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Abstract In this article, we propose a scalable Gaussian process (GP) regressionmethod that
combines the advantages of both global and local GP approximations through a two-layer
hierarchical model using a variational inference framework. The upper layer consists of a
global sparse GP to coarsely model the entire data set, whereas the lower layer comprises a
mixture of sparse GP experts which exploit local information to learn a fine-grainedmodel. A
two-step variational inference algorithm is developed to learn the global GP, the GP experts
and the gating network simultaneously. Stochastic optimization can be employed to allow the
application of the model to large-scale problems. Experiments on a wide range of benchmark
data sets demonstrate the flexibility, scalability and predictive power of the proposedmethod.

Keywords Gaussian processes · Variational inference · Hierarchical structure · Graphical
model

1 Introduction

Gaussian process models have become the dominant approach to nonparametric Bayesian
regression (O’Hagan and Kingman 1978; Williams and Rasmussen 1996; Boyle and Frean
2005; Goldberg et al. 1998; Gramacy et al. 2004; Sollich and Williams 2005). However, GP
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models in general suffer from high computational complexity, which is O(N 3) in training
time and and O(N 2) in memory for N training data points. These computation costs arise
mainly from the inversion and storage of the covariance matrix. The unfavorable complexity
prevents the application of GP regression to large-scale data sets.

There has been much interest in sparse approximation methods for GPs to overcome
the limitation of high computational cost (Seeger et al. 2003; Lawrence et al. 2003; Smola
and Bartlett 2001; Seeger 2003; Csató 2002; Tresp 2000a; Snelson and Ghahramani 2006).
A comprehensive review of many popular sparse approximation methods can be found in
Quiñonero-Candela andRasmussen (2005). In thesemethods, the entire training set is approx-
imated using a small set of inducing points. The covariance matrix among all data points
is thereby approximated by a low-rank one. In this way, a lower complexity of O(NM2)

in training time and O(NM) in memory is achieved, where M is the number of inducing
points. However, even these reduced storage methods are prohibitive for big data that contain
millions or billions of samples.

There are generally two approaches to scale up sparse GP models to be able to handle
big data. One approach is to spread computation across many nodes in a distributed system
(Hoang et al. 2016; Gal et al. 2014). This approach often requires abundant computational
resources (processors and memory) though. Another approach is to learn sparse GP models
in stochastic fashion, where a mini-batch of data is used at each optimization iteration.
Examples for this approach are Hensman et al. (2013) and Hoang et al. (2015), in which
stochastic variational inference (Hoffman et al. 2013) is employed for model learning. This
approach allows the application of sparse GP regression to large-scale problems even with
limited available resources.

The sparse GPs normally work well for simple data sets. However, in complex data
sets, the dependencies among the observations cannot be well-captured by a small number of
inducing points. In addition, a single GP accompanied by a small set of global inducing points
cannot account for the non-stationarity and locality in such data sets, as argued in Rasmussen
and Ghahramani (2002). Mixture of Gaussian processes is another approach to reduce the
computational complexity of GPs as presented in Rasmussen and Ghahramani (2002), Tresp
(2000b), Shi et al. (2003, 2005), Meeds and Osindero (2006), Yuan and Neubauer (2009),
Nguyen andBonilla (2014). In themixture ofGPs approach, a gatingnetworkdivides the input
space into regions within which a specific GP expert is responsible for making predictions. In
this way, the computational complexity is reduced since the storage and inversion of a large
covariance matrix are replaced by those of multiple smaller matrices. The non-stationarity
and locality in the data can also be naturally addressed.

Mixtures of GPs have two main limitations. The first limitation is the complexity of the
inference problem, which usually involves simultaneous learning of both the experts and the
gating network. Therefore, approximation techniques are often required for the inference.
Many existing mixtures of GPs, such as those in Rasmussen and Ghahramani (2002), Meeds
andOsindero (2006), Shi et al. (2003, 2005), resort to the intensiveMarkov chainMonteCarlo
(MCMC) sampling methods, which can be very slow, especially for large-scale data sets. As
a result, the limited scalability prohibits their application to even moderate-sized problems.
Recently, several variational mixtures of GP experts have been proposed for GP regression
using variational inference, which is amore flexible and faster alternative toMCMCsampling
(Yuan and Neubauer 2009; Sun and Xu 2011; Nguyen and Bonilla 2014). However, there is
still no clear way to apply stochastic optimization to variational mixtures of GPs to enable
their application to big data. To the best of our knowledge, the largest experiments using the
existing variational GP mixtures have been performed in Nguyen and Bonilla (2014) and
Nguyen et al. (2016) with 100,000 data points. The second limitation of mixtures of GPs
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is that each expert is independently trained using only the local data assigned to it, without
taking into account the global information, i.e. the correlations between clusters. The trained
experts are therefore likely to overfit the local training data.

In this paper, we propose a GP approximation method for regression that combines the
advantages of sparse approximation and mixture of GPs in a variational inference framework
to exploit both the global and local information from the training data. Our model has a two-
layer hierarchical structure. The upper layer uses a sparse GP accompanied by a set of global
inducing points to coarsely model the entire data set. The lower layer comprises a mixture of
GP experts, each of which is also a sparse GP. These experts make use of the local information
from the corresponding data points assigned to them for fine-grained modeling. The experts
share a common prior mean function which is the latent function modeled by the upper
layer in order to enforce correlation among themselves. This way, overfitting is avoided. For
inference, we develop a two-step variational inference algorithm for simultaneous learning of
the global sparse GP, the experts and the gating network.We also derive an objective function
that appears in a factorized form necessary for stochastic optimization, thereby enabling the
application of the model to large-scale data sets.

Next, we briefly highlight the advantages of the proposed model with respect to the two
previous attempts in combining local and global information for GP approximation presented
in Snelson andGhahramani (2007) and Park andChoi (2010). In both of the abovemodels, the
input space is first partitioned into several clusters. The data set is then approximated based
on this clustered structure. In the partially independent conditional (PIC) method (Snelson
and Ghahramani 2007), the covariances within a cluster are calculated exactly, while the
covariances between points belonging to different clusters are approximated using a set of
inducing points. Since PIC uses this approximate covariance matrix to train a single GP,
it has limited capability to model the non-stationarity in large complex data sets. Park and
Choi (2010) models each cluster by a local GP. However, the relationships among these
local GPs are only loosely presented using the prototype variables (one for each cluster),
which are placed at the cluster centers and share a joint GP prior. A common drawback
of the two above models is that the partitioning and inference are completely separated.
Hence, they must rely on independent clustering methods such as k-means for local GP
allocation, as well as for placing the prototype variables in the case of Park and Choi (2010).
These methods might not provide the optimal partitioning for the inference of the GPs. For
example, the generated partitions might not reflect different noise levels or different length-
scales across the data set. In the proposedmodel, inference and the gating network are learned
simultaneously in a common variational framework so that the results from inference can
improve the clustering and vice versa. Another drawback of the two models discussed above
is that their computational complexity depends on the size of the clusters. Therefore, it places
a limit on the maximum size of the clusters given the time and memory limitations of the
test computer. In contrast, the complexity of the proposed model is independent of the size
of the clusters because the local GPs are also sparse.

For the experiments and validation, we consider three sets of experiments with data sets
of varying size to investigate different aspects of the proposed model. In the first set of exper-
iments, we visually investigate the model on two small-size data sets with input-dependent
noise. The result shows that the proposed method is able to both detect the common trend and
handle the non-stationarity in the data sets at the same time. In the second set of experiments,
we evaluate the predictive performance of the proposed model and compare it with four other
baselinemodels, using fivemedium-sized benchmark data sets. These baselines include Snel-
son and Ghahramani (2006), Hensman et al. (2013), Nguyen and Bonilla (2014), and Snelson
and Ghahramani (2007). The proposed model outperforms with statistical significance all

123



1950 Mach Learn (2018) 107:1947–1986

the other baselines in 4 out of 5 data sets. Finally, we compare the proposed method to the
GP with stochastic variational inference (SVI) (Hensman et al. 2013) on large-scale data sets
with up to 2 million samples when stochastic optimization is enabled. The proposed method
is shown to outperform SVI in terms of the accuracy-time trade-off.

The rest of the paper is organized as follows. Section 2 introduces the background of GP
regression and sparseGP approximation. Section 3 presents the proposedmodel: a variational
hierarchical mixture of GP experts for regression. Section 4 describes the inference approach
for the model. Section 5 presents the experimental results and their analysis. Finally, Sect. 6
concludes the paper.

2 Background

In this section, we first briefly introduce the theoretical background of GP regression (Sect.
2.1). We then give a review on various state-of-the-art sparse GP approximation methods
(Sect. 2.2). These methods either inspire or relate to our proposed model.

2.1 Overview of Gaussian process regression

Consider a typical regression problem where a training set D has N pairs of D-dimensional
inputs xn and one-dimensional outputs yn , i.e., D = {(xn, yn)}Nn=1 with xn ∈ X ⊂ R

D and
yn ∈ R. Here xn is a row vector for n = 1, . . . , N . Let X and y collectively represent the
training inputs and outputs, respectively: X = ((x1)T, . . . , (xN )T)T and y= (y1, . . . , yN )T.
Our task is to compute the outputs y∗ at new test locations X∗, given X and y.

By definition, a GP is a collection of random variables, any finite number of which have
a joint Gaussian distribution. A GP is completely specified by a mean function m(x) and a
covariance function κ(x, x′). In GP regression, we assume that there is an underlying latent
function f (x) : X �−→ R which follows a GP prior. We can write the GP as: f (x) ∼
GP(m(x), k(x, x′)). According to the definition of GP, any collection of function values has
a joint prior Gaussian distribution. We have

p(f) = N (f|mX,KXX), (1)

where f = [ f1, . . . , fN ]T with fn ≡ f (xn), mX = [m(x1), . . . ,m(xN )]T, and KXX denotes
the covariancematrix formed by evaluating κ(x, x′) at all pairs of input vectors. The observed
output yn is then related to the latent variable fn by

yn = fn + εn, (2)

where εn is a zero-mean independent and identically distributed Gaussian noise with variance
σ 2, i.e. εn ∼ N (0, σ 2). The above relationship between yn and fn can also be expressed in
the form of a normal distribution as

p(yn | fn) = N ( fn, σ
2). (3)

The likelihood p(y|f) is then a factorized Gaussian:

p(y|f) = N (f, σ 2I). (4)

Our objects of interest are the marginal likelihood p(y) and the prediction for f∗ at new
test points X∗, i.e., p(f∗|y). Their derivations are given below.

Marginal likelihood The marginal likelihood p(y) is used for model selection. In particu-
lar, the hyperparameters of the mean function m(x) and covariance function κ(x, x′) as well
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as the noise variance σ 2 can be fixed by maximizing p(y). Using the general properties of
Gaussian distributions given in Eq. (52), p(y) can be calculated in closed-form as:

p(y) =
∫

p(y|f)p(f)df = N (mX,KXX + σ 2I). (5)

Prediction We consider how to make prediction for f∗ at test points X∗. Let KAB denote
a covariance matrix formed by evaluating the function κ(x, x′) at all pairs of points (x, x′)
with x in A and x′ in B. The property of GP gives the following joint prior distribution for f
and f∗: [

f
f∗

]
∼ N

([
mX
mX∗

]
,

[
KXX KXX∗
KX∗X KX∗X∗

])
(6)

Using the Gaussian identities presented in Section A.2 of Williams and Rasmussen (2006a),
the predictive distribution for f∗ given the noise-free observations f can be computed as:

p(f∗|f) = N
(
KX∗XK

−1
XX(f − mX) + mX∗ , KX∗X∗ − KX∗XK

−1
XXKXX∗

)
(7)

In realistic situations, we do not have access to the function values f but the noisy observation
y. To make prediction for f∗ using y, we first derive the joint prior distribution for y and f∗.
This can be done by replacing the term corresponding to p(f) in Eq. (6) with that of p(y):

[
y
f∗

]
∼ N

([
mX
mX∗

]
,

[
KXX + σ 2I KXX∗
KX∗X KX∗X∗

])
(8)

Finally, the predictive distribution for f∗ given y can be computed as:

p(f∗|y) = N (
KX∗X[KXX+σ 2I]−1(y − mX) + mX∗ ,

KX∗X∗ − KX∗X[KXX+σ 2I]−1KXX∗
)

(9)

By subtracting the mean of f (x) from f (x) if necessary, we can assume, without loss of
generality, that m(x) is equal to 0. For notational simplicity, we will take the mean function
to be zero hereinafter, unless otherwise stated.

The dominant cost in GP inference is the inversion of the covariance matrix [KXX + σ 2I]
in Eqs. (5) and (9), which requires a computational time of O(N 3). This is prohibitive for
large data sets. In the next section, we discuss sparse approximation methods to reduce the
computational cost for GP regression.

2.2 Sparse approximation for Gaussian process regression

We first provide an overview on sparse GP approximation while focusing on the approxima-
tion framework byQuiñonero-Candela and Rasmussen (2005) onwhichmany popular sparse
GP approximation methods can be constructed. We then discuss the two alternative sparse
approximations based on variational inference presented in Titsias (2009) and Hensman et al.
(2013), which provide the theoretical framework for inference in the proposed model.

2.2.1 Overview of sparse GP approximation

Sparse GP approximation methods aim to reduce the computation cost of GP regression by
representing all the training data using a small set of M inducing points. Each inducing point
consists of an inducing input um ∈ X and the corresponding inducing variable gm , which
is the latent function value evaluated at um , i.e. gm = f (um). Let U = [u1, . . . ,uM ]T and
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g = [g1, . . . , gM ]T. Given the inducing inputs U and the posterior p(g|y), predictions can
be made in O(M3) time complexity:

p(f∗|y) =
∫

p(f∗|g)p(g|y)dg

=
∫

N
(
KX∗UK

−1
UUg, KX∗X∗ − KX∗UK

−1
UUKUX∗

)
p(g|y)dg.

Learning the posterior p(g|y) efficiently requires an additional assumption about the rela-
tionship between the training data and the inducing points. The approximation framework
presented in Quiñonero-Candela and Rasmussen (2005) focuses on representing this rela-
tionship by the conditional distribution p(f|g), which can be calculated exactly as:

p(f|g) = N
(
KXUK

−1
UUg,KXX − QXX

)
, (10)

where QXX = KXUK
−1
UUKUX. Quiñonero-Candela and Rasmussen (2005) shows that by

imposingdifferent approximation assumptions on p(f|g), various sparse approximationmeth-
ods proposed in the literature can be derived. We take the popular approximation methods
FITC (Snelson and Ghahramani 2006) and PIC (Snelson and Ghahramani 2007) for exam-
ples. FITC is based on the assumption that the training latent variables f are independent given
g so that the conditional distribution p(f|g) is approximated by q(f|g) = ∏N

n=1 p( fn |g), i.e.,
p(f|g) ≈ q(f|g) = N

(
KXUK

−1
UUg, diag[KXX − QXX]

)
.

The PIC method (Snelson and Ghahramani 2007) first partitions the data set into several
clusters. It is then based on the assumption that the latent variables fromdifferent partitions are
independent given g, resulting in a block diagonal covariance in the approximate conditional:

p(f|g) ≈ q(f|g) = N
(
KXUK

−1
UUg, blockdiag[KXX − QXX]

)
.

The above approximation, combined with the exact GP prior for the inducing point p(g) =
N (0,KUU), is equivalents to approximating the GP prior for training latent values p(f) =
N (0,KXX) by a new distribution q(f), where

q(f) =
∫

q(f|g)p(g)dg = N (0,QXX + diag[KXX − QXX]) (11)

for FITC, and

q(f) =
∫

q(f|g)p(g)dg = N (0,QXX + blockdiag[KXX − QXX]). (12)

for PIC. See Quiñonero-Candela and Rasmussen (2005) for a proof of Eqs. (11) and (12). It
can be seen from Eqs. (11) and (12) that the covariance matrix KXX in the original GP prior
p(f) is approximated by a low-rank covariance matrix in q(f), effectively reducing the cost
of matrix conversion, and hence the overall computational complexity, to O(NM2).

In the above sparse approximation methods, model selection, including the selection of
the inducing inputs U, is done through maximizing the approximated marginal likelihood
p(y) ≈ q(y) = ∫

p(y|f)q(f)df. In this way, the inducing inputs become additional kernel
hyperparameters. Optimizing with respect to all unknown hyperparameters may lead to over-
fitting. In addition, the solution is not guaranteed to be close to the original model since the
prior has been modified in response to training data. Next, we discuss two alternative GP
approximation methods based on variational inference that overcome the above limitation
by treating inducing inputs as variational parameters.
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2.2.2 Sparse GP approximation based on variational inference

The variational method proposed by Titsias (2009) selects the inducing inputs and the hyper-
parameters by maximizing a lower bound of the exact marginal likelihood. In particular, the
bound is derived as follows. First, the following inequality is used to obtain a lower bound
on p(y|g):

ln p(y|g) ≥ Ep(f|g)[ln p(y|f)]. (13)

This bound is substituted into the equation p(y) = ∫
p(y|g)p(g)dg, and the inducing latent

variables g are then marginalized out to give a tractable lower bound on the marginal like-
lihood. As this bound is maximized, the Kullback–Leibler (KL) divergence between the
variational distribution and the exact GP posterior distribution over the latent function value
is minimized. The inducing inputs are defined as the variational parameters which are tuned
tominimize this divergence. This way, overfitting is avoided, and the solution provided by the
sparse model is indeed an approximation to the exact one since their distance is minimized.

The above variational method has computational complexity of O(NM2), which is still
prohibitive for large data sets. Stochastic variational inference (Hoffman et al. 2013), where
optimization can be carried out using mini-batches of data, is one possible way to scale down
variational inference framework. However, it can only be applied to probabilistic models
that have a set of global variables and that factorize in the observations and latent variables.
Hensman et al. (2013) propose to employ stochastic variational inference for GP regression
by introducing additional variational parameters into the bound derived in Titsias (2009) to
act as global variables. In particular, instead of marginalizing the latent variables g out as in
Titsias (2009), they explicitly approximate the posterior distribution for g by a variational
normal distribution q(g) = N (g|m,S), and use the variational parameters m and S as
global variables. The following standard variational inequality is applied on the log marginal
likelihood:

ln p(y) ≥ Eq(g)[ln p(y|g)] − KL[q(g)||p(g)]. (14)

Here KL(q||p) denotes the Kullback–Leibler (KL) divergence between distributions p and
q . Substituting (13) into (14) results in a further bound on the marginal likelihood

ln p(y) ≥ Eq(g)[Ep(f|g)[ln p(y|f)]] − KL[q(g)||p(g)]. (15)

Since the likelihood p(y|f) is a factorized Gaussian, the bound given in (15) can be calculated
as

ln p(y) ≥
N∑

n=1

{
lnN

(
yn |KxnUK

−1
UUm, σ 2I

)
− 1

2σ 2KxnUK
−1
UUSK

−1
UUKUxn

− 1

2σ 2

(
Kxnxn − KxnUK

−1
UUKUxn

)}
− KL[q(g)||p(g)]. (16)

The above bound has a unique optimum in terms ofm and S, at which point it becomes equal
to the original bound derived by Titsias (2009). In addition, since the first part of this bound
can be written as sum of N terms, each corresponds to a training data point, optimization
can then be performed using mini-batches of data. This results in a complexity of O(BM2),
where B is the batch size.
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3 Variational hierarchical mixture of Gaussian process experts

This section presents a variational hierarchicalmixture ofGaussian process experts for regres-
sion. The proposed model has a two-layer hierarchical structure. In the upper layer, a sparse
GP, hereafter referred to as the global GP, is used to coarsely model the entire data set. In
the lower layer, a gating network divides the input space into regions within which a specific
local GP expert is used for finer modeling. The graphical representation of the proposed
hierarchical mixture of Gaussian process experts model is shown in Fig. 1.

To simplify inference, let y0 and y denote the training outputs of the upper and lower
layers, respectively: y0 is a duplicate of y. We now have a new training set: D′ = {X, y, y0}.

The upper layer is associated with a latent function f0(x). The function is modeled with
a global sparse GP which has a zero mean function and a covariance function κ0(x, x′).
The covariance function is parameterized with the hyperparameter set θ0. The global sparse
GP is augmented with a set of inducing inputs {u(0)

1 , . . . ,u(0)
P } ⊂ X , which are collectively

represented by U0. The latent function values at the training inputs and inducing inputs are
denoted by f0 = ( f0(x1), . . . , f0(xN ))T and g0 = ( f0(u

(0)
1 ), . . . , f0(u

(0)
P ))T, respectively.

The latent function values f0 and the observed outputs y0 are related by a Gaussian distributed
likelihood p(y0|f0) = N (f0, σ 2

0 I). LetK
(0) denote the covariance matrix evaluated using the

function κ0(x, x′). The following distributions, defined by their pdfs, can be obtained using
standard Gaussian process methodologies:

p(g0)=N
(
g0|0,K(0)

U0U0

)
, (17)

p(f0|g0)=N
(
f0|K(0)

XU0

[
K(0)

U0U0

]−1
g0,K

(0)
XX−K(0)

XU0

[
K(0)

U0U0

]−1
K(0)

U0X

)
. (18)

There are T GP experts in the lower layer. The k-th expert is associated with a latent
function fk(x), which is modeled using a local sparse GP. The GP has a covariance function

Fig. 1 Graphical representation of the hierarchical mixture of Gaussian process experts model
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κk(x, x′), which is parameterized with a hyperparameter set θk . Each local sparse GP is
augmented with a set of M inducing inputs {u(k)

1 , . . . ,u(k)
M }, collectively represented by Uk .

To enforce correlation among the local experts, all the local sparse GPs share a prior mean
function m(x), which encodes global information from the upper layer:

m(x) = K(0)
xU0

[
K(0)

U0U0

]−1
g0. (19)

Equation (19) implies that the mean function value at a point x is calculated as the mean of
the global latent variable f0(x) conditioned on the global inducing variables g0.

Let fk and gk denote the vectors of latent function variables of the k-th local expert
at training and inducing points, respectively. The properties of GP result in the following
distributions

p(gk |g0) = N
(
gk |ḡk,K(k)

UkUk

)
, (20)

p(fk |gk, g0) = N
(
fk |K(k)

XUk

[
K(k)

UkUk

]−1
(gk − ḡk) + f̄,

K(k)
XX − K(k)

XUk

[
K(k)

UkUk

]−1
K(k)

UkX

)
, (21)

whereK(k) denotes the covariance matrix evaluated using the local kernel function κk(x, x′),
and f̄ and ḡk denote the prior mean values at the training data and at the inducing inputs Uk ,
respectively, i.e., f̄ = m(X) = K(0)

XU0
[K(0)

U0U0
]−1g0 and ḡk = m(Uk) = K(0)

UkU0
[K(0)

U0U0
]−1g0.

For simplicity, we introduce new latent variables hk = gk − ḡk to substitute for gk at the
inducing inputs. The prior and conditional distributions given in Eqs. (20) and (21) become:

p(hk) = N
(
hk |0,K(k)

UkUk

)
, (22)

p(fk |hk, g0) = N
(
fk |K(k)

XUk

[
K(k)

UkUk

]−1
hk + K(0)

XU0

[
K(0)

U0U0

]−1
g0,

K(k)
XX − K(k)

XUk

[
K(k)

UkUk

]−1
K(k)

UkX

)
. (23)

For each observation (xn, yn), we have a corresponding latent variable zn indicating the
expert it belongs to. Subsequently, the observed outputs yof the lower layer have the following
likelihood:

p(yn | f1(xn), . . . , fT (xn)) =
T∏

k=1

p(yn | fk(xn))[zn==k]

= p(yn | fzn (xn))
= N

(
fzn (xn

)
, σ 2

zn ),

where σk denotes the noise variance hyperparameter for expert k.
Expert indicators are specified by a gating network based on the inputs. Since the target

here is large-scale problems, the simple gating network suggested in Nguyen and Bonilla
(2014) is employed to facilitate fast expert allocation. For this gating network, data points
closer to the underlying inducing points of an expert are given higher probabilities to be
assigned to that expert. The prior over the expert indicator variable zn is defined as

p(zn = k|xn) = N (xn |mk,V)∑T
j=1 N (xn |m j ,V)

, (24)
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where each meanmk and the covariance V = diag(v1, . . . , vD) are given by

mk = 1

M

M∑
m=1

u(k)
m , (25)

vd = 1

T (M − 1)

T∑
k=1

M∑
m=1

(
u(k)
md − mkd

)2
. (26)

Equation (24) can be interpreted as a probabilistic assignment of data point xn to one of the
T experts. This prior is based on the observation that the closer a data point tomk , the more
similar it is to the inducing inputs of expert k and the better its output can be predicted by that
expert. The rationale behind the choice of this expert allocation mechanism is twofold. First,
the formulation of the prior over expert indicators as proportional to a Gaussian distribution
makes learning of their approximate posterior analytically tractable via variational inference.
Second, this expert allocation prior gives rise to further approximation on the expert indicator
variables to reduce the overall computational complexity of the model as will be seen in Sect.
4.3.

4 Inference

Learning of the model is realized through a two-step variational inference algorithm which
optimizes an evidence lower bound of the log marginal likelihood. The derivation of this
bound is presented in Sect. 4.1. The two-step variational inference algorithm is given Sect.
4.2. The computational cost of the algorithm can be reduced using the cost reduction approx-
imation and the application of stochastic optimization, which are presented in Sects. 4.3 and
4.4, respectively. Finally, the formulation of the predictive distribution is given in Sect. 4.5.

4.1 The evidence lower bound

For the sake of brevity, we introduce the variables f, h, U, θ and z to represent the set of all
variables fk , hk , Uk , θk and zn , respectively, with k = 1, . . . , T and n = 1, . . . , N .

The inference problem for our model involves estimating the posterior distribution of the
latent variables p(f, f0,h, g0, z|y, y0), andfixing the kernel hyperparameters and the inducing
inputs. Our target is to use variational inference with the possibility of applying stochastic
optimization for very large data sets. For this purpose, a set of global hidden variables is
required so that the model conditioned on these variables factorizes in the observations and
latent variables; see Figure 1 in Hensman et al. (2013) for an illustration of such models. The
inducing latent variables g0 and hk , for k = 1, . . . , T , are well-suited to perform the role of
global variables in our model. However, marginalizing these variables as in the variational
sparse GP (Titsias 2009) eliminates the global parameters and re-introduces dependencies
between the observations. Hence, following Hensman et al. (2013), we choose to represent
the variational distributions of these variables explicitly as q(g0) and q(hk) for k = 1, . . . , T .
It can be seen later that the variational distributions for f and f0 can be derived in terms of
q(h) and q(g0). We then approximate the joint posterior distribution of h, g0 and z by a
factorized tractable variational distribution,

p(z,h, g0|y, y0) ≈ q(z,h, g0) =
N∏

n=1

q(zn)q(g0)
T∏

k=1

q(hk). (27)
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A lower bound on the log marginal likelihood is first derived by applying the standard
variational equation

ln p(y, y0) ≥Eq(z,h,g0)[ln p(y, y0|z,h, g0)] − KL(q(z,h, g0)||p(z,h, g0)). (28)

Substituting for q(z,h, g0) by its factorization given in (27) leads to the following lower
bound:

ln p(y, y0) ≥ Eq(z)q(g0)q(h)[ln p(y|z,h, g0)]
+ Eq(g0)[ln p(y0|g0)] − KL(q(h)||p(h))

− KL(q(g0)||p(g0)) − KL(q(z)||p(z)). (29)

Applying Jensen’s inequality to the conditional probabilities p(y|z,h, g0) and p(y0|g0)yields
ln p(y|z,h, g0) ≥ Ep(f|h,g0)[ln p(y|f, z)], (30)

and

ln p(y0|g0) ≥ Ep(f0|g0)[ln p(y0|f0)]. (31)

Substituting Eqs. (30) and (31) into (29) results in a further lower bound on the log marginal
likelihood:

ln p(y, y0) ≥ Eq(z)[Eq(f)[ln p(y|f, z)]] + Eq(f0)[ln p(y0|f0)]
− KL(q(h)||p(h)) − KL(q(g0)||p(g0)) − KL(q(z)||p(z)), (32)

where q(f0) and q(f) are defined as

q(f0) �
∫

p(f0|g0)q(g0)dg0, (33)

q(f) �
∫

p(f|h, g0)q(h)q(g0)dhdg0. (34)

Note that the difference between the left hand side and the right hand side of Eq. (31) is
given by the KL divergence KL(p(f0|g0)||p(f0|g0, y0)). This KL divergence is minimized
when g0 gives sufficient statistics for f0. In practice, this assumption of g0 being a sufficient
statistic is unlikely to hold since the number of inducing points is less than the number of data
points. However, the bound can be maximized with respect to (w.r.t.) U0. This minimizes
the KL divergence keeping Jensen’s bound tight and ensuring that U0 are well distributed
among the training input X. Similarly, the difference between the two sides of Eq. (30) is
given by the KL divergence KL(p(f|h, g0)||p(f0|h, g0, z, y0)), which is minimized when the
combination of h and g0 gives sufficient statistics for f. This bound can be maximized w.r.t.
z and Uk for k = 0, . . . , T .

It has been shown by Titsias (2009) and Hensman et al. (2013) that the implicit optimal
variational distribution q(g0) to maximize the right hand side of Eq. (31) is Gaussian [see
Eq. (10) in Titsias (2009) and Eq. (3) in Hensman et al. (2013)]. Similarly, the optimal
variational distribution q(h, g0) to maximize the right hand side of Eq. (30), and hence the
optimal q(hk), are also Gaussian. We parametrize them as follows:

q(g0) � N (g0|m0,S0) (35)

and

q(hk) � N (hk |mk,Sk). (36)

123



1958 Mach Learn (2018) 107:1947–1986

Equation (34) shows the joint variational distribution of the local latent variables f1, . . . , fT
of the experts. It is computationally expensive to calculate this joint distribution. However, we
will see that only theirmarginal distributions are needed. In particular, because the likelihoods
factorize as p(y0|f0) = ∏N

n=1 p(yn | f0(xn)) and p(y|f) = ∏N
n=1

∏T
k=1 p(yn | fk(xn))[zn==k],

and q(z) is assumed to factorize as in (27), the bound (32) becomes

ln p(y, y0) ≥
N∑

n=1

T∑
k=1

q(zn = k)Eq( fk (xn))[ln p(yn | fk(xn))]

+
N∑

n=1

Eq( f0(xn))[ln p(yn | f0(xn))] − KL(q(h)||p(h))

− KL(q(g0)||p(g0)) − KL(q(z)||p(z)). (37)

It can be seen from the equation above that only themarginals of q(f) and q(f0), i.e. q( fk(xn))
for k = 0, . . . , T and n = 1, . . . , N , are needed to compute the expectations in (37). Using
the assumed distributions for q(g0) and q(hk) in Eqs. (35) and (36) and the conditionals in
Eqs. (18) and (23), the following functional forms of the marginal distributions are obtained

q( f0(xn)) =N
(
f0(xn)|

[
a(0)
n

]T
m0, κ0(xn, xn) +

[
a(0)
n

]T(
S0 − K(0)

U0U0

)
a(0)
n

)
, (38)

and

q( fk(xn)) =N
(
fk(xn)|

[
a(k)
n

]T
mk +

[
a(0)
n

]T
m0,

κk(xn, xn) +
[
a(k)
n

]T(
Sk − K(k)

UkUk

)
a(k)
n +

[
a(0)
n

]T
S0a(0)

n

)
, (39)

for k = 1, . . . , T . Here a(k)
n is a vector of the n-th column of the matrix [K(k)

UkUk
]−1K(k)

UkX
for k = 0, . . . , T . The detailed derivation of Eqs. (38) and (39) are given in Appendix A.
Subsequently, the expected likelihood terms from the bound (37) can be calculated as follows
(see Appendix A)

Eq( f0(xn))[ln p(yn | f0(xn))] = lnN
(
yn |

[
a(0)
n

]T
m0, σ

2
0

)

− 1

2σ 2
0

Tr
(
S0a(0)

n

[
a(0)
n

]T)
− 1

2σ 2
0

l(0)nn (40)

and

Eq( fk (xn))[ln p(yn | fk(xn))] = lnN
(
yn |

[
a(k)
n

]T
mk +

[
a(0)
n

]T
m0, σ

2
k

)

− 1

2σ 2
k

Tr
(
Ska(k)

n

[
a(k)
n

]T)

− 1

2σ 2
k

Tr
(
S0a(0)

n

[
a(0)
n

]T)
− 1

2σ 2
k

l(k)nn (41)

for k = 1, . . . , T . Here l(k)nn is the n-th diagonal element ofK(k)
XX −K(k)

XUk
[K(k)

UkUk
]−1K(k)

UkX
for

k = 0, . . . , T .

123



Mach Learn (2018) 107:1947–1986 1959

4.2 The variational inference algorithm

Inference in our model is performed bymaximizing the lower bound (37) on the log marginal
likelihood w.r.t. the variational distributions q(z), q(h) and q(g0), the inducing inputs, the
noise variance and the kernel hyperparameters. Notice that maximizing the lower boundw.r.t.
the noise variance and the kernel hyperparameters does not necessarily make it closer to the
log marginal likelihood since the latter depends on them. In fact, only the maximization of
the lower bound w.r.t. the variational distributions q(z), q(h), q(g0) and the inducing inputs
brings it closer to the log marginal likelihood. Subsequently, maximizing the lower bound
w.r.t. the noise variance and the kernel hyperparameters elevates the log marginal likelihood.

If we assume that the variational distribution q(zn) is a multinomial distribution, then
the KullbackLeibler divergence KL(q(z)||p(z)) is analytically tractable and the bound can
be maximized w.r.t. all the variational parameters and hyperparameters using straightfor-
ward gradient based optimization. However, this method will result in a time complexity of
O(NM2T ). In particular, computing the bound in Eq. (37) requires the computation of NT
terms Eq( fk (xn))[ln p(yn | fk(xn))] for k = 1, . . . , T and n = 1, . . . , N , where the computa-
tion of each term as given in Eq. (41) has the time complexity of O(M2). The resulting linear
time scaling in T is undesirable. In fact, a well-known problem with the sparse method using
inducing points is that each inducing point only sculpts out the approximate posterior in a
small region of the input space around it (Snelson 2008). Consequently, when the range of
the inputs is large compared to this supported range, many inducing points are required to
maintain the accuracy of the approximation. This means that, in many applications such as
in time-series settings or in spatial datasets, the number of inducing points must grow with
the number of data points, i.e. M must be scaled with N ; and hence these inducing-point
schemes do not reduce the computational complexity. The mixture-of-experts structures like
our model provides a solution for this problem by dividing the whole input space into small
regions each of which belongs to the responsibility of an expert. In this way, the M inducing
points of each expert will only need to provide support for a smaller region. On the other
hand, this means that instead of scaling the number of inducing points M with the number of
data points N , we need to increase the number of experts T as N grows. So the linear scaling
of the time complexity in T is undesirable for our model.

Here we present a more scalable inference algorithm for which the cost is independent
of the number of experts T . The key for this cost reduction is to apply an approximation to
the variational distribution q(z) in order to bring some of the terms q(zn = k) in Eq. (37) to
zero, thereby, reduce the total number of terms Eq( fk (xn))[ln p(yn | fk(xn))] to be computed.
This cost reduction approximation (described in detail in Sect. 4.3) will be combined into
a two-step inference algorithm which is presented below. In particular, the optimization is
performed by iteratively alternating between the two steps

1. Fix q(z), and maximize the lower bound w.r.t. the parameters of q(h) and q(g0), the
inducing inputs, the noise variance and the kernel hyperparameters, using gradient based
optimization.

2. Fix q(h), q(g0), the inducing inputs, the noise variance and the kernel hyperparameters,
and maximize the bound w.r.t. q(z).

We will now discuss each of the two steps in details. For the first step, the following
equation contains the relevant terms of the bound to be maximized:

L1(D, γ ) =
N∑

n=1

T∑
k=1

q(zn = k)Eq( fk (xn))[ln p(yn | fk(xn))]
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+
N∑

n=1

Eq( f0(xn))[ln p(yn | f0(xn))] − KL(q(h)||p(h))

− KL(q(g0)||p(g0)). (42)

Here, γ denotes the vector containing the inducing inputs, the noise variance, the kernel
hyperparameters, and the parameters of q(h) and q(g0). During optimization, to maintain
positive-definiteness of the covariances Sk for k = 0, . . . , T , we represent them using a
lower triangular form Sk = LkLT

k , as suggested in Hensman et al. (2015), and perform
unconstrained optimization of the bound w.r.t. Lk . All the terms in L1 are tractable, and their
derivatives w.r.t. mk , Lk , Uk , σk and θk (for k = 0, . . . , T ) can be calculated by applying
straight-forward algebra (see Appendix B).

In the second step, the lower bound on the log marginal likelihood is maximized w.r.t.
q(z). Because q(h) and q(g0) are fixed, and so are q(f) and q(f0), the bound becomes

L2(D, q(z)) = Eq(z)
{
Eq(f)[ln p(y|f, z)]} − KL(q(z)||p(z)) + const

= Eq(z)
{
Eq(f)[ln (p(y|f, z)p(z))]} − Eq(z)[ln q(z)] + const

= Eq(z)[ln p̃(y, z)] − Eq(z)[ln q(z)] + const, (43)

where p̃(y, z)) is a new distribution defined by the relation

ln p̃(y, z)) = Eq(f)[ln (p(y|f, z)p(z))] + const

= Eq(f)[ln (p(y, z|f))] + const.

It can be recognized that (43) is the negative Kullback–Leibler divergence between q(z) and
p̃(y, z). Thus maximizing (43) is equivalent to minimizing the Kullback–Leibler divergence,
which occurs when q(z) = p̃(y, z), i.e.,

ln q(z) = Eq(f)[ln(p(y|f, z)] + ln p(z), (44)

or

N∑
n=1

ln q(zn) =
N∑

n=1

T∑
k=1

Eq( fk (xn))[ln p(yn | fk(xn))[zn==k]]

+
N∑

n=1

T∑
k=1

ln p(zn = k)[zn==k].

Using the prior over zn given in Eq. (24), it can be seen that zn follows amultinomial posterior
distribution, i.e., q(zn=k)=rnk , where rnk = ρnk/

∑T
i=1ρni is the responsibility of expert k

for xn , and ρnk is given by

ln ρnk = lnN (xn |mk,V) + Eq( fk (xn))[ln p(yn | fk(xn))] + const. (45)

4.3 Computational complexity and cost reduction approximation

We now look into the computational cost of the algorithm and describe approximation tech-
niques to reduce it.

Computational complexityAssuming that the global GP and each of the local experts have
the same number of inducing points, i.e. M = P , the cost of computing the KL divergences
and their derivatives in (42) is O(M3T ). Since the number of required inducing points M is
expected to bemuch smaller than the number of training samples N , most of the cost will arise

123



Mach Learn (2018) 107:1947–1986 1961

from computing the expected likelihood terms Eq( fk (xn))[ln p(yn | fk(xn))] for k = 0, . . . , T
and n = 1, . . . , N , and their derivatives. This computation is required for both steps and has
the overall time complexity of O(NM2T ).

Cost reduction approximation The cost in the first step can be reduced with the maximum
a posteriori (MAP) assignment as suggested by Nguyen and Bonilla (2014). In particular, the
experts are assumed to be responsible for disjoint subsets of the inputs, i.e., each data point
is explained by only one expert. This is done by assigning each point to only the expert of
highest responsibility:

zn = argmax
k

rnk . (46)

The responsibilities are then reassigned as follows:

rnk =
{
1, iff zn = k,

0, otherwise.

It can be observed that, for the computation of the bound L1 [given by Eq. (42)] in the first
step, the term q( fk(xn)) is only needed when q(zn = k) is non-zero, i.e. rnk is non-zero.
With the new MAP expert assignment, this only happens when the point xn is assigned to
expert k. As a result, the time complexity for the first step is reduced to O(NM2).

We can further observe that ln ρnk in Eq. (45) comprises two terms. The first term increases
as the distance between xn and the expert centermk decreases. The second term, measuring
the quality of prediction by expert k, increases when xn is similar to the inducing inputs of the
expert. This is more likely as xn is getting closer tomk . This observation allows us to bypass
the expensive computation of the second term and replace the above MAP assignment with
a simplified expert assignment for the second step:

zn = argmax
k

N (xn |mk,V). (47)

As a result, the overall time complexity of the proposed algorithm is reduced to O(NM2).

4.4 Stochastic optimization

Since the objective function (37) is given as the sum over N data points, we can optimize it in
a distributed fashion by parallelizing the computation over the data points, or in a stochastic
fashion by selecting amini-batch of the data at random for each iteration.Herewe discuss how
to use stochastic optimization for our model in more details. First, we rewrite the objective
L1 in Eq. (42) as follows

L1(D, γ ) =
N∑

n=1

λn − KL(q(h)||p(h)) − KL(q(g0)||p(g0)).

where

λn =
T∑

k=1

q(zn = k)Eq( fk (xn))[ln p(yn | fk(xn))] + Eq( f0(xn))[ln yn | f0(xn)]

In each iteration t , we randomly sample a set of B examples from the data. We denote the
set by S(t). The objective L1 is then approximated by

L̃1(S
(t), γ ) = N

B

∑
xi∈S(t)

λi − KL(q(h)||p(h)) − KL(q(g0)||p(g0)),
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as though S(t) is replicated N/B times to form the data set. The full algorithm with stochas-
tic optimization is presented in Algorithm 1. The algorithm has the time complexity of
max(O(BM2), O(M3)) and the memory complexity of max(O(BM), O(M2)).

As previously mentioned in Sect. 4.1, in order to enable the decomposability of the lower
bound L1 and hence stochastic optimization, the variational distributions of the inducing
variables are represented explicitly using the parameters mk and Lk for k = 0, . . . , T . The
drawback is that (T + 1)M(M + 3)/2 extra parameters are to be optimized, and the joint
search space of these parameters is huge for a large number of experts T . However, as we
will see in the experiments presented in Sect. 5, especially in the experiments with varying
number of experts (up to 100 experts) presented in Sect. 5.3, the proposed method has no
problem handling a moderately large number of experts.

Algorithm 1Model inference with stochastic optimization
1: Initialize the inducing inputs, the noise variance, the kernel hyperparameters, q(h), q(g0) and q(z).
2: Set the learning rate α and the batch size B appropriately.
3: repeat
4: Sample a set S(t) of B examples randomly.
5: Update zn according to Eq. (47), ∀xn ∈ S(t).
6: Calculate the gradient ∇γ L̃1(S

(t), γ )

7: Update the current estimate of γ ,

γ (t) = γ (t−1) − α∇γ L̃1(S
(t), γ )

8: until convergence.

4.5 Prediction

The predictive distribution for an unseen data point x∗ is

p(y∗|x∗, y) =
T∑

k=1

p(z∗ = k|x∗)p(y∗|x∗, y, z∗ = k). (48)

Thatmeans the final prediction at x∗ is the weighted average of the predictions from T experts
with the weights given by p(z∗ = k|x∗). In practice, we find that the prediction by the expert
with highest possibility p(z∗ = k|x∗) is better than the weighted prediction. The predictive
distribution at x∗ by an expert k can be estimated as

p(y∗|x∗, y, z∗ = k)=
∫

p(y∗| f ∗)p( f ∗|x∗, y, z∗ = k)d f ∗, (49)

where

p( f ∗|x∗, y, z∗ =k)=
∫
p( f ∗|fk,hk, g0)p(fk,hk, g0|y)dfkdhkdg0

≈
∫
p( f ∗|fk,hk, g0)p(fk |hk, g0)q(hk)q(g0)dfkdhkdg0

=
∫

p( f ∗|hk, g0)q(hk)q(g0)dhkdg0. (50)
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The last integral in Eq. (50) results in a normal distribution similar to that in Eq. (39). The
predictive distribution at x∗ given in Eq. (49) can be computed by simply adding the noise
variance σ 2

k to the variance of the above normal distribution.

5 Experiments

In this section, we present experiments with data sets of varying size to investigate different
aspects of the proposed model. The section is organized as follows. Section 5.1 discusses
the experimental methods including the experimental setup and the performance measures.
Section 5.2 analyzes the effects of the number of global and local inducing points on the
performance of the proposed model. Section 5.3 tests the model using the varying number of
experts. Section 5.4 evaluates the ability of the model to handle non-stationarity using two
toy data sets. Section 5.5 presents the experiments to compare the performances of various
relevant and representative GP regressionmethods for a number of medium-sized benchmark
data sets. Finally, Sect. 5.6 evaluates the performances of the proposed method on large-scale
data sets using stochastic optimization.

5.1 Experimental methods

5.1.1 Experimental setup

Each experiment is carried out on a system with Intel® Core(™) i7-4770 CPU at 3.40GHz
with 8GB RAM. We use the squared exponential (SE) kernel with automatic relevance
determination (ARD) for all the tested GP regression methods in all experiments.

Besides the proposedmodel—the variational hierarchical mixture of GP expert (HMGP),
the following GP regression methods are repeatedly studied in our experiments: the GP with
stochastic variational inference (SVI) (Hensman et al. 2013), the fully independent training
conditional (FITC) method (Snelson and Ghahramani 2006), the partially independent con-
ditional (PIC) method (Snelson and Ghahramani 2007) and the fast allocated mixture of GP
experts (FGP) (Nguyen and Bonilla 2014). The information regarding the implementation of
these methods are as follows. FITC, PIC and FGP are implemented inMATLAB, where opti-
mization is carried out using the LBFGS-B optimizer (Zhu et al. 1997) fromGPMLpackage.1

SVI and the proposed model HMGP are implemented in Python using ADADELTA opti-
mizer (Zeiler 2012) from climin package (Bayer et al. 2015) for learning hyper-parameters
and inducing inputs. ADADELTA is chosen for supporting stochastic optimization. We use
the implementations of FITC and PIC from GPML package, SVI from GPy package (GPy
since 2012), and FGP from the its Github repository.2 In addition to these methods, a number
of other GP regression methods are evaluated and discussed in Sect. 5.6.

We note that HMGP refers to the proposed model with the cost reduction approximation
presented in Sect. 4.3. For each experiment with HMGP, the number of global inducing
points is set to be the same as the number of local inducing points per expert, except for the
experiments in Sect. 5.2. The prediction by HMGP for each test points x∗ is based on the
prediction of the expert k which has the highest possibility p(z∗ = k|x∗).

1 http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html.
2 https://github.com/trungngv/fgp.
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5.1.2 Performance measures

We use the Root-Mean Square Error (RMSE), the StandardizedMean Squared Error (SMSE)
and the Mean Standardized Log Loss (MSLL) to measure the quality of the predictions on
the test sets. The SMSE is given as the mean squared error of the tested predictor normalized
by the variance of the targets of the test cases:

SMSE = 〈
(y∗ − μ∗)2

〉
/
〈
(y∗ − ȳ)2

〉
, (51)

where 〈.〉 averages over the test data, y∗ and μ∗ are the real target value and the predicted
mean value at test sample x∗, respectively; and ȳ is the mean value of the test targets.

The MSLL is obtained by averaging − log p(y∗|D, x∗) (which is the negative log proba-
bility of the real test target value against the predictive distribution) over the test set and then
subtracting the same score of a trivial model (which predicts using a Gaussian with the mean
and variance of the training data). MSLL takes into account the predictive variances while
RMSE and SMSE do not. The lower are these measurements, the better is the predictor.

5.2 Experiments with varying number of inducing points

First, we analyze the effects of the number of global and local inducing points on the perfor-
mance of the proposed HMGPmethod. In the experiments, HMGP is tested on three datasets
kin40k (8 dimensions, 10,000 training, 30,000 test),3 pole-telecom (26 dimensions, 10,000
training, 5000 test),4 and sarcos (21 dimensions, 44484 training, 4449 test) (see footnote 4)
using varying numbers of global and local inducing points: 50, 100 and 200. The number
of local experts is fixed to 3. The performance in terms of SMSE and MSLL is reported in
Table 1.

It can be observed that increasing the number of global or local inducing points generally
improves the performance of HMGP in terms of both SMSE andMSLL. However, the impact
of increasing the number of global or local inducing points on the performance varies across
different data sets. For the kin40k data set, amoderately simple data set, increasing the number
of global inducing points improves the performance more significantly than increasing the
number of local inducing points. The opposite trend is observed for the sarcos data set, a
highly complex nonlinear one. In this data set, an increase of local inducing points has more
impact on the performance than an increase of global inducing points.

The pole-telecom data set is somewhere in between kin40k and sarcos in complexity. The
experimental results for this data set in Table 1 exhibit that increasing the number of global
inducing points gives a higher improvement in terms of SMSE and a lower improvement
in terms of MSLL than those achieved by increasing the same number of local inducing
points. In such a data set, choosing a balanced number of global and local inducing points is
generally a good choice.

5.3 Experiments with varying number of experts

Here we test the proposed HMGP model with and without the cost reduction approximation
(presented in Sect. 4.3) using the varying number of experts T on a spatial dataset. As
previously mentioned, when the range of the inputs is large compared to the supporting range
of an inducing point such as in time-series or spatial datasets, the number of experts T needs

3 Available from http://www.cs.toronto.edu/~delve/data/datasets.html.
4 Available from http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html.

123

http://www.cs.toronto.edu/~delve/data/datasets.html
http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html


Mach Learn (2018) 107:1947–1986 1965

Table 1 Performance of HMGP in terms of SMSE and MSLL using different numbers of global and local
inducing points

(a) kin40k dataset

SMSE MSLL

Local
Global

50 100 200 50 100 200

50 0.0706 0.0555 0.0364 -1.456 -1.568 -1.823
100 0.0706 0.0555 0.0364 -1.497 -1.624 -1.836
200 0.0548 0.0500 0.0362 -1.645 -1.682 -1.838

(b) pole-telecom dataset

SMSE MSLL

Local
Global

50 100 200 50 100 200

50 0.0134 0.0094 0.0077 -2.234 -2.294 -2.351
100 0.0121 0.0094 0.0076 -2.365 -2.369 -2.416
200 0.0115 0.0093 0.0075 -2.448 -2.450 -2.452

(c) sarcos dataset

SMSE MSLL

Local
Global

50 100 200 50 100 200

50 0.0210 0.0195 0.0193 -2.162 -2.193 -2.203
100 0.0168 0.0164 0.0151 -2.249 -2.265 -2.303
200 0.0142 0.0127 0.0125 -2.320 -2.358 -2.373

to increase as the number of data points grows. So the linear scaling of the time complexity
in T is undesirable for HMGP. The cost reduction approximation was introduced in order to
reduce the time complexity of HMGP from O(NM2T ) to O(NM2). This experiment aims to
evaluate the effectiveness of this cost reduction approximation.

We use the monthly price paid data5 in England and Wales for the period of February to
October 2016, and filter for apartments resulting in a dataset with 76,919 entries. Each entry
contains a postcode of the apartment forwhichwe cross-reference against a postcode database
to get the geographical coordinates: the latitude and longitude. The normalized logarithmic
apartment prices are then regressed on the geographical coordinates. We randomly select
10,000 data points as a test set and use the remaining for training. This dataset is similar to
that used in Hensman et al. (2013), where the data was for year 2012.

We compare themodels before and after applying the cost reduction approximation, which
are denoted as HMGP-b and HMGP, respectively. We also use SVI (Hensman et al. 2013) as
baseline for comparison. SVI can be considered as a special case of HMGP where the lower
layer comprising local experts is removed. Different numbers of local experts T are used for
HMGP and HMGP-b. For each method and each T value, the number of inducing points is
varied to trace-out speed-accuracy frontiers. The resulted SMSE and MSLL measurements
are plotted against the training time in Fig. 2. Note that for HMGP and HMGP-b, the number
of global inducing points is set to be equal to the number of local inducing points per expert,
i.e., P = M . Learning proceeds until convergence or until 1000 iterations are reached. As
seen in Fig. 2, HMGP-b and HMGP achieve the similar SMSE and MSLL measurements

5 The data are available from http://data.gov.uk/dataset/land-registry-monthly-price-paid-data/ (accessed 02-
Octorber-2017).
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(a)

(b)

Fig. 2 SMSE and MSLL as functions of training time for the apartment price dataset for different GP
approximation methods and different T values. Points on each line are annotated with the number of inducing
points. Faster and more accurate approximation methods are located towards the bottom left corner of the
plots. a SMSE versus training time, b MSLL versus training time

given the same number of experts and inducing points. However, the training time of HMGP-
b is much longer. This is due to the time complexity of O(NM2T ) and O(NM2) for HMGP-b
and HMGP, respectively. The prohibitive training time prevents us from testing HMGP-b for
T > 10. For HMGP, using 2 experts it has similar speed-accuracy performance as SVI. As the
number of experts increases from 2 to up to 100, the speed-accuracy performance of HMGP
keeps improving; it achieves lower SMSE and MSLL with only slightly increased training
time given the same number of inducing points, thanks to the cost reduction approximation
technique.
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5.4 Experiments on small-sized data sets

Next, we evaluate the ability of the model to deal with non-stationarity using a small-sized
dataset where regression result can be easily visualized. Here we use the motorcycle data
set (Silverman 1985), which contains 133 data points with input-dependent noise as shown
in Fig. 3. Four other GP regression methods are used in this experiments: FGP (Nguyen
and Bonilla 2014), FITC (Snelson and Ghahramani 2006), PIC (Snelson and Ghahramani
2007) and the full GP. FGP is a mixture of GP experts in which each expert uses only local
information. All the tested approximation methods except PIC have the time and memory
complexity of O(NM2) and O(NM), respectively, where M is the total number of inducing
points for FITC, and the number of inducing points per experts for FGP and HMGP. PIC has
the time and memory complexity of O(NP2) and O(NP), where P = max(M,C): M is the
number of inducing points and C is the size of clusters, assuming that all the clusters have
the same size. In this experiment, we use 2 experts and 20 inducing points per expert in FGP
and HMGP (M = 20). In PIC, a similar setting is used: 20 inducing points (M = 20) and
2 clusters which are formed using k-mean algorithm (C > 20 though). FITC is tested with
two different settings: M = 20 and M = 40. We train each method 5 times and select the
trained model with the smallest objective value at convergence.

Figure 3 presents the results obtained by the six predictors. For HMGP, the first expert
models the beginning part of the data where the noise level is low, and the second expert
depicts the remaining part where the noise level is high. This result shows the ability of the
proposed method to handle non-stationarity in the data. In this respect, FGP obtains similar
result. However, since the proposed method uses both global information and local data, it
gives a smoother transition between the two experts while FPG generates a big gap at the
boundary. Finally, FITC, PIC and the full GP are not able to model the varying noise level
across the data set, which results in a poor predictive distribution (notice the high predictive
variances at the beginning part of the data).

Next, we consider a more realistic situation in practical regression problems, where a
common trend is observed across the entire data set. To simulate this situation, we modify
themotorcycle data set by adding a sine function to its outputs: y = x+30 sin(x). This yields
a highly non-linear data set. The results of the six tested methods are shown in Fig. 4. For
FPG, the first expert depicts the first part of the data pretty well. However, the second expert is
confused by the high noise level in the later part of data, and hence it is not able to model the
non-linearity in the data. FITC using 20 inducing points detects common trend of the data but
cannot account for such high non-linearity with a small number of global inducing points.
FITC with an increased number of inducing points (M = 40) results in better predictive
means but it still over-estimates the predictive variances at the beginning part of the data. PIC
and the full GP give good predictive mean, but they cannot model the different noise levels
in the data set for a good predictive distribution. In contrast, the proposed method using both
global and local information with separate hyper-parameter sets for the experts performs well
on this data set. In addition, in PIC, k-mean algorithm does not take into account the varying
noise levels in finding a suitable cluster boundary for the inference, which results in a big gap
between two clusters (at around data point 32). In HMGP, the inference and gating network
learning are done simultaneously giving a smoother transition at the expert boundaries.
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(a) HMGP M=20 (b) FGP M=20

(c) FITC M=20 (d) FITC M=40

(e) PIC M=20 (f) GP

Fig. 3 Test results for motorcycle data using HMGP, FGP, FITC, PIC and full GP. Training data are marked
with red crosses. Green dots are samples drawn from the predictive distribution evaluated at evenly spaced
points (100 samples per point). Solid black line represents the predictive mean. In the top two figures, the
predictive means by the two experts, which are represented by red dashed and blue dotted lines, are overlaid
by the final combined predictive means (solid black line) (Color figure online)
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(a) HMGP M=20 (b) FGP M=20

(c) FITC M=20 (d) FITC M=40

(e) PIC M=20 (f) GP

Fig. 4 Test results for motorcycle + sine data using HMGP, FGP, FITC, PIC and full GP. Training data are
marked with red crosses. Green dots are samples drawn from the predictive distribution evaluated at evenly
spaced points (100 samples per point). Solid black line represents the predictive mean. In the top two figures,
the predictivemeans by the two experts, which are represented by red dashed and blue dotted lines, are overlaid
by the final combined predictive means (solid black line) (Color figure online)
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5.5 Experiments on medium-sized data sets

In this section, we evaluate the predictive performance of our model on 5 medium-sized
benchmark data sets: kin40k (8 dimensions, 10,000 training, 30,000 test),6 pumadyn32nm
(32 dimensions, 7168 training, 1024 test),7 pole-telecom (26 dimensions, 10,000 training,
5000 test) (see footnote 7), chem (15 dimensions, 31,535 training, 31,536 test) (see footnote
7), and sarcos (21 dimensions, 44,484 training, 4449 test) (see footnote 7). We use the same
training /test splits as in Williams and Rasmussen (2006b), Nguyen and Bonilla (2014) and
Chalupka et al. (2013).

We compare the performance of the proposed method (HMGP) to a number of the state-
of-the-art GP regression methods: FITC (Snelson and Ghahramani 2006), PIC (Snelson and
Ghahramani 2007), FGP (Nguyen and Bonilla 2014), SVI (Hensman et al. 2013), and the
local mixture of GP experts (LMGP). LMGP is actually a special case of HMGP when the
global sparse GP in the upper layer is removed. In this special case, the predictor is left with
a set of local GP experts, and therefore makes use of only local information. FITC and SVI
use only global information where the entire data set is summarized by a set of inducing
points, while FGP makes use of only local information. Finally, PIC uses both global and
local information. The experiment thus allows us to examine whether combining global and
local information in the proposed method provides any performance improvement over using
either one alone.

No stochastic optimization is used in this experiment, i.e., all the training data points
are used in each iteration. All the tested methods have the time and memory complexity of
O(NM2) and O(NM), respectively, where M is the total number of inducing points for FITC
and SVI, the number of inducing points per experts for FGP, LMGP and HMGP, and the size
of clusters in PIC (assuming that all the clusters have the same size). We choose M = 500
for all the methods. In PIC, since we cannot guarantee that all the clusters have the same
size, we choose the number of clusters such that the average cluster size is 500, and use
k-means algorithm for clustering. We also fix the number of clusters in FPG, LMGP and in
the lower-layer of HMGP to 3 in all of the experiments. Each method is run 5 times, and
each run is started with different random seeds. The performance is evaluated in terms of the
standardized mean squared error (SMSE) and mean standardized log loss (MSLL), which
measure the accuracy and confidence of the prediction, respectively.

Theoptimizationprocess of all themethods is rununtil convergenceor for 1, 000 iterations,
whichever is the earlier. Figs. 5, 6, 7, 8 and 9 illustrate the SMSE and MSLL as functions of
training time for all the tested methods. In addition, the average performance measures and
training times of the tested methods over 5 runs together with their standard deviations are
reported in Table 2. First, fromTable 2, we observe that HMGP requires a longer training time
than SVI and LMGP. In fact, the training time of HMGP is approximately equal to the sum
of training times of SVI and LMGP. However, it can be seen from Figs. 5, 6, 7, 8 and 9 that of
all the tested models, HMGP is the most efficient one in terms of the time-accuracy trade-off,
except for the time-MSLL trade-off in the pole-telecom data set. Second, the results in Table
2 show that HMGP also gives the best performance in terms of both accuracy (SMSE) and
prediction confidence (MSLL). This applies to all data sets, except for the pole-telecom data
set, where FGP has a lower MSLL, but a much higher SMSE. HMGP provides significant
gains in terms of SMSE compared to the second best predictor in 4 out of 5 data sets (35.3%
in kin40k, 40% in pole-telecom, 58% in chem and 25% in sarcos).

6 Available from http://www.cs.toronto.edu/~delve/data/datasets.html.
7 Available from http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html.
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Fig. 5 SMSE and MSLL as functions of training time for the kin40k data set

Fig. 6 SMSE and MSLL as functions of training time for the pumadyn32nm data set. Since the performance
of PIC is very poor on this data set, it has been removed from the plots to increase their resolutions

Fig. 7 SMSE and MSLL as functions of training time for the pole-telecom data set

Note that the results for HMGP, SVI and LMGP on the kin40k, pole-telecom, and sarcos
data sets in Table 2 are consistent with the analysis in Sect. 5.2. In particular, whenever SVI
performs better than LMGP, then an increase in the number of global inducing points for
HMGP will improve the performance more significantly than an increase in the number of
local inducing points. The opposite is also true.

5.6 Experiments on large data sets

In this section, we evaluate the performance of the proposed method using stochastic opti-
mization on two large-scale data sets: theMillion Song data set (Bertin-Mahieux et al. 2011)
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Fig. 8 SMSE and MSLL as functions of training time for the chem data set

Fig. 9 SMSE and MSLL as functions of training time for the sarcos data set

and theUS flight data set (Hensman et al. 2013). Here we briefly discuss about the GP regres-
sion methods that are used for comparison in this section, before giving details regarding the
experiments on each of the two aforementioned datasets.

5.6.1 GP regression methods for comparison

The following relevant and representative GP regression methods are studied in this section:

– HGMP with and without stochastic optimization (denoted as HMGP-S and HMGP,
respectively)

– SVI with and without stochastic optimization (denoted as SVI-S and SVI, respectively)
(Hensman et al. 2013)

– FGP (Nguyen and Bonilla 2014)
– Local-FITC (Nguyen and Bonilla 2014)
– Variational sparse spectrum approximation to GP (VSSGP) (Gal and Turner 2015)
– Variational PIC (Hoang et al. 2015)
– Distributed low-rank-cum-Markov approximation (DistributedLMA) (Hoang et al. 2016)
– Subset of data points (SOD) (Quiñonero-Candela and Rasmussen 2005)

In Local FITC, the training data is randomly divided into small clusters, and a FITC
model is separately trained on each cluster. In SOD, a subset of data points from the training
set is used for training a full GP. In VSSGP, the GP’s stationary covariance function is
decomposed into an infinite Fourier series, which is then approximated by a finite one.
In variational PIC, Hoang et al. (2015) apply a reverse variational inference procedure to
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derive a stochastic natural gradient ascent method that can achieve asymptotic convergence
to the predictive distribution of PIC. Both VSSGP and variational PIC are amendable to
stochastic optimization. In LMA (Low et al. 2015), the low-rank approximation of a GP,
which is based on inducing points and block structure of input space, is complemented with
a Markov approximation of the resulting residual process. Distributed LMA is a distributed
implementation of LMA. It allows the observation noise variance to vary across the input
space by representing it as a finite realization of a Gaussian Markov random process. Table 3
gives the time and memory complexity of the methods evaluated in this section. It is unclear
how much memory is required for distributed LMA from Hoang et al. (2016), hence, this
information is not given in Table 3.

The implementation of FGP, HMGP(-S) and SVI(-S) have been discussed in the experi-
mental setup (Sect. 5.1.1). Local FITC and SOD are implemented based on GPML package
which is written in MATLAB. They use the LBFGS-B algorithm for optimization. For
VSSGP, we use its Github source code,8 which is written in Python. Like for HMGP(-S)
and SVI(-S), ADADELTA optimizer is used for VSSGP to support stochastic optimization.
The implementations for variational PIC and distributed LMA are also from their Github
repositories.9,10 Both variational PIC and distributed LMA are written in C++. Their authors
implement their own optimizers. We leave this intact since it is non-trivial to implement and
integrate LBFGS-B or ADADELTA optimizer to their C++ code base. In addition, incorpo-
rating LBFGS-B does not seem to improve the performance (Quang Minh Hoang, personal
communication, Oct 12, 2017). To make sure that the optimizers that come with variational
PIC and distributed LMA are used efficiently, for each experiment on these methods, we try
different configurations for the optimizers (i.e., different learning rates and decay parame-
ters), and report the best results among those configurations. K -mean algorithm is used to
partition training sets into blocks for variational PIC and distributed LMA.

5.6.2 Experiments on the Million Song data set

First, we use theMillion Song data set (Bertin-Mahieux et al. 2011). We use the exact split as
in Nguyen and Bonilla (2014), in which 100,000 and 51,630 songs are used for training and
testing, respectively. Each song has 90 acoustic features based on which its year of release
is to be predicted.

We test the proposed method with and without stochastic optimization (HMGP-S and
HMGP), and compare it with 8 other GP predictors: SVI, SVI-S, FGP, Local-FITC, VSSGP,
variational PIC, distributed LMA and SOD. As suggested in Nguyen and Bonilla (2014),
when using a single machine to train such a large data set, the choice regarding the sparsity
and complexity of the predictors should be directed by the memory limit of the computer. In
this experiment, subject to the memory limit of the computer which is 8 GB, we set M = 300
for FGP, local-FITC, SVI, HMGP and distributed LMA. For SVI-S, HMGP-S, VSSGP and
variational PIC, the use of stochastic optimization allows more inducing points to be used
given the same time and memory complexity. For these methods, we set B = M = 2000,
which results in a similar time complexity as the other compared methods and a lower
memory complexity. In SOD, 2000 data points is randomly sampled for training and the rest
is discarded. We use 3 experts (or clusters) for HMGP, FGP and local-FITC. Optimization is
run until convergence or until 1000 iterations is reached, whichever is earlier.

8 Code for VSSGP is available from https://github.com/yaringal/VSSGP.
9 Code for variational PIC is available from https://github.com/qminh93/RVGP.
10 Code for distributed LMA is available from https://github.com/qminh93/dSGP_ICML16.
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Table 4 Performance (the average SMSE, MSLL and training time) of different methods, on the Million
Song data set; the best performance is indicated in bold typeface

Method SMSE MSLL Training time (h)

HMGP-S 0.690 (± 0.003) −0.217 (± 0.015) 6.5

HMGP 0.678 (± 0.002) −0.216 (± 0.014) 18.8

SVI-S 0.705 (± 0.003) −0.177 (± 0.011) 3.1

SVI 0.701 (± 0.005) −0.185 (± 0.008) 11.8

FGP 0.712 (± 0.004) −0.214 (± 0.017) 16.2

Local-FITC 0.732 (± 0.007) −0.207 (± 0.024) 15.4

SOD 0.787 (± 0.013) −0.114 (± 0.024) 3.7

VSSGP 0.700 (± 0.004) −0.098 (± 0.011) –

Variational PIC 0.981 (± 0.001) 6.730 (± 0.024) 18.8

Distributed LMA 0.969 (± 0.001) – 46.9

The numbers in brackets indicate the standard deviation over 5 runs

The performances in terms of SMSE and MSLL of all the methods are given in Table
4. The results are averaged over 5 runs. The training time of VSSGP is not available since
its Github code runs on GPU. The MSLL measure for the distributed LMA is also not
available since predictive variances are not generated from its source code. It can be seen from
Table 4 that HMGP and HMGP-S give the best performances among the compared methods.
With stochastic optimization, HMGP-S requires a shorter training time while achieving a
comparable predictive performance to HMGP.

We notice that variational PIC and distributed LMA perform poorly on this dataset. One
factor that might contribute to these poor performances is that even though the partitioning of
the input space into blocks and especially the selection of inducing inputs have a great impact
on the performance of these methods, they are carried out in advance and are independent
of the inference of the models. In particular, the partitioning of the input space into blocks
is done using an external clustering algorithm (k-mean algorithm in this case). The inducing
inputs are then calculated for each block as the weighted averages of the randomly selected
data points from the block and the block center. On high-dimensional datasets like this, the
partitioning result from such an external clustering algorithm is noisy, unreliable and non-
optimal for the inference of the GP approximation methods. In HMGP, the clustering and
the inference including the learning of inducing inputs are done simutaneously, the results
from the inference can improve the clustering and vice versa, hence it does not have the same
pitfall as the above methods.

5.6.3 Experiments on the US flight data set

The second large-scale data set we consider is the US flight data set (Hensman et al. 2013).
This data set contains information about all commercial flights in the USA from January 2008
to April 2008. The aim is to predict the delay in reaching the destination based on 8 attributes:
age of the aircraft, distance to be covered, airtime, departure time, arrival time, day of the
week, day of the month and month. The data set consists of more than 2 million points after
removing instances with missing values. For this experiment, we use two different setups for
sampling the training/test sets from theUS flight dataset. The first setup is similar to that used
in Hensman et al. (2013) in which the first 800K points from the data set are selected and then
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(a) Flight-700K split (b) Flight-All split

Fig. 10 RMSE as a function of training time for the US flight dataset using the Flight-700K and Flight-All
splits for HMGP and SVI. Faster and more accurate approximation methods are located towards the bottom
left corner of the plots

split randomly into 700K and 100K points for training and testing. In the second setup, 100K
points are randomly picked from the entire original data set for testing; and the remaining
points are used for training. Hereinafter, we refer to these two setups as the Flight-700K and
Flight-All splits. To perform GP regression on such a large-scale dataset as in the second
setup using a single computer, stochastic optimization is required. To be compatible with the
experiments in Hensman et al. (2013), RMSE is used as the performance measure for this
dataset.

Compare in terms of the performance-time trade-off We first compare HMGP-S and SVI-S
in terms of the performance-time trade-off using the two aforementioned training/test splits.
This is done by plotting the accuracy measurement RMSE as functions of training time.
The result is shown in Fig. 10. Each of the two models HMGP-S and SVI-S is tested with
two different numbers of inducing points of 100 and 200, and the same batch size of 5000.
HMGP-S is tested with 3 and 30 experts. All the methods are run until convergence or until
10,000 optimization iterations are reached, whichever is earlier. Even though SVI-S takes
less time than HMGP-S to complete one optimization iteration, it can be observed from the
plot that HMGP-S using either 3 or 30 clusters is more efficient than SVI-S in terms of the
accuracy-time trade-off.

Compare in terms of the final RMSE at convergence Finally, it is interesting to compare the
performance of HMGP-S in the US flight dataset to those of VSSGP and variational PIC,
which have been reported to give very good performances in this dataset. Since VSSGP code
runs on GPU, and variational PIC uses its own optimizers, it is infeasible to compare their
performance-time trade-offs as we previously did with HMGP-S and SVI-S. Therefore, we
compare the performances of HMGP-S, SVI-S, VSSGP and variational PIC in the US flight
dataset in terms of the final RMSE achieved when their optimization processes arrive at
convergence or when a maximum number of optimization iterations is reached, whichever
is earlier.

The settings for the above methods are as follows. Stochastic optimization is used in all
the four methods.We set the batch size to 5000, the number of inducing points/frequencies to
200, and the maximum number of optimization iterations to 10,000. The number of experts
for HMGP-S is fixed to 30 in both the Flight-700K and Flight-All splits. To set the number
of blocks for variational PIC, we test it with different numbers of blocks within the available
memory and report the best result. This corresponds to 3500 blocks in the Flight-700K split
and 2000 blocks in the Flight-All split.
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Table 5 Performances in terms of RMSE of different methods, on theUS flight data set; the best performances
are indicated in bold typeface

Flight-700K Flight-All

RMSE Training time (h) RMSE Training time (h)

HMGP-S 31.69 (± 0.01) 3.1 34.61 (± 0.01) 3.4

SVI-S 32.59 (± 0.01) 0.6 35.46 (± 0.02) 0.6

VSSGP 31.88 (± 0.08) – 34.81 (± 0.04) –

Variational PIC 32.59 (± 0.09) 3.8 35.06 (± 0.04) 5.2

The numbers in brackets indicate the standard deviation over 5 runs. Training time for each method includes
time spent on clustering and model initialization

Table 5 summarizes the performances of HMGP-S, SVI-S, VSSGP and variational PIC
on the US flight dataset. Again the training time of VSSGP is not available since its Github
code runs on GPU. HMGP gives the best performances in terms of RMSE among the four
tested methods in both the Flight-700K and Flight-All splits.

Note that since distributed LMA is not amendable to stochastic optimization, both the
Flight-700K and Flight-All splits are too big for it to fit in the memory of the test computer.
However, distributed LMA has been reported in Hoang et al. (2016) to give an impressively
lowRMSE of 16.5 in a similar setup to theFlight-700K split. In that experiment, a distributed
system with 32 computing cores and 96 GB memory is used. It is clearly that the targets of
distributed LMAand the proposedHMGPmethod are different. Distributed LMA is designed
to handle big data when abundant computational resources (processors and memory) are
available. On the other hand, HMGP aims to do GP regression on big datasets using limited
computational resources by applying stochastic optimization.

6 Conclusion

In this article, a scalable GP regression method was presented. The proposed method exploits
both global and local information from the training data through a two-layer hierarchical
model with a sparse global GP in the upper layer and a mixture of sparse GPs in the lower
layer. A two-step iterative algorithm was proposed to minimize a variational lower bound of
the log marginal likelihood leading to rapid learning of all the hyperparameters of the local
and global GPs, the inducing points, and the gating network.

Experimental results were presented which demonstrate the ability of the proposed model
to handle non-stationarity and locality in the data aswell as tomodel common trends across the
entire data set. Experiments on a wide range of benchmark data sets showed that the proposed
model outperformed many state-of-the-art sparse GP regression methods. The method also
worked well on large-scale problems using stochastic optimization.

It would be beneficial to allow an unlimited number of layers to be added into the hierarchy
to model a more sophisticated structure of data. Although it seems like a natural extension
to this research, we leave the detailed implementation and exploration to future studies.

Appendix A The expected likelihood terms

Here we will present the derivation of the expected likelihood terms of the bound (37)
in detail. First, we derive the functional forms of the marginal distributions q( fk(xn)) for
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k = 0, . . . , T . For this, we apply the general properties of the Gaussian distributions which
are presented in Equation 2.115 of Bishop (2006) and re-stated below.

Marginal and Conditional GaussiansGiven a marginal Gaussian distribution for x and
a conditional Gaussian distribution for y given x in the form

p(x) = N (x|μ,Λ−1)

p(y|x) = N (y|Ax + b,L1)

the marginal distribution of y is given by

p(y) =
∫

p(y|x)p(x)dx = N (y|Aμ + b,L1 + AΛ1AT). (52)

With q(g0) and p(f0|g0) given by Eqs. (35) and (18), we can derive the formula for
q(f0) �

∫
p(f0|g0)q(g0)dg0 by applying the above property

q(f0) =N
(
f0|[A(0)]Tm0,K

(0)
XX + [A(0)]T

(
S0 − K(0)

U0U0

)
A(0)

)
, (53)

where A(0) ≡ [K(0)
U0U0

]−1K(0)
U0X

. As a result, we have

q( f0(xn)) =N
(
f0(xn)|

[
a(0)
n

]T
m0, κ0(xn, xn) +

[
a(0)
n

]T(
S0 − K(0)

U0U0

)
a(0)
n

)
,

=N
(
f0(xn)|

[
a(0)
n

]T
m0,Tr

(
S0a(0)

n

[
a(0)
n

]T)
+ l(0)nn

)
, (54)

where a(0)
n is a vector of the n-th column of the matrix A(0) and l(0)nn is the nth diago-

nal element of the matrix K(0)
XX − K(0)

XU0
[K(0)

U0U0
]−1K(0)

U0X
. Similarly, we can derive q(fk) �∫

p(fk |hk, g0)q(hk)q(g0)dhkdg0 for k = 1, . . . , T , with q(g0), q(hk) and p(fk |hk, g0) given
by Eqs. (35), (36) and (23) as follows.

q(fk) �
∫

p(fk |hk, g0)q(hk)q(g0)dhkdg

=
∫ {∫

p(fk |hk, g0)q(hk)dhk

}
q(g0)dg

=
∫ {

N
(
fk |[A(k)]Tmk + [A(0)]Tg0,K(k)

XX + [A(k)]T
(
Sk − K(k)

UkUk

)
A(k)

)}
q(g0)dg

= N
(
fk |[A(k)]Tmk+[A(0)]Tm0,K

(k)
XX+[A(k)]T

(
Sk − K(k)

UkUk

)
A(k)+[A(0)]TS0A(0)

)
,

where A(k) ≡ [K(k)
UkUk

]−1K(k)
UkX

. Its marginal is then given by

q( fk(xn)) = N
(
fk(xn)|

[
a(k)
n

]T
mk +

[
a(0)
n

]T
m0,

κk(xn, xn) +
[
a(k)
n

]T(
Sk − K(k)

UkUk

)
a(k)
n +

[
a(0)
n

]T
S0a(0)

n

)

= N
(
fk(xn)|

[
a(k)
n

]T
mk+

[
a(0)
n

]T
m0,Tr

(
Ska(k)

n

[
a(k)
n

]T)

+Tr
(
S0a(0)

n

[
a(0)
n

]T)
+l(k)nn

)
(55)
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where a(k)
n is a vector of the n-th column of the matrix A(k) and l(k)nn is the nth diagonal

element of the matrix K(k)
XX − K(k)

XUk
[K(k)

UkUk
]−1K(k)

UkX
.

Let μkn and vkn , respectively, denote the mean and variance of the marginal distribution
q( fk(xn)) given by Eqs. (54) and (55). The expected likelihood terms from the bound (37)
can be calculated as follows

Eq( fk (xn))[ln p(yn | fk(xn))]

= Eq( fk (xn))

{
−1

2
ln(2πσ 2

k ) − 1

2σ 2
k

[
y2n − 2yn fk(xn) + f 2k (xn)

]}

= −1

2
ln(2πσ 2

k ) − 1

2σ 2
k

{
y2n − 2ynEq( fk (xn)) [ fk(xn)] + Eq( fk (xn))

[
f 2k (xn)

]}

= −1

2
ln(2πσ 2

k ) − 1

2σ 2
k

[
y2n − 2ynμkn + μ2

kn + vkn
]

= lnN (yn |μkn, σ
2
k ) − 1

2σ 2
k

vkn, (56)

for k = 0, . . . , T . This results in the following formulations for the expected likelihood
terms:

Eq( f0(xn))[ln p(yn | f0(xn))] = lnN
(
yn |

[
a(0)
n

]T
m0, σ

2
0

)

− 1

2σ 2
0

Tr
(
S0a(0)

n

[
a(0)
n

]T)
− 1

2σ 2
0

l(0)nn

and

Eq( fk (xn))[ln p(yn | fk(xn))] = lnN
(
yn |

[
a(k)
n

]T
mk +

[
a(0)
n

]T
m0, σ

2
k

)

− 1

2σ 2
k

Tr
(
Ska(k)

n

[
a(k)
n

]T)

− 1

2σ 2
k

Tr
(
S0a(0)

n

[
a(0)
n

]T)
− 1

2σ 2
k

l(k)nn

for k = 1, . . . , T .

Appendix B The evidence lower-bound L1 and its derivatives

We perform optimization over the bound L1 (given by Eq. (42)) w.r.t. the noise variance
αk ≡ σ 2

k , the kernel hyper-parameters θk , the parameters mk and Lk of the variational
distributions, and the locations of the inducing points Uk . For that, we need to obtain the
partial derivatives of the bound w.r.t. each of the variables to be optimized.
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L1(D, γ ) =
N∑

n=1

T∑
k=1

q(zn = k)Eq( fk (xn))[ln p(yn | fk(xn))]

+
N∑

n=1

Eq( f0(xn))[ln p(yn | f0(xn))] −
T∑

k=1

KL(q(hk)||p(hk))

− KL(q(g0)||p(g0)),
where Eq( fk (xn))[ln p(yn | fk(xn))] given in Eq. (56) for k = 0, . . . , T ,

KL(q(g0)||p(g0)) = 0.5

{
ln

|K(0)
U0U0

|
|S0| − M + Tr

([
K(0)

U0U0

]−1
S0

)
+ mT

0

[
K(0)

U0U0

]−1
m0

}

and

KL(q(hk)||p(hk)) = 0.5

{
ln

|K(k)
UkUk

|
|Sk | − M + Tr

([
K(k)

UkUk

]−1
Sk

)
+ mT

k

[
K(k)

UkUk

]−1
mk

}
.

B. 1 Partial derivatives with respect to noise variances

The partial derivatives w.r.t. noise variances are given by

∂L1(D, γ )

∂α0
=

N∑
n=1

∂Eq( f0(xn))[ln p(yn | f0(xn))]
∂α0

=
N∑

n=1

{
− 1

2α0
+ 1

2α2
0

(
y2n − 2ynμ0n + μ2

0n + v0n

)}

and

∂L1(D, γ )

∂αk
=

N∑
n=1

T∑
k=1

q(zn = k)
∂Eq( fk (xn))[ln p(yn | fk(xn))]

∂αk

=
N∑

n=1

T∑
k=1

q(zn = k)

{
− 1

2αk
+ 1

2α2
k

(
y2n − 2ynμkn + μ2

kn + vkn

)}
.

B.2 Partial derivatives with respect to other variables

Let r represent a variable to be optimized. The derivative of L1 w.r.t. r is given by

∂L1(D, γ )

∂r
=

N∑
n=1

T∑
k=1

q(zn = k)
∂Eq( fk (xn))[ln p(yn | fk(xn))]

∂r

+
N∑

n=1

∂Eq( f0(xn))[ln p(yn | f0(xn))]
∂r

−
T∑

k=1

∂KL(q(hk)||p(hk))
∂r

−∂KL(q(g0)||p(g0))
∂r

. (57)
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Following the chain rule for multivariate functions, we get:

∂Eq( fk (xn))[ln p(yn | fk(xn))]
∂r

= ∂Eq( fk (xn))[ln p(yn | fk(xn))]
∂μkn

∂μkn

∂r

+ ∂Eq( fk (xn))[ln p(yn | fk(xn))]
∂vkn

∂vkn

∂r

= 1

σ 2
k

(yn − μkn)
∂μkn

∂r
− 1

2σ 2
k

∂vkn

∂r
,

for k = 0, . . . , T . Hence, to find the derivative in Eq. (57), we just need to find the following
partial derivatives: ∂μkn

∂r , ∂vkn
∂r , ∂KL(q(hk )||p(hk ))

∂r and ∂KL(q(g0)||p(g0))
∂r .

B.2.1 Partial derivatives with respect to parameters of the variational distributions

First, we obtain the partial derivatives w.r.t. the variational means mk for k = 0, . . . , T . We
only present the terms that are non-zero.

The partial derivatives w.r.t. m0 are given by

∂μin

∂m0
= a(0)

n , for i = 0, . . . , T ;
∂KL(q(g0)||p(g0))

∂m0
=

[
K(0)

U0U0

]−1
m0.

The partial derivatives w.r.t. mk , for k = 1, . . . , T , are given by

∂μkn

∂mk
= a(k)

n ;
∂KL(q(hk)||p(hk))

∂mk
=

[
K(k)

UkUk

]−1
mk .

Next, we obtain the partial derivatives w.r.t. the variational covariances Sk for k = 0, . . . , T ,
which are

∂vkn

∂Sk
= a(k)

n

[
a(k)
n

]T;
∂KL(q(hk)||p(hk))

∂Sk
= 1

2

(
−S−1

k +
[
K(k)

UkUk

]−1
)

.

The partial derivatives w.r.t. Lk , for k = 0, . . . , T , are then calculated as

∂L1(D, γ )

∂Lk
= ∂L1(D, γ )

∂Sk

∂Sk
∂Lk

= 2
∂L1(D, γ )

∂Sk
Lk .

B.2.2 Partial derivatives with respect to the kernel hyper-parameters and the locations
of the inducing points

The bound L1 depends on the kernel hyper-parameters θk and the locations of the inducing

points Uk through the three covariance matrices/vectors K(k)
UkUk

, K(k)
UkX

and diag
[
K(k)

XX

]
. We

first need to find the partial derivatives of L1 w.r.t. these matrices.

The partial derivatives w.r.t. entries of diag
[
K(k)

XX

]
for k = 0, . . . , T are

∂vkn

∂κk(xn, xn)
= 1.
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The partial derivatives w.r.t. entries of K(0)
U0X

are

∂μin

∂K(0)
U0xn

=
[
K(0)

U0U0

]−1
m0 for i = 0, . . . , T ;

∂v0n

∂K(0)
U0xn

=
([

K(0)
U0U0

]−1
S0 − I

) [
K(0)

U0U0

]−1
K(0)

U0xn
;

∂vin

∂K(0)
U0xn

=
[
K(0)

U0U0

]−1
S0

[
K(0)

U0U0

]−1
K(0)

U0xn
for i = 1, . . . , T .

The partial derivatives w.r.t. entries of K(k)
UkX

for k = 1, . . . , T are

∂μkn

∂K(k)
Ukxn

=
[
K(k)

UkUk

]−1
mk;

∂vkn

∂K(k)
Ukxn

=
([

K(k)
UkUk

]−1
Sk − I

) [
K(k)

UkUk

]−1
K(k)

Ukxn
.

The partial derivatives w.r.t. entries of K(0)
U0U0

are

∂μin

∂K(0)
U0U0

= −
[
K(0)

U0U0

]−1
K(0)

U0xn
mT

0

[
K(0)

U0U0

]−1
for i = 0, . . . , T ;

∂v0n

∂K(0)
U0U0

= a(0)
n

[
a(0)
n

]T −
(
a(0)
n

[
a(0)
n

]T
S0

[
K(0)

U0U0

]−1 +
[
K(0)

U0U0

]−1
S0a(0)

n

[
a(0)
n

]T)
;

∂vin

∂K(0)
U0U0

= −
(
a(0)
n

[
a(0)
n

]T
S0

[
K(0)

U0U0

]−1 +
[
K(0)

U0U0

]−1
S0a(0)

n

[
a(0)
n

]T)
for i = 1, . . . , T .

The partial derivatives w.r.t. entries of K(k)
UkUk

for k = 1, . . . , T are

∂μkn

∂K(k)
UkUk

= −
[
K(k)

UkUk

]−1
K(k)

Ukxn
mT

k

[
K(k)

UkUk

]−1;

∂vkn

∂K(k)
UkUk

= a(k)
n

[
a(k)
n

]T −
(
a(k)
n

[
a(k)
n

]T
Sk

[
K(k)

UkUk

]−1 +
[
K(k)

UkUk

]−1
Ska(k)

n

[
a(k)
n

]T)
.

Next, we assume that the squared exponential (SE) kernel with automatic relevance deter-
mination (ARD) is used, i.e., the kernel function κk(x, x′) is given by

κk(x, x′) = βk exp

(
−1

2
(x − x′)TMk(x − x′)

)
, (58)

where βk is the signal variance and Mk = diag([φ(k)
1 , . . . , φ

(k)
D ]) with φ

(k)
d = [(k)

1 ]−2 and


(k)
d being the characteristic length-scale for input dimension d , for d = 1, . . . , D. The partial

derivativew.r.t to any variable r among the kernel hyper-parameters θk = (βk, φ
(k)
1 , . . . , φ

(k)
D )

or locations of the inducing points Uk can then be calculated as

∂L1(D, γ )

r
= ∂L1(D, γ )

K(k)
UkUk

K(k)
UkUk

r
+ ∂L1(D, γ )

K(k)
UkX

K(k)
UkX

r
+ ∂L1(D, γ )

diag
[
K(k)

XX

] diag
[
K(k)

XX

]

r
,
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for k = 0, . . . , T .We nowfind the partial derivatives of the covariancematricesK(k)
UkUk

,K(k)
UkX

and diag
[
K(k)

XX

]
w.r.t. the kernel hyper-parameters and locations of the inducing points.

Since ∂κk (x,x′)
∂βk

= κk (x,x′)
βk

, the partial derivatives of any matrix K(k) w.r.t. the signal vari-
ances βk is

∂K(k)

∂βk
= K(k)

βk
.

The partial derivative of any matrix entry κk(x, x′) w.r.t. φ(k)
d is

∂κk(x, x′)
∂φ

(k)
d

= κk(x, x′)(xd − x′
d)

2.

Let U(k)
i denote the i-th inducing input of Uk for k = 0, . . . , T , and U(k)

id denote its d-th

dimension. The partial derivative
∂KUkUk

∂U(k)
id

is given by

(
∂KUkUk

∂U(k)
id

)

mm′
= ∂κ(U(k)

m ,U(k)
m′ )

∂U(k)
id

= (δmi − δm′i )κ(U(k)
m ,U(k)

m′ )(−φ
(k)
d )(U(k)

md − U(k)
m′d).

The partial derivative
∂KUkX

∂U(k)
id

is given by

(
∂KUkX

∂U(k)
id

)

mn

= ∂κ(U(k)
m , xn)

∂U(k)
id

= δmiκ(U(k)
m , xn)(−φ

(k)
d )(U(k)

md − xnd).
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