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Abstract
We propose a set of highly scalable algorithms for the combinatorial data analysis problem
of seriating similarity matrices. Seriation consists of finding a permutation of data instances,
such that similar instances are nearby in the ordering. Applications of the seriation prob-
lem can be found in various disciplines such as in bioinformatics for genome sequencing,
data visualization and exploratory data analysis. Our algorithms attempt to minimize certain
p-SUM objectives, which also arise in the problem of envelope reduction of sparse matri-
ces. In particular, we present a set of graduated non-convexity algorithms for vector-based
relaxations of the general p-SUMproblem for p ∈ {

2, 1, 1
2

}
that can scale to very large prob-

lem sizes. Different choices of p emphasize global versus local similarity pattern structure.
We conduct a number of experiments to compare our algorithms to various state-of-the-art
combinatorial optimization methods on real and synthetic datasets. The experimental results
demonstrate that compared to other approaches, the proposed algorithms are very competitive
and scale well with large problem sizes.
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1 Introduction

Seriation is an exploratory combinatorial data analysis method that aims at reordering data
objects to capture and identify patterns and trends of gradually varying similarities in the
data. The general objective of the resulting reordering is to position more similar objects
proximately and dissimilar ones further apart. The original motivation for seriation arose in
the field of archeology, when Sir Flinders Petrie used sequencing to infer the chronological
order of a set of graves based on the artifacts recovered from them (Hodson 1968). The prob-
lem of seriation was mathematically formalized by Kendall (1971). Since then, it has been
studied and successfully put to practice in several other areas, such as sociology and psychol-
ogy (Liiv 2010), gene sequencing (Fulkerson and Gross 1965), and bioinformatics (Tsafrir
et al. 2005; Tien et al. 2008; Recanati et al. 2017). Seriation can also be used in exploratory
data visualization (Havens and Bezdek 2012) as a means for rearranging similarity or dis-
similarity matrices, so that global patterns (e.g., the number or tendency of clusters) can be
identified. For this purpose, it has been applied to reveal patterns in microarray data (Tien
et al. 2008), and to arrange words or documents in text mining based on their co-occurrence
statistics (Mavroeidis and Bingham 2010); the latter work also includes the reordering of
word-by-document similarity matrices for the purpose of tracking the flow of conversations.
A broad overviewof different applications andmiscellaneous theoretical details of seriation is
presented by Liiv (2010) and Hahsler et al. (2008). More recent works include the systematic
experimental analysis of seriation methods and measures by Hahsler (2017), mechanisms for
comparing and fusing generated orderings by Goulermas et al. (2016), and the introduction
of various modeling formulations and solution procedures for robust seriation by Recanati
et al. (2018).

Seriation methods employ heuristics or combinatorial optimization procedures in
order to identify orderings that maintain object proximities according to their pairwise
(dis)similarities. They typically act on a symmetric similarity (dissimilarity) matrix to
simultaneously interchange its rows and columns, such that its entries decrease (increase)
monotonically while departing from the main diagonal. Formally, given an n × n symmetric
similarity matrix A, the goal of seriation is to find an ideal row and column reordering, such
that Aik ≤ min(Ai j , A jk), for all i, j, k with 1 ≤ i ≤ j ≤ k ≤ n; in other words bring it to
a Robinsonian1 form.

One consistent objective for seriation is the p-SUM (Juvan and Mohar 1992), defined
as 1

p

∑n
i, j=1 Ai j |i − j |p , since for all p > 0, an optimal ordering that renders any pre-

Robinsonian2 matrix to a Robinsonian one can be found (Laurent and Seminaroti 2015).
The p-SUM problem, which was initially introduced in the context of the matrix envelope
reduction problem (George and Pothen 1994), describes a class of objective functions that
can be modeled as instances of the quadratic assignment problem (QAP) (Burkard et al.
1999), where a Toeplitz Robinsonian dissimilarity matrix is involved to represent positional
differences of the objects. Different values of p confer different penalties on similar objects
that are far apart in the linear ordering. Various instances of this problem have been studied,
with the most widespread being the p = 2 case, which is referred to as the 2-SUM problem.
In the context of seriation, the 2-SUM objective is known as the inertia criterion when it
is applied to dissimilarity values (Hahsler et al. 2008). The 2-SUM objective penalizes the
squared difference of the coordinates between similar instances, and can be expressed as a

1 Named after William S. Robinson who mathematically formalized the seriation problem (Robinson 1951).
2 Any symmetric (dis)similarity matrix that can be symmetrically permuted to become Robinsonian.
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quadratic function of a permutation vector involving a graph Laplacian matrix (the details
can be found later in Sect. 3.3).

Another specific case of the p-SUM is the 1-SUM problem, also known as the optimal
linear arrangement problem (George and Pothen 1994), which is more difficult to analyze in
terms of a spectral approximation and bounds, as it is no longer a quadratic function of the
permutation vector. In comparisonwith the 2-SUMobjective functionwhich relies on squared
positional differences of the objects, the 1-SUMuses absolute differences. Finally, interesting
p-SUM instances for seriation are the cases when p < 1, corresponding to quasi �p-norms,
as they are less sensitive to large positional differences and relatively more sensitive to local
ordering, and can therefore prioritize local neighborhoods of similar objects.

As a QAP instance, the p-SUM is an NP-hard combinatorial problem withO(n!) possible
discrete solutions corresponding to permutations (Çela 2013). Therefore, solving optimally
such seriation formulations can be impractical when the problem size is large. In the ideal
and infrequent case where the data yield a pre-Robinsonian similarity matrix, an optimal
solution can be identified in polynomial time (Barnard et al. 1993; Atkins et al. 1998) by
sorting the patterns according to the corresponding entries of the Fiedler vector (Fiedler
1973), which is the eigenvector associated with the smallest non-zero eigenvalue. However,
when the similarity matrix is not pre-Robinsonian, this spectral solution is only guaranteed
to approximately minimize the 2-SUM problem. Therefore, alternative approaches for the
p-SUM problem are desirable.

There exist various directions for solving QAP problems (Anstreicher 2003; Burkard
et al. 1999; Burkard and Çela 1999; Loiola et al. 2007). Examples of exact QAP algorithms
include branch-and-bound (Brusco and Stahl 2001), cutting plane methods (Bazaraa and
Sherali 1982) and dynamic programming approaches (Christofides and Benavent 1989). As
exact methods can only be used for QAP instances of small sizes, suboptimal algorithms
and heuristics that maintain good running performance have been very popular. Some of
them include improvement methods, such as local search, tabu search (Glover and Laguna
1997), simulation approaches such as simulated annealing, and population-based heuristics
such as evolutionary optimization (Mühlenbein 1989). Besides these, there are relaxation-
based algorithms in the context of graph matching (Vogelstein et al. 2015; Lyzinski et al.
2016). Particularly for the 2-SUM case, recent works (Fogel et al. 2013; Lim and Wright
2014; Fogel et al. 2015) have shown how the relaxations of the 2-SUM problem can be
solved using interior-point methods relying on either matrix- or vector-based formulations.
However, these relaxations may yield solutions far from the optimum permutation and there
is no guarantee that the nearest permutation will minimize the original objective.

Relaxation methods have mostly been applied to the 2-SUM problem but not the general
p-SUM. Our contribution is to propose a set of first-order optimization methods for mini-
mizing certain p-SUM objectives. The methodology combines first-order optimization with
graduated non-convexity, which successively transforms the relaxation to a concave problem,
so that the final solution is guaranteed to be a permutation. We previously showed (Evan-
gelopoulos et al. 2017) that this approach outperforms other convex relaxation methods for
the 2-SUM problem and scales very well with large datasets. Additionally, while previous
methods rely on extra ordering information to achieve good performance, our method does
not have such requirement. Here, we extend this work by proposing algorithms for approx-
imately solving the 1-SUM and 1

2 -SUM objectives. The proposed methodologies are able
to scale up to problem sizes unattainable with existing approaches, and additionally, apart
from the noiseless cases they outperform the spectral approximation algorithms which are
the most computationally efficient approaches. To the best of our knowledge, this is the first
time that highly scalable algorithms for the p-SUM problemwith p < 2 have been proposed.
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The rest of the paper is organized as follows. In Sect. 2, we present recent developments in
the field and the current state-of-the-art algorithms. In Sect. 3, we give a detailed description
for each of the proposed algorithms, with the different subsections presenting various formu-
lations and optimization-related aspects. Section 4 contains detailed experimental evaluations
and comparisons with regard to the performance of the algorithms, while relevant analyses
and conclusions are presented in Sect. 5.

2 Relation to existingmethods

The most extensively studied instance of the p-SUM problem is the 2-SUM one because it
is amenable to a much more convenient algebraic formulation. The most recent approaches
approximate the 2-SUM problem via convex relaxations. Specifically, Fogel et al. (2013,
2015) formulate their relaxation over the set of doubly stochastic matrices which is known
to be the convex hull of the permutation matrices, while Lim and Wright (2014) use sorting
networks to generate a set of linear constraints in order to perform the optimization in terms
of the permutahedron (Goemans 2015), which is the convex hull of all permutation vectors.
In both cases, interior point methods are used to optimize a regularized version of the 2-
SUM problem that can be written as a quadratic program with additional linear constraints.
The permutahedron-based method performs better and is considerably faster as it uses an
order of O(n log2 n) variables and constraints. Furthermore, both approaches can be used to
solve a semi-supervised instance of seriation as they both accommodate the use of additional
ordering constraints.

Nevertheless, the aforementioned convex relaxation approaches do not outperform spec-
tral ordering unless additional ordering constraints are used. Moreover, they suffer from
scalability issues and when the input size increases significantly, even commercial solvers
cannot alleviate the need for demanding computational resources. Furthermore, recent work
(Vogelstein et al. 2015; Lyzinski et al. 2016) on solving general QAP problems suggests that
convex relaxations do not always outperform indefinite formulations. Towards this direction,
Lim andWright (2016a) present a new framework for approximating general QAP problems
formulated in terms of sorting networks, and use a continuation procedure (Blake 1983; Ran-
garajan and Chellappa 1990; Liu and Qiao 2014) that starts by solving a convex relaxation
of the problem and then gradually converts it to a concave one, to finally yield a local opti-
mum to the original discrete problem. A similar approach was followed by Zaslavskiy et al.
(2009), where instead of employing an objective function with a convex and non-convex
component as used in typical continuation methods, the authors follow the solution path of
a linear combination of two different relaxations of the initial problem, one convex and one
concave, in order to approximately solve it.

Other instances of the p-SUM problem, especially for p < 1, have not been studied
extensively in the seriation literature. Juvan and Mohar (1992, 1993) are the first to present
a theoretical analysis on the minimization of the p-SUM problem for p = 1, 2, and ∞
using a spectral method. George and Pothen (1994) investigate the specific cases of 1-SUM
and 2-SUM and their close connection to the matrix envelope reduction problem (George
and Liu 1981), as the former problem is expressed via the sum of spreads of the non-zero
entries in each row, while the latter uses the sum of squared spreads. Most of the problems
analyzed for the different p-SUM employed spectral methods. Such methods were also used
by Helmberg et al. (1995) to obtain lower bounds on the bandwidth problem. In this work
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we present alternative methodologies that enable us to solve an approximation of different
p-SUMproblems in amore efficient way than other convex relaxations and spectral methods.

3 Proposedmethodology

3.1 Preliminaries and basic notations

Let π denote a permutation vector consisting of the rearrangement of the integers 1, . . . , n.
The set of n! distinct permutations (which for convenience are treated here as vectors)
is denoted by Pn . Each permutation describes the rearrangement of the entries of an n-
dimensional vector, with one convention being that the element at position πi is moved to
position i . This transformation can be explicitly represented by an n × n matrix � from the
set of permutation matrices Mn with elements defined by

Πi j =
{
1, if πi = j,
0, otherwise.

(1)

This also allows � to be converted to its corresponding permutation via �e = π , where
e = (1, 2, ..., n)� is the identity permutation.

Many combinatorial problems involving the optimal arrangement of objects can be mod-
eled by objective functions parametrized by permutation vectors or matrices. In particular,
the aforementioned QAP describes models that are quadratic with respect to a permutation
matrix, and can be expressed as

QAP(A,B) � tr
[
A�B���]

=
n∑

i, j=1

Ai j Bπiπ j , (2)

where the problem depends on the two parameter matrices A and B.
For seriation we are interested in specific QAP instances, whereA is a non-negative3 sym-

metric data-dependent matrix that encapsulates the pairwise similarities between n objects.B
is a Toeplitz Robinsonian dissimilaritymatrixwith elements Bi j = 1

p |i− j |p for some p > 0.
It acts as the seriation template with elements increasing across diagonals while moving away
from the main one. In this case, the QAP corresponds to the p-SUM problem (George and
Pothen 1994)

QAP(A,B) = 1

p

n∑

i, j=1

Ai j |πi − π j |p. (3)

When A is Robinsonian, the identity permutation optimizes the QAP (Laurent and Sem-
inaroti 2015), and if A is pre-Robinsonian, then a solution can be found in polynomial
time (Atkins et al. 1998). Different cases for p yield different types of problems. For exam-
ple, for p = 1, 2 and in the limit of ∞, we obtain the 1-SUM or optimal linear arrangement,
the 2-SUM, and the bandwidth minimization problem, respectively (this relies on the more

conventional problem definition of
(∑

Ai j |πi − π j |p
) 1
p ). Approximate solutions for this

problem can be searched for with a variety of QAP approximation methods, including sim-
ulated annealing, tabu search, and evolutionary methods (Loiola et al. 2007).

3 Even if there are negative entries, adding a constant to thematrix does not change theminimizingpermutation.
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3.2 Problem relaxations

Recent work on the 2-SUM (Fogel et al. 2013; Lim and Wright 2014; Fogel et al. 2015) has
considered convex relaxations on the set of permutation matrices and also on permutation
vectors. The relaxed feasible sets are the convex hull of permutation matrices which is the
Birkhoff polytope, i.e., the set of doubly stochastic matrices Bn � {X : X1 = X�1 =
1, Xi j ≥ 0}, and the convex hull of permutation vectors which is the permutahedron (Goe-
mans 2015) denoted as PHn . These are directly related by enumerating all contributing
permutations; that is, for eachX = ∑n!

i=1 ai�i ∈ Bn , we havex = Xe = ∑n!
i=1 aiπ i ∈ PHn ,

where the i th vertex correspondence between the polytopes is through π i = �ie, and the
coefficients of the convex combination satisfy ai ≥ 0 and

∑n!
i=1 ai = 1.

For the p-SUM problem, possible relaxations can be expressed as

min
x∈PHn

1

p

∑

i, j

Ai j |xi − x j |p, (4)

or, in matrix form, as

min
X∈Bn

tr
[
AXB�X�]

, (5)

where Bi j = 1
p |i − j |p . The first objective function, for p ≥ 1 and Ai j ≥ 0 is convex,

since it is non-negative combination of convex functions |·|p applied to the linear functions
xi − x j , with i, j ∈ {1, . . . , n}. The second objective depends on A and B, but these can be
adjusted in their diagonals before relaxation to become convex.4 Nonetheless, this convexity
is not useful. For example, the constant vector n+1

2 1 which lies at the barycenter of the
permutahedron, minimizes the relaxed problem in Eq. (4) since all xi − x j = 0.

In order to find non-trivial solutions further from the barycenter and closer to the vertices,
as the norm of each permutation vector is constant and maximal over the relaxed set, we
attempt to maximize the norm of the relaxed solution while simultaneously minimizing
the original objective. Using a tradeoff parameter μ > 0, this may lead to the following
regularized objective

min
x∈PHn

1

p

∑

i, j

Ai j |xi − x j |p − μ ‖x‖22 . (6)

3.3 Regularized 2-SUM relaxation

Due to its quadratic form, the 2-SUM case is amenable to more convenient algebraic manip-
ulations and it has therefore attracted further attention by recent works (Barnard et al. 1993;
Atkins et al. 1998; Fogel et al. 2013; Lim and Wright 2014; Fogel et al. 2015). In particular,
the associated QAP can be reformulated into an equivalent one parametrized by a rank-1
matrix as

4 In general any QAP can be easily modified before relaxation, so that its relaxed version can assume a convex

or concave form. For example, for the formulation tr
[
A�B��]

for seriation, the symmetric similarity matrix

A could have negative eigenvalues, and the seriation template B always has eigenvalues of both signs (being

a hollow matrix). In this case, the formulation tr
[
(A − λ1(A)I) � (B − (μλn(B) + (1 − μ)λ1(B))I) ��]

will transform the objective from a convex to a concave, whilst adjusting μ from within (−∞, 0] to within
[1,+∞).
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QAP(A,B) = 1

2

n∑

i, j=1

Ai j (π
2
i + π2

j − 2πiπ j )

=
n∑

i=1

π2
i

n∑

j=1

Ai j −
n∑

i, j=1

πiπ j Ai j

= π� (dg (A1) − A)π = π�LAπ

= tr[LA�ee���] = QAP(LA, ee�),

where dg (x) returns a diagonal matrix with elements from a vector x. The matrix LA �
dg (A1)−A is defined to be the graph Laplacian, and is guaranteed to be positive semidefinite
for symmetric non-negativeA, since f (x) � x�LAx = 1

2

∑
i, j Ai j (xi − x j )2 ≥ 0,∀x ∈ R

n .
The resulting QAP form above is very practical as it can be used in a relaxed version of

the 2-SUM, expressed in either of the following forms

min
x∈PHn

x�LAx ≡ min
X∈Bn

e�X�LAXe. (7)

It is clear that the objective function is convex since, in terms of the first form, the Hessian
LA is positive semidefinite. In terms of the matrix form, the objective can be rewritten as
vec (X)�(ee� ⊗ LA) vec (X), where ⊗ denotes the Kronecker product, and the Hessian
ee� ⊗LA is positive semidefinite. However, the optimal solution to this relaxed formulation
is the barycenter 1

n 11
� of Bn , since [LA1]i = ∑

k Aik −∑
j Ai j = 0, which gives 1�LA1 =∑

i [LA1]i = 0 that corresponds to the minimum of the objective function.
The objective in Eq. (7) can be modified in line with the regularization described in Sect.

3.2 to produce a non-trivial solution. For example, the objective x�LAx − μ ‖x‖22 can be
used, but this precludes convexity for any μ > 0. An alternative modification for the 2-SUM
minimization problemwith a concave regularizer is suggested by Fogel et al. (2013) and Lim
and Wright (2014) as

min
x∈PHn

{
fμ(x) � x�(LA−μH)x = x�LAx − μ ‖Hx‖22

}
. (8)

The use of the above regularizer leaves the sought optimization intact, since by using the
constant matrix J = 11� and the centering one H = I − 1

n J, we have

‖x‖22 = ∥∥(H+ 1
n J)x

∥∥2
2 = ‖Hx‖22 + 2

n x
�HJx + ∥∥ 1

n Jx
∥∥2
2

= ‖Hx‖22 + n(n+1)2

4 ,

where we make use of the facts that HJ = 0, and that for any x ∈ PHn , Jx = n(n+1)
2 1.

Note that this equivalence between the two regularizers holds independently of the problem
relaxation from Pn to PHn .

The same can also be observed for the matrix formulation, after adding a constant c to one
of theQAPmatrix parameters. Specifically, the optimization of QAP(A+cJ,B) is unaffected
(again either before or after the relaxation toBn), as it changes by the constant quantity c1�B1.
In such case, replacingA by Ã = A− μ

n J yields LÃ = LA −μI+ μ
n J = LA −μH. The new

matrix may no longer be positive semidefinite (it is not a proper Laplacian matrix as A− μ
n J

may have negative entries) and the resulting minimization is not always convex.
Although the objective in Eq. (8) is generally non-convex because it is the difference of

convex functions, convexity can be preserved for values of μ that keep LA − μH positive
semidefinite. Note that the constant vector is an eigenvector of both LA and H with an
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associated eigenvalue λ1 = 0. Consequently, choosing μ ≤ λ2(LA) ensures convexity
(henceforth, for the eigenvalues λi of a matrix X we assume the ordering λ1(X) ≤ · · · ≤
λn(X)). Moreover, choosing μ ≥ λn(LA) ensures that this matrix is negative semidefinite,
which renders the objective concave. Therefore, adjusting μ from λ2(LA) to λn(LA) can
gradually transform the relaxed 2-SUM problem from a convex, to an indefinite and finally
to a concave problem. In general, except for the concave form, the relaxed solutions may lie
in the interior of the polytope and far from the set of sought permutations. However, in the
concave form, the solution will necessarily lie at the boundaries. We exploit this fact and use
a continuation scheme to successively find relaxed solutions moving from the convex to the
concave case, which is a common approach for similar problems (Zaslavskiy et al. 2009; Xia
2010; Liu and Qiao 2014).

3.4 First-order optimization with graduated non-convexity

Given an initial feasible solution x(0) and a current value for μ, we now show how to solve
the relaxed and regularized 2-SUM problem using first-order optimization. In particular,
we employ conditional gradient, also known as the Frank-Wolfe (FW) algorithm (Frank
and Wolfe 1956), to ensure the optimization variable at each iteration remains within the
convex hull of Pn . We note that other first-order methods, such as projected gradient descent
(Bertsekas 1995) which over the permutahedron can be equally efficient per iteration (Lim
and Wright 2016b), could also be employed. However, FW can produce sparse iterates for
certain cases of convex optimization problems, adapts to norm-free smoothness and does not
need a projection step (Jaggi 2013; Bubeck 2015). Due to its simplicity we use it throughout
this work.

The FW update at iteration k + 1 can be written as

x(k+1) = αx� + (1 − α)x(k), (9)

where

x� = argmin
x∈PHn

〈∇ fμ(x(k)), x〉, (10)

and α ∈ [0, 1] is the step size. The gradient descent direction is based on optimizing a
linearization of the objective function fμ in Eq. (8) over the constraint set, given by

f̃μ(x) = fμ(x(k)) + 〈∇ fμ(x(k)), x − x(k)〉, (11)

where 1
2∇ fμ(x(k)) = LAx(k)−μHx(k). The solutionx� = arg minx∈PHn f̃μ(x) is necessarily

a permutation, since a bounded linear program is optimized at a vertex of the constraint set. To
calculate it, we use Hardy–Littlewood–Pólya’s rearrangement theorem (Hardy et al. 1952),
that states that two vectors a and b assume the minimum shuffled inner product when sorted
in opposite orders. This happens, for example, when the permutations π and τ order two
given vectors a and b descending and ascending, respectively, or equivalently when τ (π−1)

reorders a while b is kept in its original order. In this situation, by setting a = ∇ fμ(x(k)) and
b = e, we obtain the permutation x� = arg minx∈Pn 〈a, x〉 = π−1 (or in permutation matrix
format arg min�∈Mn 〈e,��a〉) whose inverse (π ) sorts the gradient descending.

Given x�, the optimal step size α can then be easily computed in closed form, as fμ(αx� +
(1−α)x(k)) is quadratic in α. Since its second and first order coefficients are correspondingly
γ2 = (x� − x(k))�(LA − μH)(x� − x(k)) = fμ(x� − x(k)) and γ1 = 〈∇ fμ(x(k)), x� − x(k)〉,
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the optimizing step within [0, 1] is (from convexity and optimizing step we have γ1 ≤
fμ(x�) − fμ(x(k)) ≤ 0)

α =

⎧
⎪⎨

⎪⎩

min
(−γ1

2γ2
, 1

)
, if γ2 > 0,

0, if γ2 ≤ 0 ∧ fμ(x�) ≥ f (x(k)),

1, if γ2 ≤ 0 ∧ fμ(x�) < f (x(k)).

(12)

As previously mentioned, to solve the problem in Eq. (7) we use a continuation scheme
that starts from a solution to a convex instance of the problem in Eq. (8). In each iteration we
increase μ by multiplying it with a user-defined parameter γ > 1 and solve the new problem
until the solution becomes discrete, which is guaranteed in the concave case. This graduated
non-convexity approach (Blake 1983; Rangarajan and Chellappa 1990) yields a sequence of
relaxed solutions that ultimately lead to a local optimum of the original discrete problem. The
procedure can be started at a permutation or any point around the barycenter. However, we
have experimentally observed that starting from the ordering of the Fiedler vector, frequently
leads to better solutions in terms of 2-SUM value and therefore we use that as a starting point
(the continuation scheme almost always converges to a different solution except for pre-
Robinsonian cases).Wenote here that calculating this ordering does not require an extra initial
eigen-decomposition, since in our setting this is already performed in order to determine the
initial parameter μ0. The method converges when α reaches near-zero values. Algorithm 1,
referred to as Graduated non-Convexity Relaxation (GnCR), summarizes the main steps of
this vector-based graduated non-convexity approach to solve the relaxed regularized 2-SUM
problem.

Algorithm 1 The main steps of GnCR.

Input : Laplacian matrix LA = dg (A1) − A where A ∈ R
n×n
≥0 , initial regularization μ0 ≤ λ2(LA), initial

spectral solution x0, continuation parameter γ > 1
Output: Order of final solution x
μ ← μ0
x ← x0
while μ ≤ λn(LA) do

while not converged do
x� ← argmin

π∈Pn
〈∇ fμ(x), π〉

α ← argmin
a∈[0,1]

fμ(ax� + (1 − a)x)

x ← αx� + (1 − α)x
end
μ ← γμ

end

Computationally, the proposed method is highly efficient, since each update only requires
a single matrix-vector multiplication to compute the gradient vector (where any sparsity
and/or low-rank structure ofA can be exploited) and the sorting of the gradient vector, which
has complexity O(n log n). For example, if A = MM� whereM is a sparse matrix with Tn
non-zero entries, then the time complexity of each gradient computation 1

2∇ fμ(x) = Dx −
M(M�x) − μHx, where D = dg

(
M(M�1)

)
, isO(Tn) due to the sparse matrix with vector

multiplication. Likewise, the function evaluation can be calculated as fμ(x) = 1
2 〈∇ fμ(x), x〉.

As convergence is concerned, a rate of O
(

1√
t

)
(where t is the number of iterations) for

non-convex objectives is known for the FW method (Lacoste-Julien 2016), which applies
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here since the objective is not necessarily convex for all varying values of μ. Specifically,

it is shown that the minimal FW gap is upper bounded by the quantity
max{2h0,C fμ }√

t+1
, for an

objective fμ as defined in Eq. (8). The quantity h0 = fμ(x0)−minx∈PHn fμ(x) is the initial
global suboptimality, and C fμ the related curvature constant defined over fμ. Due to the
regularization the latter becomes

C fμ = sup
x,s∈PHn, α∈(0,1],

y=x+α(s−x)

2
α2D f (y, x) − 2μ

α2 ‖H(x − y)‖22 ≤ C f ,

since D f (y, x) − μ ‖H(x − y)‖22 ≤ D f (y, x), where D f is the Bregman distance over f .
We note that for adaptive FW variants, such as the away steps, the pairwise FW and the
fully corrective, a linear and sublinear convergence rate for strongly convex and convex
problems has been shown, respectively (Lacoste-Julien and Jaggi 2015). In our case however,
experiments showed that such variants yield negligible benefit in the solution quality, and
can even sometimes increase the overall running time (e.g., each step of the fully corrective
FW has significant computational demands as a quadratic optimization is realized over the
polytope defined by an active set of permutations).

3.5 A smoothed regularized relaxation for the 1-SUM

We now consider the 1-SUM or optimal linear arrangement problem (George and Pothen
1994), which is harder to analyze as it no longer assumes a quadratic function of the permu-
tation vector. Although a convex function, no regularized form can be employed in this case
as in Eq. (8), since μ > 0 cannot control the convexity of the formulation. Additionally, the
non-smoothness of this problem resulting from the absolute terms in

∑n
i, j=1 Ai j |xi − x j |,

prevents the use of a gradient approach (subgradient methods may not be suitable for the
regularized formulation that assumes non-convex forms). Therefore, we propose a smooth
approximation of the 1-SUM problem in order to enable us to utilize the continuation scheme
of Sect. 3.4.

We employ a pseudo-Huber function (Fountoulakis and Gondzio 2016) of the form

ψδ(x) =
√

δ2 + x2 − δ, (13)

which has bounded and Lipschitz continuous first and second derivatives. Other formulations
of the pseudo-Huber functions were previously used in Hartley and Zisserman (2004) and
González-Recio and Forni (2011). Figure 1 sketchesψδ(x) for different values of the param-
eter δ > 0. This form is a smooth approximation of the Huber loss penalty function (Huber
1992), and approximates |x | as δ approaches zero. Unlike the Huber loss function, which
is only first-order differentiable, the pseudo-Huber function is second-order differentiable,
a fact essential to the convexity analysis of the continuation process, as shown later in this
section. The first two derivatives of the pseudo-Huber function are

ψ
′
δ(x) = x√

δ2 + x2
= x

ψδ(x) + δ
, (14)

ψ
′′
δ (x) = δ2

(δ2 + x2)
3
2

= δ2

(ψδ(x) + δ)3
, (15)

and as ψ
′′
δ (x) > 0, it is a strictly convex function.
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Fig. 1 Plots of the pseudo-Huber function ψδ(x) scaled within [0, 100], for different parameter values δ

By using the pseudo-Huber loss, we can formulate a smooth approximation for the 1-SUM
problem of Eq. (4) for p=1. The new objective is defined as

φδ(x) �
n∑

i, j=1

Ai jψδ(xi − x j ), (16)

and is also convex for non-negative Ai j as a non-negative combination of convex functions
applied to the linear functions xi − x j (this also can be shown from the Hessian of φδ(x)
being diagonally dominant).

The first and second order gradients of φδ(x) (for symmetric A) assume the simple-to-
calculate forms of

∂φδ(x)
∂xi

= 2
n∑

k=1

Aik
(xi − xk)√

δ2 + (xi − xk)2
= 2

n∑

k=1

Aikψ
′
δ(xi − xk), (17)

and

∂2φδ(x)
∂xi∂x j

=

⎧
⎪⎨

⎪⎩

− 2Ai j ψ
′′
δ (xi − x j ), if i �= j,

2
n∑

k=1
k �=i

Aik ψ
′′
δ (xi − xk), if i = j . (18)

Since the minimization of φδ(x) leads to the trivial barycenter solution and in order to
apply a continuation scheme, we solve instead the regularized form, defined as

min
x∈PHn

{
φδ,μ(x) � φδ(x) − μ ‖Hx‖22

}
. (19)

It can be observed from Eq. (18), that the Hessian ∇2φδ(x) happens to be equal to the
Laplacian LG = dg (G1) − G, where G is a hollow matrix with off-diagonal elements
the negated mixed partials, and is centered. This allows us to apply a continuation scheme
following the same reasoning as in Sect. 3.3. Particularly, setting an initial value for μ ≤
λ2(∇2φδ(x)) enables us to start from a convex instance of the objective φδ,μ(x), and by
gradually increasing μ we can eventually convert it into concave. As in the GnCR algorithm,
during each iteration of the continuation process the FW method is used, but here the step
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Fig. 2 Seriated points of the Double moons dataset, for the 2-SUM (left), 1-SUM (center), and 1
2 -SUM (right).

The order is implied by the lines connecting the points consecutively. The rightmost sequence follows better
the local ordering as it avoids moving back and forth between the two moons

size is estimated with a golden section search (Bertsekas 1995). Unlike GnCR, we do not
use the ordering of the Fiedler vector as a starting point for the continuation procedure since
the spectral solution approximates the 2-SUM problem and not the 1-SUM. However, initial
experimentations showed that depending on the similaritymatrix (for instancewhen it is close
to pre-Robinsonian) such an initialization could help, but the gain was very small to offset
the extra computation. For this method, we start from around the barycenter and specifically,
the midpoint between the barycenter n+1

2 1 and e. Experimental tests on the sensitivity of the
algorithm to the δ parameter reveal that within

[ n
50 ,

n
10

]
, a sufficiently small δ can be found

that ensures good performance. However, very small choices of δ have shown to result to ill-
conditioning, something also verified by Fountoulakis and Gondzio (2016). The parameter
choice for δ can rely on a grid search in the interval

[ n
50 ,

n
10

]
performed in parallel or just set

initially by the user. We refer to this “Huberized” 1-SUM algorithm as H-GnCR.

3.6 A kernel annealing approach for the quasi p-SUM

Depending on the employed objective function, seriation can focus on the global or more
localized aspects of ordering (Earle and Hurley 2015; Hahsler 2017). Emphasis on the local
ordering corresponds to prioritizing neighborhoods of similar objects as opposed to the global
ordering that additionally separates dissimilar objects. After having investigated the p-SUM
objective 1

p

∑
i, j Ai j |xi − x j |p for p = 1, 2, we now consider the case of p < 1. The

motivation is that the optimization becomes more sensitive to small differences |xi − x j | than
in the p ≥ 1 case, which encourages more local object placements. Figure 2 exemplifies the
effects of localized ordering for three p-SUM cases on a toy dataset.

One difficulty with the p < 1 case is that the objective is non-convex and non-smooth
and prevents the application of the proposed continuation-based optimization scheme. As an
alternative, we use an approximation through a series of indefinite functions. In particular,
we use the Cauchy distribution-based kernel (Basak 2008) defined as Kσ (x− y) = 1

1+ (x−y)2

σ2

,

and we approximate the term |xi − x j |p with the function

ξσ (x) = 1 − Kσ (x) = x2

σ 2 + x2
. (20)

The scale parameter σ can be used to approximate the effects of the penalty contributions for
cases of p < 1. Figure 3 presents some plots to demonstrate the behavior of ξσ for various
values of σ .
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Fig. 3 Plots of the function ξσ (dotted lines) and |x |p (solid), for different values of the parameters σ and p.
Both functions are scaled within [0, 1]. For larger σ , the former can locally approximate x2, but for smaller
kernel sizes it behaves more similar to |x |p for p < 1

Unlike the pseudo-Huber function, this kernel-based smoothing function is not convex.
The first and second derivatives are

ξ
′
σ (x) = 2σ 2x

(σ 2 + x2)2
, (21)

ξ
′′
σ (x) = 2σ 4 − 6σ 2x2

(σ 2 + x2)3
, (22)

and the sign of ξ
′′
σ is dependent on the input and the positive scale parameter σ ; specifically,

it is non-negative when σ ≥ x
√
3.

Substituting ξσ in the objective of Eq. (4), gives

ϕσ (x) �
n∑

i, j=1

Ai jξσ (xi − x j ). (23)

It can be seen that in order to have ξσ (xi − x j ) convex when xi and x j are components of
x ∈ PHn , we need σ ≥ (n − 1)

√
3. Another observation is that if we restrict attention for

ξσ (x) within [1− n, n − 1] and scale accordingly, then we have limσ→∞ ξσ (x)
ξσ (n−1) = x2

(n−1)2
.

This shows that for large σ , Eq. (23) approximates the 2-SUMproblem, as normalizing ξσ (x)
by 1

ξσ (n−1) and x2 by 1
(n−1)2

does not affect the optimization.

Since the Hessian ∇2ϕσ (x) is written in a form similar to Eq. (18), the regularized form
can be given similarly to that of Sect. 3.5. That is

min
x∈PHn

{
ϕσ,μ(x) � ϕσ (x) − μ ‖Hx‖22

}
, (24)

where ϕσ,μ(x) is convex for σ ≥ (n − 1)
√
3 and μ ≤ λ2(∇2ϕσ (x)).

Although any value p < 1 can be potentially useful to recover the local order, here
we focus on the 1

2 -SUM objective, which experimentally appeared to be more sensitive in
capturing local structure within the proposed setup. We follow a heuristic annealing of the
scale parameter σ whose value is gradually decreased. In each step, a continuation scheme
is realized with an increasing μ until the problem becomes concave (based on empirical
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observations, we only need to ensure we start with a convex setup for ϕσ,μ(x) for the ini-
tial and largest σ value, while the remaining steps may start from being indefinite). For
experimentation, we let σ vary within the interval

[ n
5 , 4n

]
in order for ξσ to capture various

profiles of |x |p . Each solution obtained from a σ step is recorded and used to initialize the
subsequent step but from a shifted location to avoid solution stagnation. We finally report the
solution that amongst the recorded minimizes the 1

2 -SUM value. However, the method can
be used independently of the p-SUM formulation to suit a given application. For example,
one can instead seek the solution that minimizes the δcount measure from Sect. 4.2 or any
other measure that captures local order. It has to be noted that although ξσ (x) is, as shown

in Fig. 3, only a rough approximation of |x | 12 , when used in an annealing scheme of the σ

parameter with restarts, it results to good solutions in terms of the 1
2 -SUM value. We refer to

this heuristic approximation as C-GnCR, and we summarize its main steps in Algorithm 2.

Algorithm 2 The main steps of C-GnCR.

Input : Similarity matrix A ∈ R
n×n
≥0 , continuation rate γ > 1, decreasing series of kernel sizes σ1, . . . , σm ,

and initial regularization μ0 ≤ λ2(∇2ϕσ1 )

Output: Order of final solution x

x(0) ← e
for k = 1; k ≤ m; k ← k + 1 do

σ ← σk
μ ← μ0
x ← 1

2 (x(k−1) + n+1
2 1)

while x /∈ Pn do
while not converged do

x� ← argmin
π∈Pn

〈∇ϕσk ,μ(x), π〉
α ← argmin

a∈[0,1]
ϕσk ,μ(ax� + (1 − a)x)

x ← αx� + (1 − α)x
end
μ ← γμ

end
x(k) ← x

end

k� = argmin
k∈{1,...,m}

∑

i, j

Ai j |x(k)
i − x(k)

j | 12

x ← x(k�)

The recent work of Recanati et al. (2018) on robust seriation is using a formulation that
controls error contributions to reduce sensitivity on outliers. In this respect, this can be an
additional motivation for using the Cauchy-based kernel here, as for small σ values it has a
similar limiting effect. We note that we also tested other approximation functions, such as
the Gaussian (the Laplacian and the log-kernel are not applicable since they both are non-
smooth functions), but the Cauchy-based shows the best overall performance when used in
the proposed annealing process (see Table 8). Nonetheless, the choice of the approximating
function may depend on the given problem.
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4 Experimental results

We present a series of experiments in order to compare the proposed algorithms5 with other
relevant methods in terms of both utility and scalability. Section 4.1 presents experimental
results from comparisons with state-of-the-art algorithms for seriation and various heuristics
that approximately solve the QAP.We use several datasets with different characteristics rang-
ing from synthetic to real. Section 4.2 contains a detailed comparison among the different
p-SUM algorithms, and highlights the utility of each one in sequencing problems using inter-
pretable supervised measures. Finally, in Sect. 4.3 we test the scalability of the algorithms,
and in Sect. 4.4 we test their performance on image seriation problems.

4.1 Benchmark evaluation

In this section we experiment with the following methods:

– GnCR the graduated non-convexity 2-SUM relaxation in Algorithm 1.
– H-GnCR the 1-SUM method relying on the pseudo-Huber approximation.
– C-GnCR the annealing-based quasi 1

2 -SUM method in Algorithm 2.
– SpectralA the spectral method (Barnard et al. 1993) that sorts the entries of the Fiedler

vector of the unnormalized Laplacian.
– SpectralB the spectral method (Ding and He 2004) that sorts the entries of the Fiedler

vector of the normalized Laplacian.
– vRCR (Vector-regularized convex 2-SUM relaxation) minimizes problem (8) using an

interior point solver (we only use the tie-breaking constraint). Its implementation was
provided to us by the authors (Lim and Wright 2014).

– vRCR2 variant of vRCR that minimizes problem (8) using FW on the permutahedron
with the tie-breaking constraint (Lim andWright 2014); also used to solve problems (19)
and (24).

– FAQ the fast approximate QAP method (Vogelstein et al. 2015), based on the relaxation
on the Birkhoff polytope and the Frank–Wolfe method.

– SA a simulated annealing-based optimizer (Brusco and Stahl 2000).

We note that other population-based heuristics (Kennedy and Eberhart 1995; Yang 2008)
were also tried, but they showed to perform worse than SA and therefore were not included
in our results. Each algorithm is implemented in MATLAB ver.9.3. For timing comparisons
we use a 2.93 GHz 12-Core Intel Xeon desktop with 16 GB of memory. Typical parameters
are γ = 1.05 and μ0 set to the second smallest eigenvalue of each corresponding Hessian.
Sections 3.5 and 3.6 discuss in detail the parameter choices for δ and σ for the H-GnCR and
C-GnCR methods, respectively.

We selected a range of real and synthetic datasets, associated either with a similarity
matrix A ∈ R

n×n
≥0 , or a data matrix M = [m1, . . . ,mn]� for which case we assume that

Ai j = |m�
i m j |. These sets include:

• Real datasets from the seriation R-package (Hahsler et al. 2008):

– Munsingen a 59 × 70 binary matrix M.
– Psych24 a 24 × 24 similarity matrix A.
– Gene expression (wood) a 136 × 6M.

5 The code for the proposed algorithms and other evaluated methods is included in our Matlab toolbox for
seriation, available at http://pcwww.liv.ac.uk/~goulerma/software/seriation.zip.
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– Zoo a 101 × 16 M.

• Other real datasets :

– Votes a 232 × 16 binary matrix M (Dheeru and Karra Taniskidou 2017).
– Facebook ego-network a 324 × 324 similarity matrix A (Leskovec and Krevl 2014).
– Elutriation gene expression a 301 × 14 M (Alter et al. 2000).

• Datasets from the SuiteSparse Matrix Collection (Davis and Hu 2011):

– CAT a 85 × 85 similarity matrix A.
– DWT a 59 × 59 similarity matrix A.

• Synthetic datasets:

– Markov chains (Lim and Wright 2014) a 100 × 100 A, that is the covariance matrix
of 50 independent linear Markov chains, with each one generated as Xi = bXi−1 +
εi , i ∈ {1, . . . , 100}, where εi ∼ N (0, σ 2), b = 0.999, and σ = 0.5.

– Artificial graves a 100×200 binaryM, that models the incidence of artifacts in graves
assuming that the occurrence rate of each artifact follows a Gaussian curve. Specifi-
cally, each grave is associated with a time-point ti ∼ U(0, 1). The probability that the

j th artifact will appear in a grave is defined as Pr(Mi, j = 1) = αiβ j exp(−‖ti−μ j‖
2σ 2

j
),

where αi ∼ Lognormal(log(0.3), 0.3), β j ∼ U(0, 1), μ j ∼ U(−1, 2), and the stan-
dard deviation σ j is distributed with a truncated Jeffrey’s prior between [0.01, 0.25].

– RobinsonianN formed from an N × M binary 0–1 matrixM that has the consecutive
ones property (C1P), that is its rows can be rearranged such that the ones in every
column form a single contiguous sequence (Fulkerson and Gross 1965).

– Double moons a 100 × 100 A, that generates points that form two half moons in
2-D space. TheA similarity matrix is computed using a Gaussian kernel (Baudat and
Anouar 2001).

We evaluate the utility of the proposed algorithms by comparing their objective function
values with a number of seriation methods that can solve different p-SUM problems. All
evaluations are run over multiple randomly shuffled instances of the available datasets. We
additionally use the weighted Robinson events (WRE)measure (Hahsler et al. 2008) to assess
the Robinsonian structure of a similarity matrix. Since the values on different datasets are not
comparable, for interpretability we report a normalized value for eachmeasure that quantifies
the deviation from the best performer for that dataset. For the i th dataset the deviation for
the j th algorithm is defined as

Δi, j = scorei, j − besti
besti

. (25)

Additionally, we report the overall average deviations for each algorithm across all
datasets. Tables 1, 2 and 3 show the normalized deviation from the best p-SUM value for
each algorithm and for the 12 datasets. FAQ, SA and vRCR2 directly solve each correspond-
ing p-SUM problem. For the 1-SUM and 1

2 -SUM, the vRCR method is not included in the
comparisons as it is designed to solve the 2-SUM, but we do compare with the two spectral
methods as their 2-SUM solutions can perform well in near noiseless cases. Table 1 shows
the normalized deviation for the 2-SUM and demonstrates that the proposed GnCR algo-
rithm outperforms the others for the 2-SUM criterion (boldfaced table entries denote best
performance). Unlike previous convex relaxationmethods (Lim andWright 2014; Fogel et al.
2015), the proposed method can outperform both spectral methods without the use of any
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Table 1 Deviation from the best 2-SUM value across the 12 datasets

GnCR SpectralA SpectralB FAQ SA vRCR2 vRCR

Munsingen 0 0.440 0.500 0.534 0.135 0.665 0.617

Artificial graves 0.013 1.244 0.206 0.287 0 1.723 1.632

Markov chains 0.003 0.177 0.149 0.001 0 0.524 0.244

Psych24 0 0.018 0.041 0.075 0 0.164 0.146

Zoo 0 0.282 0.117 0.009 0 0.398 0.246

Gene expression 0.002 0.051 0.125 0 0 0.177 0.119

Double moons 0 0.004 0.010 0 0 0.178 0.178

Facebook 0 0.767 0.894 0.293 0.077 2.707 1.831

CAT 0 0.090 0.105 0.198 0.019 0.576 0.413

DWT 0 0.125 0.127 1.668 0.298 1.386 0.679

Votes 0 0.001 0.008 0 0 0.061 0.036

Elutriation 0.005 0.114 0.111 0 0 0.150 0.096

Average 0.002 0.276 0.199 0.255 0.044 0.726 0.520

Table 2 Deviation from the best 1-SUM value across the 12 datasets

H-GnCR SpectralA SpectralB FAQ SA vRCR2

Munsingen 0 0.155 0.199 0.470 0.030 0.522

Artificial graves 0.050 0.421 0.114 0.273 0 0.655

Markov chains 0.011 0.090 0.064 0.001 0 0.235

Psych24 0.076 0.015 0.026 0.073 0 0.150

Zoo 0.026 0.155 0.067 0.005 0 0.236

Gene expression 0.037 0.033 0.066 0 0 0.215

Double moons 0.006 0.023 0.028 0.175 0 0.335

Facebook 0.018 0.346 0.403 0.175 0 1.081

CAT 0.033 0.085 0.115 1.311 0 0.504

DWT 0 0.154 0.157 1.433 0.153 0.827

Votes 0.001 0.001 0.004 0 0 0.322

Elutriation 0.006 0.057 0.055 0 0 0.074

Average 0.022 0.128 0.108 0.326 0.015 0.429

extra ordering information. The performance difference was assessed with a sign test, which
showed that GnCR performs better than both spectral methods with a p-value of 0.0084 at a
significance level of 0.05 (a Bonferroni correction for the two hypotheses tested was applied).
Similarly, Table 2 shows the results for the 1-SUM case, where it is clear that the proposed
H-GnCR outperforms all competing ones except SA. Nonetheless, it achieves a normalized
deviation very close to the best. Lastly, Table 3 summarizes results for the 1

2 -SUMcase, where
the proposed C-GnCR achieves the second best overall performance, having an insignificant
difference from the best performer, which is SA. Tables 4, 5 and 6 show similar trends for the
WREmeasure, where the proposed methods achieve scores very close to the best performing
method, SA.
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Table 3 Deviation from the best 1
2 -SUM value across the 12 datasets

C-GnCR SpectralA SpectralB FAQ SA vRCR2

Munsingen 0 0.077 0.100 0.374 0.017 0.181

Artificial graves 0.031 0.198 0.080 0.202 0 0.269

Markov chains 0.001 0.045 0.028 0.001 0 0.078

Psych24 0.007 0.013 0.019 0.052 0 0.039

Zoo 0.005 0.079 0.034 0.004 0 0.080

Gene expression 0.002 0.019 0.033 0 0 0.081

Double moons 0.005 0.026 0.028 0.071 0 0.069

Facebook 0.003 0.193 0.214 0.104 0 0.461

CAT 0.030 0.143 0.163 0.817 0 0.286

DWT 0 0.131 0.129 0.636 0.034 0.292

Votes 0 0.001 0.003 0 0 0.024

Elutriation 0.003 0.027 0.026 0 0 0.038

Average 0.007 0.079 0.072 0.189 0.004 0.158

Table 4 Deviation from the best WRE score when solving the 2-SUM across the 12 datasets

GnCR SpectralA SpectralB FAQ SA vRCR2 vRCR

Munsingen 0 0.024 0.033 0.023 0.005 0.032 0.029

Artificial graves 0.002 0.090 0.021 0.026 0 0.124 0.119

Markov chains 0.003 0.106 0.108 0.001 0 0.262 0.133

Psych24 0 0.021 0.043 0.079 0 0.169 0.159

Zoo 0.001 0.135 0.091 0 0.001 0.197 0.127

Gene expression 0.003 0.063 0.143 0 0 0.208 0.141

Double moons 0 0.002 0.004 0 0 0.019 0.019

Facebook 0 0.033 0.037 0.010 0.003 0.085 0.057

CAT 0 0.001 0.005 0.012 0.001 0.023 0.017

DWT 0 0.005 0.005 0.026 0.004 0.015 0.008

Votes 0 0 0.005 0 0 0.030 0.017

Elutriation 0.025 0.443 0.290 0 0 0.447 0.271

Average 0.003 0.077 0.065 0.015 0.001 0.134 0.091

In a second set of experiments we test the consistency of the proposed algorithms on
artificial Robinsonian datasets of size n = 100 and n = 500 by comparing them against the
spectral solution that can find the optimal solution in noiseless cases. For each problem size
we generate 20 randomly permuted instances and find the best reordering for each dataset.
Wemeasure the 2-SUM values of each algorithm in order for the comparison to be consistent
with that of the spectral solution. Table 7 shows the average 2-SUM values and running
times of each algorithm. We can see that for both datasets GnCR achieves the optimal score,
which is owing to the spectral initialization, and C-GnCR outperforms H-GnCR. However,
C-GnCR appears to be much slower compared to the rest of the methods due to the kernel
size annealing process. Overall, the scores are comparable which supports that the underlying
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Table 5 Deviation from the best WRE score when solving the 1-SUM across the 12 datasets

H-GnCR SpectralA SpectralB FAQ SA vRCR2

Munsingen 0 0.023 0.033 0.023 0.004 0.074

Artificial graves 0.011 0.095 0.026 0.031 0 0.150

Markov chains 0.017 0.106 0.108 0.001 0 0.250

Psych24 0.158 0.029 0.052 0.087 0 0.307

Zoo 0.035 0.138 0.094 0.003 0 0.244

Gene expression 0.099 0.064 0.144 0.001 0 0.463

Double moons 0.001 0.006 0.008 0.004 0 0.102

Facebook 0.002 0.035 0.039 0.012 0 0.100

CAT 0.004 0.011 0.015 0.022 0 0.063

DWT 0 0.009 0.009 0.030 0.008 0.048

Votes 0.001 0.001 0.005 0 0 0.366

Elutriation 0.042 0.443 0.290 0.001 0 0.418

Average 0.031 0.080 0.069 0.018 0.001 0.215

Table 6 Deviation from the best WRE score when solving the 1
2 -SUM across the 12 datasets

C-GnCR SpectralA SpectralB FAQ SA vRCR2

Munsingen 0 0.024 0.034 0.129 0.013 0.062

Artificial graves 0.006 0.091 0.022 0.092 0 0.123

Markov chains 0.003 0.106 0.108 0.003 0 0.174

Psych24 0 0.025 0.047 0.202 0.005 0.122

Zoo 0.011 0.138 0.094 0.010 0 0.167

Gene expression 0.002 0.062 0.143 0.004 0 0.362

Double moons 0 0.005 0.007 0.065 0.004 0.037

Facebook 0 0.035 0.040 0.027 0.004 0.094

CAT 0 0.007 0.011 0.199 0.007 0.047

DWT 0 0.009 0.009 0.114 0.014 0.039

Votes 0 0 0.005 0.002 0.002 0.062

Elutriation 0.038 0.443 0.290 0 0 0.489

Average 0.005 0.079 0.068 0.070 0.004 0.148

Table 7 Average 2-SUM values and running times for the three proposed algorithms and SpectralA using
pre-Robinsonian matrices of sizes n = 100 and n = 500

GnCR H-GnCR C-GnCR SpectralA

2-SUM

Robinsonian100 0.889 0.923 0.899 0.889 (×108)

Robinsonian500 2.979 3.177 3.018 2.979 (×1011)

Running time (s)

Robinsonian100 0.368 3.023 42.424 0.002

Robinsonian500 0.919 15.390 228.267 0.038
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Fig. 4 Reconstructions for the
Robinsonian100 dataset, for
SpectralA with perfect
reconstruction and the three
proposed methods. a SpectralA. b
GnCR. c H-GnCR. d C-GnCR
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Table 8 Average performance and running time of C-GnCR from 20 runs using the Artificial graves dataset,
for two different kernel approximations

1
2 -SUM value Running time (s)

Cauchy kernel 7664 6.6

Gaussian kernel 7690 31.2

optimization mechanisms of the proposed methods behave consistently. Figure 4 provides
graphical representations of the quality of the different reconstructions.

4.2 Comparison on the different p-SUM objectives

We now examine the utility in terms of seriation quality for each algorithm when solving
different instances of the p-SUM. We first test the performance of C-GnCR when using
different kernel approximations in Table 8. It can be seen that the Cauchy-based outperforms
the Gaussian-based with respect to both objective value and running time.

Subsequently, we ascertain the ability of the different algorithms to solve the 1
2 -SUM

problem in situations where local ordering is of particular interest. For this setting we employ
10 random repetitions of the Double moons dataset (see Fig. 2) with size n = 400, and use
the class membership to each moon to evaluate a resulting ordering π . If we define the class
label matrix as

Ci j =
{
1, if i, j ∈ same class,
0, otherwise,

(26)

the first measure we propose quantifies the number of times a seriation algorithm places
objects from different classes next to each other as

δcount (π ,C) �
n−1∑

i=1

(
1 − Cπ(i)π(i+1)

)
. (27)
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Table 9 Supervised evaluation of
seriation quality for different
algorithms solving the general
p-SUM using the Double moons
dataset

δcount

GnCR methods FAQ SA

2-SUM 59.0 59.0 59.6

1-SUM 29.8 12.7 13.4
1
2 -SUM 18.6 1.0 1.2

2-SUMsup

GnCR methods FAQ SA

2-SUM 4603 4603 4605

1-SUM 3656 4268 3574
1
2 -SUM 3494 3333 3345

The second measure we use, penalizes objects from the same class that are placed far apart.
It has the same form as the 2-SUM objective, but the similarity matrix A is replaced with the
above C; that is

2-SUMsup(π ,C) � π�LCπ . (28)

Table 9 shows the average values from both measures above. It can be seen that the
algorithms solving the 1

2 -SUM perform much better as the sought seriation is more sensitive
to the local structure. The algorithms used for the 2-SUM, that is GnCR, FAQ and SA, show
a similar performance in both measures. For the 1-SUM, the proposed H-GnCR achieves the
second best performance for the 2-SUMsup , but it is the worst with respect to δcount , owing
to the fact that it solves a smooth approximation of the 1-SUM in contrast with FAQ and
SA. For the 1

2 -SUM case, the proposed C-GnCR performs worse in terms of both measures,
again due to the underlying approximation, but maintains a 2-SUMsup value very close to
the best.

We further examine the effects of solving the general p-SUM on the Facebook ego-
network dataset, which contains a network of connections among friends of a user (McAuley
and Leskovec 2012). In this case, seriation can be used to reveal node clustering patterns,
as orderings that are more sensitive to the local structure can highlight tighter social circles.
Figure 5a–c shows the effects of solving the 2-SUM, 1-SUM and 1

2 -SUM problems with SA,
chosen here for its objective approximation quality. Figure 5d–f displays the corresponding
cluster crossing curves. These are calculated as in Ding and He (2004) via summing fractions
of pairwise similarities between objects. They can indicate cluster overlapping and minimum
values are attained at boundaries between clusters. In this experiment we can see that smaller
p yields increased number of clusters (more valleys) of smaller sizes (narrower peaks).

Since for this dataset we do not have distinct class labels, we use the Hamiltonian path
(Hahsler et al. 2008) to assess the local ordering of the resulting seriation. Table 10 presents
the performance of the proposed methods against FAQ and SA, across different p-SUM
objectives. We can see that for all methods, as we reduce p, the measure increases (since
we use similarities) which suggests more localized orderings. Furthermore, for the 2-SUM
objective, GnCR outperforms both FAQ and SA, while for the 1-SUM and 1

2 -SUM, the
proposed H-GnCR and C-GnCR perform worse.
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Fig. 5 Seriation of the Facebook dataset for different p-SUM losses using the SAmethod. The top row displays
the seriated similarity matrices and the bottom row contains the corresponding cluster crossing curves. a 2-
SUM map. b 1-SUM map. c 1

2 -SUM map. d 2-SUM crossing. e 1-SUM crossing. f 1
2 -SUM crossing

Table 10 Hamiltonian path
measures for different algorithms
that solve the general p-SUM for
the Facebook dataset

Hamiltonian path

GnCR methods FAQ SA

2-SUM 128.0 109.2 112.8

1-SUM 144.7 184.6 204.7
1
2 -SUM 154.6 201.3 248.1

4.3 Envelope reduction on big NASA datasets

In order to test the scalability of our proposed algorithms at an even larger scale, we apply
them to a collection of large (n > 1000) sparse matrices taken from the SuiteSparse Matrix
Collection (Davis and Hu 2011). The quality of seriation can also be measured by the band-
width and the envelope of the symmetric similarity matrix. The bandwidth is defined to be
the maximumwidth of all rows (with the rowwidth defined to be the largest distance between
any non-zero element within the row and the diagonal), and the envelope size is defined to
be the sum of all row widths (George and Pothen 1994). The goal of this experiment is to
examine whether the proposed methods can successfully reduce the envelope size of sparse
matrices of size up to n = 36,519. Specifically, we use four sparse NASA datasets:

– BARTH4 a 6,691×6,691 binary asymmetric Au with 26,439 non-zero elements, sym-
metrized as A = A�

u ∨ Au (where ∨ denotes elementwise OR).
– BARTH5 a 15,606×15,606 binary asymmetric Au with 61,484 non-zero elements, sym-

metrized as before.
– PWT a 36,519×36,519 binary symmetric A with 326,107 non-zero elements.
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Table 11 Envelope size, bandwidth, objective function and running time for each algorithm for the four
datasets

SpectralA SpectralB GnCR H-GnCR C-GnCR

Envelope size

BARTH4 328,112 325,968 314,006 356,632 315,109

BARTH5 1,373,825 1,381,331 1,373,125 1,385,795 1,378,337

PWT 5,021,435 5,091,311 5,154,317 4,713,766 4,714,138

CAN 54,622 54,015 52,617 52,523 54,710

Bandwidth

BARTH4 872 873 391 363 363

BARTH5 688 692 594 1,220 792

PWT 1071 989 903 729 725

CAN 312 308 417 804 941

2-SUM (×1010)

BARTH4 0.0105 0.0106 0.0079 0.0102 0.0081

BARTH5 0.0612 0.0612 0.0568 0.0726 0.0649

PWT 0.4565 0.4624 0.4198 0.3834 0.3830

CAN 0.0018 0.0018 0.0017 0.0022 0.0025

1-SUM (×107)

BARTH4 0.1287 0.1286 0.1234 0.1403 0.1237

BARTH5 0.5455 0.5451 0.5431 0.5495 0.5463

PWT 2.8772 2.8901 2.8972 2.6517 2.6520

CAN 0.0337 0.0338 0.0328 0.0306 0.0318

1
2 -SUM (×106)

BARTH4 0.1910 0.1908 0.1895 0.2014 0.1892

BARTH5 0.6453 0.6452 0.6485 0.6391 0.6415

PWT 2.5703 2.5936 2.6314 2.4950 2.4955

CAN 0.0564 0.0565 0.0557 0.0523 0.0542

Running time (s)

BARTH4 4.8 1.9 11.4 357.6 1,582.6

BARTH5 10.0 8.7 59.2 1,198.6 3,293.5

PWT 14.4 14.2 72.7 3,773.4 17,679.9

CAN 0.1 0.1 0.8 15.0 191.2

– CAN a 1,072×1,072 binary symmetric A with 11,372 non-zero elements.

The only feasible algorithms for this setting of experiments are the three proposedmethods
and the two spectral methods. We present the envelope size and bandwidth of each reordered
matrix as in Barnard et al. (1993) and also report the p-SUM objective values and running
times in Table 11. In terms of envelope size, we can see that GnCR and H-GnCR show the
best performance across all datasets. Nevertheless, C-GnCR maintains a good performance
as well, very close to the best. Regarding the bandwidth, the proposed methods H-GnCR,
GnCR and C-GnCR achieve best for the first three datasets, and SpectralB for the last one.
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Fig. 6 Original similarity map for the BARTH4 dataset, and reordered versions produced by the two spectral
and proposed algorithms. a Original map. b SpectralA map. c SpectralB map. d GnCR map. e H-GnCR map.
f C-GnCR map

It is notable however, that GnCR maintains a low bandwidth very close to the best for all
cases. With regard to the 2-SUM, GnCR shows the best performance in all datasets apart
from PWT where C-GnCR scores best. For the 1-SUM, GnCR and H-GnCR outperform the
other methods for the first two (BARTH4, BARTH5) and last two (PWT, CAN) datasets,
respectively. Results for the 1

2 -SUM objective show that the proposed H-GnCR scores best
for the last three datasets, while C-GnCR is best for BARTH4. Again, it is notable that C-
GnCR scores very close to the best for the rest datasets. Finally, we can see that all algorithms
maintain a reasonable running time as the problem size increases and thus prove to be very
scalable.

Figure 6 gives a visual representation of the original BARTH4 matrix and the reordered
matrices of the tested algorithms. It can be seen that all methods show similar behavior and
successfully reduce the envelope of the corresponding matrix.

4.4 Seriation of images

In this section we explore seriation on complex patterns, such as images, where their order-
ing according to their semantic content may be of interest. An optimized linear ordering
can reveal whether there are smooth variations across the patterns. Possible applications
include browsing collections of photos while preserving scene similarity, exploring patterns
of pathology amongst medical images, or sequencing video frames.

In order to test the performance of the proposedmethods on images we use two datasets. A
set of 40 rotating teapot images (Weinberger and Saul 2004) captured at 4.5◦ apart, spanning
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Table 12 δcount measure for
each algorithm (parenthesized
numbers indicate the value of p)
for the teapots and MSRC2
image datasets

Teapots MSRC2

SpectralA 26 520

SpectralB 28 520

GnCR 8 496

H-GnCR 7 488

C-GnCR 8 477

FAQ (2) 8 508

FAQ (1) 8 485

FAQ ( 12 ) 12 462

SA (2) 14 512

SA (1) 8 499

SA ( 12 ) 7 435

KS 9 480

180◦ and categorized in 8 classes, and a set of 585 images from the MSRC2 database6

categorized in 20 distinct classes. We represent images as bag-of-visual-words (Csurka et al.
2004), that is histograms of quantized local descriptors densely sampled using overlapping
matches of each image (Tuytelaars 2010). In this setup, we use the SIFT (Lowe 2004) vector
descriptors7 and image patches of 12 pixels long overlapping every 6 pixels. For the bag-of-
visual-words representation we use k-means with a cluster size of 500. Then, to derive the
similarity matrix we use the exponentiated χ2 distance, as in Quadrianto et al. (2010). For
comparison, we also include the algorithm kernelized sorting (KS) (Quadrianto et al. 2010)
that can align a set of images according to a given template, which in this case is an one
dimensional grid.

Numerical results in Table 12 rely on the δcount in order to evaluate how closely images
from the same category are placed. We use different p-SUM objectives to obtain more local
ordering solutions. For the Teapots dataset we can see that H-GnCR and SA

( 1
2

)
achieve the

optimum δcount value. It is also notable that all three proposed methods maintain a very low
value across the different objectives, while this is not the case for all SA and FAQ versions.
For the MSRC2 dataset, SA

( 1
2

)
scores the best δcount , while C-GnCR achieves the third best.

Figure 7 shows the seriated teapots for the spectral (Barnard et al. 1993) and H-GnCR
methods, while Figs. 8 and 9 the results on MSRC2 for C-GnCR and SA

( 1
2

)
, respectively.

For the teapot experiment we can see that H-GnCR finds an ordering that reflects the smooth
variation across the patterns, while spectral fails to do so. For MSRC2, it is noticeable that
imageswith similar content are frequently placed close to each other along the linear ordering,
i.e., categories of trees, animals, cars, planes, faces, flowers, books, etc. Although a perfect
reconstruction of the original order cannot be achieved in this case, both methods seem to do
a good job seriating images with animals, trees and books, while the SA

( 1
2

)
method performs

better in seriating images with faces.
We additionally evaluate the ability of the proposed methods to find a solution that is close

to the true underlying ordering of the rotating teapots. Table 13 presents for all methods the
corresponding absolute Kendall’s tau (Critchlow 2012) which measures the rank correlation
between two orderings, and PPC (Goulermas et al. 2016) which measures the agreement in

6 https://www.microsoft.com/en-us/research/project/image-understanding.
7 SIFT descriptors are extracted using the VL_FEAT toolbox: http://www.vlfeat.org.
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(b)

(a)

Fig. 7 Image sequence of a teapot captured in different angles, seriated using SpectralA and H-GnCR. a
SpectralA. b H-GnCR

terms of positional proximities. We can see that H-GnCR and SA
( 1
2

)
achieve the optimum

scores. Moreover, all three proposed methods maintain very low proximity scores across the
different objectives.

5 Discussion and conclusions

In this work we have introduced a new set of algorithms for a continuous relaxation of
various versions of the p-SUM problem, based on a graduated non-convexity procedure
with a first-order optimization method that is performed directly in terms of a permutation
vector. To the best of our knowledge, it is the first time continuation-based algorithms are
used for approximating a wide range of instances of the p-SUM. A clear advantage of vector
gradient-based searchwhen solving large problems is that they are very efficient and naturally
scalable.

The experimental results from the previous sections contain some interesting observations
regarding the usefulness of the proposed methods for the problem of seriation. In the first set
of experiments we examined the utility of the three proposed algorithms in a set of real and
artificial datasets. Results show that all proposed algorithmsmaintain a good performance in a
wide range of datasets. SA seems to be themain competitor in this experimental setup, but this
is amuch slowermethod (running times are usually greater than 1000 s for problem sizes over
n = 500). It is also notable that the two convex relaxation approaches (vRCR and vRCR2) do
not outperform the two spectral methods when no auxiliary information is present. Similar
performance behavior is observed for the WRE measure as well. Moreover, we verified the
consistency of the proposed methods with the aid of pre-Robinsonian datasets, where results
show that the proposedmethods effectively solve the noiseless seriation problem and perform
closely to the spectral method. This further supports the benefit of graduated non-convexity
as a method to track solutions close to the global optimum.

To explore the suitability of the methods for solving different p-SUM problems, in Sect.
4.2 we used a synthetic dataset with class label information that enabled us to calculate a local
orderingmeasure and compare algorithms that solve general p-SUM instances. Results show
that aswe reduce the value of p, the seriation results aremore localized.Theproposedmethods
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Fig. 8 Seriated images from the MSRC2 dataset with C-GnCR. Differently shaded bars at the top of each
image correspond to different categories
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Fig. 9 Seriated images from theMSRC2 dataset with SA
(
1
2

)
. Differently shaded bars at the top of each image

correspond to different categories
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Table 13 Kendall’s |τ | and PPC
scores between final solution and
true underlying ordering, for the
Teapots dataset (parenthesized
numbers indicate the value of p).
Values closer to 1 indicate better
ordering agreement

|τ | PPC

SpectralA 0.661 0.664

SpectralB 0.666 0.664

GnCR 0.887 0.905

H-GnCR 1 1

C-GnCR 0.892 0.909

FAQ (2) 0.884 0.903

FAQ (1) 0.617 0.624

FAQ
(
1
2

)
0.066 0.150

SA (2) 0.884 0.903

SA (1) 0.997 0.999

SA
(
1
2

)
1 1

KS 0.764 0.782

for the 1-SUM and the 1
2 -SUM perform slightly worse in terms of δcount , due to the fact that

they rely on smooth approximations of the objective functions. H-GnCR outperforms the
FAQ method in terms of 2-SUMsup . This can be explained since one single misplacement
of objects that are very far apart, could result into a poor seriation quality when assessed
globally. Additional experiments on the Facebook dataset demonstrate the effects of solving
the p-SUM for p < 2. Results in terms of Hamiltonian path show that as we reduce p, more
localized orderings are obtained. It can also be seen that the proposed method for the 2-SUM
outperforms FAQ and SA, but this is not the case for the ones designed for the 1-SUM and
1
2 -SUM, again due to their approximated objective functions. The scalability of the proposed
methodswas tested on four large scale sparsematrices in the context of the envelope reduction
problem. For this reason, we compared with the two spectral methods which perform well on
such problems. Experiments reveal that all three proposedmethods are very scalable. In terms
of envelope reduction quality GnCR and H-GnCR achieve the best envelope size values, a
fact that further supports their close connection to the envelope reduction problem. C-GnCR
is slightly worse, but maintains a performance very close to the best in all datasets. For the
bandwidth measure, each of the proposed methods achieves best for one of the first three
datasets, while for the CAN dataset SpectralB outperforms them. Results therefore suggest
that the proposed methods are suitable for envelope reduction. Finally, the proposed methods
were applied to image seriation. With regard to the Teapots dataset, results show that all
proposed methods show good performance, with H-GnCR performing best. Additionally, all
proposed methods appear to be able to find solutions that are very close to the true underlying
ordering. For the MSRC2 dataset we see that C-GnCR performs well in terms of keeping
close images of the same category, although it does not outperform SA

( 1
2

)
which scores best.

In general, the problem of image seriation using extracted features is a challenging one and
is highly dependent on the type and quality of the features, such as the SIFT descriptors.

Overall, the results demonstrate the practical benefit of solving the p-SUM for different
values of p. The proposed algorithms show a competitive performance and strong scalability
to problem sizes unattainable by other methods, a fact that makes them suitable for highlight-
ing patterns of global or local similarities on data in various real-world applications, such as
bioinformatics, data mining, image analysis, data visualization, etc.
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