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Abstract

In this paper, we propose a new feature selection method called kernel fisher discriminant anal-
ysis and regression learning based algorithm for unsupervised feature selection. The existing
feature selection methods are based on either manifold learning or discriminative techniques,
each of which has some shortcomings. Although some studies show the advantages of two-
steps method benefiting from both manifold learning and discriminative techniques, a joint
formulation has been shown to be more efficient. To do so, we construct a global discrimi-
nant objective term of a clustering framework based on the kernel method. We add another
term of regression learning into the objective function, which can impose the optimization
to select a low-dimensional representation of the original dataset. We use L 1-norm of the
features to impose a sparse structure upon features, which can result in more discriminative
features. We propose an algorithm to solve the optimization problem introduced in this paper.
We further discuss convergence, parameter sensitivity, computational complexity, as well as
the clustering and classification accuracy of the proposed algorithm. In order to demonstrate
the effectiveness of the proposed algorithm, we perform a set of experiments with differ-
ent available datasets. The results obtained by the proposed algorithm are compared against
the state-of-the-art algorithms. These results show that our method outperforms the existing
state-of-the-art methods in many cases on different datasets, but the improved performance
comes with the cost of increased time complexity.

Keywords Kernel fisher discriminant analysis - Manifold learning - Regression learning -
Sparse constraint - Feature selection

Editor: Tapio Elomaa.

B Ronghua Shang
rhshang @mail xidian.edu.cn

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of
China, Xidian University, Xi’an 710071, China

Extreme Robotics Lab, University of Birmingham, Birmingham, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5765-6&domain=pdf

660 Machine Learning (2019) 108:659-686

1 Introduction

Dimensionality reduction is a widely used preprocessing of high dimensional datasets (Yan
and Xu 2007). It aims to project a high dimensional dataset into a subspace (Gu and Sheng
2016), which can wipe away noise and/or redundant and irrelevant features to obtain the new
representation and keep the most important variability of the dataset (Meng et al. 2018). In
addition, this projection can reduce the total computation cost, because it uses lower dimen-
sional data than the original dataset. Therefore, the efficiency of dimensionality reduction is
very important (Belkin and Niyogi 2003).

Feature selection is one of the most important dimensionality reduction methods, which
can remove the redundant features in the original data and rapidly deal with massive high
dimensional data (Meng et al. 2018). Feature selection (a) allows us to recognize represen-
tative features in the original dataset. Hence, the further process and computation become
computationally easier, e.g. classification (Gu and Sheng 2017) in the subspace; (b) results in
a subspace with less influence of noise. Thus, the further computation is robust to noise; (c)
inherently resolves the problem of over fitting, which is common in many contexts (Stolkin
et al. 2008), e.g. model fitting. Feature selection is widely used in text-mining (Shang et al.
2017), bio-medical treatment (Ding and Peng 2005), voice recognition (Abdulla and Kasabov
2003), commodity recommendation and security monitoring (Tian and Chen 2017). In the
recent years, many feature selection methods have been developed (Gu and Sheng 2017;
Stolkin et al. 2008; Mitra et al. 2002; Stolkin et al. 2007; Mao and Tsang 2013; Gu et al.
2015). Depending on the available data, e.g. labeled dataset, feature selection is divided into
supervised (Sikonja and Kononenko 2003; Zhao and Liu 2007), semi-supervised (Xu et al.
2010; Shi and Ruan 2015) and unsupervised (Mitra et al. 2002; Li et al. 2014; Cai et al. 2010;
Yang et al. 2011).

In supervised feature selection, a subset of original features is selected by using the rela-
tionship between labels and features. Although supervised feature selection has high accuracy,
it entails high computation cost (Li et al. 2010). In some cases, there is only a fraction of
label information. Hence, semi-supervised feature selection methods should make full use
of these label information. By adding the label information as additional constraint on unsu-
pervised algorithms, we can enhance the performance of the method. Thus, semi-supervised
algorithms can be regarded as a special type of unsupervised feature selection method (Xu
et al. 2010; Cheng et al. 2011). Apparently, unsupervised feature selection methods have
been proposed to handle the unlabeled datasets. Hence, some intrinsic properties of datasets
are employed for feature selection, e.g. scatter separability. Unsupervised feature selection
is more difficult and more computation cost than supervised and semi-supervised feature
selection due to the lack of prior information. In most of real world problem, we need to deal
with unlabeled or partially labeled datasets. This may indicate the future researches must
mostly solve unsupervised and semi-supervised feature selection problems. Recently, there
have been already many unsupervised algorithms (Stolkin et al. 2008; Shang et al. 2017;
Mitra et al. 2002; Stolkin et al. 2007; Li et al. 2014; Cai et al. 2010; Constantinopoulos et al.
2006).

Comparing to the early feature selection methods, most of the latest feature selection
methods are unsupervised and many other techniques are used simultaneously to enhance
their performance. Here we prefer to emphasis on the application of graph spectral theory
in feature selection, which has been proved to be a strong implement for dimensionality
reduction (Yan and Xu 2007; Li et al. 2014; Chen et al. 2015; Yang et al. 2010; Liu et al. 2014;
Doquire and Verleysen 2013; Weietal. 2012). A large number of other methods have been also
widely used including PCA (Smith 2002), Linear Discriminant Analysis (LDA) (McLachlan
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2004), Locally Linear Embedding (LLE) (Roweis and Saul 2000), Isomap (Tenenbaum et al.
2000), Locality Projection Preserving (LPP) (He and Niyogi 2004) and Laplacian Eigenmaps
(LE) Meng et al. (2018), etc. Some of the graph spectral methods have better performance
than traditional feature selection methods including Spectral Feature Selection (SPEC) (Zhao
and Liu 2007), Laplacian Score (LapScor) (He et al. 2005), Multi-cluster Feature Selection
(MCEFS) (Cai et al. 2010) and Minimum Redundancy Spectral Feature Selection (MRSF)
(Zhao et al. 2010). It has been found that a joint framework in some algorithms can lead to
better results than the “two-step” strategy in SPEC, MCFS and MRSF. For example, JELSR
unifies embedding learning and sparse regress (Hou et al. 2014), LSPE solves embedding
learning and feature selection simultaneously (Fang et al. 2014) and DFSC combines self-
representation with manifold learning and feature selection (Shang et al. 2016). These studies
demonstrated their methods outperform other multi-stage methods.

PCA and LDA have been proposed for dimensionality reduction where PCA is able to
handle linear as well as nonlinear data whereas LDA can be only applied to linear data.
Sebastian Mika et al. (1999) extend LDA based on kernel methods to nonlinear fields using
Kernel Fisher Discriminant Analysis (KFDA). It is proved that KFDA performs better than
PCA and KPCA. Besides kernel methods, Local Discriminant Models and Global Integration
(LDMGI) deals with nonlinear data by applying LDA in a small neighbor of a nominal point
resembling a linear subspace (Yang et al. 2010).

The abovementioned methods show a good performance, but they only use either manifold
structure or discriminative technique alone (Ma et al. 2016). Inspired by the ideas above men-
tioned and based on graph spectral theory, we combine the global discriminative information
with manifold information and propose a joint framework for feature selection. Therefore,
we propose a novel joint framework of unsupervised feature selection based on kernel fisher
discriminant analysis and regression learning (KFDRL) to exploit the intrinsic characters of
data and select representative features. It kernelizes LDA to be a global discriminant first,
adds regression learning and L; 1-norm regularization to construct a joint framework for
feature selection. We also present update rules to compute the solution and further study the
convergence and computational complexity of the proposed algorithm. The contribution of
this paper is:

(1) We propose a framework of unsupervised feature selection combining global dis-
criminant analysis with graph spectral theory and regression learning. Therefore, our
algorithm benefits all the advantages of global discriminant analysis with graph spectral
theory and regression learning.

(2) We use discriminative information to make our method superior to JELSR, which can
result in a better separation of data points belonging to different classes. Our method
can result in a better performance in both clustering and classification.

(3) A mathematical model of proposed method is presented and a simple optimization
strategy is applied to solve the model efficiently. We demonstrate the effectiveness of
our method by a series of experiments with several datasets. We further validate our
results by comparing them with the results of other feature selection algorithms.

The rest of this paper is set as follows: in Sect. 2, we introduce the formulation of the
related works. In Sect. 3, the problem formulation, the algorithm and optimization process
are all explained in detail. Convergence and computational complex of the algorithm are
studied in Sect. 4. In Sect. 5, we present experiments and the results, which demonstrate the
effectiveness of the proposed method. Final section contains conclusion and future works.
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2 The related works

In this section, we will introduce some useful notations and the following two relevant works
will be briefly presented (1) feature selection, MCFS, MRSEF, JELSR and CGSSL (Li et al.
2014; Caietal.2010; Zhao et al. 2010; Hou et al. 2014) and (2) clustering algorithms, LDMGI
(Yang et al. 2010), kernel method and KLDA.

2.1 Notations

We use bold capital and bold lowercase letters for matrices and vectors, for example A € R4*"
is a matrix, a; is the ith vector of A and a;; is the jth element of a;. Let’s tr(A) denote the
trace of a square matrix A and denotes L,,-norm defined as follows:

1/p
d n p/r

AN, = | D2 D0 Jaij|” )

i=1 \j=1

The dataset represented by matrix X =[x1,x2, ..., x,] € R*" hasn sample vectors where
each vector x; € R? has d features. We assume samples belong to ¢ different classes. We are
interested in computing a cluster assignment matrix ¥ =[y1, y2, ...,yn]T €{0,1}"*¢, where
yi €{0,1}*! is a cluster assignment vector whose jth element yij is one when x; belongs to
Jjth cluster and zero otherwise. Furthermore, we define the scaled cluster assignment matrix
H € R, where H satisfies HTH =1 and I, € R°*¢ is an identity matrix, as follows:

_1
H:[hl,hz,...h,,]:Y(YTY) L S W - S/ @)
Iyl {2 yal

2.2 Feature selection
2.2.1 MCFS and MRSF

In MCEFS (Cai et al. 2010) and MRSF (Zhao et al. 2010), the first step is to compute an
m-D embedding representation of x; by mapping d-D x; into an embedding space with lower
dimensions R™ where m <d. This mapping is represented by an embedding matrix P =[p,
P25 .- Pn] € R™". The embedding techniques LE and LLE proposed in Meng et al. (2018),
Roweis and Saul (2000) are used and regression learning MCFS and MRSF can be defined
as follows:

arg min tr(PLPT)
PPT:Inxn

argmwi/nHWTX — P||%+a||W||i 3

arg min tr(PLPT)
PPTzlnxn

argn%‘i/nHWTX — PIB+allWI, o
It is clear that the two methods are different in the regularization term where MCFS has

L1-norm and MRSF has L; 1-norm. Different norms definition is used to constrain the sparse
structure of the data as regression coefficient is used to rank the features. The optimization
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proposed in (3)is very similar to Lasso (Gu and Sheng 2016) whereas the problem formulation
in (4) uses Ly-norm to rank each row of W. Although these two-step algorithms are efficient,
they are still not as good as single-step algorithms, joint framework algorithms, which will
be presented as follows.

2.2.2 JELSR and CGSSL

JELSR is an unsupervised algorithm, which combines embedding learning with sparse regres-
sion. It preserves local manifold structure as two variables simultaneously to get a better
performance. JELSR is formulated in Eq. (5).

LOW,P)=arg min  tr(PLPT)+ ﬂ(” wix — PHz + a||W||2,1) 5)
W, PPT=I,x

where W denotes the importance of each feature and P is embedding matrix. The objective

formulation for CGSSL is similar to JELSR. However, CGSSL impose a low-dimensional

constraint upon embedding matrix with pseudo class labels. Moreover, as a sparse structure

learning technique, semantic components are used in CGSSL to match pseudo class labels

with truth class labels. Hence, CGSSL can be formulated as follows:

2
in 5 =tr(FTLF)+ HF—XTWH +B|Wlh, +y|W — QS|
S.VIVI?IS,M r( )+« - BlIWlaq+vIl oSlE

st. FTF=1.,, F>0, 0'0=1, (6)

where S is a matrix of weights and @ is a transformation matrix. They are used to save
original features as well as embedded features. F is a scaled cluster assignment matrix to
predict labels. Both JELSR and CGSSL have great performance results due to the local
manifold as well as the discriminative information.

2.2.3 MDRL and RMDRL

MDRL and RMDRL (Lu et al. 2015) are proposed for image classification with a linear
regression framework. A within-class graph and a between-class graph are introduced in
MDRL to get an optimal subspace. Furthermore, a nuclear norm is used to learn a robust
projection matrix by a developed MDRL, i.e., RMDRL. Manifold information and discrim-
inant information are both used in a regression learning framework by MDRL and RMDRL
like the proposed algorithm KFDRL. These two algorithms are respectively formulated as
follows:

min |IXW —Y — B O My +aTr(W X" Ly~ L)XW) + BIW I, +y Wl
s, M >0 %
min [ XW —¥ ~ BO M3 +aTr(WTXT(Lw - Lb)XW) +BIWI,
sit. M >0 (8)

These two algorithms first construct X, Y and B by optimal methods and then compute
the W as projection matrix. In the end, they use L{-norm and nuclear norm to select features.
Note that the X is a matrix of training samples and Y is the corresponding label matrix. In
other words, MDRL and RMDRL are supervised algorithms, which have different application
cases with KFDRL.
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2.3 Spectral clustering

Over the last few years, many studies on the graph spectral theory for clustering analysis have
been published. For example, Luxburg (2007) has presented a significant spectral clustering
method with graph theory. It has been shown that the spectral clustering has advantages over
traditional algorithms of non-convex distribution for partitioning a complex data structure. It
makes full use of geometric information in the original datasets. Hence, pseudo class labels
represent a more accurate intrinsic structure information in the original datasets. In Yang et al.
(2010), LDMGI computes a Laplacian matrix by using both discriminative information and
manifold learning, which has a good performance in clustering images. Local discriminant
model in a sufficient small local manifold area is used on spectral clustering, whose objective
function can be shown as follows:

arg nGlin tr [G(Ti)LiSiG(i)] 9)

@

where L; = Hk(f(l-Tf(,- +2D)"'Hy isalocal Laplacian matrix and H; = [hi1, ki, ..., hi—117
€ R¥*¢ is a cluster assignment matrix. After that, a global integration method is imposed to
get the global Laplacian matrix in nonlinear space:
: L}
LS=3"SLYSI =[S1.8.....80] - [[51.5,....81" (10
i=1 L)

Moreover, the global discriminative model can be defined as:
min 17 (GT LS G)
st. GTG=1, G>0 (11)

where L® contains both manifold information and discriminative information. Most of the
corresponding methods employ the local-idea to handle nonlinear problems (Cai et al. 2010;
Yang et al. 2010; Roweis and Saul 2000; He and Niyogi 2004; Zhao et al. 2010; Hou et al.
2014), which use (1) linear methods in each local-and-small area and (2) global integration.
It has been shown to be very pragmatic in many different contexts. However, we may have
some bad results due to weak robustness, low convergence rate and more complex formulism.
So it is an interesting research to find a way to simplify the effectiveness and improve the
robust of these algorithms.

2.4 Kernel method

The kernel method is very efficient and powerful. A group of points in a low-dimensional
space can be mapped into a space with higher dimensions and become linearly separable
using a proper kernel mapping. The mapping is defined by kernel function K (x, y) =< ¢(x),
¢(y)>, where x and y are points in low-dimensional space, ¢(*) denotes the points in the
higher dimensional space and <,>denotes the inner product. According to mercer theorem,
we can transform a pair of points in low dimensional space satisfying a specific function
requirement into higher dimensional space. This transformation function can be considered as
abridge between the higher and lower dimensional spaces. Kernel fisher discriminant analysis
(KFDA) is one of the applications of the kernel method, which can obtain better results than
LDA and PCA in the expense of more complex optimization and higher computational cost.
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3 Feature selection based on kernel discriminant and sparse regression

Here, we introduce our proposed method with three terms (1) a global kernel discriminant
term based on nonnegative spectral clustering (2) a regression learning term and (3) a sparse
constraint regularization term. A kernel linear discriminant model is integrated into a spec-
tral clustering model to preserve manifold information as well as discriminative information.
Therefore, our method can be applied to linear and nonlinear dataset. A regression method
can fit the coefficient matrix to the scaled cluster assignment matrix. Finally, a sparse regu-
larization is performed for feature selection.

3.1 Global kernel discriminant model based on nonnegative spectral clustering
3.1.1 Nonnegative spectral clustering

In non-negative spectral clustering, Laplacian matrix L is computed by constructing a nearest
neighbor graph S of data points. The spectral embedding matrix Y can be computed by
Eq. (12) to retain the manifold information:

min 17 (YTLY) (12)

In this paper, we set the embedding matrix to be cluster assignment matrix which is
proposed in Li et al. (2014). Hence, Y € {0,1}"*¢ is discrete, which may make Eq. (12) be
an NP-hard problem (Shi and Malik 2000). To address this problem, we use a well-known
technique to relax the discrete variable Y to a continuous variable using Eq. (2). Therefore,
Eq. (12) can be rewritten as:

min r(H"LH)
H
st. H'H =1 (13)
where H is nonnegative; however, it has negative elements if (13) is directly solved (Li et al.
2014) which may deteriorate the accuracy of the results. Therefore, we add a nonnegative
constraint to ensure the pseudo labels are authentic and accurate:
min r(H"LH)
H
st. HHH=1, H>0 (14)

3.1.2 Kernel discriminant model based on spectral clustering

To reveal the structure of the original datasets, we use the manifold information as well as
the discriminative information. We combine the idea of LDA with spectral clustering and
define between-cluster scatter matrix S; to make the distance between different clusters the
largest possible and a within-cluster scatter matrix S,, to make the distance between data
points within the same clusters the smallest possible. Inspired by Mika et al. (1999), we also
extend the LDA to nonlinear cases by kernel method. Let’s C,, =1, — (l/n)lnlz denote a
matrix used for centering the data by subtracting the mean of the data, where I,, is an identity
matrix, and X=xcC » denote the centered dataset. Hence, we define the total scatter matrix
S; and between-cluster scatter matrix S; as follows:

S, =XxxT (15)
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Sy = XHHTX" (16)

We define mapping function ¢(¢) to map the linearly inseparable data x; € R? to a high-
dimensional ™

¢: REST, x— o) (17)

We assume the dataset in high dimensional space is linearly separable. Inspired by Shang
et al. (2016), we obtain the mapping matrix S; and S; as follows:

Sp = 9X)C,HHT CTp(X)T (18)
S = p(X)C, CLp(C) (19)

Then the discriminant model in ["is obtained by the following formulation:
N =1,
mlglx tr((S, +/LI,,) Sb> (20)

where u >0, ul, is added to guarantee the matrix (S r+ul n) is always invertible. Note that
tr(HYC,H)y=tr(H"I,, — (1/n)1,1 Z)H ) is constant and equivalent to K — 1. By subtracting
this term from (20), we rewrite it as the following minimization problem:

min 1r(H” (C, = €} (Cu+ nK™")"'C, ) H) @

where K =¢(x)Tep(x) is a kernel function. We can also design and use a kernel function
satisfying the mercer theorem. There are already many mature kernel function developed,
such as linear kernel, Gaussian kernel, Polynomial kernel and Cosine kernel (Mika et al.
1999). In this paper, we would like to use Gaussian kernel as the kernel function defined as
follows:

2
K(xi, x;) :exp(—”xl_xj”> (22)

where o is the scale parameter. We put G =C,, — C nT (Cp, + uK~1H~1C,, and then rewrite (21)
as follows:

min 17 (HTGH> (23)

Using (15)—(23) we obtain a discriminative model in Eq. (23). Next, we will show it is
inherently a spectral clustering model and G is a Laplacian matrix.

Theorem 1 The matrix G in Eq. (23) is a Laplacian matrix referring to Yang et al. (2010).
For proving the Theorem 1, it’s worth proving two lemmas.
Lemma 1 Denote Q =I,, —(C, + nK~")"1, 3 leads Q as a positive semi-define matrix.

Proof Given C, =I, —(I/n)IV,IE, it’s easy clear that C, is a symmetric positive define
matrix with eigenvalues A =1 and (n — 1)/n. A befitting value p in (C,, + K~ 1)~! results
in maximum eigenvalue A4, <1, i.e. the minimum eigenvalue of @ is bigger than zero. In
this paper, we set o = 10~!2. It can be calculated that Vig >0, so Qis a positive semi-define
matrix. O
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Lemma 2 Given a positive semi-define matrix Q, BOBT must be a positive semi-define matrix
for arbitrary matrix B.

Proof Applying Cholesky decomposition to positive semi-define matrix Q@ (Yang et al. 2010),
we obtain @ =MT M. Furthermore, we can pre-multiply and post-multiply it by B to get
BOBT, we can substitute Q by MTM and get BMTMB” =MBT)T (MBT), so BQBT is a
positive semi-define matrix. |

We can prove the Theorem 1 on the basis of the two proved lemma above.

Proof From Lemma 1, G can be rewritten as:
G=Cy—Cl(Co+nK™) ' Cy=Co(1n = (Co+ k™)' )CT = Cr0C] 24)

where Q is a positive semi-define matrix. So it is easy to know G is also a positive semi-define
matrix by Lemma 2. Besides, it is found that C,,1,, =(I,, — (1/n)1n1,{)1,, =0. Hence, G1,, =
0, that is, O is the eigenvalue of G with corresponding eigenvector 1. Above all, we can draw
a conclusion that G is a Laplacian matrix. a

From the Theorem 1 we realize that Eq. (23) represents not only a discriminative model
but also a spectral clustering one. This implies the simultaneous consideration of manifold
information and discriminative information (Luxburg 2007; Nie et al. 2010), which lays a
solid foundation for feature selection later.

Combining Egs. (14), (22) and (23), the first term of the proposed algorithm is obtained,
i.e. the kernel discriminant model based on spectral clustering is:

min tr(HTGH>
H
st. HHH=1, H>0 (25)

where G =C,, — C,{(C,, +uk~H~lCc,isa Laplacian matrix and K is a kernel function.

3.2 Regression learning

Here we are going to discuss the second term of our method. We add a regression term to the
proposed formulation of our method in addition to the feature selection formulation (Zhao
and Liu 2007; Cai et al. 2010). In specific, we transform the samples to the corresponding low-
dimensional embedding space to fit the scaled cluster assignment matrix. Let’s W =[wy, wa,
ees W] €RT¥™ denotes a transformation matrix where {w; }7 | is the transformation vector
of each sample and m is the embedded dimension. In order to match the labels with embedded
data, we set m =c, i.e. W € R¥*¢. Hence, the second term of the proposed algorithm can be
expressed as follows:

2 2
hi — XTw, F:HH—XTWHF (26)

n
minZ‘
w4
i=1

We use the Frobenious-norm in the cost function formulation. If H is known, we can
compute W by minimizing Eq. (26), whose row vector w; represents the importance of each
feature. In order to guarantee the generalization of the proposed formulation in addition to a
small error value, we add a regularization constraint to Eq. (26).
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3.3 Feature selection

As row vectors of W have been defined above, we can rewrite the W as follows:
T
w=[al ], ... ] 27)

The third term of the purposed algorithm is to balance the fitting ability and the general-
ization ability. W can be considered as a representation of features whose each row represents
one feature. To select features, we impose a sparse structure on W as well as a regression term
to remove less important features. We use Ly j-norm for the regularization term, which can
make each row of W sparse and select more discriminative features. Hence, the formulation
of the third term is defined as follows:

1/2

d d c
min 3 (Ji],)" = 3 [ X lwil*) =Wz, 28)
i=1

i=1 \j=1

When the W is obtained, we score each row of it and rank them from large to small. The
larger score the row has, the more important the feature is.

3.4 KFDRL formulations and solution
3.4.1 The framework

We use a non-negative constraint on W to satisfy its physical significance and to guarantee
that the result is accurate. Using the nonnegative constraint and Egs. (25), (26) and (28), we
can now write the formulation of KFDRL as follows:

2
min L(W, H) = arg min zr(HTGH) + ﬁ(HH _ XTWHF +oz||W||2,1>

st. W>0, H'TH=1, H>0 (29)

where « and § are balanced parameters, « plays a role in balancing the fitting and general-
ization. According to Eq. (29), we would like to briefly conclude the process of KFDRL as
follows. The spectral clustering model and regression learning method are used to obtain W
and H in an unsupervised way, and the regularization term balances the fitting and general-
ization. The score of each row of W is regarded as the importance of each feature.

3.4.2 The optimization
We cannot find a closed form solution to Eq. (29) because the L; j-norm is non-smooth.
Inspired by Lee and Seung (1999), we use alternate iteration method to find the optimal W

and H. Hence, we use Lagrange relaxation and write the Lagrange multiplier form of Eq. (29)
as follows:

min L (W, H) = tr (HTGH) +B (HH — XTWHi P ||W||2,1>

R M R
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where 1 is selected to be a large enough number, namely A = 108, to control the orthogonal
constraint. Furthermore, ¥ and ¢ are two Lagrangians for constraining W and H to be
non-negative. We consider the following cases:

ey

2

3

Considering H to be fixed, we can rewrite Eq. (30) as a function of W.
: Twl? T
min L; (W) = HH e WHF Fa W +1r (¢W )
2
T T T
=|m-x W”F+atr(W UW)+ir (oW") 31

where U € R?? is a diagonal matrix whose diagonal elements satisfy the following
formulation:

1
Ui ~ (32)
2||w; |2
If we fix U, we can conclude from % = 0 that:
2XXTW—2XH+2aUW+¢:0 33)
Considering the KKT condition g;;w;; =0, we have:
XH)::
Wij <— Wjj ( )U (34)
(AW);;

where A =XXT +aU.
Considering U and W are fixed, Eq. (30) can be redefined as a function of H:

2 2
min Ly(H) = tr(HTGH) +,8HH — XTWHF + EHHTH - IHF +tr(wHT)

(35)
The solution to Eq. (35) can be computed by % =0, as follows:
ZGH+2/3(H—XTW)+2AH(HTH—I)+1/f:O (36)
Considering the KKT condition vr;;A;; =0, we have:
hij < h H) 37)

"[GH + p(H — X"W) +A(HHH)],
where G =G* —G—, and G*=(IG|+G)/2, G~ =(IG|—G)/2.

Considering W is fixed, U can be updated by Eq. (32). Hence, at every iteration of
the proposed algorithm, we compute the updated value of W and H as summarized in
Table 1.

4 Algorithm analysis

In this section, we present more analysis on KFDRL in detail, namely convergence and
computational complex.
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Table 1 The procedure of KFDRL

Input: dataset X, kernel function K, number of cluster/embedded dimension c, iteration time ¢, parameters
o, B, o, i and A, number of selected features s.
Output: selected feature subset.

1. Compute G according to kernel function.

2. Optimize W and H by alternate iteration method.

2.1 Initialize U =14, H =1 € R"*€.

2.2 Fixed U, update H by Eq. (37), and then update W by Eq. (34) when U and H fixed.
2.3 Fixed W, update U by Eq. (32).

2.4 Repeat 2.2 and 2.3 for ¢ times (or satisfying the convergence condition).

3. Feature selection:

3.1 Compute each score of features according to { ||\?V, ||2 }?zl'

3.2 Select the largest s values.

4.1 Convergence of KFDRL

Since the KFDRL is formalized as a minimization problem we need to proof that the pro-
posed algorithm converges to an optimal solution of the objective function in Eq. (29). The
convergence proof presented here is very similar to the one presented in Shang et al. (2016),
Lin (2007). With U and W fixed, it is easily verified that H is convergence with an auxiliary
function as in Shang et al. (2016), Lin (2007). So does the W.

Referring to Eq. (35), it is obviously that L, (H 1y < L, (H") with the monotonically non-
increased H mentioned above. That means:

L(W', U, H"") < L(W', U, H") (38)
We firstly rewrite L in Eq. (31) as follows:

Li(W) = HXTW—H”2F+tr(¢WT>+atr(WTUW) (39)

It’s easily to know that L (W’“) < L{(W") with the monotonically non-increased W men-
tioned above when U and H fixed. Combining Eqs. (38) and (39), the following inequality
could be presented:

L(WH—I,Ut,Ht_H) < L(WI,UI,HH—I) (40)
We need to present a lemma before a further convergence proof of the proposed algorithm.

Lemma 3 For arbitrary vectors x,y € R", the following inequality holds:

2
llx113

Iyl3
<yl .

= - (41)
20yl 20yl

llxllo =

The proof of this lemma can be found in Gu and Sheng (2017). We use this lemma to
proof the convergence of the proposed algorithm of KFDRL in the following.
Using Lemma 3 we can show that the following inequality holds:

2
A 1+1 2
i PO DOTTT I 1] P
~ 1 i = ~ 1 i|2 (42)
2], 27 2f @i,
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which could be derived as:

. 2 )
ML el ey
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2||w; ),
> e+ g, = 21,
= ], = @
Combining Egs. (32) and (43), we have:
Ul+1 fUl (44)

Considering Eq. (39) and Eq. (40), we can obtain the following inequality formulation
when W and H fixed:

L(Wt+l, UI+1’ H1‘+1) < L(Wt+1, Ut, Ht+1) (45)

U is an intermediate variable function of W, it is straight forward that any reformulation
of the objective function using an intermediate variable cannot affect this convergence. We
can demonstrate the convergence of the algorithm proposed in Table 1 by some experimental
results in the next section.

4.2 Computational complexity analysis

In this section, we analyze the computational complexity of KFDRL. Itis evident that the algo-
rithm requires the highest computation cost when it computes Laplacian matrix G, updates
variables H and W, and so on. Computation of G including matrix inversion indicates the
computation complexity O(n?). The update of H including both matrix inversion and multipli-
cation indicates the computation complexity O(d> +nd> +n*d). On the contrary, the update
of W has relatively low computation complexity O(nd +d*). We neglect the influence of
embedded dimension ¢ where ¢ < d and ¢ < n. In conclusion, the total time complexity of
the algorithm is O0(® +1(d® +nd? +n*d)) where ¢ represents the number of iteration.

Time costs on different datasets will be shown in next section to display the computational
complexity visually.

5 Experiments and analysis

In order to show the effectiveness of the method proposed in this paper, we present a number
of experiments to imply the superiority of the method in different aspects. First, we introduce
datasets and metrics. The parameters of KFDRL are set and a number of state-of-the-art
algorithms are presented used to validate the result obtained by the algorithm proposed in
this paper. Finally, we present 5 experiments.

1. The first experiment is to show the convergence rate of the objective function discussed
before.
2. The second one is a toy example to intuitively show the effectiveness of KFDRL.
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Table 2 Information of the

experimental datasets Dataset Samples Dimension Classes

Coil20 1440 1024 20
PIE_pose27 2856 1024 68
YALE 2414 1024 38
Orl 400 1024 40
Umist 575 644 20
Ionosphere 351 34

BC 569 30

AT&T 400 10,304 40
Isolet 1560 617 26
Sonar 208 60 2

3. In the third experiment, we present feature selection and K-means clustering as a joint
problem.

4. The forth experiment is a classification problem. We first perform feature selection and
then nearest neighborhood classification. Experiments 3 and 4 are the application of
dimensionality reduction in clustering and classification.

5. The final experiment aims to illustrate the sensitivity of the result to the parameters.

5.1 Datasets

In this paper, to validate the performance and accuracy of the result of KFDRL, we select
nine UCI datasets and three samples from AT&T to perform our experiments. The detailed
information about these datasets is listed in Table 2.

5.2 Evaluation metric

In order to analyze the quality of the results obtained by the algorithm, we use the clustering
accuracy (ACC) and the normalized mutual information (NMI), which are two major metrics
for clustering.

5.2.1 ACC

Assuming c; and g; represents pseudo label and true label respectively for Vx;. ACC clustering
accuracy is defined as:

Y i1 8(g;, map(c)))
n

ACC =

(46)

where n is the total number of samples, §(x, y) is delta function. Delta function has a value
of one if x =y and zero otherwise. Map(®) computed by Hungarian algorithm (Strehl and
Ghosh 2003) is a function that maps each cluster index to the best class label. Larger value
of ACC means better clustering results.
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5.2.2 NMI

Given two arbitrary variables P and Q, the NMI is defined as:
MI(P, Q)
VH(P)H(Q)
where MI(P,Q) is mutual information between P and Q. H(.) denotes the information entropy
(Papadimitriou and Steiglitz 1998). By definition NMI(P,Q)=1 if P =Q and NMI(P,Q)=0
otherwise. We can also formulate NMI in Eq. (47) using the pseudo labels #; and true labels

tn, as follows:

NMI(P, Q) = 47

D=1 2=t 1k 10g<nz.1t;1;h )
V(i1 tog ) (S 1 Tog %)

where ¢, , is the number of samples identical among the two label sets. Obviously, the larger
NMI is, the better clustering results have.

NMI = (48)

5.2.3 Classification accuracy

We use Euclidean distance to measure the classification accuracy. The dataset is divided in
training and test sets. We use parts of dataset to train the classifier whereas the rest of the
dataset is used for testing. Euclidian distance is used to measure the distance between the
sample points. Hence, the samples of training and test sets belong to the same cluster if they
are close.

5.3 Settings in experiments
5.3.1 Parameters settings for KFDRL

Based on the experiments in different algorithmic contexts, parameters selection affects the
result of the corresponding algorithm. Therefore, it is very important to select the best param-
eters of KFDRL. With reference to Table 1, we can see that KFDRL has five parameters
including «, B, o, n and A. Some of these parameters can be set using existing method
(Li et al. 2014; Hou et al. 2014; Fang et al. 2014; Shang et al. 2016). Since the algo-
rithm shows no sensitivity to the value of A if it has large enough value, we set A = 108,
with reference to Li et al. (2014). We set the scaled parameter for Gaussian kernel func-
tion . =107'2, based on the argument presented in Sect. 3. On the other hand, the other
parameters must be set carefully as the result is sensitive to their value. Hence, we set o
={0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} based on our experience and a grid-
search strategy is used to determine a small range of parameter values including the best
value. Finally, the best value is computed with small enough step size tuning of the param-
eters in that region resulting in « =[0.1, 3.5] and g = {0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
1000}.

5.3.2 The compared algorithms

We compare the results obtained by the proposed method with the ones obtained by some
classical feature selection algorithms for clustering and classification problems, including
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Fig. 1 The convergence of objective function of KFDRL on four selected datasets. a Convergence on BC, b
convergence on Orl, ¢ convergence on Sonar, d convergence on Umist

LapScore, SPEC, MCFS, MRSF, JELSR, LSPE and DFSC (Zhao and Liu 2007; Cai et al.
2010; He et al. 2005; Zhao et al. 2010; Hou et al. 2014; Fang et al. 2014; Shang et al.
2016). To be fair, we use the parameters reported in the corresponding original works (Zhao
and Liu 2007; Cai et al. 2010; He et al. 2005; Zhao et al. 2010; Hou et al. 2014; Fang
et al. 2014; Shang et al. 2016). Hence, we use the best result of every algorithms with
the parameters. We will also discuss the variable of different experiments in the later sec-
tions.

5.4 The convergence of KFDRL

This experiment is presented here to intuitively show the convergence and the rate of con-
vergence. We apply the algorithm on four datasets including BC, Umist, Orl and Sonar.
The evolutions of the objective values are shown in Fig. 1. These four pictures show the
convergence of KFDRL.

It can be seen from Fig. 1, the value of objective function decreases very fast over the first
three iterations for all four datasets. This evidences that KFDRL is very efficient in terms
of convergence rate. This testifies that we can set the maximum number if iteration to five
during the next experiment to decrease the computation time.
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Fig. 2 Top row: an image of a face belonging to the 5th sample of class 2 of AT&T dataset; Middle row: an
image of a face belonging to the 7th sample of the class 3 of AT&T dataset; Bottom row: an image of a face
belonging to the 10th sample of the class 6 of AT&T dataset

5.5 Toy example

We randomly choose three different pictures from AT&T dataset to illustrate the effective-
ness of KFDRL algorithm. This shows KFDRL always trends to select more discriminative
features. We draw a number of pictures from the dataset respectively with {1024, 2048, 3072,
4096, 5120, 6144, 7168, 8192, 9220, 10244} features selected from each sample. The pixel
point is considered as black when it is not chosen. In Fig. 2, three samples are displayed in
three rows. From left to right, the pictures correspond to {1024, 2048, 3072, 4096, 5120, 6144,
7168, 8192, 9220, 10244} features respectively. This figure shows how the picture drawn
using different number of features approximates the original image. The more features we
select, the more similar picture to the original image is drawn. As it is shown in Fig. 2,
KFDRL tends to preserve more discriminative features even with small and fixed number
of features. For example, the main profile of the face are recognizable in sample 1 and 3
using the picture drawn with only 1024 features, that is almost 10% of the total number of
features. Nonetheless, sample 2 shows a bit less effectiveness of the method since the picture
drawn by the algorithm with 1024 features does not show the nose, forehead and rim of the
eye very important features for recognizing a face. In conclusion, KFDRL can automatically
characterize the most important features in an image. The 4096 features (almost 40% of the
total features) selected by KFDRL are necessary and sufficient to draw a picture identical
to the original image while the rest of features can be regarded as redundant and irrelevant
ones.

5.6 Feature selection for K-means

In this section, we show the performance of K-means clustering by KFDRL where ACC and
NMI are used as metrics. We set the number of selected features to be {10, 20, 30, 40, 50,
60, 70, 80, 90, 100, 110, 120} on Coil20, Orl, Isolet and Umist, and {2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22} on Ionosphere, BC and Sonar. The number of feature for each algorithm is
chosen such that we obtain the best clustering result. To set the parameters of the KFDRL,
namely « and 8, we follow the procedure presented in Sect. 5.3.1. Nonetheless, o is set to 1
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since the result does not show any sensitivity to its value. This will be discussed and showed
in detail in the later experiments.

1) Algorithms used for validation of the results are LapScore, SPEC, MCFS, MRSF, JELSR,
LSPE and DFSC. We classify these algorithms into three categories (I) LapScore is a
classical method (II) SPEC, MCFS and MRSF are two-step methods and (III) the rest of
them are one-step methods.

2) We use the following datasets to test the algorithms: Coil20, Orl, Ionosphere, Isolet,
Umist, BC and Sonar.

3) Procedure of the experiment: we first run all feature selection algorithms including
KFDRL on each dataset. Then, the K-means clustering is applied to the datasets obtained
by using feature selection algorithms. Finally, the best results of each algorithm are
reported in Table 3. Since the influence from initial cases cannot be ignored for K-means
clustering, we run the K-means for 100 times and then compute the average value to
reduce the error.

Tables 3 and 4 display the best ACC and NMI obtained by different feature selection
algorithms on all the datasets. The second rows in the two tables show clustering results on
the original data. The best results on each dataset are marked as bold. We omit the NMI
results on Sonar dataset in Table 4 because NMIs of all the algorithms including KFDRL
are no larger than 10%. We can know that it lacks the mutual information and has a poor
performance of the algorithm in clustering Sonar dataset.

We can summarize the results presented in Tables 3 and 4 as follows:

1. ACC and NMI illustrate that KFDRL performs better than other feature selection algo-
rithms on most of the datasets.

2. The traditional dimensionality reduction algorithm LapScore, which is a modified for
Laplacian Eigenmaps (LE), recognizes and utilizes manifold structure embedded in high
dimensional data by graph Laplacian without learning mechanism. The results reported
in Tables 3 and 4 show that the joint-framework or two-step algorithms can perform better
than traditional and one-step algorithms.

3. In comparison to other algorithms, KFDRL demonstrated superiorities. First, it simul-
taneously benefits from manifold and discriminative information, because the objective
function proposed in KFDRL combines manifold learning and discriminative regression
learning. Second, the constraints imposed on the scaled assignment cluster matrix H and
on the transformation matrix W can help it to find physically meaningful features (a
forced constraint imposed to the scaled assignment cluster matrix H and the transfor-
mation matrix W can fit the physical meaning). The best results obtained with feature
selection for each dataset have better performance than the clustering results obtained
on the original datasets. It indicates that feature selection can not only reduce the size
of date to increase the computation speed, but also efficiently remove the redundant and
noisy information demonstrating the great significance of data pre-processing.

4. KFDRL cannot show a better performance than the other algorithms in a few cases. For
example, it shows that JELSR performs better than KFDRL with ACC metric on Sonar
dataset. Moreover, it shows that KFDRL performs worse than all features selected and
DFSC with NMI metric on the Isolet dataset, as well as JELSR and LSPE on the Umist
dataset. It is noted that these methods mentioned above are all single-step methods, which
describe their better performance. We explain several reasons for the worse performance
of KFDRL. First, Sonar and Isolet are both voice data. The advantage of KFDRL can be
identified in the task of clustering image data because the embedded dimension and the
number of classes are considered to be identical (Cai et al. 2008, 2011; Liu et al. 2012),
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Table 4 The best results of NMI for each algorithm in different datasets (mean +STD %)

Coil20 ORL Isolet Umist Ionosphere BC

All features  74.77+1.21 70.16+1.16 73.12+0.86 60.30+1.45 12.95+£0.00 18.00£0.00
LapScore 60.61£1.36 67.80£1.56 6643+£1.65 56.22+1.54 8.68+0.00 17.5540.00

SPEC 60.66£1.58 71.03£1.12 6690+£1.85 57.44+1.35 9.05+0.33  16.7940.00
MCFS 68.34+1.78 71.74+£133 71.06+£1.82 68.871+1.48 1.32+0.65 18.28+0.00
MRSF 68.85+£2.03 71.55+£2.00 7032+1.56 66.67+1.41 3.82+0.00 17.9140.00
JELSR 73.18+£237 7223+£1.88 70.65+£1.88 69.80+1.70 8.48+1.15 19.67+0.00
LSPE 7554+198 7296+126 70.54+£190 70.67+1.61 13.10+0.44 19.63+0.00
DFSC 7487+£2.77 7336+144 73.56£1.35 6539+1.54 30.524+0.68 42.3240.00
KFDRL 76.28+1.14 76.03+1.35 7126+£120 69.13+£2.01 35.02%+0.00 55.124+0.00

i.e. ¢ =m. However, it cannot have better results on the Sonar and Isolet datasets. We
believe the embedding learning employed in JELSR and LSPE on the Umist dataset has
superiority over other techniques. As reported in Tables 3 and 4 an algorithm resulting in
a better performance of clustering different datasets than others does not exist. Hence, the
best algorithm still needs to be chosen based on the nature of the dataset to be clustered
and finding an algorithm best for clustering all the different datasets will be an open
research question for future.

5. In general, KFDRL performs better than JELSR on most of the datasets, which indicates
that the manifold learning alone is not efficient in many cases. Nonetheless, JELSR
outperforms KFDRL on the Sonar and Umist dataset, which may be a result of the
inherently discriminant structure of the datasets. Hence, a discriminative based algorithm
cannot perform as well as it does in the case of non-discriminant datasets. It is worth
reminding that KFDRL includes discriminative and manifold learning whereas JELSR
is based on manifold learning only.

5.7 Classification

In this section, we apply the dimensionality reduction algorithms to the classification prob-
lems. This will improve the classifier efficiency by reducing the corresponding feature
dimensions. To study and show the performance improvement, we use the classification
accuracy (AC) as the evaluation metric to show how the performance of nearest neighbor-
hood classifier (NN) improves by using KFDRL to select the relevant features. We use the
Ionosphere and Coil20 dataset because they have different sizes. From Table 2, we know that
Ionosphere is a small size dataset with 34 features and 2 classes while Coil20 is a large size
dataset with 1024 features and 20 classes.

We select one algorithm from each three categories (namely traditional, one-step and two-
step algorithms) of algorithms recognized in this paper to ensure the representativeness of
the experiment. We choose LapScore belonging to the first category, SPEC belonging to the
second category, and JELSR belonging to the third category.

Similarly to the method presented in Zhao et al. (2010), we first do dimensionality reduc-
tion for original datasets by feature selection. Next, we use 50% of the dataset for training
and the rest 50% for testing. NN-classifier is used to perform classification where the results
are shown in Fig. 3. The vertical axis in Fig. 3 shows the AC value and the horizontal axis
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Fig. 3 Classification accuracy (AC) by NN-classifier on two typical datasets. a AC with different selected
features by different algorithms on Ionosphere, b AC with different selected features by different algorithms
on Coil20

Table 5 The time cost of classification on Coil20 when selected features s =100 (s)

Method LapScore SPEC KFDRL Original data
Computational 94 95 432 940
time

show the number of features selected. The black lines in two figures are both the classification
results using the original dataset. We have chosen the numbers of features {2, 4, 6, 8, 10, 12,
14, 16} for classifying Ionosphere dataset and {20, 40, 60, 80, 100, 120, 140, 160} for clas-
sifying Coli20 dataset. The process is repeated 50 times resulting in 50 different partitions.
Figure 3 shows some interesting results, which we discuss in the following:

1. KFDRL results in the best performance in classifying small size dataset lonosphere when
the features selected are more than four. When the number of features larger than eight,
the results obtained by almost all the algorithms are better than the original dataset for
classification.

2. The joint-framework algorithms have a better performance than the traditional algorithm
in classifying Coil20 dataset with relatively large size. However, the joint-framework
algorithms result in better performance than the two-step algorithm only if the features
selected are more than 60. Moreover, KFDRL shows superiority over JELSR. Although
the joint-framework algorithms have better performance in most cases, the two-step
algorithms show superiority over joint-framework algorithm in some cases.

3. SPEC and KFDRL result in 98% of classification performance using the original dataset
by using only 100 selected features, almost 10% of the total number of features, which
illustrates that most of the discriminative features are included in the 100 selected features.
This significantly accelerates the classification rate due to the significantly fewer number
of features used, as it is reported in Table 5.

4. Based on the results of classification of two datasets, we recognize the Ionosphere has
noisy and irrelative features as such a better performance is obtained if feature selection
algorithm is used. Nonetheless, it describes the fact that the more features selected the less
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Table 6 7 Test for AC in Fig. 3

Dataset Algorithm  s=2 s=4 s=6 s=38 s=10 s=12 s=14 s=16

Tonosphere  LapScore F(00) W(00) W(00) W(00) W(00) B(—) W(00) W(00)

SPEC B(-) W(00) W(00) W(00) W(00) W(00) W(00) W(0l)
JELSR F(01)  W(00) W(00) W(00) B(—) B(—) W(00) W(.00)
Dataset Algorithm  s=20 s=40 s=60 s=80 s=100 s=120 s=140 s=160
Coil20 LapScore F(00) F(00) W(00) W(00) W(00) W(00) W(00) W(00)
SPEC W(00) W(00) F(00) F(00) F(00) F(.00) F(00) F(.00)
JELSR W(00) W(00) W(00) W(00) W(00) W(00) W(00) W(00)

AC value obtained. For Coil20, the best classification results obtained by using KFDRL
and SPEC as the feature selection. These results are almost identical to the result obtained
by classifying the original dataset. It indicates that Coil20 has many redundant features
and it is less noisy. Therefore, dimensionality reduction plays an important role in cutting
the computation cost and memory space usage for classifying the Coil20 dataset.

5. Although JELSR and KFDRL are joint-frame algorithms, the results of classification
problem demonstrate that KFDRL obtains the best results of classification on most
datasets by adding discriminative analysis technology. Though different methods are
compared in clustering problem in many papers, we show the classification is also worth
considering since it is popular application of the dimensionality reduction. We show that
the discriminative analysis can improve the performance of classification problem.

6. For demonstrating the rationality of the classification experiment and suppressing inter-
ference from the randomly sampling, the ¢ test is employed to test the reliability of the
above AC results. The threshold of statistical significance is set to 0.05 in Table 6. “W”
means KFDRL performs better than other algorithms discussed in this paper, “F” indi-
cates KFDRL fails and “B” implies we cannot distinguish the results using statistical
method. The value in brackets is p value, which indicates the probability of other meth-
ods is worse than KFDRL. The smaller the p value is, the more confidence we have on
the corresponding statement.

The results reported in Table 6 illustrate that the hypothesis matches the results of AC in
most cases. Hence, AC can be used as a valid metric to analyze the results of the experiments.

5.8 Parameter sensitivity
5.8.1 Sensitivity analysis of o

We use part of Ionosphere, Sonar and Coil20 as our test datasets and use o = { 1073,1072,
101, 109, 101, 102, 103} to test the sensitivity of the clustering algorithm with different
choice of o value whereas the other parameters are fixed. The results are shown in Fig. 4a on
the BC dataset, Fig. 4b on the Ionosphere dataset, and Fig. 4c on the Coil20 dataset, where
the blue and green lines show ACC and NMI, respectively.

It is apparent that ACC and NMI are constant for different value of ¢ on the BC and
Tonosphere datasets because they show a slight change on the Coil20 dataset. These three
datasets are different in terms of size and dimension. In Fig. 4, the result of clustering Coil20
dataset is more sensitive to changes of o than BC and Ionosphere datasets. Considering
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Fig. 4 Clustering stability with different value of o. a the sensitivity of clustering BC to o, b the sensitivity of
clustering Ionosphere to o, ¢ the sensitivity of clustering Coil20 to o

Fig. 5 ACC with different & and S. Different values of « and S are selected for different datasets within the
certain range. a Sensitivity on BC, b sensitivity on Sonar, ¢ sensitivity on Ionosphere, d sensitivity on Coil20,
e sensitivity on Isolet, f sensitivity on Umist

that Coil20 is much bigger than BC and Ionosphere, we believe that the size of dataset is an
important factor of the robustness of kernel function. In conclusion, the o is almost insensitive
to the datasets in this paper.

5.8.2 Sensitivity analysis of a@ and 8

Here we focus on the sensitivity of « and 8 with other parameters fixed. After a grid-search
we set « to in the range of 0.01 and 2.50 and 8 to be {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
We applied K-means clustering to six UCI datasets respectively with different « and 8. The
results shown in Fig. 5 are averaged over 15 times clustering.

We can interpret the results shown in Fig. 5 as follows:
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Fig. 6 The performance comparison between the cases with the default (i.e. « = 1.5, § =10) and best param-
eters. a The performance comparison of ACC, b The performance comparison of NMI

1. The ACC is constant for the Umist dataset with different values of « and 8. On the other
hand, for larger datasets with the number of features over 1000, such as Isolet and Coil20,
the ACC changes mostly as a function of «. For the dataset whose dimension is no more
than 102, such as Umist, the best ACC obtained by KFDRL can be found using o and
B tuned by grid-search only. However, for the larger datasets, it is important to tune the
parameters in the certain range determined by the grid-search. Similarly with most of
the feature selection algorithms, it is still an open problem to find an efficient method to
search a suitable value for parameters. At present, it mostly depends on experiences and
test.

2. It is evident that o has a stronger influence on the results than 8. ACC value is not
sensitive to 8 value, as shown in Fig. 5, which indicates there is no relevance between
the discriminative term and learning framework term according to Eq. (31). In fact, « is
the parameter that balances fitting term and generalization term in learning process. It is
why ACC is more sensitive to « value than other parameters. Improper choice of o can
easily lead to the under-fitting or the over-fitting problem.

Figure 6 shows a comparison of results with the default parameters and the best parameters.
This figure illustrates the importance of « and 8 in KFDRL algorithm. In Fig. 6, blue bars
show ACC and NMI corresponding with the parameters randomly selected whereas brown
bars show the ACC and NMI with the best-tuned parameters. Here we randomly select o =
1.5and g =10.

It can be seen from Fig. 6 that a fixed « results in different performance of ACC and NML.
In other words, different « is needed for different datasets. Considering that different datasets
have different intrinsic information, we believe « is impacted by a dataset itself including its
size and dimension.

5.9 Time costs

Obviously, time cost is depended on the size of dataset in most cases. In this part, com-
putational complexity in different algorithms is shown visually in the one-off running time
form. Here, several representative algorithms are selected as compared algorithms, including
LapScore (a classical algorithm), SPEC and MCFS (two-step algorithms), DFSC and JELSR
(joint-framework algorithms). Furthermore, six medium scaled with 100 selected features
and three small scaled datasets with 30 selected features are tested.
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Fig. 7 Running time with different algorithms (s). a Running time on the first five datasets (s). b Running time
on the last four datasets (s)

We draw the results in Fig. 7 as follows, which are obtained in seconds by MATLAB
2014a, 6 GB RAM and a 2.50 GHz CPU.

It can be seen in Fig. 7, KFDRL and DFSC are high-complexity algorithms. Thus, offline
cases may be more applicable for the proposed algorithm KFDRL, especially handling big
data. Here, larger scaled datasets are not chosen for their out-of-costs on the configuration.
In real situation, that problem could be addressed with some developed platform, such as
hadoop and spark.

6 Conclusion

A variety of feature selection algorithms have been proposed for dimensionality reduction.
However, in most cases, either the manifold information or discriminative information is
utilized alone. In contrast, both the manifold information and discriminative information
are important for clustering, classification and other applications. Thus, in this paper, a
novel unsupervised feature selection algorithm based on discriminant analysis and regression
learning (KFDRL) is proposed to reduce dimensionality by better exploiting the underlying
information. In particular, both manifold information and discriminative information data
are used together. To achieve this goal, the kernel method is used in LDA to handle nonlinear
spaces. At the same time, this LDA model is constructed and proved to be form of a spectral
clustering. Thus the intrinsic information, i.e. both manifold information and discrimina-
tive information are preserved. Next, the kernel model and regression learning are unified
into a joint-framework to get better performance. To select features effectively, Ly 1-norm is
imposed to be a sparse constraint. A simple and efficient method, i.e. the alternative iteration
update rule, is used to optimize the objective function and get a sparse representation matrix.
Finally, our experiments demonstrate that KFDRL outperforms other algorithms in cluster-
ing and classification by removing noise and redundancy more effectively. In addition, the
experiment demonstrates the fast convergence properties of KFDRL. The simple example
problem is further used to illustrate the validity of KFDRL intuitively. The parameter sen-
sitivity experiment implies that only one parameter in KFDRL is significantly sensitive on
different datasets, and needs tuning via optimization. In conclusion, KFDRL performs highly
compared to other state-of-the-art methods.
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The most pressing problem is the time complexity. The experiment in terms of time
costs indicates that the KFDRL has a relatively long time compared with other algorithms,
especially tuning parameters. It means that if parameters in KFDRL had been decided, cost
of running time can be accepted. Otherwise, the time on tuning parameters cannot be tolerant
at present.

There are some remaining aspects of KFDRL which might be improved in future work,
either. First, though the alternative update rule is fast and simple, a limitation is that it
may converge on local optima, and is easily affected by initial values. Second, how to tune
parameters efficiently is still an open problem. Third, the stability is worse when KFDRL is
applied to big datasets, where the results significantly depend on parameter «. Finally, the
measurement KFDRL adopts is Euclidean distance, which is not always ideal for some real
problems. In future work, we will concentrate on the global optimization for feature selection
and find a better way to tune parameters. Furthermore, another interesting research question
is how to uncover suitable measurements for different data automatically.
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