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Abstract
Feature selection is a dimensionality reduction technique that helps to improve data visual-
ization, simplify learning, and enhance the efficiency of learning algorithms. The existing
redundancy-based approach, which relies on relevance and redundancy criteria, does not
account for feature complementarity.Complementarity implies information synergy, inwhich
additional class information becomes available due to feature interaction. We propose a
novel filter-based approach to feature selection that explicitly characterizes and uses feature
complementarity in the search process. Using theories from multi-objective optimization,
the proposed heuristic penalizes redundancy and rewards complementarity, thus improving
over the redundancy-based approach that penalizes all feature dependencies. Our proposed
heuristic uses an adaptive cost function that uses redundancy–complementarity ratio to auto-
matically update the trade-off rule between relevance, redundancy, and complementarity. We
show that this adaptive approach outperforms many existing feature selection methods using
benchmark datasets.

Keywords Dimensionality reduction · Feature selection · Classification · Feature
complementarity · Adaptive heuristic

1 Introduction

Learning from data is one of the central goals of machine learning research. Statistical and
data-mining communities have long focused on building simpler and more interpretable
models for prediction and understanding of data. However, high dimensional data present
unique computational challenges such as model over-fitting, computational intractability,
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and poor prediction. Feature selection is a dimensionality reduction technique that helps to
simplify learning, reduce cost, and improve data interpretability.

Existing approaches Over the years, feature selection methods have evolved from sim-
plest univariate ranking algorithms to more sophisticated relevance-redundancy trade-off
to interaction-based approach in recent times. Univariate feature ranking (Lewis 1992) is a
feature selection approach that ranks features based on relevance and ignores redundancy. As
a result, when features are interdependent, the ranking approach leads to sub-optimal results
(Brown et al. 2012). Redundancy-based approach improves over the ranking approach by
considering both relevance and redundancy in the feature selection process. A wide variety
of feature selection methods are based on relevance-redundancy trade-off (Battiti 1994; Hall
2000; Yu and Liu 2004; Peng et al. 2005; Ding and Peng 2005; Senawi et al. 2017). Their
goal is to find an optimal subset of features that produces maximum relevance and minimum
redundancy.

Complementarity-based feature selection methods emerged as an alternative approach
to account for feature complementarity in the selection process. Complementarity can be
described as a phenomenon in which two features together provide more information about
the target variable than the sum of their individual information (information synergy). Sev-
eral complementarity-based methods are proposed in the literature (Yang and Moody 1999,
2000; Zhao and Liu 2007; Meyer et al. 2008; Bontempi and Meyer 2010; Zeng et al. 2015;
Chernbumroong et al. 2015). Yang and Moody (1999) and later Meyer et al. (2008) propose
an interactive sequential feature selection method, known as joint mutual information (JMI),
which selects a candidate feature that maximizes relevance and complementarity simulta-
neously. They conclude that JMI approach provides the best trade-off in terms of accuracy,
stability, and flexibility with small data samples.

Limitations of the existing methods Clearly, redundancy-based approach is less efficient than
complementarity-based approach as it does not account for feature complementarity. How-
ever, the main criticism of redundancy-based approach is with regard to how redundancy
is formalized and measured. Correlation is the most common way to measure redundancy
between features, which implicitly assumes that all correlated features are redundant. How-
ever, Guyon and Elisseeff (2003), Gheyas and Smith (2010) andBrown et al. (2012) show that
this is an incorrect assumption; correlation does not imply redundancy, nor absence of com-
plementarity. This is evident in Figs. 1 and 2, which present a 2-class classification problem
(denoted by star and circle) with two continuous features X1 and X2. The projections on the
axis denote the relevance of each respective feature. In Fig. 1, X1 and X2 are perfectly corre-
lated, and indeed redundant. Having both X1 and X2 leads to no significant improvement in
class separation compared to having either X1 or X2. However, in Fig. 2, a perfect separation
is achieved by X1 and X2 together, although they are (negatively) correlated (within each
class), and have identical relevance as in Fig. 1. This shows that while generic dependency
is undesirable, dependency that conveys class information is useful. Whether two interacting
features are redundant or complimentary depends on the relative magnitude of their class
conditional dependency in comparison to their unconditional dependency. However, in the
redundancy-based approach, it only focuses on unconditional dependency, and try to mini-
mize it without exploring whether such dependencies lead to information gain or loss.

Although complementarity-based approach overcomes some of the drawbacks of redun-
dancy based approach, it has limitations, too. Most of the existing complementarity-based
feature selection methods either adopt a sequential feature selection approach or evaluate
subsets of a given size. Sequential feature selection method raises a few important issues.
First, Zhang and Zhang (2012) show that sequential selection methods suffer from initial
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Fig. 1 Perfectly correlated and
redundant

Fig. 2 Features are
negatively-correlated within
class, yet provide perfect
separation

selection bias, i.e., the feature selected in the earlier steps govern acceptance or rejection of
the subsequent features at each iteration and not vice versa. Second, it requires a priori knowl-
edge of the desired number of features to be selected or some stopping criterion, which is
usually determined by expert information or some technical considerations such as scalability
or computation time. In many practical situations, it is difficult to get such prior knowledge.
Moreover, in many cases, we are interested in finding an optimal feature subset that gives
maximum predictive accuracy for a given task, and we are not really concerned about their
ranking or the size of the optimal subset. Third, most of the existing methods combine the
redundancy and complementarity and consider the net or aggregate effect in the search pro-
cess (note that complementarity has the opposite sign of redundancy). Bontempi and Meyer
(2010) refer to this aggregate approach as ‘implicit’ consideration of complementarity.

Our approach In this paper, we propose a filter-based feature subset selection method based
on relevance, redundancy, and complementarity. Unlike most of the existing methods, which
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focus on feature ranking or compare subsets of a given size, our goal is to select an optimal
subset of features that predicts well. This is useful in many situations, where no prior expert
knowledge is available regarding size of an optimal subset or the goal is simply to find an
optimal subset. Using a multi-objective optimization (MOO) technique and an adaptive cost
function, the proposed method aims to (1) maximize relevance, (2) minimize redundancy,
and (3) maximize complementarity, while keeping the subset size as small as possible.

The term ‘adaptive’ implies that our proposed method adaptively determines the trade-
off between relevance, redundancy, and complementarity based on subset properties. An
adaptive approach helps to overcome the limitations of a fixed policy that fails to model the
trade-off between competing objectives appropriately in a MOO problem. Such an adaptive
approach is new to feature selection and essentially mimics a feature feedback mechanism
in which the trade-off rule is a function of the objective values. The proposed cost function
is also flexible in that it does not assume any particular functional form or rely on concavity
assumption, and uses implicit utility maximization principles (Roy 1971; Rosenthal 1985).

Unlike some of the complementarity-based methods, which consider the net (aggre-
gate) effect of redundancy and complementarity, we consider ‘redundancy minimization’
and ‘complementarity maximization’ as two separate objectives in the optimization pro-
cess. This allows us the flexibility to apply different weights (preference) to redundancy and
complementarity and control their relative importance adaptively during the search process.
Using best-first as search strategy, the proposed heuristic offers a “best compromise” solution
(more likely to avoid local optimum due to interactively determined gradient), if not the “best
solution (in the sense of optimum)” (Saska 1968), which is sufficiently good in most prac-
tical scenarios. Using benchmark datasets, we show empirically that our adaptive heuristic
not only outperforms many redundancy-based methods, but is also competitive amongst the
existing complementarity-based methods.

Structure of the paper The rest of the paper is organized as follows. Section2 presents the
information-theoretic definitions and the concepts of relevance, redundancy, and comple-
mentarity. In Sect. 3, we present the existing feature selection methods, and discuss their
strengths and limitations. In Sect. 4, we describe the proposed heuristic, and its theoretical
motivation. In this section, we also discuss the limitations of our heuristic, and carry out sen-
sitivity analysis. Section 5 presents the algorithm for our proposed heuristic, and evaluates
its time complexity. In Sect. 6, we assess the performance of the heuristic on two synthetic
datasets. In Sect. 7, we validate our heuristic using real data sets, and present the experimental
results. In Sect. 8, we summarize and conclude.

2 Information theory: definitions and concepts

First, we provide the necessary definitions in information theory (Cover and Thomas 2006)
and then discuss the existing notions of relevance, redundancy, and complementarity.

2.1 Definitions

Suppose, X and Y are discrete random variables with finite state spaces X and Y , respec-
tively. Let pX ,Y denote the joint probability mass function (PMF) of X and Y , with marginal
PMFs pX and pY .
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Definition 1 (Entropy) Entropy of X , denoted by H(X), is defined as follows: H(X) =
− ∑

x∈X
pX (x) log(pX (x)). Entropy is a measure of uncertainty in PMF pX of X .

Definition 2 (Joint entropy) Joint entropy of X and Y , denoted by H(X , Y ), is defined as
follows: H(X , Y ) = − ∑

x∈X
∑

y∈Y
pX ,Y (x, y) log(pX ,Y (x, y)). Joint entropy is a measure of

uncertainty in the joint PMF pX ,Y of X and Y .

Definition 3 (Conditional entropy) Conditional entropy of X given Y , denoted by H(X |Y ),
is defined as follows: H(X |Y ) = − ∑

x∈X
∑

y∈Y
pX ,Y (x, y) log(pX |y(x)), where pX |y(x) is the

conditional PMF of X given Y = y. Conditional entropy H(X |Y ) measures the remaining
uncertainty in X given the knowledge of Y .

Definition 4 (Mutual information (MI)) Mutual information between X and Y , denoted by
I (X; Y ), is defined as follows: I (X; Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X) . Mutual
information measures the amount of dependence between X and Y . It is non-negative, sym-
metric, and is equal to zero iff X and Y are independent.

Definition 5 (Conditional mutual information) Conditional mutual information between X
and Y given another discrete random variable Z , denoted by I (X; Y |Z), is defined as follows:
I (X; Y |Z) = H(X |Z)− H(X |Y , Z) = H(Y |Z)− H(Y |X , Z). It measures the conditional
dependence between X and Y given Z .

Definition 6 (Interaction information) Interaction information (McGill 1954;Matsuda 2000;
Yeung 1991) among X ,Y , and Z , denoted by I (X; Y ; Z), is defined as follows: I (X; Y ; Z) =
I (X; Y ) − I (X; Y |Z).1 Interaction information measures the change in the degree of asso-
ciation between two random variables by holding one of the interacting variables constant.
It can be positive, negative, or zero depending on the relative order of magnitude of I (X; Y )

and I (X; Y |Z). Interaction information is symmetric (order independent). More generally,
the interaction information among a set of n random variables X = {X1, X2, . . . , Xn}, is
given by I (X1; X2; . . . ; Xn) = − ∑

S∈X′
(−1)|S|H(S) where, X′ is the superset of X and

∑

denotes the sum over all subsets S of the superset X′ (Abramson 1963). Should it be zero,
we say that features do not interact ‘altogether’ (Kojadinovic 2005).

Definition 7 (Multivariate mutual information) Multivariate mutual information (Kojadi-
novic 2005; Matsuda 2000) between a set of n features X = {X1, X2, . . . , Xn} and Y ,
denoted as follows: I (X; Y ), is defined by I (X; Y ) = ∑

i
I (Xi ; Y ) − ∑

i< j
I (Xi ; X j ; Y ) +

· · · + (−1)n+1 I (X1; . . . ; Xn; Y ). This is the möbius representation of multivariate mutual
information based on set theory. Multivariate mutual information measures the information
that X contains about Y and can be seen as a series of alternative inclusion and exclusion of
higher-order terms that represent the simultaneous interaction of several variables.

1 In our paper, we use I (X; Y ; Z) = I (X; Y ) − I (X; Y |Z) as interaction information that uses the sign
convention consistent with the measure theory and is used by several authors Meyer and Bontempi (2006),
Meyer et al. (2008) and Bontempi and Meyer (2010). Jakulin and Bratko (2004) defines I (X; Y ; Z) =
I (X; Y |Z)− I (X; Y ) as interaction information, which has opposite signs for odd number of randomvariables.
Either formulation measures the same aspect of feature interaction (Krippendorff 2009). The sign convention
used in this paper corresponds to the common area of overlap in the information diagram and does not impact
the heuristic as we deal with absolute value of the interaction information.
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Fig. 3 Venn diagram showing the
interaction between features F1,
F2, and class Y

Definition 8 (Symmetric uncertainty) Symmetric uncertainty (Witten et al. 2016) between
X and Y , denoted by SU (X , Y ), is defined as follows: SU (X , Y ) = 2 I (X;Y )

H(X)+H(Y )
. Symmetric

uncertainty is a normalized version of MI in the range [0, 1]. Symmetric uncertainty can
compensate for MI’s bias towards features with more values.

Definition 9 (Conditional symmetric uncertainty) Conditional symmetric uncertainty
between X and Y given Z , denoted by SU (X , Y |Z), is defined as follows: SU (X , Y |Z) =

2 I (X;Y |Z)
H(X |Z)+H(Y |Z)

. SU (X , Y |Z) is a normalized version of conditional mutual information
I (X; Y |Z).

FromDefinitions 8 and 9, the symmetric uncertainty equivalent of interaction information
can be expressed as follows: SU (X , Y , Z) = SU (X , Y ) − SU (X , Y |Z). Using the above
notations, we can formulate the feature selection problem as follows: Given a set of n features
F = {Fi }i∈{1,..., n}, the goal of feature selection to select a subset of features FS = {Fi : i ∈
S}, S ⊆ {1, 2, . . . , n} such that FS = argmax

S
I (FS; Y ), where I (FS; Y ) denotes mutual

information between FS and the class variable Y . For tractability reasons and unless there
is strong evidence for the existence of higher-order interaction, the correction terms beyond
3-way interaction are generally ignored in the estimation of multivariate mutual information.
In this paper, we will use

I (FS; Y ) ≈
∑

i∈S
I (Fi ; Y ) −

∑

i, j∈S,i< j

I (Fi ; Fj ; Y ) (1)

where I (Fi ; Fj ; Y ) is the 3-way interaction term between Fi , Fj , and Y . The proof of Eq. 1
for a 3-variable case can be shown easily using Venn diagram shown in Fig. 3. The n variable
case can be shown by recursive computation of the 3-variable case.

I (F1, F2; Y ) = I (F1; Y ) + I (F2; Y |F1)
= I (F1; Y ) + I (F2; Y ) − I (F1; F2; Y )

(2)
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Fig. 4 X2 is individually
irrelevant but improves the
separability of X1

Fig. 5 Both individually
irrelevant features become
relevant together

2.2 Relevance

Relevance of a feature signifies its explanatory power, and is a measure of feature worthiness.
A feature can be relevant individually or together with other variables if it carries information
about the class Y . It is also possible that an individually relevant feature becomes relevant or a
relevant feature becomes irrelevant when other features are present. This can be shown using
Figs. 4 and 5, which present a 2-class classification problem (denoted by star and circle) with
two continuous features X1 and X2. The projections of the class on each axis denotes each
feature’s individual relevance. In Fig. 4, X2, which is individually irrelevant (uninformative),
becomes relevant in the presence of X1 and together improve the class separation that is
otherwise achievable by X1 alone. In Fig. 5, both X1 and X2 are individually irrelevant, how-
ever provide a perfect separation when present together (“chessboard problem,” analogous to
XOR problem). Thus relevance of a feature is context dependent (Guyon and Elisseeff 2003).
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Using information-theoretic framework, a feature Fi is said to be unconditionally relevant
to the class variable Y if I (Fi ; Y ) > 0, and irrelevant if I (Fi ; Y ) = 0. When evaluated in the
context of other features, we call Fi to be conditionally relevant if I (Fi ; Y |FS−i ) > 0, where
FS−i = FS \ Fi . There are several other probabilistic definitions of relevance available in the
literature. Most notably, Kohavi and John (1997) formalize relevance in terms of an optimal
Bayes classifier and propose 2◦ of relevance—strong and weak. Strongly relevant features
are those that bring unique information about the class variable and can not be replaced by
other features. Weakly relevant features are relevant but not unique in the sense that they can
be replaced by other features. An irrelevant feature is one that is neither strong nor weakly
relevant.

2.3 Redundancy

The concept of redundancy is associated with the degree of dependency between two or more
features. Two variables are said to be redundant, if they share common information about each
other. This is the general dependency measured by I (Fi ; Fj ). McGill (1954) and Jakulin and
Bratko (2003) formalize this notion of redundancy as multi-information or total correlation.
The multi-information between a set of n features {F1, . . . , Fn} is given by R(F1, . . . , Fn) =
n∑

i=1
H(Fi ) − H(F1, . . . , Fn). For n = 2, R(F1, F2) = H(F1) + H(F2) − H(F1, F2) =

I (F1; F2). This measure of redundancy is non-linear, non-negative and non-decreasing with
the number of features. In the context of feature election, it is often of interest to knowwhether
two features are redundant with respect to the class variable, more than whether they are
mutually redundant. Two features Fi and Fj are said to be redundant with respect to the class
variableY , if I (Fi , Fj ; Y ) < I (Fi ; Y )+ I (Fj ; Y ). FromEq. 2, it follows I (Fi ; Fj ; Y ) > 0 or
I (Fi ; Fj ) > I (Fi ; Fj |Y ). Thus two features are redundant with respect to the class variable
if their unconditional dependency exceeds their class-conditional dependency.

2.4 Complementarity

Complementarity, known as information synergy, is the beneficial effect of feature interaction
where two features together provide more information than the sum of their individual infor-
mation. Two features Fi and Fj are said to be complementarywith respect to the class variable
Y if I (Fi , Fj ; Y ) > I (Fi ; Y ) + I (Fj ; Y ), or equivalently, I (Fi ; Fj ) < I (Fi ; Fj |Y ). Com-
plementarity is negative interaction information. While generic dependency is undesirable,
the dependency that conveys class information is good. Different researchers have explained
complementarity from different perspectives. Vergara and Estévez (2014) define complemen-
tarity in terms of the degree of interaction between an individual feature Fi and the selected
feature subset FS given the class Y , i.e., I (Fi , FS |Y ). Brown et al. (2012) provide similar
definition to complementarity but call it conditional redundancy. They come to the similar
conclusion as (Guyon and Elisseeff 2003): ‘the inclusion of the correlated features can be
useful, provided the correlation within the class is stronger than the overall correlation.’

3 Related literature

In this section,we reviewfilter-based feature selectionmethods,whichuse informationgain as
a measure of dependence. In terms of evaluation strategy, filter-basedmethods can be broadly
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classified into (1) redundancy-based approach, and (2) complementarity-based approach
depending on whether or not they account for feature complementarity in the selection pro-
cess. Brown et al. (2012) however show that both these approaches can be subsumed in amore
general, unifying theoretical framework known as conditional likelihood maximization.

3.1 Redundancy-basedmethods

Most feature selection algorithms in the 1990s and early 2000 focus on relevance and redun-
dancy to obtain the optimal subset. Notable amongst them are (1) mutual information based
feature selection (MIFS) (Battiti 1994), (2) correlation based feature selection (CFS) (Hall
2000), (3) minimum redundancy maximum relevance (mRMR) (Peng et al. 2005), (4) fast
correlation based filter (FCBF) (Yu and Liu 2003), (5) ReliefF (Kononenko 1994), and (6)
conditional mutual information maximization (CMIM) (Fleuret 2004; Wang and Lochovsky
2004). With some variation, their main goal is to maximize relevance and minimize redun-
dancy. Of these methods, MIFS, FCBF, ReliefF, and CMIM are potentially feature ranking
algorithms. They rank the features based on certain informationmaximization criterion (Duch
2006) and select the top k features, where k is decided a priori based on expert knowledge
or technical considerations.

MIFS is a sequential feature selection algorithm, inwhich a candidate feature Fi is selected
that maximizes the conditional mutual information I (Fi ; Y |FS). Battiti (1994) approximates
this MI by I (Fi ; Y |FS) = I (Fi ; Y ) − β

∑
Fj∈FS I (Fi ; Fj ), where, FS is an already selected

feature subset, and β ∈ [0, 1] is a user-defined parameter that controls the redundancy. For
β = 0, it reduces to a ranking algorithm. Battiti (1994) finds β ∈ [0.5, 1] is appropriate
for many classification tasks. Kwak and Choi (2002) show that when β = 1, MIFS method
penalizes redundancy too strongly, and for this reason does not work well for non-linear
dependence.

CMIM implements an idea similar to MIFS, but differs in the way in which I (Fi ; Y |FS)

is estimated. CMIM selects the candidate feature Fi that maximizes min
Fj∈FS

I(Fi ; Y |Fj ). Both

MIFS and CMIM are incremental forward search methods, and they suffer from initial selec-
tion bias (Zhang and Zhang 2012). For example, if {F1, F2} is the selected subset and {F3, F4}
is the candidate subset, the CMIM selects F3 if I (F3; Y |{F1, F2}) > I (F4; Y |{F1, F2}) and
the new optimal subset becomes {F1, F2, F3}. The incremental search only evaluates the
redundancy between the candidate feature F3 and {F1, F2} i.e. I (F3; Y |{F1, F2}) and never
considers the redundancy between F1 and {F2, F3} i.e. I (F1; Y |{F2, F3}).

CFS and mRMR are both subset selection algorithms, which evaluate a subset of features
using an implicit cost function that simultaneously maximizes relevance and minimizes
redundancy. CFS evaluates a subset of features based on pairwise correlation measures,
in which correlation is used as a generic measure of dependence. CFS uses the following
heuristic to evaluate a subset of features: merit(S) = k r̄c f√

k+k (k−1) r̄ f f
, where k denotes the

subset size, r̄c f denotes the average feature-class correlation, and r̄ f f denotes the average
feature-feature correlation of features in the subset. The feature-feature correlation is used as
a measure of redundancy, and feature-class correlation is used as a measure of relevance. The
goal of CFS is to find a subset of independent features that are uncorrelated and predictive
of the class. CFS ignores feature complementarity, and cannot identify strongly interacting
features such as in parity problem (Hall and Holmes 2003).

mRMR is very similar to CFS in principle, however, instead of correlation measures,
mRMR uses mutual information I (Fi ; Y ) as a measure of relevance, and I (Fi ; Fj ) as a
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measure of redundancy. mRMR uses the following heuristic to evaluate a subset of features:

score(S) =
∑

i∈S I (Fi ;Y )

k −
∑

i, j∈S I (Fi ;Fj )

k2
. mRMR method suffers from limitations similar

to CFS. Gao et al. (2016) show that the approximations made by the information-theoretic
methods, such asmRMRandCMIM, are based on unrealistic assumptions and they introduce
a novel set of assumptions based on variational distributions and derive novel algorithms with
competitive performance.

FCBF follows a 2-step process. In step 1, it ranks all features based on symmetric uncer-
tainty between each feature and the class variable, i.e., SU (Fi , Y ), and selects the relevant
features that exceed a given threshold value δ. In step 2, it finds the optimal subset by elimi-
nating redundant features from the relevant features selected in step (i), using an approximate
Markov blanket criterion. In essence, it decouples the relevance and redundancy analysis,
and circumvents the concurrent subset search and subset evaluation process. Unlike CFS
and mRMR, FCBF is computationally fast, simple, and fairly easy to implement due to
the sequential 2-step process. However, this method fails to capture situations where fea-
ture dependencies appear only conditionally on the class variable (Fleuret 2004). Zhang and
Zhang (2012) state that FCBF suffers from instability as the naive heuristics FCBF may be
unsuitable inmany situations. One of the drawbacks of FCBF is that it rules out the possibility
of an irrelevant feature becoming relevant due to interaction with other features (Guyon and
Elisseeff 2003). CMIM, which simultaneously evaluates relevance and redundancy at every
iteration, overcomes this limitation.

Relief (Kira and Rendell 1992), and its multi-class version ReliefF (Kononenko 1994), are
instance-based feature ranking algorithms that rank each feature based on its similarity with
k nearest neighbors from the same and opposite classes, selected randomly from the dataset.
The underlying principle is that a useful feature should have the same value for instances
from the same class and different values for instances from a different class. In this method,
m instances are randomly selected from the training data and for each of these m instances,
n nearest neighbors are chosen from the same and the opposite class. Values of features of
the nearest neighbors are compared with the sample instance and the scores for each feature
is updated. A feature has higher weights if it has the same value with instances from the
same class and different values to others. In Relief, the score or weight of each feature is
measured by the Euclidean distance between the sampled instance and the nearest neighbor,
which reflects its ability to discriminate between different classes.

The consistency-based method (Almuallim and Dietterich 1991; Liu and Setiono 1996;
Dash and Liu 2003) is another approach, which uses consistency measure as the performance
metric.A feature subset is inconsistent if there exist at least two instanceswith the same feature
values but with different class labels. The inconsistency rate of a dataset is the number of
inconsistent instances divided by the total number of instances in it. This approach aims to
find a subset, whose size is minimal and inconsistency rate is equal to that of the original
dataset. Liu and Setiono (1996) propose the following heuristic: Consistency(S) = 1 −∑m

i=0(|Di |−|Mi |)
N , where, m is the number of distinct combinations of feature values for subset

S, |Di | is the number of instances of i-th feature value combination, |Mi | is the cardinality of
the majority class of i-th feature value combination, and N is the number of total instances
in the dataset.

Markov Blanket (MB) filter (Koller and Sahami 1996) provides another useful technique
for variable selection. MB filter works on the principle of conditional independence and
excludes a feature only if the MB of the feature is within the set of remaining features.
Though the MB framework based on information theory is theoretically optimal in eliminat-
ing irrelevant and redundant feature, it is computationally intractable. Incremental association
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Markov blanket (IAMB) (Tsamardinos et al. 2003) and Fast-IAMB (Yaramakala and Mar-
garitis 2005) are two MB based algorithms that use conditional mutual information as the
metric for conditional independence test. They address the drawback of CMIM by perform-
ing redundancy checks during ‘growing’ (forward pass) and ‘shrinkage’ phase (backward
pass).

3.2 Complementarity-basedmethods

The literature on complementarity-based feature selection that simultaneously optimize
redundancy and complementarity are relatively few, despite earliest research on feature inter-
action dating back to McGill (1954) and subsequently advanced by Yeung (1991), Jakulin
and Bratko (2003), Jakulin and Bratko (2004) and Guyon and Elisseeff (2003). The feature
selection methods that consider feature complementarity include double input symmetrical
relevance (DISR) (Meyer et al. 2008), redundancy complementariness dispersion based fea-
ture selection (RCDFS) (Chen et al. 2015), INTERACT (Zhao and Liu 2007), interaction
weight based feature selection (IWFS) (Zeng et al. 2015), and maximum relevance maxi-
mum complementary (MRMC) (Chernbumroong et al. 2015), joint mutual information (JMI)
(Yang and Moody 1999; Meyer et al. 2008), and min-Interaction Max-Relevancy (mIMR)
(Bontempi and Meyer 2010).

The goal ofDISR is to find the best subset of a given size d , where d is assumed to be known
a priori. It considers complementarity ‘implicitly’ (Bontempi andMeyer 2010), whichmeans
they consider the net effect of redundancy and complementarity in the search process. As a
result, DISR does not distinguish between two subsets S1 and S2, where S1 has information
gain= 0.9 and information loss= 0.1, and S2 has information gain = 0.8 and information
loss = 0. In other words, information loss and information gain are treated equally. DISR
works on the principle of k-average sub-subset information criterion, which is shown to be
a good approximation of the information of a set of features. They show that the mutual
information between a subset FS of d features, and the class variable Y is lower bounded by
the average information of its subsets.Using notations, 1

k!(dk)
∑

V⊆S:|V |=k
I (FV ; Y ) ≤ I (FS; Y ).

k is considered to be size of the sub-subset such that there is no complementarities of order
greater than k. Using k = 2, DISR recursively decomposes each bigger subset (d > 2)
into subsets containing 2 features Fi and Fj (i 	= j), and chooses a subset FS such that
FS = argmax

S

∑
i, j, i< j I (Fi , Fj ; Y )/

(d
2

)
. An implementation of this heuristic, known as

MASSIVE is also proposed.
mIMR method presents another variation of DISR in that (1) mIMR first removes all fea-

tures that have zero mutual information with the class, and (2) it decomposes the multivariate
term in DISR into a linear combination of relevance and interaction terms. mIMR considers
causal discovery in the selection process; restricts the selection to variables that have both
positive relevance and negative interaction. Both DISR and mIMR belong to a framework,
known as Joint Mutual Information (JMI) initially proposed by Yang and Moody (1999).
JMI provides a sequential feature selection method in which the JMI score of the incoming
feature Fk is given by J jmi (Fk) = ∑

Fi∈FS
I (Fk, Fi ; Y ) where FS is the already selected

subset. This is the information between the targets and the joint random variable (Fk, Fi )
defined by pairing the candidate Fk with each feature previously selected.

In RCDFS, Chen et al. (2015) suggest that ignoring higher order feature dependence
may lead to false positives (FP) (actually redundant features misidentified as relevant due to
pairwise approximation) being selected in the optimal subset, whichmay impair the selection
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of subsequent features. The degree of interference depends on the number of FPs present
in the already selected subset and their degree of correlation with the incoming candidate
feature. Only when the true positives (TPs) and FPs have opposing influence on the candidate
feature, the selection is misguided. For instance, if the candidate feature is redundant to the
FPs but complementary to the TPs, then new feature will be discouraged from selection,
while it should be ideally selected and vice-versa. They estimate the interaction information
(complementarity or redundancy) of the candidate feature with each of already selected
features. They propose to measure this noise by standard deviation (dispersion) of these
interaction effects and minimize it. The smaller the dispersion, the less influential is the
interference effect of false positives.

One limitation of RCDFS is that it assumes that all TPs in the already selected subset will
exhibit a similar type of association, i.e., either all are complementary to, or all are redundant
with, the candidate feature (see Figure 1 in Chen et al. 2015). This is a strong assumption and
need not be necessarily true. In fact, it is more likely that different dispersion patterns could
be observed. In such cases, the proposed method will fail to differentiate between the ‘good
influence’ (due to TPs) and ‘bad influence’ (due to FPs) and therefore will be ineffective in
mitigating the interference effect of FPs in the feature selection process.

Zeng et al. (2015) propose a complementarity-based ranking algorithm, IWFS. Their
method is based on interaction weight factors, which reflect the information on whether a
feature is redundant or complementary. The interaction weight for a feature is updated at
each iteration, and a feature is selected if its interaction weight exceeds a given threshold.
Another complementarity-based method, INTERACT, uses a feature sorting metric using
data consistency. The c-contribution of a feature is estimated based on its inconsistency rate.
A feature is removed if its c-contribution is less than a given threshold of c-contribution,
otherwise retained. This method is computationally intensive and has worst-case time com-
plexity O(N 2M), where N is the number of instances and M is the number of features.
MRMC method presents a neural network based feature selection that uses relevance and
complementary score. Relevance and complementary scores are estimated based on how a
feature influences or complements the networks.

Brown et al. (2012) propose a space of potential criterion that encompasses several redun-
dancy and complementarity-based methods. They propose that the worth of a candidate
feature Fk given already selected subset FS can be represented as J (Fk) = I (Fk; Y ) −
β

∑
Fi∈FS

I (Fk; Fi ) + γ
∑

Fi∈FS
I (Fk; Fi |Y ). Different values of β and γ lead to different

feature selection methods. For example, γ = 0 leads to MIFS, β = γ = 1
|S| lead to JMI,

γ = 0, and β = 1
|S| lead to mRMR.

4 Motivation and the proposed heuristic

In this section, we first outline the motivation behind using redundancy and complementarity
‘explicitly’ in the search process and the use of an implicit utility function approach. Then,
we propose a heuristic, called self-adaptive feature evaluation (SAFE). SAFE is motivated
by the implicit utility function approach in multi-objective optimization. Implicit utility
function approach belongs to interactive methods of optimization (Roy 1971; Rosenthal
1985), which combines the search process with the decision maker’s relative preference
over multiple objectives. In interactive method, decision making and optimization occur
simultaneously.
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Table 1 Golf dataset

Outlook (F1) Temperature (F2) Humidity (F3) Windy (F4) Play golf (Y)

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No

4.1 Implicit versus explicit measurement of complementarity

Combining negative (complementarity) and positive (redundancy) interaction information
may produce inconsistent results when the goal is to find an optimal feature subset. In
this section, we demonstrate this using the ‘Golf’ dataset presented in Table 1. The dataset
has four features {F1, . . . , F4}. The information content I (FS; Y ) of each possible subset
FS is estimated (1) first, using Eq. (1), and (2) then using the aggregate approach. In the
aggregate approach, to compute I (FS; Y ), we take the average of mutual information of
each sub-subsets of two features in FS with the class variable, i.e., I (Fi , Fj ; Y ). For exam-
ple, I (F1, F2, F3; Y ) is approximated by the average of I (F1, F2; Y ), I (F1, F3; Y ), and
I (F2, F3; Y ). Table 2 presents the results. Mutual information is computed using infotheo
package in R and empirical entropy estimator.

Our goal is to find the optimal subset regardless of the subset size. Clearly, in this example,
the {F1, F2, F3, F4} is the optimal subset that has maximum information about the class
variable. However, using aggregate approach, {F1, F3, F4} is the best subset. Moreover, in
the aggregate approach, onewould assign a higher rank to the subset {F1, F2, F3} as compared
to {F1, F2, F4}, though the latter subset has higher information content than the former.

4.2 A new adaptive heuristic

We first introduce the following notations for our heuristic and then define the adaptive cost
function.

Subset Relevance Given a subset S, subset relevance, denoted by AS , is defined by sum-
mation of all pairwise mutual information between each feature and the class variable, i.e.,
AS = ∑

i∈S I (Fi ; Y ). AS measures the predictive ability of each individual feature acting
alone.
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Table 2 Mutual information
between a subset FS and the class
Y

No. Subset (S) I (FS; Y ) Aggregate approach

1 {F1} 0.1710

2 {F2} 0.0203

3 {F3} 0.1052

4 {F4} 0.0334

5 {F1, F2} 0.3173

6 {F1, F3} 0.4163

7 {F1, F4} 0.4163

8 {F2, F3} 0.1567

9 {F2, F4} 0.1435

10 {F3, F4} 0.1809

11 {F1, F2, F3} 0.5938 0.2967

12 {F1, F2, F4} 0.6526 0.2924

13 {F1, F3, F4} 0.7040 0.3378

14 {F2, F3, F4} 0.3223 0.1604

15 {F1, F2, F3, F4} 0.9713 0.2719

Subset Redundancy Given a subset S, subset redundancy, denoted by RS , is defined by the
summation of all positive 3-way interactions in the subset, i.e., RS = ∑

i, j∈S,i< j (I (Fi ; Fj )−
I (Fi ; Fj |Y )) ∀ (i, j) such that I (Fi ; Fj ) > I (Fi ; Fj |Y ). RS measures information loss due
to feature redundancy.

Subset ComplementarityGiven a subset S, subset complementarity, denoted byCS , is defined
by the absolute value of the sum of all negative 3-way interactions in the subset, i.e.,
CS = ∑

i, j∈S,i< j (I (Fi ; Fj |Y ) − I (Fi ; Fj ))∀ (i, j) such that I (Fi ; Fj ) < I (Fi ; Fj |Y ).
CS measures information gain due to feature complementarity.

Subset Dependence Given a subset S, subset dependence, denoted by DS , is defined
by the summation of mutual information between each pair of features, i.e., DS =∑

i, j∈S,i< j I (Fi ; Fj ). We use DS as a measure of unconditional feature redundancy in our
heuristic. This is the sameas the unconditionalmutual information between features described
as redundancy in the literature (Battiti 1994; Hall 2000; Peng et al. 2005). We call this subset
dependence to distinguish this from the information loss due to redundancy (RS), which
is measured by the difference between conditional and unconditional mutual information.
Below, we present the proposed heuristic.

Score(S) = AS + γ C
β
|S|
S√|S| + β DS

(3)

where, AS ,CS , and DS are subset relevance, subset complementarity, and subset dependence,
respectively, and |S| denotes the subset size. β and γ are hyper-parameters defined as follows:
α = RS

RS+CS
, β = (1 + α), ξ = CS

CS+AS
and γ = (1 − ξ). RS measures subset redundancy

as defined in Definition 4.2. As mentioned above, the heuristic characterizes an adaptive
objective function, which evolves depending on the level of feature interactions. We model
this adaptation using two hyper-parameters β and γ . The values of these parameters are
computed by the heuristic during the search process based on the relative values of relevance,
redundancy and complementarity.
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The ratio α ∈ [0, 1] measures the percentage of redundancy in the subset, which deter-
mineswhether the subset is predominantly redundant or complementary. Ifα = 1, all features
are pairwise redundant, we call the subset predominantly redundant. At the other extreme,
if α = 0 all features are pairwise complementary, we call the subset predominantly com-
plementary. We consider α = 0/0 = 0 for a fully independent subset of features which is,
however, rarely the case. The hyper-parameter β controls the trade-off between redundancy
and complementarity based on the value of α, which is a function of subset characteristics.
We consider β as a linear function of α such that the penalty for unconditional dependency
increases linearly to twice its value when the subset is fully redundant. This resembles the
heuristic of CFS (Hall 2000) when α = 1. The |S| in the denominator allows the heuristic
to favor smaller subsets, while the square root in the denominator allows the penalty term to
vary exponentially with increasing subset size and feature dependency.

The proposed heuristic adaptively modifies the trade-off rule as the search process for the
optimal subset continues. We explain how such an adaptive criterion works. As α increases,
the subset becomes more redundant, the value of subset complementarity (CS) decreases
(CS = 0 when α = 1) leaving us with little opportunity to use complementarity very
effectively for feature selection process. In other words, the value of subset complementarity
CS is not sufficiently large to be able to differentiate between the two subsets. At best, we
expect to extract a set of features that are less redundant or nearly independent. As a result,
β ∈ [1, 2] increasingly penalizes the subset redundancy term DS in the denominator and
rewards subset complementarity CS in the numerator as α increases from 0 to 1.

In contrast, as α decreases, the subset becomes predominantly complementary leading to
an increase in the value CS . As the magnitude of CS gets sufficiently large, complementarity
plays the key role in differentiating between two subsets compared to subset dependence DS in
the denominator. This, however, causes a bias towards larger subset as the complementarity
gain increases monotonically with the size of the subset. We observe that CS increases
exponentially with the logarithm of the subset size as α decreases. In Fig. 6, we demonstrate
this for three different real data sets having different degrees of redundancy (α). In order to

Fig. 6 Variation of subset complementarity with subset size

123



2042 Machine Learning (2018) 107:2027–2071

control this bias, we raise CS to the exponent 1
|S| . Moreover, given the way we formalize α,

it is possible to have two different subsets, both having α = 0 but with different degrees of
information gain CS . This is because the information gain CS of a subset is affected by both
the number of complementary pair of features in the subset as well as how complementary
each pair of features is, which is an intrinsic property of each feature. Hence it is possible that
a larger subset with weak complementarity produces the same amount of information gain
CS as another smaller subset with highly complementary features. This is evident from Fig. 6,
which shows that subset complementarity gains faster for dataset ‘Lung Cancer’ compared
to data set ‘Promoter,’ despite the fact that the latter has lower α, and both have an identical
number of features. The exponent 1

|S| also takes care of such issues.
Next, we examine scenarios when CS > AS . This is the case when a subset learns more

information from interaction with other features compared to their individual predictive
power. Notice that the source of class information, whether CS or AS , is indistinguishable to
the heuristic as they are linearly additive in the numerator. As a result, this produces an undue
bias towards larger subset size when CS > AS . To control this bias, we introduce the hyper-
parameter γ ∈ [0, 1] that maintains the balance between relevance and complementarity
information gain. It controls the subset size by reducing the contribution from CS when
CS > AS .

4.3 Sensitivity analysis

In Figs. 7 and 8, we show how the proposed heuristic score varies with degree of redundancy
α, and the subset size under different relativemagnitude of interaction information (RS+CS),
and subset relevance AS . Figure 7 depicts a situation in which features are individually highly
relevant, but less interactive (CS < AS), whereas in Fig. 8, features are individually less
relevant, but as a subset become extremely relevant due to high degree of feature interaction
(CS > AS). In either scenario, the score decreases with increasing subset size, and with
increasing degree of redundancy. For a given subset size, the score is generally lower when
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Fig. 7 Heuristic score variation with degree of redundancy α and subset size, given AS = 200, DS = 20, and
RS + CS = 20
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Fig. 8 Heuristic score variation with degree of redundancy α and subset size, given AS = 20, DS = 20, and
RS + CS = 200
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Fig. 9 Heuristic score variation with subset dependence and subset relevance, given α = 0.5, |S| = 5, and
RS + CS = 20

CS > AS compared to when CS < AS , showing the heuristic is effective in controlling
the subset size when the subset is predominantly complementary. We also observe that the
heuristic is very sensitive to redundancywhen the features are highly relevant. In other words,
redundancy hurts much more when features are highly relevant. This is evident from the fact
that the score reduces at a much faster rate with increasing redundancy when AS is very high
compared to CS as in Fig. 7.

In Figs. 9 and 10, we show how the proposed heuristic score varies with subset relevance
and subset dependence for two different subset sizes. The score increases linearly with the
subset relevance, and decreases non-linearly with the subset dependence, as we would expect
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Fig. 10 Heuristic score variation with subset dependence and subset relevance, given α = 0.5, |S| = 25, and
RS + CS = 20

Fig. 11 Fewer features in the
subset for given subset
dependence DS

H(X) H(Y )
I(X ;Y )

DS = I(X ;Y )

from Eq. 3. The score is higher for a smaller subset compared to a bigger subset under nearly
identical conditions. However, for a given subset relevance, the score decreases at a much
faster rate with increasing subset dependence when there are fewer number of features in the
subset (as in Fig. 9). This phenomenon can be explained with the help of Figs. 11 and 12.
For a given subset dependence DS , fewer features would mean higher degree of association
(overlap) between features. In other words, features share more common information, and
are therefore more redundant compared to when there are higher number of features in
the subset. Hence, our heuristic not only encourages parsimony, but is also sensitive to the
change in feature dependence as the subset size changes. The above discussion demonstrates
the adaptive nature of the heuristic under different conditions of relevance and redundancy,
which is the motivation behind our heuristic.
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Fig. 12 More features in the
subset for given subset
dependence DS
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DS = I(X ;Y )+ I(Y ;Z)+ I(X ;Z)

4.4 Limitations

One limitation of this heuristic, as evident from Figs. 9 and 10, is that it assigns a zero score
to a subset when the subset relevance is zero, i.e., AS = 0. Since feature relevance is a non-
negative measure, this implies a situation in which every feature in the subset is individually
irrelevant to the target concept. Thus, our heuristic does not select a subset when none of
the features in the subset carry any useful class information by themselves. This, however,
ignores the possibility that they can become relevant due to interaction. However, we have
not encountered datasets where this is the case.

Another limitation of our heuristic is that it considers up to 3-way feature interaction
(interaction between a pair of features and the class variable) and ignores the higher-order
corrective terms. This pairwise approximation is necessary for computational tractability
and is considered in many MI-based feature selection methods (Brown 2009). Despite this
limitation,Kojadinovic (2005) shows thatEq. 1 produces reasonably good estimates ofmutual
information for all practical purposes. The higher order corrective terms become significant
only when there exists a very high degree of dependence amongst a large number of features.
It may be noted that our definition of subset complementarity and subset redundancy, as given
in Sect. 4.2, can be extended to include higher-order interaction terms without any difficulty.
With more precise estimates of mutual information becoming available, further work will
address the merit of using higher order correction terms in our proposed approach.

5 Algorithm

In this section, we present the algorithm for our proposed heuristic SAFE.

Step 1 Assume we start with a training sample D(F, Y ) with full feature set F =
{F1, . . . , Fn} and class variable Y . Using a search strategy, we choose a candidate
subset of features S ⊂ F.
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Step 2 Using the training data, we compute the mutual information between each pair of
features I (Fi ; Fj ), and between each feature and the class variable I (Fi ; Y ). We
eliminate all constant valued features from S, for which I (Fi ; Y ) = 0.

Step 3 For each pair of features in S, we compute the conditional mutual information given
the class variable, I (Fi ; Fj |Y ).

Step 4 We transform all I (Fi ; Fj ) and I (Fi ; Fj |Y ) to their symmetric uncertainty form to
maintain a scale between [0,1].

Step 5 For each pair of features, we compute the interaction gain or loss, i.e., I (Fi ; Fj ; Y ) =
I (Fi ; Fj ) − I (Fi ; Fj |Y ) using the symmetric uncertainty measures.

Step 6 We compute AS , DS , CS , RS , β, and γ using information from Steps 4 & 5.
Step 7 Using information from Step 6, the heuristic determines a Score(S) for subset S.

The search continues, and a subset Sopt is chosen that maximizes this score.

The pseudo-algorithm of the proposed heuristic is presented in Algorithm 1.

Algorithm 1 Self Adapting Feature Evaluation (SAFE)
Input: A training sample D(F, Y ) with full feature set F = {F1, . . . , Fn} and class variable Y
Output: The selected feature subset Sopt
1: Initialize Scoreopt , Sopt ← ∅;
2: repeat
3: Generate a subset S ⊂ F using a search strategy;
4: for i, j = 1 to n; j> i do
5: Calculate SU (Fi , Y ), SU (Fi , Fj ), and SU (Fi , Fj , Y );
6: Remove all features Fi from S if SU (Fi , Y ) = 0;
7: end for
8: Calculate AS , DS , CS , β, γ ;
9: Calculate Score(S) ;
10: if Score(S) > Scoreopt then Scoreopt ← Score(S), Sopt ← S;
11: else no change in Scoreopt , Sopt ;
12: end if
13: until Scoreopt does not improve based on stopping rule
14: Return Sopt ;
15: End

5.1 Time complexity

The proposed heuristic provides a subset evaluation criterion, which can be used as the
heuristic function for determining the score of any subset in the search process. Generating
candidate subsets for evaluation is generally a heuristic search process, as searching 2n

subsets is computationally intractable for large n. As a result, different search strategies,
such as sequential, random, and complete are adopted. In this paper, we use the best-first
search (BFS) (Rich and Knight 1991) to select candidate subsets using the heuristic as the
evaluation function.

BFS is a sequential search that expands on the most promising node according to some
specified rule. Unlike depth-first or breadth-first method, which selects a feature blindly, BFS
carries out informed search and expands the tree by spitting on the feature that maximizes
the heuristic score, and allows backtracking during the search process. BFS moves through
the search space by making small changes to the current subset, and is able to backtrack
to previous subset if that is more promising than the path being searched. Though BFS is
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exhaustive in pure form, by using a suitable stopping criterion, the probability of searching
the entire feature space can be considerably minimized.

To evaluate a subset of k features, we need to estimate k(k − 1)/2 mutual informations
between each pair of features, and k mutual information between each feature and the class
variable. Hence, the time complexity of this operation is O(k2). To compute the interaction
information, we need k(k − 1)/2 linear operations (substraction). Hence the worst time
complexity of the heuristic is O(n2), when all features are selected. However, this case is
rare. Since best-first is forward sequential searchmethod, there is no need to pre-computen×n
matrix of mutual information pairs in advance. As the search progresses, the computation
is done progressively, requiring only incremental computations at each iteration. Using a
suitable criterion (maximum number of backtracks), we can restrict the time complexity of
BFS. For all practical data sets, the best-first search converges to a solution quickly. Despite
that, the computational speed of the heuristic slows down as the number of input features
become very large requiring more efficient computation of mutual information. Other search
methods such as forward search or branch and bound (Narendra and Fukunaga 1977) method
can also be used.

6 Experiments on artificial datasets

In this section, we evaluate the proposed heuristic using artificial data sets. In our experi-
ments, we compare our method with 11 existing feature selection methods: CFS (Hall 2000),
ConsFS (Dash and Liu 2003), mRMR (Peng et al. 2005), FCBF (Yu and Liu 2003), ReliefF
(Kononenko 1994), MIFS (Battiti 1994), DISR (Meyer and Bontempi 2006), IWFS (Zeng
et al. 2015), mIMR (Bontempi and Meyer 2010), JMI (Yang and Moody 1999), and IAMB
(Tsamardinos et al. 2003). For IAMB, 4 different conditional independence tests (“mi”,“mi-
adf”,“χ2”,“χ2-adf”) are considered and the union of each Markov blanket is considered
as the feature subset. Experiments using artificial datasets help us to validate how well the
heuristic deals with irrelevant, redundant, and complementary features because the salient
features and the underlying relationship with the class variable are known in advance. We
use two multi-level data sets D1 and D2 from Doquire and Verleysen (2013) for our exper-
iment. Each dataset has 1000 randomly selected instances, 4 labels, and 8 classes. For the
feature ranking algorithms, such as ReliefF, MIFS, IWFS, DISR, JMI, mIMR, we terminate
when I (FS; Y ) ≈ I (F; Y ) estimated using Eq. 1, i.e., when all the relevant features are
selected (Zeng et al. 2015). For large datasets, however, this information criteria may be
time-intensive. Therefore, we restrict the subset size to a maximum of 50% of the initial
number of features when we test our heuristic on real data sets in Sect. 7. For example, Zeng
et al. (2015) restrict to a maximum of 30 features since the aim of feature selection is to
select a smaller subset from the original features. For subset selection algorithms, such as
CFS, mRMR, and SAFE, we use best-first search for subset generation.

6.1 Synthetic datasets

D1: The data set contains 10 features { f1, . . . , f10} drawn from a uniform distribution on
the [0, 1] interval. 5 supplementary features are constructed as follows: f11 = ( f1 − f2)/2,
f12 = ( f1 + f2)/2, f13 = f3 + 0.1, f43 = f4 − 0.2, and f15 = 2 f5. The multi-label output
O = [O1 . . . O4] is constructed by concatenating the four binary outputs O1 through O4

evaluated as follows. This multi-label output O is the class variable Y for the classification
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problem, which has 8 different class labels. For example, [1001] represents a class label
formed by O1 = 1, O2 = 0, O3 = 0, and O4 = 1.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O1 = 1 if f1 > f2
O2 = 1 if f4 > f3
O3 = 1 if O1 + O2 = 1
O4 = 1 if f5 > 0.8
Oi = 0 otherwise (i = 1, 2, 3, 4)

(4)

The relevant features are f11 (or f1 and f2), f3 (or f13), f4 (or f14), and f5 (or f15).
Remaining features are irrelevant for the class variable.
D2: The data set contains 8 features { f1, . . . , f8} drawn from a uniform distribution on the
[0, 1] interval. The multi-label output O = [O1 . . . O4] is constructed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O1 = 1 if ( f1 > 0.5 and f2 > 0.5) or ( f1 < 0.5 and f2 < 0.5)
O2 = 1 if ( f3 > 0.5 and f4 > 0.5) or ( f3 < 0.5 and f4 < 0.5)
O3 = 1 if ( f1 > 0.5 and f4 > 0.5) or ( f1 < 0.5 and f4 < 0.5)
O4 = 1 if ( f2 > 0.5 and f3 > 0.5) or ( f2 < 0.5 and f3 < 0.5)
Oi = 0 otherwise (i = 1, 2, 3, 4)

(5)

The relevant features are f1 to f4. Remaining features are irrelevant for the class variable.
The dataset D2 reflects higher level of feature interaction. The features are relevant only if
considered in pairs. For example, the features f1 and f2 together define the class O1, neither
f1 nor f2 alone can do. The same observation applies to other pairs: ( f3, f4), ( f1, f4), and
( f2, f3).

6.2 Data pre-processing

In this section, we discuss two important data pre-processing steps—imputation and dis-
cretization. We also discuss the packages used in the computation of mutual information for
our experiments.

6.2.1 Imputation

Missing data arise in almost all statistical analyses due to various reasons. For example,
missing values could be completely at random, at random, or not at random (Little and Rubin
2014). In such a situation, we can either discard those observations with missing values, or
use expectation-maximization algorithm (Dempster et al. 1977) to estimate parameters of
a model in the presence of missing data, or use imputation. Imputation (Hastie et al. 1999;
Troyanskaya et al. 2001) provides a way to estimate the missing values of features. There are
several methods in the literature for imputation, of which we use kNNmethod of imputation,
which is used widely. kNN imputation method (Batista and Monard 2002) imputes missing
values of a feature using themost frequent value from k nearest neighbors for discrete variable
and using weighted average of k nearest neighbors for continuous variable, where weights
are based on some distance measure between the instance and its nearest neighbors. As some
of the real datasets used in our experiments have missing values, we use kNN imputation
with k = 5 for imputing the missing values. Using higher values of k presents a trade-off
between accuracy of imputed values and computation time.
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6.2.2 Discretization

Computation of mutual information of continuous features requires the continuous features
to be discretized. Discretization refers to the process of partitioning continuous features into
some discrete intervals or nominal values. However, there is always some discretization error
or information loss, which needs to be minimized. Dougherty et al. (1995) and Kotsiantis
and Kanellopoulos (2006) present a survey of various discretization methods present in the
literature. In our experiment, we discretize the continuous features into nominal ones using
minimum description length (MDL) method (Fayyad and Irani 1993). The MDL principle
states the best hypothesis is the one with minimum description length. While partitioning a
continuous variable into smaller discrete intervals reduces the value of entropy function, too
fine grained partition increases the risk of over-fitting. MDL principle enables us to balance
between the number of discrete intervals and the information gain. Fayyad and Irani (1993)
use mutual information to recursively define the best bins or intervals coupled with MDL
criterion (Rissanen 1986). We use this method to discretize continuous features in all our
experiments.

6.2.3 Estimation of mutual information

For all experiments, mutual information is computed using infotheo package in R and empir-
ical entropy estimator. The experiments are carried out using a computer with Windows 7,
i5 processor, 2.9 GHz, and statistical package R (R Core Team 2013).

6.3 Experimental results

The results of the experiment on synthetic dataset D1 is given in Table 3. Except IAMB,
all feature selection methods are able to select the relevant features. Five out of 12 methods
including SAFE are able to select an optimal subset. mRMR selects the maximum number
of features including 5 irrelevant features and 1 redundant feature, and IAMB selects only

Table 3 Results of experiment on artificial dataset D1

Feature Subset selected Irrelevant features Redundant features

SAFE { f3, f4, f5, f11}a – –

CFS { f3, f4, f5, f11}a – –

ConsFS { f2, f3, f4, f5, f11} – f2
mRMR { f1, f2, f5 − f11, f13, f14} { f6 − f10} f11
FCBF { f11, f15, f3, f14}a – –

ReliefF { f11, f5, f15, f3, f13, f2, f1, f14} – { f1, f2, f13, f15}
MIFS(β = 0.5) { f11, f5, f3, f4}a –

DISR { f11, f5, f15, f8, f3, f4} { f8} { f15}
IWFS { f11, f5, f3, f4}a – –

JMI { f11, f3, f4, f13, f14, f5} – { f13, f14}
IAMB { f11} – –

mIMR { f11, f13, f1, f2, f12, f3, f4, f14, f5} { f12} { f1, f2, f3, f14}
aDenotes anoptimalsubset
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Table 4 Results of experiment on artificial dataset D2

Feature Subset selected Irrelevant features Unrepresented class labels

SAFE { f1, f2, f3, f4}a – –

CFS { f1− f8} { f5− f8} –

ConsFS { f1, f2, f4, f5, f6, f8} { f5, f6, f8} O2, O4

mRMR { f1− f8} { f5− f8} –

FCBF { f2} – O1, O2, O3, O4

ReliefF { f2, f3, f1, f4}a – –

MIFS(β = 0.5) { f2, f1, f5, f4, f6, f7, f3} { f5, f6, f7} –

DISR { f2, f4, f1, f3}a – –

IWFS { f2, f4, f1, f3}a – –

JMI { f4, f2, f1, f3}a – –

IAMB { f1, f4, f7, f8} { f7, f8} O1, O2, O4

mIMR { f2, f8, f5, f3} { f8, f5} O1, O2, O3

aDenotes an optimal subset

1 feature. mIMR, and ReliefF select maximum number of redundant features and mRMR
selects maximum number of irrelevant features.

The results of experiment on synthetic dataset D2 is given in Table 4. ConsFS, FCBF,
IAMB and mIMR fail to select all relevant features. As discussed in Sect. 6.1, features are
pairwise relevant. In the absence of an interactive feature, some apparently useful features
become irrelevant, failing to represent some class labels. Those unrepresented class labels
are given in the third column of Table 4. Five out of 12 feature selection methods including
SAFE are able to select an optimal subset. CFS, ConsFS, mRMR, MIFS, IAMB, and mIMR
fail to remove all irrelevant features. FCBF performs poorly on this dataset. The experimental
results show that SAFE can identify the relevant and interactive features effectively, and can
also remove the irrelevant and redundant features.

7 Experiments on real datasets

In this section, we describe the experimental set-up, and evaluate the performance of our
proposed heuristic using 25 real benchmark datasets.

7.1 Benchmark datasets

To validate the performance of the proposed algorithm, 25 benchmark datasets from UCI
Machine Learning Repository are used in our experiment, which are widely used in the
literature. Table 5 summarizes general information about these datasets. Note that these
datasets greatly vary in the number of features (max = 1558, min = 10), type of variables
(real, integer and nominal), number of classes (max = 22, min = 2), sample size (max =
9822, min = 32), and extent of missing values, which can provide comprehensive testing,
and robustness checks under different conditions.
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Table 5 Datasets description

No. Dataset Instances Features Class Missing Baseline accuracy (%)

1 CMC 1473 10 3 No 43.00

2 Wine 178 13 3 No 40.00

3 Vote 435 16 2 Yes 61.00

4 Primary Tumor 339 17 22 Yes 25.00

5 Lymphography 148 19 4 No 55.00

6 Statlog 2310 19 7 No 14.00

7 Hepatitis 155 19 2 Yes 79.00

8 Credit g 1000 20 2 No 70.00

9 Mushroom 8124 22 2 Yes 52.00

10 Cardio 2126 22 10 No 27.00

11 Thyroid 9172 29 21 Yes 74.00

12 Dermatology 366 34 6 Yes 31.00

13 Ionosphere 351 34 2 No 64.00

14 Soybean-s 47 35 4 No 25.00

15 kr-kp 3196 36 2 No 52.00

16 Anneal 898 39 5 Yes 76.00

17 Lung Cancer 32 56 3 Yes 13.00

18 Promoters 106 57 2 No 50.00

19 Splice 3190 60 3 No 50.00

20 Audiology 226 69 9 Yes 25.00

21 CoIL2000 9822 85 2 No 94.00

22 Musk2 6598 166 2 No 85.00

23 Arrhythmia 452 279 16 Yes 54.00

24 CNAE-9 1080 856 9 No 11.11

25 Internet 3279 1558 2 Yes 86.00

Baseline accuracy denotes the classification accuracy obtained when every instance in the whole dataset is
classified in the most frequent class

7.2 Validation classifiers

To test the robustness of our method, we use 6 classifiers, naïve Bayes (NB) (John and
Langley 1995), logistic regression (LR) (Cox 1958), regularized discriminant analysis (RDA)
(Friedman 1989), support vector machine (SVM) (Cristianini and Shawe-Taylor 2000), k-
nearest neighbor (kNN) (Aha et al. 1991), and C4.5 (Quinlan 1986; Breiman et al. 1984).
These classifiers are not only popular, but also have distinct learning mechanism and model
assumptions. The aim is to test the overall performance of the proposed feature selection
heuristic for different classifiers.

7.3 Experimental setup

We split each dataset into a training set (70%) and test set (30%) using stratified random
sampling. Since the dataset has unbalanced class distribution, we adopt stratified sampling to
ensure that both the training and test set represents each class in proportion to their size in the
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overall dataset. For the same reason, we choose balanced average accuracy over classification
accuracy to measure the classification error rate. Balanced average accuracy is a measure of
classification accuracy appropriate for unbalanced class distribution. For a 2-class problem,
the balanced accuracy is the average of specificity and sensitivity. For a multi-class problem,
it adopts a ‘one-versus-all’ approach and estimates the balanced accuracy for each class and
finally takes the average. Balanced average accuracy takes care of the over-fitting bias of the
classifier that results from unbalanced class distribution.

In the next step, each feature selection method is employed to select a smaller subset of
features from the original features using the training data.We train each classifier on the train-
ing set based on selected features, learn its parameters, and then estimate its balanced average
accuracy on the test set. We repeat this process 100 times using different random splits of the
dataset, and report the average result. The accuracies obtained using different random splits
are observed to be approximately normally distributed. So, the average accuracy of SAFE
is compared with other methods using paired t test at 5% significance level and significant
wins/ties/losses(W/T/L) are reported. Since we compare our proposed method over multiple
datasets, the p values have been adjusted using Benjamini–Hochberg adjustments for multi-
ple testing (Benjamini and Hochberg 1995). We also report the number of features selected
by each algorithm, and their computation time. Computation time is used as a proxy for the
complexity level of the algorithm.

For feature ranking algorithms, we need a threshold to select the optimal subset from the
list of ordered features. For ReliefF, we consider the threshold δ = 0.05, which is common
in the literature (Hall 2000; Ruiz et al. 2002; Koprinska 2009). For the remaining ones, we
terminate when I (FS; Y ) ≈ I (F; Y ) or amaximumof 50%of the initial number of features is
selected, whichever occurs earlier. For ReliefF, we consider k = 5,m = 250, and exponential
decay in weights based on distance (Robnik-Šikonja and Kononenko 2003). The discretized
data are used for both training the model and testing its accuracy on the test set.

7.4 Experimental results

In this section, we present the results of the experiment, compare the accuracy, computation
time, number of selected features by each method.

7.4.1 Accuracy comparison

Tables 6, 7, 8, 9, 10 and11 show the balanced average accuracyof 12different feature selection
methods including SAFE, tested with 6 different classifiers for all 25 data sets, resulting in
1800 combinations. For each data set, the best average accuracy is shown in bold font. a(b) in
the superscript denotes that our proposed method is significantly better (worse) than the other
method using paired t test at 5% significance level after Benjamini–Hochberg adjustment for
multiple comparisons. W/T/L denotes the number of datasets in which the proposed method
SAFE wins, ties or loses with respect to the other feature selection methods. A summary of
wins/ties/loses (W/T/L) results is given in Table 12. The average value of accuracy for each
method over all data sets is also presented in the “Avg.” row. The consFS method did not
converge for 3 data sets within a threshold time of 30min; those results are not reported.

The results show that SAFE generally outperforms (in terms of W/T/L) other feature
selection methods for different classifier-dataset combinations. In all cases except one (MIFS
with kNN classifier in Table 10), the number of wins exceeds the number of losses, which
shows that our proposed heuristic is effective under different model assumptions and learning
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conditions. The difference, (W–L), is particularly large for 4 out of 6 classifiers in which cases
SAFE wins in more than half of all data sets on average (NB = 60.3%, LR = 52.6%, SVM
= 60%, C4.5 = 51.1%). SAFE is competitive with most feature selection methods in case
of kNN, winning in 47.4% of all datasets on average. Compared to other methods, SAFE
achieves the highest average accuracy in 3 out of 6 classifiers (NB, kNN, and C4.5), having
maximum for kNN and minimum for RDA.

One general observation is that the performance of SAFE is better than that of redundancy-
based methods on an average (in terms of W/T/L), which shows that complementary-based
feature selection yields a more predictive subset of features. The fact that SAFE performs
well across various classifiers and various domains, is a test of robustness of the proposed
heuristic. For example, NB is a probabilistic Bayesian classifier that assumes conditional
independence amongst the features given the class variable, whereas LR makes no assump-
tions about conditional independence of the features. SAFE performs well in either case,
which demonstrates that the performance of SAFE does not degrade when features are not
conditionally independent given the class, which is a limitation of CFS. CFS defeats SAFE
in only 4 data sets when NB classifier is used. In fact, SAFE focuses on the interaction
gain or loss, i.e., I (Fi ; Fj ; Y ) = I (Fi ; Fj ) − I (Fi ; Fj |Y ), that is the difference between
unconditional and conditional dependence. However, in cases where all features are pairwise
redundant, it does not do better than CFS.

Compared to the interaction-based feature selection methods such as DISR, IWFS, JMI,
mIMR, SAFE does better in most cases, the reason being SAFE explicitly measures the
redundancy and complementarity, unlike DISR, which takes the aggregate effect. JMI is the
most competitive in terms of W/T/L results, though SAFE outperforms JMI in 11 out of 25
datasets on average. Our heurisic SAFE is a complementary-based feature selection criterion,
and is expected to show superior performance when the data sets contain complementary
features. To demonstrate this, we focus on two data sets—lung cancer and promoter—that
are highly complementary as shown in Fig. 6. The results show that SAFE mostly wins or
ties, and loses in very few cases for these two data sets.

To evaluate howwell our proposed heuristic corresponds to the actual predictive accuracy,
we examine a plot of predictive accuracy versus heuristic score for several experimental data
sets. We split each data set into 70% training set and 30% test set as before, and randomly
select 100 subsets of features of varying sizes ranging from 1 and n, where n is the total
number of features in the data set. For each data set, the heuristic score is estimated using the
training set, and the accuracy is determined using the test set. As an illustration, we present
the results for two datasets ‘Dermatology’ and ‘Cardiology’ in Figs. 13 and 14 respectively,
the former being predominantly redundant (α = 0.80), and the latter being predominantly
complementary (α = 0.21). The plots show that, in general, there exists a correspondence
between accuracy and score. As the score increases, the predictive accuracy also tends to
increase in most cases.

7.4.2 Runtime comparison

Computation time is an important criterion thatmeasures the time complexity of an algorithm.
Table 13 shows the average execution time (in s) taken by each feature selection method. The
results show that FCBF is the fastest of all, while ConsFS is the most expensive. ConsFS does
not converge to solutions for three data sets with threshold time of 30min. SAFE comes third
after FCBF and IAMB, showing that our proposed heuristic is not very expensive in terms of
time complexity. Though the worst case time complexity of SAFE is O(n2), in reality, the
computation time for SAFE is acceptable.
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Fig. 13 Plot showing variation of predictive accuracy with heuristic score for dataset ‘Dermatology’ (α =
0.80)

Fig. 14 Plot showing variation of predictive accuracy with heuristic score for dataset ‘Cardiology’ (α = 0.21)
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Table 13 Average execution time (s) for each iteration

Dataset CFS ConsFS mRMR FCBF ReliefF MIFS DISR IWFS mIMR IAMB JMI SAFE

Average 55.5 102.6 51.0 28.4 51.3 50.7 52.3 63.0 48.5 35.8 51.4 45.4

Table 14 Average number of features selected

Dataset CFS ConsFS mRMR FCBF ReliefF MIFS DISR IWFS mIMR IAMB JMI SAFE

Average 8.6 7.5 10.1 6.5 23.4 15.8 12.4 11.02 12.8 4.0 12.10 6.7

7.4.3 Number of selected features

Table 14 shows the average number of features selected by each feature selection method.
IAMB selects the least number of features, while ReliefF selects the maximum number of
features. SAFE selects an average of 6.7 features, which is the third lowest after IAMB and
FCBF. MIFS, DISR, mIMR, JMI, and ReliefF select more features compared to SAFE. All
methods have been able to remove a large number of irrelevant and redundant features.

8 Summary and conclusion

The main goal of feature selection is to find a small subset of features from the original
ones such that it is highly predictive of the class. In this paper, we propose a filter-based
feature selection criterion that relies on feature complementarity for searching an optimal
subset. Unlike the existing redundancy-based methods, which only depend on relevance and
redundancy, our proposed approach also aims to maximize complementarity. Incorporating
feature complementarity as an additional search criterion enables us to leverage the power
of complementarity, resulting in a smaller and more predictive subset of features. Since
redundancy is generally modeled using feature correlation, the existing redundancy-based
methods penalize all dependencies regardless of whether such dependence increases the
predictive power or reduces it. As a result, our proposed approach is able to distinguish
complementary feature subset from a subset of independent features, which the existing
redundancy-based approach fails to do.

Using information theory framework, we explicitly measure complementarity, and
integrate this in an adaptive evaluation criterion based on an interactive approach of multi-
objective optimization. A feature of the proposed heuristic is that it adaptively optimizes
relevance, redundancy, and complementarity while minimizing the subset size. Such an
adaptive scoring criterion is new in feature selection. The proposed method not only
helps to remove irrelevant and redundant features, but also selects complementary features,
thus enhancing the predictive power of a subset. Using benchmark data sets and differ-
ent classifiers, the experimental results show that the proposed method outperforms many
existing methods for most data sets. The proposed method has acceptable time complex-
ity, and effectively removes a large number of features. This paper shows that the proposed
complementary-based feature selection method can be used to improve the classification
performance of many popular classifiers for real life problems.
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