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Abstract
Machine learning algorithms rely on their ability to evaluate the constructed hypotheses
for choosing the optimal hypothesis during learning and assessing the quality of the model
afterwards. Since these estimates, in particular the former ones, are based on the training
data from which the hypotheses themselves were constructed, they are usually optimistic.
The paper shows three different solutions; two for the artificial boundary cases with the
smallest and the largest optimism and a general correction procedure called extreme value
correction (EVC) based on extreme value distribution. We demonstrate the application of the
technique to rule learning, specifically to estimating classification accuracy of a single rule,
and evaluate it on an artificial data set and on a number of UCI data sets. We observed that
the correction successfully improved the accuracy estimates. We also describe an approach
for combining rules into a linear global classifier and show that using EVC estimates leads
to more accurate classifiers.

Keywords Machine learning · Multiple comparisons · Extreme value distribution · Rule
learning

1 Introduction

The task of classification models is to predict the classes of new, unseen examples or their
probabilities of belonging to a certain class. Machine learning algorithms construct such
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models by fitting hypotheses to training data. In presence of noise or in learning problems
with a small number of training examples, algorithms that usually consider a huge number
of hypotheses may find one which fits the training data well, but not the unseen rest of the
population. Such overfitting causes misclassification of new examples, and avoiding it has
been one of the core topics of machine learning research.

A less researched related problem is that of overconfident evaluation of hypotheses.
Machine learning algorithms look for hypotheses that are as accurate as possible, which
leads them to discovering the parts of the example space that are (possibly by chance) mostly
populated by data instances from the same class. As a result, while the predicted classes
may be correct, the probability that the example covered by the hypothesis belongs to the
predicted class is often exaggerated.

To illustrate the phenomenon, we prepared a set of 300 artificial data sets with controlled
class probabilities for each possible rule. We randomly defined a maximum class probability
between 0.5 and 1.0 for each artificial data set. All data sets have ten binary attributes,
five of which are unrelated with the class and for the other five we randomly defined class
probability (lower than the maximum probability) for each combination of their values. We
then generated 210 examples for each data set, one for each combination of attribute values,
and assigned the classes randomly according to the defined probabilities for the combination
of informative attributes. This means that the actual class proportions in the data set do not
necessarily match the defined probabilities for a particular combination of attribute values.
We can calculate the true class probability for an arbitrary subset of attributes by computing
the marginal class probability over the informative attributes in the subset.

For each data set, we learned an optimal rule with an algorithm that is similar to the
algorithm for finding the best rule in CN2 (Clark and Niblett 1989). We set the beam width
to 5 and use relative frequency as search heuristics. Figure 1 plots the probability of class
membership predicted by the rule versus the known true probability. The algorithm was con-
sistently able to discover a rule covering only examples of the same class and thus predicting
the probability of 1.0, although the actual class probabilities for these rules were uniformly
distributed between 0.5 and 1.0.

For a formal background, let h1, h2, . . . be all possible hypotheses considered by a certain
learning algorithm, and let q1, q2, . . . be their corresponding qualities. The hypotheses can
be, for instance, classification rules, and the qualities can be the probability of the predicted

Fig. 1 Relation between the
estimated (y-axis) and the true
(x-axis) class probabilities of
discovered rules. Minimal jitter is
applied to improve visibility
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classes or the χ2 statistic computed on a 2×2 table of the hypothesis’ predictions and the true
classes. The task of the learning algorithm is to (a) compute the qualities of all hypotheses
and (b) to select the best hypothesis hmax , such that ∀i : qmax ≥ qi .

In all practical cases, the qualities are estimated on a data sample. Let q̂i be the sample
estimate of the true qi , then q̂i = qi + εi . It is usually assumed that q̂i is an unbiased estimate
of qi , so the expectation of the randomerror E(εi ) over different possible samples equals zero.
The problem occurs at point (b), where the algorithm picks up a single “optimal” hypothesis,
selected not by its true qi but by qi + εi . In common conditions in machine learning – the
data sample is small relative to the huge number of competing hypotheses – the error terms
can easily overwhelm the differences in qualities, so the algorithm chooses the “luckiest”
hypothesis instead of the one with the highest true quality.

While it is possible to get unbiased estimates of the quality of individual hypotheses, the
machine learning algorithm would most often choose one of those for which the estimate
highly exceeds the true value. In this context, εi measures how much the estimated quality
exceeds the true quality, namely the optimism of the assessment. The concept of optimism is
formally defined in Sect. 3.

Optimistic selection has two consequences. First, among the competing hypotheses, the
more complicated ones have a greater chance of overfitting and being selected. This may
lead the algorithm to select a suboptimal hypothesis. Second, the selected hypothesis will
yield exaggerated probabilities on new data instances, resulting in over-confident decisions.

The machine learning community has been aware of the effect of overfitting for a long
time, and it developed a number of solutions, like fine-tuning the complexity of hypotheses
by various regularizations. In this paper, we propose an alternative solution for controlling
overfitting by estimating optimism of a method on randomized data.

This paper is a substantial generalization of our earlier conference paper on removing
optimism in rule quality estimation in CN2 (Možina et al. 2006). We first define the general
theory on estimation correction and then illustrate it using the CN2 algorithm. The algorithm
related to CN2 is itself improved and illustrated in the coverage space (Fürnkranz and Flach
2005). In the last section,we provide a newapproach to combining rules into a global classifier
and present an extended evaluation on a larger collection of real-world data sets.

2 Related work

Quinlan and Cameron-Jones (1995) showed that extensive searching (oversearching) often
produces less accurate results. They further showed that also complex models can achieve
less accurate results, because complex models are usually obtained by more searching.

There are several approaches that deal with the problem of oversearching, which can be
divided into two broad categories. One is to use a separate data set to validate the findings.
The drawback of this procedure is that it reduces the training data set and is also unsuitable
for comparing the competing hypotheses during the induction process. Besides, a single
validation is again prone to random effects, while cross-validation estimates the performance
of the learning algorithm and therefore also cannot be used during the induction process.

The other solution to overfitting is to penalize complex models. A common approach is
to include a penalization term into the evaluation function, such as the ridge regression or
the Lasso method (Hastie et al. 2009). These methods shrink the coefficients by imposing a
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penalty on their size. They have been applied successfully in various learning methods, such
as in linear and logistic regression, neural networks, SVMs, etc.

The penalization can be also viewed as an application of the Bayesian approach, in which
we define a prior over possible hypotheses and combine it with the data to obtain the posterior.
The most relevant Bayesian method for this paper is the m-estimate of probability (Cestnik
1990), which tries to estimate the quality of a rule by estimating its classification accuracy.
The main idea of m-estimate is to balance between the prior probability and the probability
assessed from the data. When the evidence is thin, the probability estimate is shifted from
posterior to prior distribution. The m-estimate was frequently used in rule learning as a
probability estimate. For example, Džeroski et al. (1993) applied it within the CN2 rule
learning algorithm.

Janssen and Fürnkranz (2010) and Fürnkranz (2004) meticulously explored usefulness of
the m-estimate and other rule learning heuristics. Fürnkranz (2004) looked for a function that
would map from the rule’s covered positive and negative training examples to the accuracy
of the rule measured on the validation set. He obtained the best results with the m-estimate
probability with m = 1.6065. His aim was similar to that of our method, which also tries to
improve the accuracy measure of individual rules. Janssen and Fürnkranz (2010), however,
focused on finding the optimal parameters for global classification. They experimented with
several search heuristics, and m-estimate with valuem = 22.466 turned out to be optimal. In
the experimental comparisonweuse the proposed value form in them-estimate of probability.

Domingos (1999), on the other hand, suggested that penalization should in some way
consider the number of hypotheses that were examined during the search process. Indeed,
applying penalty does not directly deal with the problem of multiple hypotheses, however,
by keeping the trained models small, it reduces the effect of the problem significantly. In his
paper, Domingos proposed a formula to select the m parameter of the m-estimate method
that reflects the number of explored hypotheses. This method is further discussed and also
experimentally compared with our method in Sect. 4.3.2.

Scheffer (2005) proposed a measure for evaluating association rules that corrects con-
fidence of the rule, given the support of the rule. This formula depends on the prior of all
confidences over the given items for the given data set. This approach does not take the number
of tested hypotheses into account, therefore its main idea is more related to the m-estimate,
since it trades accuracy (confidence) for coverage (support). There are many other measures
that trade coverage of rules for their accuracy; we will limit this study to the m-estimate as
their most renowned representative.

The most extensive study of the problem, also called multiple comparison procedures
in machine learning, was performed by Jensen and Cohen (2000). They list various related
pathologies of induction algorithms, and find and theoretically investigate their causes. The
basic supposition of Jensen and Cohen is similar to ours, that is, that learning algorithms
measure q̂i and treat it as if it was an unbiased estimate of the true qi , which becomes a
problem when the hypothesis hi is not a randomly chosen hypothesis but the one with the
highest q̂max , where the optimism term εi might have had a greater impact than the quality of
the hypothesis itself. As solutions to the problem, they propose various techniques, such as the
Bonferroni correction, using separate data for evaluation, cross validation and randomization.

Jensen and Cohen are, however, mostly analyzing two problems which are not in the
focus of our paper: how to compare the winning hypotheses from two or more separate pools
of hypotheses (for instance, selecting the best attribute among the binarized continuous
attributes) and compute the probability of getting the hypothesis of the same quality at
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random. Note that this is a different problem than assessing the actual quality of hypotheses,
which is what our paper is concerned with.

The structural risk minimization (Vapnik 1995) theory is an alternative explanation of
why learned hypotheses are optimistic and how penalization or ensemble methods deal with
this problem. The idea of structural risk minimization is to estimate the hypothesis space
complexity and then, from this complexity and the error obtained on learning sample, predict
an upper bound on the test error of hypothesis. Complexity is usually considered as the
VC-dimension (Vapnik 1995) in the case of infinite hypothesis space and the number of all
possible hypotheses in finite hypothesis space. However, as both approaches consider only the
hypotheses space and not the space of the data itself, several authors have proposed alternative
data-dependent approaches to measure complexity of a hypothesis class, e.g. Rademacher
complexity (Bartlett andMendelson 2003). The empirical Rademacher complexity estimates
the upper error bounds by fitting hypotheses to random data. This may be potentially useful
for dealing with the problem discussed in this paper, yet we are unaware of any existing
method using that approach in rule learning.

Another widely adopted solution of the multiple hypothesis problem is picking several
hypotheses instead of only a single one. These ensemble methods, such as stacking, boosting,
random forests, etc., average out the error term εi , which reduces the effect of the multiple
hypotheses phenomena and makes the combined hypothesis less biased. This solution, how-
ever, does not achieve the main goal of this paper, namely removing the effect of testing
multiple hypothesis from the estimated quality of the best hypothesis.

In the context of hypothesis testing, Bonferroni adjustment (Holm 1979) can sometimes
be used to reduce the computed significance of hypotheses. This is however of little use in
machine learning wheremillions and billions of hypotheses wouldmake any finding insignif-
icant. The Bonferroni correction also assumes mutual independence of hypotheses, which
is highly violated in machine learning and makes the correction overly conservative. Since
some hypotheses are considered only implicitly, for example pruned off by discarding a
part of the search space, it is difficult to compute the effective number of tested hypotheses.
Alternatively, correction of p value can also be determined empirically with randomization
(e.g. Hanhijärvi 2011). In general, the corrective methods coming from the context of statis-
tical hypothesis testing [including, for instance Holm (1979) and Hochberg (1988)] aim at
correcting the probability of finding a hypothesis with some estimated quality if the investi-
gated effect is actually random, while we are interested in correcting the estimated quality
of the hypothesis.

The approach described in this paper is based on the theorems from extreme value the-
ory (Fisher and Tippett 1928; Coles 2001). Similarly to the central limit theoremwhich states
that the sample averages of random variables with finite variance are distributed approxi-
mately normally, the extremal types theorem states that all distributions of maximal values
of data samples can be approximated by one of three distributions. For instance, for a normally
distributed variable X , its maximal value

Xmax = max(X1, X2, X3, . . . , Xn)

is distributed according to Gumbel’s distribution (Coles 2001). In machine learning, the
distributions with such shapes have already been experimentally found (but not identified as
such) by Jensen and Cohen (2000).
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3 Extreme value correction

Manymachine learning algorithms adopt in someway the following learning scheme (Jensen
and Cohen 2000):

1. Generate n candidate hypotheses h1, . . . , hn .
2. Evaluate them with evaluation function q on a given data sample S; q̂i = q(hi , S).
3. Return the best hypothesis hmax according to the quality q; its quality is

q̂max = max(q̂1, . . . , q̂n).

Examples of such methods are decision tree learning methods, rule induction algorithms, all
stepwise procedures, and others.

Having an evaluation function q for measuring the quality of a hypothesis, we will hence-
forth use qi to denote the true quality of hypothesis hi , q̂i for its (potentially optimistic)
estimate on training examples, and qi for the quality as corrected by our proposed method.
As noted above, hmax will be the hypothesis with the maximal estimated quality q̂max , and
our task is to find its corrected quality qmax .

Let Qi be a random variable representing the quality of hi . We will consider q̂i to be an
instantiation of Qi whose value depends on the data sample, and qi the quality of hi on the
population from which the sample was drawn.We assume that the q̂i is an unbiased estimate,
namely, q̂i = qi + εi where the random error εi has E(εi ) = 0.

For hmax , which is not chosen randomly but based on q̂max = qmax + εmax , its large
estimated quality can be either due to a high true quality qmax or due to chance, εmax . Different
samples can yield different hypotheses hmax , and q̂max can be treated as instantiation of
another random variable Qmax with distribution defined by maxima over all possible random
samples, i.e. P(Qmax > x0) equals the proportion of samples for which the algorithm would
find a hypothesis with q̂max > x0.

For illustration, let there be two hypotheses h j and hk with equal qualities q j = qk ,
while the qualities of other hypothesis are too low for the error term to have an affect,
∀i, i �= j ∧ i �= k : q j − qi � ε j − εi . The learning algorithm would then choose either
h j or hk , hence for a particular sample q̂max = max(q̂ j , q̂k) = q j + max(ε j , εk). Jensen
and Cohen (2000) showed that E(max(ε j , εk)) ≥ E(ε j ) which in our case means that
E(max(ε j , εk)) ≥ 0. This positive bias, which appears as a consequence of trying several
hypotheses, is in this paper called optimism of the learning algorithm. The expected optimism
E(εmax ) increases with the number of competing hypotheses, while increasing the number
of inferior hypotheses does not affect the distribution of qmax and the related optimism. Note
that the notion of optimism in this paper differs from what is usually regarded as optimism
in statistics, where optimism is defined as the difference between the in-sample error and the
training error (Hastie et al. 2009).

Generally, q̂max is a positively biased estimate of the true quality of hmax . In this section
we will first analyze two unlikely border scenarios, where minimal and maximal optimism
occur. Then, we will present a general method for correcting optimistic estimates that is
in-between both border cases and it retains some favorable statistical properties.

The theory and corrections will be illustrated using artificial data sets with 1000 binary
attributes and 100 examples in two classesC1 andC2, 50 examples in each. In each experiment
we assign to each attribute xi the true probability P(xi = 0|C1) = P(xi = 1|C2); higher
values of P(xi = 0|C1) imply higher correlation between attribute xi and class variable. The
values of attributes are generated randomly according to the conditional probabilities.
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Our goal is to discover, from a given sample of data, which of the attributes is the most
related to the class. We use the chi square (χ2) test for measuring the quality of the relation.
Let o1, o2, o3, o4 be the observed numbers of examples from a 2x2 contingency table of
attribute xi and class:

C1 C2

xi = 0 o1 o2
xi = 1 o3 o4

Since P(xi = 0|C1) = P(xi = 1|C2) and the number of examples in both classes is
exactly 50, expected values of all cells are 25. Therefore, the formula for χ2 simplifies
to:

q̂i = ̂χ2
i =

∑

j

(

o j − e j
)2

e j
=

∑

j

(

o j − 25
)2

25
(1)

Furthermore, beside discovering the best hypothesis (attribute in our case), we also aimed
at estimating, using the given sample only, the true quality of the best hypothesis. The
estimation was compared with χ2 computed directly from the pre-defined probabilities,
which represented the true quality:

qi = χ2
i = 4

(50 · P(xi = 0|C1) − 25)2

25
. (2)

3.1 The case of no optimism

There are a few circumstances in which the quality estimates are not optimistic. Since q̂i is
assumed to be an unbiased estimator of qi , no optimism occurs if hypotheses are chosen at
random. There is also no optimism if we consider only a single hypothesis not constructed
from the data, as common in statistical hypothesis testing.

For a realistic scenario, there is no optimismwhen there exists a hypothesis h j with quality
much higher than that of all other hypotheses (relative to errors ε). In this case, the ε j does
not influence the selection, so E(ε j ) = 0 and E(q̂ j ) = q j (and therefore E(q̂max ) = qmax ).
The corrected value should therefore equal the estimate qmax = q̂max .

For an experiment showing the circumstances in which the optimism disappears, we
constructed 10 data sets with conditional probability P(x1 = 0|C1) between 0.5 and 0.9
with a step 0.03, and P(xi = 0|C1)=0.5 for i �= 1. Figure 2 shows a graph comparing
averaged estimated ̂χ2 of hmax ’s and the theoretical χ2. If the conditional probability of
the first attribute is close to 0.5, the best evaluation suffers from high optimism, since the
qualities of alternative hypotheses are similar. However, as the probability increases, the
optimism diminishes and the estimated value ̂χ2 becomes a good approximation of the
theoretical value.

3.2 The case of maximal optimism

The largest optimism is manifested in an unrealistic scenario in which all hypotheses have
equal true quality q . A correction assuming this scenario would impose the highest reduction
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Fig. 2 No optimism: estimates of
χ2 versus the true values. One
hypothesis has a known quality,
others are random. Each dot
corresponds to the selected
hypothesis from one trial. The
line shows the average for each
̂χ2 at given χ2 and the dotted
line corresponds to ideal,
unbiased estimates ̂χ2 = χ2
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in best hypothesis’ quality, and we call it the pessimistic correction. Let us assume that all
hypotheses have the same true q . Then,

q̂max = max(q̂1, . . . , q̂n) = q + max(ε1, . . . εN ). (3)

Let Q be a random variable representing estimated qualities of all hypotheses. Then
P(Q > q̂max ) is the probability of a random hypothesis exceeding the quality q̂max . If q had
been known, we could have computed the P(Q > q̂max ). But the opposite is also true: if the
probability P(Q > q̂max ) was known, we could infer quality q .

We will now illustrate this idea on our χ2 example. When all attributes have the same
conditional probability p0 = P(xi = 0|C1) and p0 was known, we could estimate the proba-
bility P(Q > q̂max ) by computing theχ2 valuewith a formula similar to the one fromEq. (1),
where estimated frequencies are adjusted for p0: e′

1 = e′
4 = 50p0 and e′

2 = e′
3 = 50(1 − p0).

Since this χ2 value comes from a chi-squared distribution with one degree of freedom, we
could compute P(Q > q̂max ) using cumulative distribution function of χ2(1). However, we
could also reverse this reasoning, if P(Q > q̂max ) was known and p0 unknown. We could
find the conditional probability p0 and the corresponding q̂max with a root-finding method,
for example bisection.

To explain a procedure for computing P(Q > q̂max ), let us assume that the optimism
max(ε1, . . . εN ) in equation 3 is independent of the quality q when all hypotheses have the
same true quality. Hence, if we were able to construct n hypotheses with the same known
true quality (which can be different from q), where Qp represents their estimated qualities
and πp is the expected quality of the best hypothesis among them, then, due to the same
optimism in both sets of hypotheses, the probability P(Qp > πp)would equal the probability
P(Q > q̂max ). There are cases where the assumption of the same optimism for all qualities
q does not hold. For example, when the quality q approaches its upper bound, the optimism
diminishes, since the estimated values q̂i are also bound by the same upper bound. In such
cases, the pessimistic correction will decrease the quality estimate more than it should.

We can prepare n hypotheses with the same true quality by randomizing the data:

1. Permute classes of the training examples to remove correlations between hypotheses and
the class.
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Table 1 Contingency tables for
the example of pessimistic
correction

C1 C2

(a) Expected contingency if P(xi = 0|C1) equals 0.7

xi = 0 35 15

xi = 1 15 35

(b) Contingency table of the best scored attribute

xi = 0 44 6

xi = 1 6 44

(c) Expected contingency of the best scored attribute

xi = 0 34.3 15.7

xi = 1 15.7 34.3

2. Find and evaluate the best hypothesis. Store the evaluation.
3. Compute the average (πp) of the stored evaluations.
4. Repeat steps 1–3 until πp converges.

The distribution of the randomvariable Qp is known as it represents the quality of hypothe-
ses on randomized data. Q represents the quality of hypotheses on the actual data and is
therefore unknown. Since the optimism is the same in both cases, we have

P(Qp > πp) = P(Q > q̂max ). (4)

The sought qmax thus has a value which results in such a distribution for Q that P(Q > q̂max )

equals the computed P(Qp > πp).
We will illustrate the method on a data set like the one in the previous section, except that

all conditional probabilities will equal P(xi = 0|C1) = P(xi = 1|C2) = 0.7. The unknown
“true” 2 × 2 contingency table of expected frequencies is shown in Table 1(a) and the true
quality of the hypothesis is:

qmax = 4
(50 · 0.7 − 25)2

25
= 4

(35 − 25)2

25
= 16. (5)

The best scored attribute in our generated data set has the contingency table of observed
frequencies as shown in Table 1(b). Its q̂max equals

q̂max = (44 − 25)2

25
+ (6 − 25)2

25
+ (44 − 25)2

25
+ (6 − 25)2

25
= 57.76. (6)

Now we estimate the average quality πp on randomized data. After 200 repetitions
of randomization, the estimated average for our domain is 11.28. Since Qp ∼ χ2(1) ,
the probability P(Qp > πp) equals 0.00078. Having P(Qp > πp) and q̂max , we need
to find such probability p0 = P(xi = 0|C1) and corresponding expected frequencies
(e′

1 = e′
4 = 50p0, e′

2 = e′
3 = 50(1 − p0), where P(Q > 56) = 0.00078. Therefore, we

have to solve the following equation:
(

44 − e′
1

)2

e′
1

+
(

6 − e′
2

)2

e′
2

+
(

44 − e′
3

)2

e′
3

+
(

6 − e′
4

)2

e′
4

= 11.28 (7)

As all expected frequency depend on p0, we can find p0 with bisection. Table 1(c) shows
expected frequencies for which the χ2 gives the correct expected value:

χ2 = (44 − 34.3)2

34.3
+ (6 − 15.7)2

15.7
+ (44 − 34.3)2

34.3
+ (6 − 15.7)2

15.7
= 11.2 (8)
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(a) (b)

Fig. 3 Original and corrected estimates of χ2. All hypotheses have the same true quality. a Uncorrected ̂χ2

and b Pessimistic correction of ̂χ2

In other words, if the best-scored hypothesis has distribution from Table 1(b) and we know
that the true scores of all hypotheses are the same, then the expected class distribution of all
hypotheses is the one from Table 1(c). With this in mind we can use these frequencies to
compute the corrected value of q̂max , qmax :

qmax = (34.3 − 25)2

25
+ (15.7 − 25)2

25
+ (34.3 − 25)2

25
+ (15.7 − 25)2

25
= 13.8 (9)

We repeated this experiment for different settings of P(xi = 0|C1) with ten different
random data sets for each setting. Each data set had again 1000 attributes and 100 examples.
Figure 3 shows the original and corrected estimates. The corrected estimates fit the diagonal
line almost perfectly.

3.3 General extreme value correction

This section describes the extreme value correction (EVC), which is the main contribution
of this paper. Figure 4 depicts two steps of the EVC procedure:

1. Compute Pa from EVDp and q̂max . Value q̂max is the estimated quality of the best
hypothesis hmax , Pa is the probability of finding a hypothesis with quality q̂max or larger
assuming that all possible hypotheses hi are random (their true quality equals the default
quality). EVDp is the corresponding extreme value probability distribution.

2. Find such qmax , where P(Qr > qmax ) = Pa . The random variable Qr models qualities
of random hypotheses and has probability distribution Dp .

We shall now explain both steps in detail. The learning algorithm finds the best hypothesis
hmax with quality q̂max which is an optimistic estimate of the hmax ’s true quality qmax .
Since hmax was selected as the best among many hypotheses, the estimation q̂max is from a
distribution of extreme values which we shall denote by EVDp .
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qmax qmax

EVDp Dp

Pa

Fig. 4 Outline of the proposed procedure for general correction of estimates. Left branch shows the extreme
value route: value q̂max is the estimated quality of selected hypothesis hmax , EV Dp is the corresponding
extreme value distribution, and Pa is the probability of finding hypothesis with quality q̂max or larger when
all hypotheses are actually random. Right branch shows the inverse of computing statistical significance of a
single hypothesis; qmax is the corrected quality of the selected hypothesis and Dp is the distribution of quality
measure

If we knew EVDp , we could compute the significance of q̂max from the cumulative
distribution of EVDp . Pa is the probability that the learning algorithmwould find a hypothesis
with quality q̂max even if all possible hypotheses hi were actually random.

We therefore need to model the extreme value distribution EV Dp . Fisher and Tippett
(1928) have shown that extreme values, max{X1, X2, . . . Xn}, for X’s coming from any
distribution can be approximated by the general form

F(x;μ, σ, ξ) = exp

{

−
[

1 + ξ

(

x − μ

σ

)]−1/ξ
}

. (10)

The three parameters describe the distribution’s location (μ), scale (σ ), and shape (ξ ). When
ξ = 0, the distribution reduces to Gumbel type:

G(x;μ, σ) = exp

{

− exp

(

− x − μ

σ

)}

. (11)

We will use G(x;μ, σ) to model EVDp throughout the paper, since we will be using only
χ2 distribution in our experiments, and the extreme values of χ2 are covered by the Gumbel
distribution. The derivation of EVD model assumes independent random variables, however
Coles (2001) showed that in the case of dependent variables the shape of the limit distribution
stays the same, but with different parameters.

We will fit the parameters of EVDp with the following randomization procedure.

1. Permute classes of the training examples to remove correlations between hypotheses and
the class.

2. Find and evaluate best hypothesis with the selected learning algorithm. Store best eval-
uation.

3. Fit parameters of EVDp on all best evaluations computed until now.
4. Repeat steps 1–3 until convergence.

In the second step of the EVC procedure, we calculate the estimate qmax by following
the steps of the standard statistical procedure for hypotheses testing, however in the reverse
order. Unbiased estimates of random hypotheses are distributed by a known distribution Dp ,
say χ2, depending on the used quality measure. Knowing the correct estimate qmax of the
quality of hmax , we would be able to compute its significance (probability Pa) from Dp . On
the other hand, since we already know the significance Pa , we can calculate qmax from Pa .
The concrete method for calculation of the corrected estimate qmax which gives the same Pa
then depends upon the chosen measure of quality and its distribution Dp .

The left branch of the algorithm in Fig. 4 is the approach used in machine learning to
estimate the probability that the best hypothesis was found purely by chance. The right branch
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(a) (b)

Fig. 5 Original and corrected estimates of χ2. True qualities are distributed normally. a Uncorrected ̂χ2 and
b ̂χ2 corrected by EVC

is the classical procedure for null-hypothesis significance testing: select a single hypothesis
and evaluate it with an appropriate test. The idea of the EVC algorithm is to join these two
procedures by assuming that we should obtain the same significance Pa by following either
of the two paths. However, as we are not interested in Pa , but in the unknown qmax , we
compute Pa by taking the left side first and then go back up on the right side. Our procedure
first estimates Pa given EVDp , and then finds qmax which gives the same Pa . The computed
qmax is the corrected estimate which we are looking for.

The basic requirement for applicability of extreme value distribution is that all measure-
ments come from the same distribution. In our case, all q̂i for random hypotheses have to
come from the same distribution. This requirement is met by some quality estimates, e.g. χ2,
but not by all, e.g. relative frequencies in rule evaluation have different β distributions. We
will show a possible work-around for such cases in the following section.

For a simple test, we constructed 10 data sets for each max P between 0.5 and 0.9 with
step 0.03. Each data set had 1000 attributes and 100 examples. The probability P(xi = 0|C1)

for each attribute was randomly drawn from normal distribution N (0.5, (max P −0.5)/3.2).
This way 99.9% of attributes have either P(xi = 0|C1) or P(xi = 0|C2) between 0.5 and
max P . We chose normal distribution as a good representative for true quality distributions
on real data sets. The results of the extreme value correction are shown in Fig. 5. We observe
that the original estimates are optimistic while the adjusted values match the true values very
well.

Extreme value correction is an approach that consists of two parts: first, it uses random-
ization to assess the optimism produced by a learning method on random data, and, second,
uses this distribution to remove the optimism from the estimated quality q̂max of the best
hypothesis. The resulting qualities of hypotheses have the following three favorable proper-
ties:

1. Using EVDp will result in a Pa corrected for multiple hypothesis testing. The corrected
quality qmax therefore corresponds to a value that gives the same Pa , when tested with
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a standard statistical test without the use of extreme value distribution. For example, if
q̂max equals the median of the extreme value distribution, the corrected qmax will equal
the median of the original distribution. Note that “uncorrected” value q̂max does not have
this property.

2. If the same EVDp is used, then the order of hypotheses is retained: q̂i > q̂ j −→ qi > q j .
Since the same EVDp is used to calculate Pa , therefore Pa of q̂i will be lower than Pa
of q̂ j , and hence qi > q j .

3. Comparinghypotheseswith different complexities,where different number of hypotheses
were tested, will result in different extreme value distributions, therefore the order of
best-to-worst hypotheses can change in favor of simpler hypotheses. This property is
demonstrated in the application of EVC to rule learning.

4 Extreme value correction in rule learning

Many rule learning algorithms induce models by iteratively searching for the best rule and
removing the examples covered by it (Fürnkranz and Flach 2005). Rules are usually sought
by a beam search, which gradually adds conditions to the rule with aim to decrease the
number of covered “negative” examples, while at the same time keeping as many “positive”
examples as possible. The search is guided by two measures, one which evaluates the partial
rules and the other which chooses between the final rule candidates; here we will use the
common approach where the same measure is used for both purposes.

A good rule should give accurate class predictions, that is, have a high probability of
the positive class on the entire population (not only learning sample) covered by rule. A
reasonable choice for the measure of rule’s quality is the relative frequency of the predicted
class:

qi = si
ni

, (12)

where ni is the number of learning examples covered by the rule ri , and si is the number of
positive examples among them.

However, as qi is estimated on a sample, q̂i = ŝi/n̂i is an optimistic estimate of the
true relative frequency qi , as we have already shown theoretically as well as experimentally
(Figs. 1, 6a). We will assume that the estimate of the number of examples that the rule covers
is unbiased, E(n̂i ) = ni , and use a better estimate of si , si . The alternative idea, where si
would be fixed and ni corrected, would still lead to the same result.

Machine learning algorithms often use the m-estimate (Cestnik 1990) to shift the proba-
bilities toward the prior distributions,

Qm(ri ) = si + m · pa
ni + m

, (13)

where pa is the prior probability and m is a parameter of the method. Fürnkranz and Flach
(2005) showed that them-estimate presents a trade off between precision (relative frequency)
and linear cost metrics [for instance, weighted relative accuracy (Lavrač et al. 1999; Todor-
ovski et al. 2000)]. Different values of parameterm can be used to approximatemany common
evaluation functions. For instance, when m = 0, m-estimate equals the relative frequency.

To put them-estimate to a test, we again induced a single rule using the same algorithm and
the same data sets as in the introduction, this time using the m-estimate with different values
ofm (0, 2, 10, 20, 50, 100).With increasing values ofm, themethod is still optimistic for rules
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Fig. 6 Relation between the estimated class probability q̂max (y-axis) and true (x-axis) class probability qmax
for the best rules constructed from artificial data sets. a Relative frequency, b m = 2, c m = 10, d m = 20, e
m = 50 and f m = 100

Table 2 Comparison of rules
obtained from artificial data sets
with different values for m: the
average true class probability,
Spearman correlation between
the true probability and the
estimate, and the root mean
squared error of the estimate

m Avg. accuracy Spearman RMSE

0 0.68 0.0000 0.3509

2 0.68 0.6147 0.2780

10 0.68 0.7475 0.1674

20 0.68 0.7903 0.1214

50 0.67 0.7919 0.0995

100 0.66 0.7426 0.1053

with lower true probability, but pessimistic for rules with higher true probability (Fig. 6).1

It seems that m-estimate lowers the estimated quality by roughly the same amount for all
rules, which can not adjust the estimates to lie closer to the ideal diagonal line representing
the perfect correlation.

Table 2 compares the measured evaluation functions by

– the average true prediction accuracy of the induced rules, which reveals the quality of
the evaluation function as search heuristics;

– the Spearman correlation coefficient between the true rule accuracies Q(r) and estimated
values ̂Qm(r), that shows the quality of the rule ordering, which is crucial when rules are
used for classification, where we need to distinguish between “stronger” and “weaker”
rules;

1 We obtained similar results in experiments with other ways of constructing artificial data sets.
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Fig. 7 An outline of the proposed
procedure

si si

↓ ↑
LRSi LRSi

EVDp χ2

Pa(ri) → P s
a (ri)

– the root mean squared error (RMSE) between Q(r) and ̂Qm(r)which indicates the rule’s
accuracy when used as probabilistic predictor.

The first column of Table 2 suggests that lower values of m give (marginally) better
rules than higher values. However, higher values of m score better in terms of the Spearman
correlation and give more accurate probability estimates.

Although the m-estimate with a suitably tuned m can considerably decrease the error
of the estimated probabilities, this effect seems to come from reducing the optimism by
pushing the predicted probabilities towards the average, while the correlation between the
true and the estimated probability remains rather poor. Thus, m-estimate and many other
similar techniques are not a satisfactory solution to the problem of overfitting, wrong rule
quality estimates and optimistic probability predictions.

4.1 EVC algorithm for relative frequencies

The outline of the proposed procedure is illustrated in Fig. 7. It differs slightly from
the general algorithm described in Sect. 3.3, as it does not directly correct the evaluation
si/ni of a rule, but another well related measure of quality, likelihood ratio statistics (LRS)
presented in Eq. (14). This is needed since the use of extreme value distributions requires
that the values of a random variable come from a fixed distribution (Coles 2001). LRS, which
is distributed according to χ2(1), disregarding the number of covered positive and negative
examples, fulfills this criterion, while si/ni , which comes from β(si , ni − si ) and is different
for each rule, does not. The two measures are well correlated for rules that cover the same
number of examples. The step Pa(ri ) → Ps

a (ri ) adjusts probability Pa(ri ) considering that
LRS is symmetrical with respect to positive and negative examples, e.g. a rule covering only
negative examples would also have high LRS. As these high LRS values are disregarded in
our method, we need to accordingly adjust the probability Pa . The specifics of the algorithm
are given in the following step-by-step description.

Step 1: From ŝi to ̂LRSi .

Let s be the number of positive examples covered by some rule and let sc be the number
of positive examples not covered by the rule. Similarly, let n be the number of all covered
examples and nc be the number of examples that are not covered by the rule. LRS for 2 × 2
tables derived by Dunning (1993) is:

LRS = 2

[

s log
s

es
+ (n − s) log

n − s

en−s
+ sc log

sc

esc
+ (nc − sc) log

nc − sc

enc−sc

]

, (14)

where ex is the expected value of x . For instance, es is computed as n s+sc
n+nc . Note that a

similar formula for LRS, without the last two terms, was used in Clark and Niblett (1989)
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1. Let L = 1 (L is the maximum rule length).
2. Permute values of class in the data.
3. Learn a rule on this data (using LRS as evaluation measure), where the maximum length

of rule is L.
4. Record the LRS of the rule learned.
5. Repeat steps 2-4 to collect a large enough (say 100) sample of LRSs
6. Set β(L) = 2 and μ(L) = median + 2 ln ln 2, where median is the median of stored LRSs

(see Appendix A for details).
7. If μ(L) > μ(L − 1), then L = L + 1 and return to step 2.

Fig. 8 The algorithm for computing parameters of the Gumbel distributions

and Clark and Boswell (1991) for computing significance of rules. We prefer to use formula
from Eq. (14), because it considers all examples in the estimation of likelihood and not just
covered examples.

We compute the ̂LRSi for all rules where the number of positive examples is higher than
the expected number of positive examples, si ≥ es , otherwise LRS is set to 0.

Example We have a data set with 20 examples where the prior probability of the positive
class is 0.5. Learning from that data, the rule search algorithm found a rule ri with two
conditions which covers 10 examples with 8 of them belonging to the positive class. Its LRS
is, according to (14), 7.7.

Step 2: From ̂LRSi to Pa(ri).

Since LRS is distributed according to χ2(1), its extreme value distribution is the Gumbel
distribution (Generalized Extreme Value distribution Type-I). The cumulative distribution
function of the Gumbel distribution is

F(x;μ, β) = e−e−(x−μ)/β

. (15)

Parameters μ and β depend upon the number of rules considered by the search, which in
turn depends upon the rule length and the data set and, of course, the search algorithm. Due
to their independence of the actual rule, we can compute values μ(L) and β(L) for different
rule lengths before we begin learning, using the algorithm shown in Fig. 8.

During learning we use the cumulative Gumbel distribution function to estimate Pa(ri )
for each candidate rule using the pre-computed parameters.2

Example (continued) Say that algorithm from Fig. 8 found μ(2) = 3 and β(2) = 2 (remem-
ber that rule r has two conditions). The curve with such parameters is depicted in Fig. 9a, so
the probability Pa(ri ) for the rule from our example corresponds to the shaded area right of
LRS = 7.7. Pa(r) equals approximately 0.09.

Step 3: From Pa(ri) to Psa(ri)

Ps
a (ri ) is computed by multiplying Pa(ri ) by 2. As approximately half of the hypotheses

are automatically dismissed—their LRS is set to 0, only a half of the hypotheses is covered

2 Note that using LRS at a given rule length will always order rules the same as would LRS. However, as
we will be using si /n̂i in the actual learning phase, in order to correctly estimate parameters of Gumbel
distribution, measures s/̂n and LRSi should be well correlated.
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Fig. 9 Probability density
functions. a Gumbel distribution
(μ = 3, β = 2) and b χ2 with 1
degree of freedom
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under the χ2(1) curve, and hence the tail probabilities in this curve are twice as large as
probabilities in the normal χ2(1) curve.

Example (continued) In our example Ps
a (ri ) equals 2 ∗ 0.09 = 0.18.

Step 4: From Psa(ri) to LRSi .

To compute LRSi we need to do the opposite from the second step. Looking at the χ2(1)
distribution (Fig. 9b), we need to find such a value of LRSi that the area under the curve
to the right of it will equal the computed Ps

a (ri ). In other words, the shaded area under the
curve in Fig. 9b should equal the shaded are under the curve in Fig. 9a multiplied by 2.

Example (continued) The corresponding LRSi for our examples as read from Fig. 9b is 1.82.
Note that this is much less than LRS = 7.7, which we computed directly from the data and
which would essentially be used by an unmodified rule induction algorithm.

Step 5: From LRSi to si .

The remaining task is trivial: compute si from the formula for LRSi using an arbitrary
root finding algorithm. In our task we are correcting probability estimates based on relative
frequencies, so we shall compute them by dividing the corrected si by n̂i .
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Fig. 10 Coverage space for EVC with different values of parameters in the Gumbel distribution. Labels on
isometrics correspond to corrected relative frequencies. The horizontal axis is the number of covered negative
examples, the vertical axis is the number of covered positive examples. Upper left and lower right parts are
symmetric since they correspond the cases in which one or another class contains the majority of the examples
covered by the rule. a μ = 3, β = 2 and b μ = 10, β = 2

Example (conclusion) We used Brent’s method (Atkinson 1989) to find that LRSi = 1.82
corresponds to si = 6.5. The rule covers ten examples, so the corresponding class probability
is 6.5/10 = 0.65. Note that this estimate is quite smaller than the uncorrected 0.8.

4.2 Extreme value corrected relative frequency in coverage space

Coverage space, introduced by Fürnkranz and Flach (2005), is a visualization of rule evalua-
tionmetrics and their behavior at different coverages and ratios between positive and negative
examples. The isometrics in such diagram connect different combinations of covered positive
and negative examples that are given the same quality by the selected measure.

Figure 10 shows isometrics for EVC using two different extreme value distributions.
In both cases we have 50 positive and 50 negative examples. In the left diagram we used
Gumbel with location parameter μ = 3 and in the right diagram μ was set to 10. Higher
location parameter is usually usedwhen the algorithm compared a larger number of candidate
hypotheses, thereforewe can look at the lattermetric also as one for ruleswithmore conditions
(where search was deeper), while the former (on the left) as one for rules with less conditions.

Both diagrams contain a large central space where the qualities of rules are less than
0.55. These rules have high probability of being found by chance, hence their qualities are
penalized the most. Due to the higher location parameter of EVD in the right diagram, its
central space is larger, since the probability to find by chance an equal ratio of positives
and negatives increases by extending the search. The diagrams also nicely show that rules
of different lengths and with the same covered class distribution get a different correction.
Therefore, longer rules are penalized more, as their expected optimism is higher due to a
larger search space.
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Average quality: 0.6795

Spearman correlation: 0.8926

Root mean squared error: 0.0716

Fig. 11 Relation between the corrected (y-axis) and the true (x-axis) class probability

4.3 Experiments

We have tested the algorithm on artificial data described in introduction and on a selection
of data sets from the UCI repository (Lichman 2013). In all experiments we used a modified
version of CN2 (Clark and Boswell 1991) for learning unordered rules implemented as a
component for the rule-based learner in the machine learning system Orange (Demšar et al.
2013).3

4.3.1 Artificial data set

The results of using the corrected measure on the same artificial data as in Fig. 6 are shown
in Fig. 11. For each data set, we learned a single rule with the same beam-search algorithm
and EV-corrected relative frequency. The estimated class probabilities are nicely scattered
close to the diagonal axis, which is a clear improvement in comparison with the results from
Fig. 6. This is also confirmed by the quantitative measure of fit: the average true probability
is the same as the highest values in Table 2, the root mean squared error is better than that of
m-estimates, and the Spearman coefficient is clearly superior.

4.3.2 UCI data sets

The previous experiment demonstrated favorable properties of the EVC method when com-
pared with the m-estimate on artificial data. In this section, we will observe whether we
can use EVC to improve accuracy estimations of individual rules on a set of 39 UCI data
sets (Lichman 2013).4

We compared EVCwith six other methods for evaluating rules. Rules were learned with a
modified version of CN2, where the evaluation function was replaced accordingly. Each rule
was evaluated on the full data set to enable comparison between estimated accuracies and
true accuracies. To prevent learning the same rule after removing covered examples, a rule
had to cover at least one uncovered example. We did not use any pre-pruning or post-pruning
techniques.

In the first method, m was fixed to 2, an often used value, since it resembles the Laplace
correction of probability in two-class problems. Fürnkranz (2004) experimentally showed
that a value close to 2 (1.6065) asmperforms best for evaluating individual rules. In the second

3 More details about implementation and a link to git server with source code can be found at www.ailab.si/
wiki in the Papers section.
4 See Table 6 in “Appendix Appendix B:” for the list of datasets.
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method, m was set to 22, the value determined to perform best on the UCI data sets (Janssen
and Fürnkranz 2010). The third method M(Pro) implements the idea of Domingos (1999),
who suggested a formula for selecting m value from the number of attributes in the domain
and the number of conditions in the rule: m = 1 + log(l · b · a · v), where l is the length of
the rule being evaluated, b is the beam width, a is the number of attributes in the domain
and v is the maximum number of values of any attribute. Such process-oriented selection
of m-value is in a way analogous to our approach, since the correction of the probability
depends on the number of different rules that were tested during the learning phase. In the
fourth method M(IC), we selected the “optimal” m parameter with internal-cross validation
(IC) maximizing classification accuracy of the best rule. The next method (Split) usesm = 2,
however learns only from 70% of data. The remaining 30% were used to obtain “unbiased”
class probabilities. The lastmethod uses uncorrected likelihood ratio statistics (LRS) to search
for the best rules and then calculates classification accuracy of the learned rules with relative
frequency.

The main difference between artificial and real data is, however, that the true qualities of
induced rules are unknown, therefore we need to estimate them. We separated each data set
to two equally sized sets: learning and testing set. The first one was used to learn a set of
rules that cover all examples from the learning set for each class. Then, we used the examples
from the other fold to count the number of positive and the number of all examples covered
by the induced rules. The ratio between positive examples and all examples was taken to be
the true positive class probability; although this is still only an estimate, it is unbiased, since
it is computed from the test data.

We compared methods using the same measures of fit as before: average accuracy of
individual rules, Spearman correlation between estimated and true class probability, and
root mean squared error (RMSE) of estimated probabilities given true probabilities. These
measures are complementary. RMSE (and the related Spearman correlation) may favor the
algorithms that induce rules with higher number of covered examples where the probabilities
are easier to estimate. Applying the EVC may introduce such bias and stir the algorithm
towards finding general rules ofmediocre accuracy instead of interesting specific rules of high
accuracy. Testing this directly by checking whether an algorithm finds a prescribed number
of rules above some prescribed accuracy threshold is infeasible for a general collection
of data sets without necessary domain knowledge. As a proxy, we compute the average
true accuracies of five rules with highest estimated accuracy. Averaging accuracy over all
rules would not measure the capability of the algorithm to spot the rare rules with high
accuracy, while observing only the single most accurate rule would decrease the robustness
of experiments. The threshold of five rules seems a reasonable (although arbitrary) choice in
our experimental design.

The first three rows in Table 3 show average ranks of the three measures aggregated over
39 data sets. The second three rows contain ranks of properties of learned rules: average rule
length (shorter is better), average rule coverage (higher coverage results in lower rank), and
number of induced rules (less rules is better). Table 6 in “Appendix Appendix B:” contains
RMSE values over all heuristics and all data sets. We see that the EVC has best rank in the
case of RMSE, therefore the probability estimates by our method are more accurate than
those by any m in the m-estimate measure. The average rank of EVC is 1.644, while ranks
of other estimates are 5.638 (m = 2), 3.333 (m = 22), 4.103 (Pro), 4.546 (IC), 4.575 (Split),
and 4.161 (LRS). The differences are highly significant (the Friedman test gives p < 0.001),
and the Bonferroni–Dunn test at α = 0.05 shows that EVC is significantly better than any
method we compared it with.
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Table 3 Average ranks of accuracies, RMSEs, Spearman correlations, rule lengths, rule coverages, and the
number of induced rules on 39 UCI datasets

Measure EVC M(2) M(22) M(pro) M(IC) M(Split) LRS

Accuracy 3.109 3.460 4.494 3.305 3.730 5.862 4.040

RMSE 1.644 5.638 3.333 4.103 4.546 4.575 4.161

Spearman 3.109 5.385 3.552 4.207 4.690 4.874 2.184

Rule length 2.075 4.960 4.569 4.098 5.264 3.253 3.782

Rule cov. 1.879 5.874 2.397 4.466 4.626 5.256 3.483

No. of rules 2.757 6.287 3.960 5.443 5.489 2.293 1.770

The first column contains results of learning with EVC, the next 5 are different variants of m-estimate, in
the last column, LRS was used to evaluate rules. The differences between methods are highly significant (the
Friedman test gives p < 0.001 in all three cases). The Bonferroni–Dunn post-hoc test shows that EVC has
significantly smaller RMSE when compared with other methods. In the case of Spearman, EVC does better
than other methods, but the difference between EVC and M(22) is not significant. Methods EVC and M(pro)
produce most accurate rules, closely followed by M(2)

The general differences according to Friedman are also significant in the cases of accuracy
and Spearman correlation (p < 0.001). Methods EVC, M(Pro), M(2), and M(IC) learn most
accurate rules, however the differences among these methods according to Bonferroni–Dunn
are not significant. From these results, we conclude that using EVC leads to finding rules
that are at least as accurate as rules produced by other methods, and at the same time have
significantly better estimations of classification accuracy (as implied by RMSEs).

The LRS method achieved best rank in Spearman correlation of all, followed by EVC,
and M(22). These methods produce the most reliable estimations of accuracy for ranking,
which seems to be related to the number of covered examples by rules, as the same three
methods learn rules with themost covered examples. Furthermore, since EVC enforces larger
corrections to quality estimations of longer rules, it consequently learns the shortest rules.
The number of rules produced by EVC is on average lower than the number of rules of other
m-estimate based methods. The only exceptions are M(Split), which has less examples to
learn from, and LRS.

These experiments show the main advantage of the EVC heuristics: it guides learning to
induction of rules with high accuracy, and, at the same time, the EVC’s estimates of class
probabilities, when compared with other methods, are significantly closer to their true values.

4.3.3 Rules in a global classifier

Rules are used to spot and explain local patterns. Sometimes we would like to construct a
classifier from rules, which often turns out to be problematic due to conflicts between rules
and some resolution principle needs to be applied. In the original CN2, the sum of class
distributions of rules was computed to select the most probable class for the example being
classified (Clark and Boswell 1991). However, Lindgren (2004) showed that CN2’s approach
does not handle conflicts well and suggested some alternatives.

We chose to linearly combine rules as suggested by Friedman and Popescu (2008) due
to two reasons. First, as each rule is easy to understand, so should be a linear ensemble of
these rules. Second, even though a linear model can model additive patterns in data, it fails
to model certain types of interactions between attributes and class values. A combination of
rules and linear models should thus result in more accurate models.
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We used logistic regression, one of the most common linear models for classification
problems. Each learned rule was encoded as a binary attribute with value 1 if an instance is
covered by the rule and 0 otherwise. We extended the set of rule-based attributes with the
original set of attributes, as implemented by Friedman and Popescu (2008) in their RuleFit
algorithm. They claim that using both types of attributes together might increase the accuracy
and interpretability, because it is hard to build a rule-based model where relation between
attributes and class is linear.

Amajor problem of using rules as attributes is that it inherently contains a typical example
of overfitting: we learn rules from learning data and then use the same data to infer the
parameters of rule-based attributes. Using attributes in learning that have been induced from
the same data is very problematic (Domingos 2000).

A possible solution is to learn rules and logistic regression on separate data sets, which is
viable when data is abundant. Our proposed solution works also with small data sets, hence
we need to use all data for training. To avoid overfitting, we propose to additionally penalize
coefficients for rule-based attributes, as described later on in this section.

In the case of binary response (two classes), the logistic regression model uses a logit
function to link the linear formula and probability. Let y ∈ {−1, 1} be a binary class value, x
a vector of original attributes, xi the value of ith attribute, ri (x) ∈ {0, 1} a binary rule-based
attribute, ai and bi parameters of the model, and φ(x) the logit function:

φ(x) = 1

1 + e−x
. (16)

Then, if our domain contains M original attributes and K rule-based attributes, the posterior
class probability estimated by logistic regression is:

p̂(y|x) = φ

(

a0 +
M

∑

i=1

ai xi +
K

∑

i=1

biri (x)

)

. (17)

Let e be a vector representing an example containing a constant value and all attribute
values: the original attribute values and attribute values derived from rules. If w is a vector
containing all parameters (ai and bi ), the formula simplifies to:

p̂(y|e) = φ
(

wT e
)

. (18)

A standard approach to induce the parameters w from learning data is to minimize the
log-likelihood function. In the case of the L2-regularized logistic regression, the loss function
is the penalized negative log-likelihood function:

L(w) = −
n

∑

i=1

log
(

φ
(

yiw
T ei

))

+ λ

2
wTw, (19)

where n is the number of all learning examples and λ is the penalty factor. The gradient of
the loss function is

∇wL(w) =
n

∑

i=1

yi ei
(

φ
(

yiw
T ei

)

− 1
)

+ λw. (20)

To find the minimum of (20), we used the trust region Newton optimization method (Lin
et al. 2008), which is the same as the algorithm used in the LIBLINEAR package (Fan et al.
2008).
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As previously mentioned, we suggest to impose an additional penalty term for rule-based
attributes to prevent ovefitting that stems from using the data twice, first to learn attributes
and then to learn weights for these attributes:

L(w) = −
n

∑

i=1

log
(

φ
(

yiw
T ei

))

+ λ

2
wTw + γ T |b|. (21)

A single value γk in the γ vector should be assigned the value which prevents logistic
regression optimizer from overfitting to instances covered by the kth rule. We can use EV-
corrected accuracy qk of the kth rule to compute γk . A corrected classification accuracy of a
rule specifies the class probability among examples covered by the rule, therefore the average
predicted class probability on these instances should not exceed the probability estimated
by EVC. If the gradient ∂L(w)/∂bk was 0 when predicted probabilities p̂(y|e) of instances
covered by rule rk equal the rule classification accuracy qk , this would prevent the logistic
regression optimizer to increase the parameter bk after reaching average predicted probability
qk for these examples.

Let qk be the accuracy of kth rule, nk the number of covered instances by the rule and sk
the number of covered positive instances. To implement the idea from the above paragraph,
γk needs to be set as γk = −∂L(w)/∂bk when predicted probabilities on covered examples
equal qk . This, after some basic algebra, simplifies to:

γk = sk − qknk (22)

If the measure for rule classification accuracy contains no penalty, say relative frequency
qk = sk/nk , the additional penalty in logistic regression will be 0. When some penalty is
introduced and the difference between gk and sk/nk increases, γk will also increase.

Tables 4 and 7 (the latter in “Appendix Appendix B:”) contain results of 6 methods
tested on 31 UCI domains with a binary class that were evaluated with four score functions:
classification accuracy (CA), area under curve (AUC), Brier score, and the logarithmic loss
(LogLoss). Rules were learned with the same learner as in the previous section. The methods
are:

LR is the logistic regression learned from the original set of attributes.
LRR-EVC is the logistic regression learned from rule-based attributes and original set

of attributes. EVC was used to learn rules. This method does not additionally
penalize rule-based attributes, which is the same as in the RuleFit algorithm.

LRRP-EVC is the same as LRR-EVC with additional penalty in the log-likelihood loss
function, as described in Eq. (21). Comparing LRRP-EVC to LRR-EVC will
show whether additional penalties are useful or not.

LRRP-M2 is the same as LRRP-EVC, however with m-estimate (m = 2) instead of EVC
in rule learning. Both, m = 2 and EVC lead to accurate rules (see previous
section). Comparing this method and LRRP-EVC will show whether m = 2
estimations can also be used to infer penalty.

LRRS-EVC splits the learning data into two equal data sets. The first half is used to learn
rules, the second to learn parameters of logistic regression. Comparing LRRP-
EVC to LRRS-EVC and to the following method will answer whether is
it better to additionally penalize logistic regression or simply learn logistic
regression on a separate data set.

LRRS-M22 is the same as LRRS-EVC, but m-estimate with m = 22 was used in rule
learning. We decided to use m = 22, because this value seemed to perform
well on UCI domains in previous experiments (Janssen and Fürnkranz 2010).
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Table 4 Average ranks of several variants of logistic regression on 31 UCI data sets with binary class. Rows
correspond to different score functions

Measure LR LRR-EVC LRRP-EVC LRRS-EVC LRRP-M2 LRRS-M22

CA 3.081 3.613 2.468 4.049 4.032 3.758

AUC 3.323 3.419 2.468 4.290 3.581 3.919

Brier 3.097 4.065 2.229 4.016 3.742 3.855

LogLoss 3.048 4.161 2.145 4.000 3.774 3.871

Fig. 12 Critical differences for the LogLoss measure fromTable 4.We used Bonferroni–Dunn test at α = 0.05

The λ of the L2-regularization term in the LR method was selected for each data set with an
internal cross-validation procedure. The remaining 5 methods used the same λ as LR.

The average ranks of results are given in Table 4, the corresponding critical differences are
visualized in Fig. 12. According to all scores, the LRRP-EVC (logistic regression with rules
and EVC and additional penalty) performs best, followed by the simple logistic regression
without rules (LR). According to Friedman test, the differences between ranks are significant
for all measures (p < 0.01), and Bonferroni–Dunn test at α = 0.05 shows that LRRP-
EVC is significantly better in the case of Brier and LogLoss than any other combination
of logistic regression and rules. The difference between LR and LRRP-EVC is, however,
not significant. Table 7 in “Appendix” contains per data set results of AUC and provides
additional explanation why and when LRRP-EVC is better than LR.

The difference between LRRP-EVC and LRR-EVC supports our initial conjecture that
learning rules and logistic regression parameters on the same data leads to overfitting and
warrants the use of penalty in Eq. (21). Furthermore, as LRRP-EVC is significantly better
than LRRP-M2, the EVC heuristic seems to bemore appropriate thanm-estimate for learning
rules that are to be used as attributes. LRRP-EVC is also significantly better than LRRS-EVC
and LRRS-M22, even when learning on separate data sets is theoretically correct, because
the data sets were not large enough to enable splitting. Finally, the average ranks of LRRP-
EVC are better than the ranks of LR, however according to the Bonferroni–Dunn test, the
differences are not significant. From the Table 7, that contains AUC’s case by case, we can
observe that in most cases (24 out of 31) the difference betweenmethods is negligible (within
1%). In the other 7 domains, adding rules to themodel notably helps, since average difference
in AUC between methods is approximately 7%. It is therefore likely that in the 24 domains
the original set of attributes is sufficient and new derived attributes are not needed, while they
are needed in the remaining 7.

The above experiment showed that imposing penalty based on corrected accuracies
improves the accuracy of a global classifier, when everything else remains the same. In
Table 5, we present the results of a comparison of our algorithm LRRP-EVC and LRRP-
EVC(R), the latter using only rule-based attributes, to a selected set of state-of-the art rule
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Table 5 A comparison of LRRP-EVC to some other state-of-the art rule-learning algorithms. LRRP-EVC
uses rules and linear factors, while LRRP-EVC(R) uses only rule-based attributes

Measure LRRP-EVC LRRP-EVC (R) RuleFit MLRules CN2 JRip

CA 2.017 3.983 2.833 2.700 4.733 4.733

AUC 1.433 3.033 2.367 4.867 3.567 5.733

LogLoss 1.267 2.467 3.233 5.200 3.033 5.800

learning algorithms. The first selected algorithm is the RuleFit (Friedman and Popescu 2008)
algorithm, since our method is based on this algorithm. We used the RuleFit3 version with
the default values of parameters, where rules and linear factors are combined, rules are gener-
ated from a decision tree ensemble and Lasso penalty is used to prevent overfitting. A similar
approach that also builds a linear model of rules by minimizing the negative likelihood is
MLRules (Dembczynski et al. 2008), a specific version of the ENDER algorithm (Dem-
bczynski et al. 2010). MLRules incrementally generates one rule at a time, where each rule
minimizes the error of the global model. The parameters of MLRules were set as suggested
in their original paper. Finally, we compare our algorithm with the Orange implementation
of the unordered CN2 algorithm (Clark and Boswell 1991) and JRip, aWeka implementation
of the Ripper algorithm (Cohen 1995).

In terms of classification accuracy, LRRP-EVC achieved the best rank among all meth-
ods, MLRules was second, RuleFit third, LRRP-EVC(R) fourth, followed by CN2 and JRip.
According to Bonferroni–Dunn test at α = 0.05, the differences between LRRP-EVC,
MLRules, and RuleFit are not significant. The difference between LRRP-EVC and Rule-
Fit is also not significant in AUC and LogLoss cases, although LRRP-EVC did achieve
better average ranks. As LRRP-EVC and RuleFit are similar algorithms and use the same
attributes (rules and linear factors), the additional penalty in LRRP-EVC is probably the
reason for the difference. Furthermore, LRRP-EVC(R) with only rule-based attributes per-
formed worse than LRRP-EVC, RuleFit and MLRules. This result shows that adding linear
factors is indeed useful. MLRules, however, can achieve good results even without linear
factors. We suppose that the strategy of MLRules, where rules are generated to decrease the
error of the global model, will induce such rules that can substitute linear factors.

5 Conclusion

We presented a general procedure for correcting the overly optimistic estimates of qualities
of hypotheses induced by machine learning. While the general principle is simple enough
and directly applicable to toy learning algorithms like classification by the value of a single
attribute, its practical application to the real-world machine learning algorithms may require
a few technical tricks. For a case study, we demonstrated a corrected version of the standard
rule learning algorithmCN2. The results on artificial data constructed specifically for proving
the correctness of the approach are excellent. The experiments on the real-world and artificial
examples from the UCI confirmed the enhanced performance of the algorithm with respect
to the root mean squared error of the predicted probability and accuracy of the induced
rules. For the final test, we implemented a global classifier based on logistic regression
using rules as features and demonstrated the importance of EVC estimates in the process
of fitting the parameters of the logistic model. Using m-estimate instead or even neglecting
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correction of accuracies altogether lead to significantly worse classification models in terms
of classification accuracy, area under curve, Brier score, and logarithmic loss.

The general correction procedure assumes that optimism of the method can be estimated
with randomization. The open question is whether techniques such as bootstrapping could
be used to estimate the optimism on the learn data itself, as such method would avoid the
difference between optimism on random data and on the actual data itself. This question
points to one possible direction for further work on correction methods.

Acknowledgements This work was partly supported by the Slovene Agency for Research and Development
(ARRS).

Appendix A: Computing parameters of extreme-value distribution

Section 4.1 describes an algorithm for computing extreme distributions of rules learned from
random data which involves calculating the parameters of extreme value distribution for a
vector of maxima of evaluations of rules distributed by χ2 with 1 degree of freedom. The
limiting distribution of all χ2 distributions is Gumbel distribution (Fisher and Tippett 1928;
Gumbel 1954; Gumbel and Lieblein 1954). The cumulative distribution function of this
distribution is

P(x < x0) = e−e
μ−x0

β
, (23)

where μ and β are parameters of the distribution. Distribution’s mean, median, and variance
are

mean = μ + βγ, median = μ − β ln ln 2, var = π2β2/6, (24)

where γ is Euler-Mascheroni constant 0.57721. The natural way to compute the parameters
μ and β from the sample would be to first estimate the variance from the data and use it to
compute β, followed by the estimation of μ from the sample’s mean or median. However,
error of estimation of variance and mean propagates to estimations of parameters μ and β,
where variance is a bigger problem than mean, as it is used for estimation of both parameters.

Gupta (1960) showed that for p independent and identically distributed values taken from
χ2 with one degree of freedom, where p is large, the following properties holds for their
maxima M :

E(M) = 2 ln p − ln ln p − ln π + 2γ (25)

m(M) = 2 ln p − ln ln p − ln π − 2 ln ln 2 (26)

σ(M) =
√

2/3π2 (27)

Since σ(M) is independent of the number of values (or the number of considered rules, in our
case), combining Eqs. (24) and (27) gives β = 2.We thus only need to estimate the remaining
parameter μ. In our algorithm we computed the median from the vector of maximum values,
so μ equals the median plus 2 ln ln 2.

Appendix B: Experimental results on UCI domains

See Tables 6 and 7.
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Table 7 Area under curve (AUC) values for 6 methods on 31 UCI domains

Measure LR LRR-EVC LRRP-EVC LRRS-EVC LRRP-M2 LRRS-M22

Abalone 0.874 0.846 0.878 0.870 0.844 0.871

Adult 0.877 0.856 0.878 0.872 0.848 0.865

Auto-mpg 0.971 0.978 0.975 0.975 0.977 0.976

Breast-cancer 0.694 0.688 0.694 0.680 0.674 0.677

Breast-wis 0.995 0.990 0.995 0.992 0.992 0.992

Bupa 0.709 0.734 0.742 0.712 0.767 0.742

Chronic-kidney 0.998 1.000 0.998 0.999 0.999 0.999

Coil 0.698 0.659 0.703 0.689 0.636 0.668

Crx 0.925 0.916 0.936 0.927 0.916 0.923

Galaxy 0.994 0.984 0.995 0.987 0.990 0.987

Heart-disease 0.903 0.891 0.904 0.891 0.883 0.896

Hepatitis 0.850 0.825 0.847 0.820 0.818 0.821

Housing 0.929 0.929 0.934 0.927 0.933 0.931

Imports-85 0.973 0.970 0.973 0.972 0.972 0.970

Indian 0.752 0.710 0.740 0.731 0.710 0.736

Ionosphere 0.873 0.961 0.955 0.954 0.963 0.954

Monks-1 0.720 1.000 1.000 1.000 1.000 1.000

Monks-2 0.547 0.679 0.633 0.658 0.742 0.817

Monks-3 0.986 0.990 0.987 0.986 0.987 0.982

Parkinsons 0.896 0.919 0.917 0.896 0.935 0.907

Pima-indians 0.826 0.801 0.822 0.817 0.778 0.817

Pop-failures 0.942 0.912 0.943 0.921 0.880 0.906

Promoters 0.970 0.981 0.970 0.956 0.970 0.961

Prostate 0.850 0.821 0.842 0.834 0.822 0.838

Servo 0.985 0.985 0.985 0.970 0.985 0.970

Shuttle-landing 0.997 0.998 0.997 0.994 0.997 0.994

Thoraric 0.645 0.619 0.641 0.589 0.627 0.603

Tic-tac-toe 0.996 1.000 0.996 1.000 0.997 0.999

Titanic 0.752 0.768 0.765 0.765 0.768 0.766

Voting 0.989 0.990 0.991 0.989 0.992 0.988

Wdbc 0.990 0.992 0.991 0.989 0.993 0.991

The LRRP-EVC outperforms other methods, however it is not significantly better than LR (see Table 4).
Comparing these two methods case by case reveals that in most cases (24 out of 31) the difference between
LRRP-EVC and LR is negligible (within 1%). Otherwise rules help significantly, as the average difference on
the remaining 7 data sets is approximately 7%. In those cases, the original set of attributes was insufficient
and needed to be extended
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toolbox in Python. Journal of Machine Learning Research, 14, 2349–2353.
Domingos, P. (1999). Process-oriented estimation of generalization error. In Proceedings of the 16th interna-

tional joint conference on artificial intelligence (IJCAI’99) (pp. 714–719).
Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. In Proceedings of the 17th

international conference on machine learning (ICML’00) (pp. 223–230).
Dunning, T. E. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Lin-

guistics, 19(1), 61–74.
Džeroski, S., Cestnik, B., & Petrovski, I. (1993). Using the m-estimate in rule induction. Journal of Computing

and Information Technology, 1(1), 37–46.
Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008). LIBLINEAR: A library for large

linear classification. Journal of Machine Learning Research, 9, 1871–1874.
Fisher, R., & Tippett, L. (1928). Limiting forms of the frequency distribution of the largest or smallest member

of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180–190.
Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied

Statistics, 2(3), 916–954.
Fürnkranz, J. (2004). From local to global patterns: Evaluation issues in rule learning algorithms. In Local

pattern detection, International Seminar (pp. 20–38). Dagstuhl Castle, Germany.
Fürnkranz, J., & Flach, P. A. (2005). ROC ’n’ Rule learning—Towards a better understanding of covering

algorithms. Machine Learning, 58(1), 39–77.
Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications. National Bureau

of Standards Applied Mathematics Series (US Government Printing Office) (p. 33).
Gumbel, E. J., & Lieblein, J. (1954). Some applications of extreme-value models. American Statistician, 8(5),

14–17.
Gupta, S. S. (1960). Order statistics from the Gamma distribution. Technometrics, 2, 243–262.
Hanhijärvi, S. (2011).Multiple hypothesis testing in pattern discovery. InProceedings of the 14th international

conference on discovery science (DS’11) (pp. 122–134).
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer.
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800–

803.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,

6, 65–70.
Janssen, F., & Fürnkranz, J. (2010). On the quest for optimal rule learning heuristics.Machine Learning, 78(3),

343–379.
Jensen, D. D., &Cohen, P. R. (2000).Multiple comparisons in induction algorithms.Machine Learning, 38(3),

309–338.
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