1 (49)

where α and β are the vectors of Lagrange multipliers. Taking the derivative of L2(z1, q1)

w.r.t. z1 and q1 respectively and setting them to zero, we obtain theKKT condition of problem
(23) in the following,

HT D1Hz1 + Gα�0, c1e2 − α − β�0 (50)

In each iteration of Algorithm 1, we find the optimal z(p+1)
1 to the problem (39). Hence,

the converged solution of Algorithm 1 satisfies the KKT condition of the problem. Next, we
define the Lagrange function of problem (39) of Algorithm 1, shown as follows,

L3(z1, q1) � 1

2
zT1 HT D1Hz1 + c1eT2 q1 − αT (−Gz1 + q1 − e2) − βT q1 (51)

Taking the derivative of L3(z1, q1) w.r.t. z1 and q1 respectively and setting them to zero.

HT D1Hz1 + Gα�0, c1e2 − α − β�0 (52)

According to the definition of D1 in Algorithm 1, the equivalence between (50) and
(52) holds when Algorithm 1 converges. This implies that the converged solution z(p+1)

1 of
Algorithm 1 satisfies (50) (the KKT condition of the problem in (23)) and is a local minimum
solution to problem (23). �

Next, we evaluate the validity and robustness of L1-TWSVM by experiments, and the
classification performance is demonstrated by the experimental results on synthetic datasets
and UCI datasets (Bache and Lichman 2013; Chen et al. 2011).

4 Experimental results

To evaluate the classification performance and robustness of L1-TWSVM, it is compared
with five related algorithms [SVM (Vapnik 1995), GEPSVM (Mangasarian and Wild 2006),
TWSVM (Jayadeva andChandra 2007), LSTSVM (Kumar andGopal 2009) and L1-NPSVM
(Li et al. 2015a)], further, and demonstrate the L1-norm distance can alleviate the effect of
outliers and noise in most cases, so fifteen commonly used datasets are selected from the
UCI datasets. L1-TWSVM and L1-NPSVM are two iterative algorithms, which require ini-
tial solutions to be specified. Good initialization in L1-TWSVM is critical for success but is
non-trivial. Considering these two algorithms are designed to correct the planes of GEPSVM
and TWSVM that may be non-optimal due to the effect of outliers, we set their initial solu-
tions as the solutions of GEPSVM and TWSVM, respectively. Moreover, for L1-TWSVM
and L1-NPSVM, we terminate the iterative procedures when the difference in the objective
values of two successive iterations is less than 0.001. The experimental environment consists
of a Windows 10 operating system, an Intel(R) Core(TM) i5-5200u quad-core processor
(2.2 GHz) and 4 GB of RAM. Six classification algorithms are implemented in MATLAB
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Fig. 1 XOR datasets with outliers
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Cross-plane 1 datasets

class 1
class 2

Outliers

7.1. The experimental parameters are selected by 10-fold cross-validation (Ding et al. 2013;
Ye et al. 2012). That is, each dataset is divided into ten subsets, one of which being test-
ing data in turn, with the remaining nine subsets being training data. The testing accuracy
is the average value of the results of N runs for each dataset (in this experiment, N�10).
In addition, the experimental datasets only contain two types of data (Class 1 & Class 2),
and all sample data are normalized to the interval (−1, 1) to reduce the differences between
the characteristics of different samples. It is known that experimental parameters may influ-
ence the classification performance. Thus, to obtain the best generalization performance, all
experimental parameters are selected by 10-fold cross-validation, which is described below.
Parameters c1 and c2 are in the range of

{
2i |i � −7,−6,−5, . . . , 7} , while parameter ε is

in the range of
{
10i |i � −10,−9,−8, . . . , 10} .

4.1 Experiments on synthetic datasets

To examine the performance of L1-TWSVM, we performed the same experiment on XOR
datasets called Cross-plane (60×2), in which the number of positive samples is 20 and
the number of negative samples is 40. This datasets is generated by perturbing points that
originally lie on two intersecting planes (lines), where each plane corresponds to one class.
The two-dimensional datasets contain two classes (positive class and negative class)with their
covariance matrices are (1, 0.9576; 0.9576, 1) and (1,−0.9067;−0.9067, 1) respectively,
while the mean vectors are (4.39, 11.6062) and (8.15, 11.4137) respectively. Outliers tend
to have a certain influence on the classification performance; this influence is measured for
evaluating the stability of the algorithms. Here, two extra outliers (data points that deviate
significantly from the remainder data points) are added to the Cross-plane datasets (called
Cross-plane 1 (62×2)) to assess the robustness of the six algorithms, among which one
outlier with coordinate (17, 5)T is generated in the positive class, and another with coordinate
(−5,−1)T is generated in the negative class, as shown in Fig. 1. The classification results of
each classifier on the Cross-plane 1 datasets are given in Fig. 2a–f.

The traditional distance metric learning methods (such as SVM, GEPSVM, TWSVM
and LSTSVM) often formulate the objectives using the squared L2-norm distance, but they
could be highly influenced by outlying data points. We know that each point has the same
contribution, especially the large distance point, if the squared L2-norm distance of them
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Fig. 2 The classification results on the Cross-plane 1 datasets. Annotation: The red line is the optimal plane
of the “Circle” sample, while the blue line is the optimal plane of the “Square” sample. a By SVM, b By
GEPSVM, c By TWSVM, d By LSTSVM, e By L1-NPSVM, f By L1-TWSVM (Color figure online)

dominates the sum (the squared L2-norm distance of remaining data points), it means that
these measurements become inappropriate on the datasets. That is, these outlying data points
are defined as outliers, which deviate significantly from the rest of the data points. According
to Fig. 2, compared with L1-TWSVM, the other competing algorithms misclassify more
points (Class 1 has more points closer to the blue separating plane of Class 2 or Class
2 has more points closer to the red separating plane of Class 1). The accuracies of the
six algorithms (SVM, GEPSVM, TWSVM, LSTSVM, L1-NPSVM and L1-TWSVM) are
34.05, 74.34, 73.08, 67.86, 75.84 and 77.56%, respectively. According to the experimental
results above, L1-TWSVM achieves the highest classification accuracy after the introduction
of outliers. This may be attributed to the use of the robust L1-norm distance in TWSVM.
The squared L2-norm distance may result in large distances dominating the sum in classifiers
GEPSVM,TWSVMandLSTSVMwhen outliers appear in the datasets, which can easily lead
to biased results; however, the L1-norm distance can greatly reduce the influence of outliers.
The performance of SVM is the worst among six relative algorithms, which indicates SVM
cannot deal with the XOR datasets effectively. These results validate the practicability and
feasibility of L1-TWSVM.

4.2 Experiments on UCI datasets

To solve the L1-norm optimization problem, we developed an iterative method that is simple
and convenient to implement. We also theoretically showed that the objective function value
of L1-TWSVM is reduced in each step of the iteration. The objective function values of L1-
TWSVMmonotonically decrease as the iteration number increases until converging to fixed
values (Fig. 3a–f); the algorithm can quickly converge within approximately six iterations.
The horizontal axis represents the number of iterations, and the vertical axis represents the
value of the objective function.
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Fig. 3 The objective function values of L1-TWSVMmonotonically decrease as the iteration number increases
on six datasets. a On Tae datasets, b On Pidd datasets, c On Monks3 datasets, d On Housingdata datasets, e
On Sonar datasets, f On Cancer datasets

To further evaluate the effectiveness and practicality of L1-TWSVM, it is compared with
the relevant algorithms (SVM, GEPSVM, TWSVM, LSTSVM and L1-NPSVM) on fifteen
commonly used datasets that are selected from the UCI datasets. Noise is one of the criteria
used for evaluating the robustness of the algorithm. The accuracy changes smoothly with the
increase of noise, which indicates that the algorithm has good robustness to noise.

To imitate the outlier data samples, we corrupt the training samples using a noise matrix
N0 (the mean is 0 and the standard deviation is 1) whose element are i.i.d. (independent and
identically distributed) standard Gaussian variables (Wang et al. 2015). Then we execute the
training procedures on the corrupted training set T + σN0, where σ � k‖T‖F

/‖N0‖F and
k is a given noise factor. In this paper, we set k � 0.1. Table 1 lists the accuracies of the
six algorithms on the original datasets, while Table 2 lists the accuracies on fifteen datasets
where 10% Gaussian noise was introduced. Table 3 list the accuracies of the six algorithms
on datasets where 20% Gaussian noise was introduced. To further test the convergence of
L1-TWSVM, the average numbers of iterations used for training are listed in the three tables
for each experiment. In addition, the P values are obtained from paired t tests comparing
each algorithm to L1-TWSVM. An asterisk (*) indicates a significant difference from L1-
TWSVM, which corresponds to a P value of less than 0.05. The highest accuracy is shown
in bold. Standard deviation is a metric that is used to quantify the amount of variation or
dispersion of a set of data values, called Std for short. Detailed results are given in the
following tables:

We performed paired t tests comparing L1-TWSVM to the related algorithms. TheP value
for each test is the probability of the observed or a greater difference occurring between the
correctness values of the two datasets, under the assumption of the null hypothesis that there
is no difference between the correctness distributions of the datasets. Hence, the smaller
the P-Value, the less likely it is that the observed difference resulted from datasets with the
same correctness distribution. In this study, we set the threshold for the P value to 0.05.
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For instance, the P value of the test comparing L1-TWSVM and TWSVM on the Ticdata
datasets is 0.00021681, and that on theMonks3 datasets is 0.0097, both of which are less than
0.05; therefore, we can conclude that L1-TWSVM and TWSVM have different accuracies
on these datasets and L1-TWSVM significantly outperforms TWSVM. In addition, on the
Monks1, Monks2, Tae and Sonar datasets, we find that the performance differences between
L1-TWSVMand the other algorithms (except for SVM) are statistically insignificant. Finally,
by more carefully examining the experimental results, we also notice that although TWSVM
and LSTSVMoutperform L1-TWSVM in terms of accuracy on some datasets (such as Heart,
Ionodata, and Housingdata), the P values are higher than 0.05; that is to say, the accuracies
of TWSVM and LSTSVM are not significantly different from that of L1-TWSVM. This
important observation clearly indicates that the classification performance of our method is
superior to those of all other competing methods.

Based on the data in Table 1, we find the following interesting patterns. First, the accu-
racy of L1-TWSVM is comparable to those of other competing algorithms in most cases
and is higher than those of others in some scenarios. This indicates that the classification
performance of L1-TWSVM is better. Second, according to the columns corresponding to
L1-TWSVM in Table 1, L1-TWSVMcan rapidly converge within approximately seven itera-
tions, except on the Ticdata datasets (the iteration number is 13); as guaranteed by Theorem 1,
L1-TWSVM gradually converges to a local optimal solution.

According to the experimental results in the three tables, regardless of whether Gaussian
noise is introduced or not, the accuracy of our method is comparable to or better than the
other methods. The performance degradation of our method is very small when 10% and
20% Gaussian noise is introduced; even the accuracy of the proposed algorithm is superior
to TWSVM. In addition, the accuracies of L1-NPSVM and L1-TWSVM show little change
compared to other competing methods, especially when Gaussian noise is introduced. This
may be attributed to the embedding of the L1-norm distance, which makes them more robust
to outliers than the other methods. This further demonstrates that the L1-norm distance is
useful for data classification, especially for samples with outliers.

According to the three tables, the iteration numbers of L1-TWSVM increase slightly after
Gaussian noise is introduced; however, L1-TWSVM can converge within a limited number
of iterations. Furthermore, the experimental results expose high computational cost. The
training time of L1-TWSVM is the longest. The reasons for this are as follows: (1) L1-
TWSVM, similar to TWSVM, requires the calculation of two QPPs; the time complexity of
this calculation is no more than m3

/
4 when A is equivalent to B in terms of the number of

samples. (2) The time complexity of computing the two inverse matrices
(
HT D1H + εI

)−1

and
(
GT D2G + εI

)−1
is approximately 2n2. (3) As L1-TWSVM is an iterative algorithm that

need to iteratively compute the solutions, in each iteration, it needs to calculate two QPPs,
two inverse matrices and two diagonal matrices D1, D2, where the time complexities of
calculatingD1 andD2 during the learningprocess arem1×(d+1) andm2×(d+1), respectively.
Therefore, the total time complexity of solving problem (14) is l

(
m3

/
4 + 2n2 + m(d + 1)

)
,

where l is the iteration number. The iteration procedure results in L1-TWSVM with higher
computational cost than the other five methods in most cases; fortunately, it surpasses them
in accuracy and has good robustness.

Although the accuracy improvements of our method over the other compared methods on
the original datasets are mediocre, the performance degradation of the proposed method is
very small (less than 3.2%)whenGaussian noise is introduced.According to the experimental
results in the three tables, the performances of all the methods are degraded due to the
introduction of Gaussian noise; however, the degradation of our new method is much less
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Fig. 4 Comparison of six algorithms on eight datasets with respect to classification accuracy. a Without Gaus-
sian noise, b Introduce 10% Gaussian noise, c Introduce 20% Gaussian noise

than those of the other competing methods. This clearly indicates the robustness of our
improved method to outliers and empirically confirms the validity of our strategy of using
the robust L1-norm distance to improve the distance metric learning.

FromTable 2, although the accuracy of L1-TWSVM is higher than that of TWSVMon the
Heart datasets, the P value of the test comparing L1-TWSVM and TWSVM is 0.8717, which
is higher than 0.05. This means that the accuracy of TWSVM is not significantly different
from that of L1-TWSVM. The same scenario can be seen on the Monks1, Monks2, Pidd and
other datasets. However, the P value of L1-TWSVM and TWSVM is 0.0246 on Monks 3
datasets, which is less than 0.05,we get the different accuracies of L1-TWSVMandTWSVM,
the same is true on Ticdata datasets. Besides, the performance degradation of TWSVM is
larger than that of L1-TWSVM after the Gaussian noise is introduced. This indicates that
the robustness of L1-TWSVM is superior to TWSVM. In an extremely similar way, we can
get the results of comparing the other algorithms (SVM, GEPSVM and LSTSVM) with L1-
TWSVM respectively. Note that, the accuracy of L1-NPSVM has a little change after the
Gaussian noise is introduced, but L1-TWSVM outperforms L1-NPSVM in accuracy.

Tomore clearly test the classification performance of the improvedmethod (L1-TWSVM),
and show the validity of L1-norm distance is useful for data classification, especially for
datasetswith outliers. Eight original datasets (Monks2,Ticdata,Monks1, Pidd, Pimadata, Tae,
Heart andMonks3) are chosen from fifteen commonly used datasets. This is themainmotiva-
tion for us to do it. Figure 4a shows the classification accuracies of the six algorithms on eight
original datasets. Figure 4b, c shows the accuracies of the six algorithms when 10 and 20%
Gaussian noise, respectively, is introduced. According to Fig. 4, the accuracy of our improved
method is comparable to those of the other compared methods on the original datasets. How-
ever, the improvements achieved by our method on the contaminated datasets (with 10 and
20%Gaussian noise) are large inmost cases. This indicates that the classification performance
of L1-TWSVM is superior, further validates the practicability of utilizing the L1-norm dis-
tance in TWSVM, and shows that the proposedmethods are more effective and robust against
outlier samples than traditional squared L2-norm distance metric learning approaches.

To evaluate the robustness of L1-TWSVM, we designed three test schemes (called Test
1, Test 2, and Test 3) on the Heart and Pidd datasets separately. We introduce 0, 10 and
20% Gaussian noise into the three tests, respectively. As illustrated in Fig. 5, L1-TWSVM is
superior to the other competing algorithms in most cases; in particular, on Test 3 (Fig. 5a), the
accuracy of L1-TWSVM is the highest. In addition, on Test 1 and Test 2, the accuracies of L1-
TWSVM are comparable to those of TWSVM. In brief, our proposed method consistently
outperforms the other compared methods on the three tests, which demonstrates that L1-
TWSVM can improve the classification performance and is useful for data classification.
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Fig. 5 The classification performances of six algorithms. a On Heart datasets, b On Pidd datasets
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Fig. 6 The performance comparison of six algorithms on nine datasets. a By SVM, b By GEPSVM, c By
TWSVM, d By LSTSVM, e By L1-NPSVM, f By L1-TWSVM

Combining Fig. 5a, b, we find they show similar experimental results. Therefore, Fig. 5b
further verifies the practicability of L1-TWSVM in alleviating the effect of noise. These
observations are consistent with those made in the previous experiments.

To further confirm the robustness to noise of L1-TWSVM, Fig. 6 vividly illustrates the
performance comparison of the six algorithms on nine datasets, where 0, 10 and 20% Gaus-
sian noise has been introduced. In terms of robustness, L1-TWSVM and L1-NPSVM obtain
the best results among all competing methods, which indicates that the utilization of the L1-
norm distance can alleviate the negative influence of outliers and make the model stronger.
However, the accuracy of L1-TWSVM is higher than that of L1-NPSVM, which firmly
demonstrates that our method is more effective and robust against outlier samples. Further-
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more, this provides more evidence of the effectiveness of the robust L1-norm distance in
metric learning and verifies the correctness of our improved method.

5 Conclusions and future work

We propose an efficient and robust TWSVM classifier based on the L1-norm distance metric
for binary classification, which is denoted as L1-TWSVM. It makes full use of the robustness
of the L1-norm distance to noise and outliers. As the new objective function contains the non-
smooth L1-norm term, it is challenging to directly solve the optimization problem. In view
of this, we develop a simple and valid iterative algorithm for solving L1-norm optimization
problems that is easy to implement and prove that the objective function of the proposed
method can obtain the local optimal solutions in theory. Moreover, extensive experimental
results indicate that L1-TWSVM can effectively suppress the negative effects of outliers to
some extent and improves the generalization ability and flexibility of themodel. Nevertheless,
L1-TWSVM still needs to iteratively compute two QPPs to obtain the solutions. According
to the experimental results above, the computational cost of L1-TWSVM is the highest
compared with other related algorithms under the same scenario. This makes it difficult to
effectively address large data samples. In summary, L1-TWSVM has better classification
performance and robustness than the other algorithms, especially when Gaussian noise is
introduced.

There are three future directions for this research. First, we would like to find a better
way to decrease the computational cost of L1-TWSVM so that it will be able to handle
larger samples. Second, we would like to extend L1-TWSVM to a kernel version to deal
with nonlinear tasks. Third, L1-TWSVM is only effective for binary classification problems
at present; it is promising to extend L1-TWSVM to multi-category classification and study
the application of multi-class L1-TWSVM to real-world problems.
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