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Abstract We describe the Inspire system which participated in the first competition on
inductive logic programming (ILP). Inspire is based on answer set programming (ASP).
The distinguishing feature of Inspire is an ASP encoding for hypothesis space generation:
given a set of facts representing the mode bias, and a set of cost configuration parameters,
each answer set of this encoding represents a single rule that is considered for finding a
hypothesis that entails the given examples. Compared with state-of-the-art methods that
use the length of the rule body as a metric for rule complexity, our approach permits a much
more fine-grained specification of the shape of hypothesis candidate rules. The Inspire system
iteratively increases the rule cost limit and thereby increases the search space until it finds
a suitable hypothesis. The system searches for a hypothesis that entails a single example at
a time, utilizing an ASP encoding derived from the encoding used in XHAIL. We perform
experiments with the development and test set of the ILP competition. For comparison we
also adapted the ILASP system to process competition instances. Experimental results show
that the cost parameters for the hypothesis search space are an important factor for finding
hypotheses to competition instances within tight resource bounds.
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1 Introduction

Inductive Logic Programming (ILP) (Muggleton et al. 2015) combines several desirable
properties of Machine Learning and Logic Programming: logical rules are used to formulate
background knowledge, and examples, which are reasoning inputs paired with desired or
undesired reasoning outcomes, are used to learn a hypothesis. A hypothesis is an interpretable
set of logical rules which entails the examples with respect to the background knowledge.
Examples can be noisy, sometimes not all examples can be satisfied, and usually there are
several possible hypotheses.

The inaugural competition on Inductive Logic Programming (Law et al. 2016b) featured a
family of ILP tasks about agents that aremoving in a gridworld. Each instance required to find
a hypothesis that represents the rules for valid moves of the agent. Some instances required
predicate invention, i.e., finding auxiliary predicates that represent intermediate concepts.
For example the ‘Unlocked’ instance required the ILP system to find rules for representing
that ‘the agent may move to an adjacent cell so long as it is unlocked at that time. A cell
is unlocked if it was not locked at the start, or if the agent has already visited the key for
that cell.’ The competition was open to entries for systems based on Prolog (Clocksin and
Mellish 2003) and for systems based on answer set programming (ASP) (Lifschitz 2008;
Brewka et al. 2011; Gebser et al. 2012a) and featured a non-probabilistic and a probabilistic
track.

In this paper we describe the Inspire systemwhich is based on ASP and was the winner of
the non-probabilistic competition track, but it was the only entry to that track. The competition
was challenging for three main reasons.

(C1) In each instance the examples which were traces of agent movements used overlapping
time ranges and the background knowledge contained time comparisons over all earlier
time points. Therefore, the wide-spread approach of shifting the time parameter to
represent each examples in a distinct part of the Herbrand Base was not possible.1

(C2) Computational resources were limited to 30 sec and 2 GB, which is not much for the
intractable ILP task.

(C3) Negative example information was given implicitly, i.e., agent movements that were
not explicitly given as valid had to be considered invalid for learning.

Also, at the time of the competition, there were no published systems that supported the
competition format without the need for significant adaptations.

The Inspire system aims to provide a best-effort solution under these conditions. The
central novel aspect of our approach is that we generate the hypothesis search space using an
ASP encoding that permits a fine-grained cost configuration. We use ASP for all nontrivial
computational tasks as shown in the block diagram of our system in Fig. 1.

The idea to iteratively extend the hypothesis search space (in short hypothesis space)
is present in several existing systems. Our approach of fine-grained cost-based hypothesis
generation enables a detailed configuration of rule cost parameters, for example to configure
cost for the number of negative body atoms, for variables that are bound only once in the rule
body, for invented predicates that are used in the rule body, for the variables that are bound
only in the rule head, and for several further rule properties. This provides more control and a

1 To illustrate this, consider the rule “visited(C, T) :- agent_at(C, T2), time(T), T >=
T2.” which is part of the background knowledge of instance 17 of the competition. If we represent multiple
sequences of agent_at(·, ·) by allocating time points 0 . . . 199 for the first and time points 200 . . . 399 for
the second agent, then the truth values of atoms of form visited(·, ·) for the second agent will be influenced
by the truth values of atoms of form agent_at(·, ·) of the first agent.
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Fig. 1 Data flow of the Inspire system, showing inputs, outputs, and ASP evaluations. Background Knowl-
edge is implicitly used in all ASP evaluations except in hypothesis generation

more realistic search space than the common approach of limiting the rule complexity which
is measured by counting the number of body literals of a rule. Our approach can be integrated
with all ILP systems that first generate a hypothesis space from the mode bias and afterwards
search for a hypothesis within that hypothesis space.

According to official competition result, our system predicted 46% of test cases correctly.
We performed empirical experiments to investigate reasons for this low accuracy. Increasing
the time budget to 10 min increases accuracy on test instances by 18%. We identify learning
from a single example at a time as amajor reason for wrong predictions. This limitation is due
to our hypothesis optimization method which is derived from the one of Xhail and cannot
represent multiple examples that share ground atoms, i.e., it cannot deal with challenge (C1).
In a general setting, our fine-grained hypothesis search space is compatible with learning
from multiple examples.

We make the following contributions.

– We describe an ASP encoding for generating the hypothesis search space. The encoding
permits to attach costs to various aspects of rule candidates. This way the search space
exploration can be controlled in a fine-grained way by incrementing a cost limit, and
preferences for the shape of rule candidates can be configured easily.

– We give an algorithm that uses this encoding to generate the hypothesis space and learns
hypotheses froma single example at a time using a simplification of theXhail (Ray 2009)
ASP encoding. Each hypothesis is validated on all examples and if the validation score
increased since the last validation, a prediction attempt is made, followed by hypothesis
learning on the next example. The algorithm is specific to the competition and mainly
designed to deal with challenge (C2), i.e., obtaining a reasonable score within tight
resource bounds. The algorithm is based on the observation that a single competition
example often contained enough structure to learn the full hypothesis.

– We experimentally compare different cost configurations of the Inspire system, and we
compare our system with the Ilasp system (Law et al. 2014). (For that we created a
wrapper to adapt Ilasp to the competition format and to perform predictions.) Our eval-
uations show that Inspire consistently outperforms Ilasp, that there are significant score
differences among Inspire cost configurations, and that learning from single examples
is not sufficient for all competition instances.

In Sect. 2 we provide preliminaries of ASP and ILP and we describe the ILP format.
In Sect. 3 we introduce our hypothesis space generation approach, comprising several ASP
modules. Section 4 describes the Inspire system’s algorithm. The empirical evaluation is
reported in Sect. 5. We discuss related work in Sect. 7 and conclude in Sect. 8.
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2 Preliminaries

2.1 Answer set programming

ASP is a logic programming paradigm which is suitable for knowledge representation and
finding solutions for computationally (NP-)hard problems (Gelfond and Lifschitz 1988;
Lifschitz 2008; Brewka et al. 2011). We next give preliminaries of ASP programs with
uninterpreted function symbols, aggregates and choices. For a more elaborate description
we refer to the ASP-Core-2 standard (Calimeri et al. 2012) and to books about ASP (Baral
2004; Gelfond and Kahl 2014; Gebser et al. 2012a).

Syntax. Let C and V be mutually disjoint sets of constants and variables, which we denote
with first letter in lower case and upper case, respectively. Constants are used for constant
terms, predicate names, and names for uninterpreted functions. The set of terms T is recur-
sively defined:T is the smallest set containingN∪C ∪V aswell as tuples of form (t1, . . . , tn)
and uninterpreted function terms of form f(t1, . . . , tn) where f∈C and t1, . . . , tn ∈T . An
ordinary atom is of the form p(t1, . . . , tn), where p∈C , t1, . . . , tn ∈T , and n ≥ 0 is the
arity of the atom. An aggregate atom is of the form X= #agg{ t :b1, . . . , bk } with variable
X∈V , aggregation function #agg∈ {#sum,#count}, with 1< k, t ∈T and b1, . . . , bk a
sequence of atoms. A term or atom is ground if it contains no sub-terms that are variables. A
rule r is of the form α :- β1, . . . , βn , notβn+1, . . . , notβm , wherem ≥ 0, α is an ordinary
atom, β j , 0≤ j ≤m is an atom, and we let B(r)= {β1, . . . , βn , notβn + 1, . . . , notβm} and
H(r)= {α}. A program is a finite set P of rules. A rule r is a fact if m = 0.

Semantics. Semantics of an ASP program P is defined using its Herbrand Base HBP and
its ground instantiation grnd(P). Given an interpretation I ⊆HBP and an atom a ∈HBP ,
I models a, formally I |� a, iff a ∈ I and I models a literal not a, formally I |�not a,
iff a /∈ I . An aggregate literal in the body of a rule accumulates truth values from a set of
atoms, for example I |� N = #count { A : p(A) } iff the extension of predicate p in I ,
i.e., the set of true atoms of form p(·), has size N . An interpretation I ⊆HBP models a
rule r if I |� B(r) or I �|� H(r), and I models a set of literals if I models all literals. The
FLP-reduct (Faber et al. 2011) f P I reduces a program P using an answer set candidate I :
f P I = {r ∈ grnd(P) | I |� B(r)}. Finally I is an answer set of P , denoted I ∈AS(P), iff I
is a minimal model of f P I .

Syntactic Sugar. Anonymous variables of form “_” are replaced by new variable symbols.
Choice constructions can occur instead of rule heads, they generate a set of candidate solutions
if the rule body is satisfied; e.g., 1 { p(a) ; p(b) } 2 in the rule head generates all solution
candidates where at least 1 and at most 2 atoms of the set {p(a),p(b)} are true (bounds
can be omitted). If a term is given as X..Y , where X, Y ∈N, then the rule containing the
term is instantiated with all values from {v ∈N | X ≤ v ≤ Y }. A constraint is a rule r without
a head atom, and a constraint eliminates answer sets I where I |� B(r). A constraint can be
rewritten into a rule f :- not f, B(r), where f is an atom that does not occur elsewhere
in the program.

ASP supports optimization by means of weak constraints which incur a cost instead of
eliminating an answer set. We denote by ASopt,1(P) the first optimal answer set of program
P . Note, that the hypothesis space generation encodings, which are the main contribution of
this paper, do not require weak constraints because they explicitly represent costs.
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2.2 Inductive logic programming

ILP (Muggleton and Raedt 1994; Muggleton et al. 2012) is a combination of Machine Learn-
ing with logical knowledge representation. Key advantages of ILP are the generation of
compact models that can be interpreted by humans, and the possibility to learn from a small
amount of examples. A classical ILP system takes as input a set of examples E , a set B of
background knowledge rules, and a set of mode declarations M , also called the mode bias.
An ILP system is expected to produce a set of rules H called the hypothesis which entails
E with respect to B in the underlying logic programming formalism. The search for H with
respect to E and B is restricted by M , which defines a language that limits the shape of rules
that can occur in the hypothesis.

Traditional ILP (Muggleton et al. 2012) searches for sets of Prolog rules that entail a
given set of positive examples and do not entail a given set of negative examples using SLD
resolution and a given set of background theory rules. Brave Induction (Sakama and Inoue
2009) requires that each example is entailed in at least one answer set,while cautious induction
requires all examples to be entailed in all answer sets. ILP for ASP was introduced by Otero
(2001) and searches for a set of ASP rules that entails each given example (consisting of a
positive and negative part) in at least one answer set. ASP hypotheses represent knowledge
in a more declarative way than Prolog, i.e., without relying on the SLD(NF) algorithm.

Example 1 Consider the following example ILP instance (M, E, B) (Ray 2009).

M =
⎧
⎨

⎩

#modeh flies(+bird).
#modeb penguin(+bird).
#modeb not penguin(+bird).

⎫
⎬

⎭

E =

⎧
⎪⎪⎨

⎪⎪⎩

#example flies(a).
#example flies(b).
#example flies(c).
#example not flies(d).

⎫
⎪⎪⎬

⎪⎪⎭

B =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bird(X) :- penguin(X).
bird(a).
bird(b).
bird(c).
penguin(d).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Based on the above, an ILP system would ideally find the following hypothesis.

H = {
flies(X) :- bird(X), not penguin(X).

}

Note that, in this example, the program B ∪ H has a single answer set that entails E .
There are also ASP-based ILP systems [for example Ilasp (Law et al. 2014)] where a

hypothesis must entail each positive examples in some answer set, and no negative example
in any answer set. With that, ILP can be used to learn, e.g., the rules of Sudoku: given a back-
ground theory that generates all answer sets of 9-by-9 grids containing digits 1 through 9,
positive examples of partial Sudoku solutions, and negative examples of partial invalid
Sudoku solutions, ILP methods can learn which rules define valid Sudoku solutions. More
recently, ASP-based ILP has been extended to inductive learning of preference specifications
in the form of weak ASP constraints (Law et al. 2015).
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2.3 First inductive logic programming competition

The first international ILP competition, held together with the 26th International Conference
on Inductive Logic Programming, aimed to “test the accuracy, scalability, and versatility [of
participating ILP systems]” (Law et al. 2016b). The competition comprised a probabilistic
and a non-probabilistic track. We consider only the non-probabilistic track here.

The initial datasets consisted of 8 example problems in each track, intended to help entrants
build their systems. The datasets used for scoring systems in the competitionwere completely
new and unseen. All runs were made on an Ubuntu 16.04 virtual machine with a 2 GHz dual
core processor and resource limits of 2 GB RAM and 30 sec time.

Instanceswere in the domain of agentsmoving in a gridworldwhere only somemovements
were possible. Each instance consists of a background knowledge, a language bias, a set of
examples, and a set of test traces. A trace is a set of agent positions at certain time positions.
An example contains a trace and a set of valid moves. The ILP system had to learn the rules
for possible moves from examples, and then predict for each test trace whether the agent
made only valid moves. These predictions were used to produce the final score.

Example 2 In Instance 5, called Gaps in the floor, the agent can always move sideways, but
can only move up or down in special ‘gap’ cells which have no floor and no ceiling.

In Instance 11, called non-OPL transitive links, the agent may go to any adjacent cell or
use given links between cells to teleport. It can also use a chain of links in one go. In this
problem, the agent has to learn the (transitive) concept ‘linked’.

Each input instance is structured in sections using the following statements (see Fig. 2 for an
Example):

– #background marks the beginning of the background knowledge.
– #target_predicate indicates the predicate which should be defined by the hypoth-

esis, similar to the modeh mode declaration in standard language biases.
– #relevant_predicates indicates the predicates from the background knowledge

that can be used to define the hypothesis, similar tomodebmode declarations in standard
language biases.

– #Example(X) shows the start of an example with identifier X. Subsection #trace
contains the path taken by the agent, and subsection #valid_moves gives the complete
set of valid moves the agent could take for each time step.

– #Test(X) contains a test trace with identifier X. Subsection #trace contains the path
taken by the agent.

Predicates in the language bias contained only variable types as arguments, never constants.
An ILP system in the competition is supposed to learn a hypothesis based on the given

examples (traces and valid moves) and the background knowledge, and then predict the valid
moves of the given test traces using the learned hypothesis and the background knowledge.
The system output consists of answer attempts, which start with #attempt, followed by a
sequence of lines VALID(X) or INVALID(X), predicting validity of agent movements in
each test trace X . Multiple answer attempts are accepted, but only the last one is scored.

123



Mach Learn (2018) 107:1141–1169 1147

Fig. 2 Part of Instance 6 from the development set of the competition (Law et al. 2016b)

Example 3 A simplification of Instance 6 from the competition is given in Fig. 2.

3 Declarative hypothesis generation

A central part of our ILP approach is, that we use an ASP encoding to generate the hypothesis
space which is the set of rules that is considered to be part of a hypothesis. Concretely, we
represent the mode bias of the instance as facts, add them to an answer set encoding which
we describe in the following, moreover we add a fact that configures the cost limit for rules
in the hypothesis space. Each answer set represents a single rule of the hypothesis space.
While this hypothesis space does not permit to find a hypothesis, we increment the cost limit
to enlarge the hypothesis space until we find a solution.

We use the following representation for predicate (schemas) P(t1, . . . , tN ) with predicate
name P , arity N , and argument types t1, . . . , tN :

– pred(I, P, N ) represents predicate P with arity N , where I is a unique identifier for
this predicate and arity; and

– arg(I, j, t j ) represents the type t j of argument position j of predicate I .

Example 4 The predicate valid_move(cell,time), which was the target predicate in
many instances of the competition, is represented by the following atoms, where p1 is the
unique predicate identifier.

1 pred(p1,valid_move,2).
2 arg(p1,1,cell).
3 arg(p1,2,time).
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3.1 Input representation

Hypothesis space generation is based on a target predicate and relevant predicates of the
instance at hand.We represent this input in atoms of the following form, using above schema:

– tpred(I, P, N ) for the target predicate;
– targ(I, J, T ) for arguments of the target predicate;
– rpred(I, P, N ) for relevant predicates;
– rarg(I, J, T ) for arguments of relevant predicates; and
– type_id(T, ID) for all types T used in the target predicate and in relevant predicates,

where ID is the type identifier, a unique integer associated with T . The set of all type
identifiers must form a zero-based continuous sequence.

Example 5 Themode bias that is given in Fig. 2 is represented as follows. The target predicate
valid_move(cell,time) is represented by the following facts, is t1 is an identifier
for the predicate, and 1 and 2 in targ are argument positions of the predicate.

1 tpred(t1,valid_move,2). targ(t1,1,cell). targ(t1,2,time).

The relevant predicates gap(cell), agent_at(cell,time), h_adjacent
(cell,cell), and v_adjacent(cell,cell), are represented by the following facts,
where r1, …, r4 are the respective predicate identifiers.

2 rpred(r1,gap,1). rarg(r1,1,cell).
3 rpred(r2,agent_at,2). rarg(r2,1,cell). rarg(r2,2,time).
4 rpred(r3,h_adjacent,2). rarg(r3,1,cell). rarg(r3,2,cell).
5 rpred(r4,v_adjacent,2). rarg(r4,1,cell). rarg(r4,2,cell).

Finally, the following facts define type identifiers 0 and 1 for cell and time, respec-
tively.

6 type_id(cell,0).
7 type_id(time,1).

3.2 Output representation

We represent a single rule per answer set during hypothesis space generation.
A rule is represented in atoms of the following form:

– use_var_type(V, T ) represents that the rule uses variable V with type T . V is a term
of form v(Idx) denoting variable with index Idx and T is a type as provided in input
atoms as first argument of predicate type_id for relevant predicates.

– use_head_pred(Id,Pred,A) represents that the rule head is an atom with predicate
identifier Id, predicate Pred, and arity A.

– use_body_pred(Id,Pred,Pol,A) represents that the rule body contains a literal with
literal identifier Id, predicate Pred, of polarity Pol, and arity A. Importantly, if a pred-
icate is used in multiple body literals, Id is different for each literal; Id is also used
in bind_bvar (see below) for binding variables to argument positions of particular
literals.

– bind_hvar(J,V ) represents that the argument position J in the rule head contains
variable V , where V is a term of form v(Idx).
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– bind_bvar(Id,Pol, J,V ) represents that the rule body literal with identifier Id and
polarity Pol contains in its argument position J the variable V . (Id refers to a unique
body literal as represented in the argument Id of use_body_pred, see above.)

Example 6 The hypothesis candidate

1 valid_move(V5,V10) :- cell(V5), time(V10), not agent_at(V5,V10).

is represented in an answer set by the following atoms.

1 use_var_type(v(5),cell)
2 use_var_type(v(10),time)
3 use_head_pred(t1,valid_move,2)
4 bind_hvar(1,v(5))
5 bind_hvar(2,v(10))
6 use_body_pred(id_idx(r2,1),agent_at,neg,2)
7 bind_bvar(id_idx(r2,1),neg,1,v(5))
8 bind_bvar(id_idx(r2,1),neg,2,v(10))

As in Example 5, t1 represents target predicate valid_move(cell,time) and r2
represents the relevant predicate agent_at(cell,time).

Line 1 represents that variable V5 has type cell and line 2 represents that variable V10
has type time. Line 3 represents that the rule head contains target predicate valid_move,
and lines 4 and 5 represent that the first and second argument positions of the head atom
are bound to the variables V5 and V10, respectively. Lines 6–8 represent the body literal
notagent_at(·,·): line 6 represents that the body contains a negated literal with predicate
agent_at, and this literal has the unique identifier id_idx(r2,1); lines 7–8 represent
that the first and second argument positions of this literal are bound to variables V5 and V10,
respectively.

The body literals cell(V5) and time(V10) are not explicitly represented, they are
implicit from use_var_type.

3.3 Cost configuration

For fine-grained control over the shape of rules in the hypothesis space, we define several
cost components on rules. Intuitively, rules with lower overall cost will be considered in
the search space earlier than rules with higher cost. All rules below a certain cost are used
simultaneously for finding a hypothesis that entails a given example (see also Sect. 4 and
Algorithm 1).

HardLimits. For ensuring decidability, it is necessary to impose hard limits on the overall
size of the hypothesis space. We use the following hard restrictions on rules in the hypothesis
search space. Configuration parameters are written in bold and default values are given in
brackets.

• maxvars (4) specifies the maximum number of variables per type. This limits how many
variables of a single type can occur simultaneously in one rule.

• maxuseppred (2) specifies the maximum occurrence of a single predicate as a positive
body literal. This limits how often we can use the same predicate in the positive rule
body. For example, for obtaining a transitive closure in the hypothesis space, this value
needs to be at least 2, andmaxvars needs to be at least 3.

• maxusenpred (2) specifies the maximum occurrence of a single predicate as a negative
body literal.

123



1150 Mach Learn (2018) 107:1141–1169

• maxliterals (4) specifies the maximum number of overall literals in a rule. This imposes
a hard limit on the size of hypothesis rule bodies.

• maxinventpred (1) specifies the maximum number of predicates to be invented.
• inv_minarity (2) specifies the minimum arity of invented predicates.
• inv_maxarity (2) specifies the maximum arity of invented predicates.

These hard limits make the hypothesis search space finite by limiting the usage of the mode
bias, therefore their values must be chosen with care. Moreover, these limits determine the
size of the instantiation of the ASP encoding, which influences the efficiency of enumerating
answer sets. In Sect. 4.1 we discuss soundness and completeness of the Inspire system with
respect to this finite search space.

Fine-grained cost configuration. For configuring fine-grained hypothesis generation,
we provide the following cost parameters for various aspects of rules in the hypothesis search
space. (Defaults are again given in brackets.)

– free_vars (2) specifies the number of variables that do not incur cost.
– cost_vars (1) specifies the cost for each variable beyond free_vars.
– cost_type_usedmorethantwice (2) specifies the cost for each usage of a type beyond the

second usage. For example, this cost is incurred if we use three variables of type time
in one rule.

– cost_posbodyliteral (1) specifies the cost for each positive body literal.
– cost_negbodyliteral (2) specifies the cost for each negative body literal. The default

value is higher than the one for cost_posbodyliteral, because usually programs have
more positive body literals than negative body literals.

– cost_pred_multi (2) specifies the cost for repeated usage of a predicate in the rule body.
The cost is incurred for each usage after the first usage. Usage is counted separately for
positive and negative literals.

– cost_varonlyhead (5) specifies the cost for each variable that is used only in the head.
Rules with such variables are still safe because each variable has a type. It is possible,
but rare, that such rules are useful, so they obtain high cost.

– cost_varonlyoncebody (5) specifies the cost for each variable that is not used in the head
and used only once in the body of the rule. Such variables are like anonymous variables
and project away the argument where they occur. We expect such cases to be rare so we
incur a high default cost.

– cost_var_boundmorethantwice (2) specifies the cost for each variable that occurs in
more than two literals.

– cost_reflexive (5) specifies the cost for each binary atom in the rule body with the same
variable in both arguments.

– cost_inv (2) specifies the cost for inventing any kind of predicate. This cost is used to
adjust above which cost predicate invention is performed, independent from the cost of
inventing each predicate.

– cost_inv_pred (2) specifies the cost for each invented predicate.
– cost_inv_headbody (3) specifies the cost for using the same invented predicate both in

the head and in the body of the same rule.
– cost_inv_bodymulti (5) specifies the cost for using multiple invented predicates in the

rule body.
– cost_inv_headbodyorder (5) specifies the cost for using an invented predicates in the

head and a different invented predicate in the body of a rule, in a way that the head
predicate is lexically greater than the body predicate. This incurs higher cost to programs
with cycles over invented predicates, and less cost to those that have no such cycles. In
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Fig. 3 Hypothesis candidates and costs under default cost parameters for Instance 6, see Fig. 2. For space
reasons, we abbreviate “cell(V5),cell(V6),time(V10)” as “...”

particular this allows for an early consideration of hypotheses that use invented predicates
in a “stratified”way such that they have no chance to introduce nondeterminism (bymeans
of even loops over invented predicates).

The above costs can independently be adjusted and influence the performanceof our approach.
Costs determine the stage of the ILP search at which a certain rule will be used as a candidate
for the hypothesis.

If we expect certain rules to be more useful for finding a hypothesis in a concrete appli-
cation, they should be configured to have lower cost than other rules.

Example 7 The hypothesis candidate shown in Example 6 has a cost of 2 using the default
cost settings, because of one cost component from cost_negbodyliteral.

Figure 3 shows all rules of cost 1–5 for the instance given in Fig. 2 using default cost
parameters.

In (i), only the cost parameter cost_posbodyliteral = 1 is effective. Similarly, in (ii), only
cost_negbodyliteral = 2 has an effect.
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In (iii), for a total cost of 3, each candidate obtains cost cost_vars = 1 for using three
variables (two variables incur no cost because free_vars = 2) and each candidate obtains
cost 2 for two positive body literals.

In (iv), for a total cost of 4, the first rule obtains cost cost_var_boundmorethantwice = 2
for V5 which is used three times in rule head and rule body, moreover cost 2 for two positive
body literals. Each of the remaining eight rules in (iv) obtains cost_vars = 1 for using three
variables, cost 1 for a positive body literal, and cost 2 for a negative body literal.

In (v), for a total cost of 5, the hypothesis candidates in lines 1–2 obtain cost cost_
var_boundmorethantwice = 2 for using V5 three times and cost for one positive and one
negative body literal. Candidates in lines 3–4 obtain cost cost_vars = 1 for using three
variables, cost 2 for two positive body literals, and cost 2 for one negative body literal.
Candidates in lines 5–8 obtain cost cost_vars = 1 for using three variables and cost 2 for
two negative body literals. Candidates in lines 9–14 obtain cost cost_inv = 2 for inventing
predicates, cost_inv_pred = 2 for the first invented predicate ip_1_2, and cost 1 for a
positive body literal.

Note that the shown rules are the actual internal system representation where redundant
candidates (with renamed variables) have been eliminated (see Sect. 3.6).

The fine-grained nature of this cost configuration becomes apparent when considering the
“classical” cost notion of rule body length: all rules in (i) and (ii) and rule in lines 9–14 of (v)
have bodies of length 1, rules in lines 2 and 3 of (v) have bodies of length 3, and all remaining
rules shown in Fig. 3 have bodies of length 2.

Different from hard limits, adjusting cost parameters has no influence on the possibility
to find a hypothesis. Instead, these parameters intuitively control search heuristics: they
influence in which order hypotheses are considered and therefore can speed up or slow down
hypothesis search.
3.4 Main encoding

The main encoding for generating the hypothesis space is given in Fig. 4. Hard limits and
cost parameters are added to this encoding as constant definitions.

We define distinct typed variables in atoms of form var_type(v(Index),T ) in line 1.
Such an atom represents, that the variable of form v(Index) has type T , where Index is a
running index over all variables. This defines maxvars variables of each type. Note that we
use v(Idx) to enable a later extension of our encodings with constant strings as arguments in
the mode bias. Constant strings were not required for the ILP competition.

Head predicates are represented ashpred and harg, and body predicates are represented
as bpred and barg in lines 2–5. These are defined from target predicate and relevant pred-
icate, respectively. We define further head and body predicates in the encoding for invented
predicates (see Sect. 3.7).

We guess how many variables (up to maxvars) are in the rule in the current answer set
candidate (line 6). We guess which concrete variables (including their type) are in the rule
(line 7). Atoms of form use_var_type(V, T ) represent that variable V has type T .

Lines 8–11 define unique placeholders for all potentially existing literals in the rule body
according to the given hard limits. Such placeholders are represented in atoms of form
body_pred(ID,Pred,Pol,A) where ID is a unique term built for that predicate from
its predicate identifier Id and a running index Idx,Pred is the predicate name,Pol the polarity,
and A the arity of the predicate.

A subset of these placeholders is guessed as a body literal in lines 12–13, up to amaximum
of maxliterals literals. A guess in line 14 determines the head predicate. Up to this point,
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Fig. 4 Main module for ASP hypothesis generation

the encoding represents variables including their type, which variables are going to be used,
and which head and body predicates to use as literals.

In lines 15–19, we perform a guess for binding these variables to particular argument
positions of head and body predicates. The limits of th ese choice rules require that each
position is bound exactly once. Moreover, the conditions within the choice ensure that vari-
ables are bound to argument positions of the correct type. In lines 20–21, we represent the
set of variables that are bound in the head and the same for the rule body (this separation
is used for cost representations). Finally, an answer set where a variable is used but neither
bound to the head nor to the body of the rule, is eliminated by the constraint in line 22. We
do not forbid ‘unsafe rules’ (where a variable exists only in the head of a rule) because all
variables are typed and therefore each variable occurs in an implicit domain predicate in the
rule body.

If we evaluate this program module together with a mode bias given as facts according
to Sect. 3.1 and together with constant definitions of hard limits according to Sect. 3.3, we
obtain answer sets that represent single rules according to Sect. 3.2 and according to the
given mode bias and hard limits.

3.5 Fine-grained cost module

Figure 5 shows the encoding module for representing the cost of a rule according to cost
configuration parameters described in Sect. 3.3.
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Fig. 5 Fine-grained cost module for ASP hypothesis generation

Cost atoms of the form cost(Name,Data,Cost) represent various costs that add up to
the total rule cost. Each cost atom bears a name Name used to distinguish different aspects
of cost. The argument Data specifies different elements of the same rule (e.g., variables,
literals) that can contribute cost under that aspect. Finally Cost is the actual cost incurred for
Name and Data.

Example 8 For the aspect of using a variable typemore than twice, the cost aspect isName =
vartype_morethantwice, and Data contains the variable type for which this cost is
incurred. For each variable type, this aspect incurs cost separately, which leads to multiple
atoms with different Data values.

Lines 1–2 define a cost for the number of distinct variables that are used in the rule,
where the first free_distinct_variables variables incur no cost. Lines 3–4 define the cost for
variable types that are used more than twice (using a type once or twice is free). Lines 5–6
define costs for positive and negative body literals, and lines 7–8 define costs for using a
predicate multiple times in the body. Note, that line 7 relies on the property that the body
literals of lowest index are used, which is ensured by the redundancy elimination module (see
Sect. 3.6, lines 2–3 in Fig. 6). Lines 9–10 define a cost for each variable that occurs only in
the head. Lines 11–12 define a cost for variables that occur only once in the body of the rule
and not in the rule head (these act as anonymous variables). Lines 13–16 define a cost for
variables that occur more than twice in the rule. Lines 17–21 define a cost for the reflexive
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Fig. 6 Redundancy elimination module for ASP hypothesis generation

usage of a binary predicate, i.e., a cost for literals that contain the same variable in both
arguments. Lines 22–23 sum up the total cost if that total is below climit, otherwise the
total cost is fixed to climit.2 Finally, solutions that reach or exceed a total cost of climit
are excluded in line 24.

3.6 Redundancy elimination module

The encoding in Fig. 4 creates many solutions that produce the same or a logically equivalent
rule. As an example, line 1 defines maxvars variables of the same type, and line 7 guesses
which of these variables to use. If variables with index 1 and 2 have the same type, there can
be two answer sets which represent two rules that are different modulo variable renaming. For
example, one of the rules “foo(V1) :- bar(V1).” and “foo(V2) :- bar(V2).”
is redundant. Redundant rules make the hypothesis search slower and do not contribute to
the solution, therefore they should be avoided.

Figure 6 is an ASP module that eliminates most redundancies and thereby improves
performance without losing any potential hypotheses. Line 1 ensures that if we use variables
of a certain type, we use only variables with the lowest index of that type. This is realized
by enforcing that variable v(I d-1) is used whenever variable v(I d) is used and under the
condition that these variables have the same type. Similarly, lines 2–3 require that those body
literals that have the lowest indexes are used. Lines 4–7 canonicalize variables that are used
in rule heads: the constraint in lines 4–5 requires that the variables with lowest index are
bound in the head, and the constraint in line 6–7 rules out solutions where two variables of

2 The rule totalcost(C) :- C = #sum { Cost,U,V : cost(U,V,Cost) }. would sum up
total cost in a single rule, without clamping the value to the maximum interesting value climit. However,
this naive approach has a significantly larger instantiation than the encoding we use here.
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Fig. 7 Predicate invention module for ASP hypothesis generation

the same type are used in the head where the variable with the lower index is used in the
second argument of the predicate. This rules out, e.g., a rule with the head foo(X2,X1) if
X1 and X2 have the same type.

For further redundancy elimination we rely on the lexicographic order of terms in ASP. In
lines 8–12 we define atoms which represent a variable signature S of form lit_vsig(I ,
Idx,Pol, A, S) where I is the predicate identifier, Idx the index, Pol the polarity, A the arity,
and S is a composite term containing all variables in the literal for which the signature is
defined. Using these signatures, the constraint in line 13 requires that literals with equal
predicates and polarities are sorted in the same way as their variable signatures. This would,
for example, eliminate a rulewith the body “foo(X2,X3), foo(X1,X2)”while itwould
allow to use the logically equivalent body “foo(X1,X2), foo(X2,X3)”. Finally, in
lines 14–20,we represent pairs of literals that have the same predicate and the same arguments
(and potentially different polarity), and we exclude solutions that contain a pair of such equal
literals using the constraint in line 21.

Note that lines 6–12 of this encoding are suitable only for predicates with arity one or
two. This was sufficient for the ILP competition and can be generalized to higher arities.

3.7 Predicate invention module

Figure 7 shows the ASP module which extends the search bias by adding the possibility
to invent predicates in the hypothesis search space. This module also includes redundancy
elimination aspects that are specific for predicate invention.

Lines 1–2 define a guess over the arity of up to maxinventpred invented predicates.
Guessing no arity means that the invented predicate is not used. Line 3 guesses for each
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invented predicate and for each argument position one argument type. Lines 4–7 connect
the invented predicate encoding with the main encoding by defining that invented predicates
can be used both as head as well as body predicates in hypothesis rules. Line 8 requires that
arguments of invented predicates are sorted lexically in the same way as the IDs of their
types are. This reduces redundancy, because it does not matter in practice whether we use
an invented predicate as inv(Type1,Type2) or as inv(Type2,Type1), as long as
it is used in the same way in all rules. Lines 9–11 perform further redundancy elimination
by defining which invented predicates are used, and eliminating solutions where we guess
the existence of an invented predicate but do not use it. Line 12 defines a cost for predicate
invention in general, line 13 defines a cost for each invented predicate, lines 14–15 define
extra cost if the invented predicate is used both in the head and in the body of the rule in the
answer set, lines 16–18 define extra cost for multiple usages of the same predicate in the rule
body, and lines 19–23 define a cost for pairs of distinct invented predicates where one is in
the body and the other one in the head of a hypothesis rule: cost is defined if the predicate
in the head is lexicographically greater or equal to the predicate in the body. This prevents
rules that canmake cycles over invented predicates early in the search process, and intuitively
prefers hypotheses that are stratified (Apt et al. 1988) with respect to invented predicates.

4 Best-effort learning and prediction

The Inspire system performs brave induction of explicitly given positive and implicitly given
negative examples, which was sufficient for the competition. The type of induction task that
is solved is similar to the task solved by the Xhail system. Formally, Inspire searches
for a hypothesis H such that for each given example trace 〈trace, valid_moves〉 there is an
I ∈ AS(bk ∪ trace∪ H) with I containing the valid moves specified in valid_moves and no
other valid moves.

Algorithm 1 shows the main algorithm of the Inspire system which is visualized from a
conceptual point of view in Fig. 1 (see page 3). The algorithm gets a competition instance (see
Sect. 2.3) as input: background knowledge bk is a set of ASP rules, the set of examples e is of
form 〈trace, label〉where trace is a set of atoms for predicate agent_at and label is a set of
atoms for predicate valid_move, the mode bias m is given in the form of target predicate
and relevant predicates, and finally the set of test traces tests is of form 〈trace, id〉 where
trace is a set of atoms for predicate agent_at and id is required for labeling prediction
outputs with the correct trace.

Initially, Algorithm 1 sorts examples by length of their trace. The variable bestquality,
initially zero, stores the number of examples that we can predict correctly with the best
hypothesis found so far. The loop in line 4 iterates over the sorted examples, starting with the
smallest. For each example, the loop in line 5 iterates over cost limit values from climitmin to
climitmax . For the competition, we set climitmin = 4 and climitmax = 15, in a general setting
we use climitmin = 1 and climitmax = ∞. For each value of climit, in line 6 we enumerate all
answer sets ofPhypgen(m, climit)which denotes the ASP encodings for hypothesis generation
as described in Figs. 4, 5, 6 and 7. The parametersm and climit of encoding Phypgen are used
as follows: from the mode bias m, facts are generated as described in Sect. 3.1, and the value
of climit is passed to ASP as a constant climit. In line 7 each answer set is transformed
into a (nonground) rule which yields the hypothesis search space hspace.

Given hspace, we search for an optimal hypothesis using the current example’s trace
and label. A hypothesis h ⊆ hspace must predict the extension of valid_move in the
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Algorithm 1: Inspire- ILP(KB bk, Examples e, Mode-bias m, Test-traces tests)

1 Sort examples e by length of trace // process smaller examples first
2 bestquality := 0
3 besthypothesis := null
4 for 〈trace, label〉 ∈ e do // process sorted examples one by one
5 for climit = climitmin, . . . , climitmax do
6 ha := AS(Phypgen(m, climit)) // hypothesis search space generation

7 hspace := rules extracted from answer sets ha as described in Section 3.2
8 Phs := bk ∪ trace∪ {Prule(r) | r ∈ hspace} ∪ Pverify(label) // build search program

9 h := ASopt,1(Phs) // hypothesis search and optimization
10 if h exists then // found a hypothesis for this example
11 quality := ∣

∣
{〈etrace, elabel〉 ∈ e

∣
∣ elabel is exactly reproduced in AS(bk ∪ h ∪ etrace)

}∣
∣

12 if quality > bestquality then
13 bestquality := quality
14 besthypothesis := h
15 Print "#attempt" // best-effort output
16 for 〈testtrace, testid〉 ∈ tests do
17 if all agent movements in AS(bk ∪ h ∪ testtrace) are predicted as valid then
18 Print "VALID(testid)"
19 else
20 Print "INVALID(testid)"

21 if quality = |e| then // h predicts all examples in e correctly
22 return h

23 return besthypothesis

label correctly with respect to background knowledge bk and trace. Note, that predicate
valid_move is specific to the competition, but our encodings are flexible with respect to
using different or even multiple predicates. A correct hypothesis is optimal if it has lower or
equal cost compared with all other correct hypotheses, where cost is the sum of costs of rules
used in the hypothesis and cost of a single rule is computed according to Sect. 3.3.

Hypothesis search is done using ASP optimization on a program Phs whose encoding is
similar to the Inductive Phase encoding used in Xhail (Ray 2009, Section 3.3). Briefly, Phs
contains the background knowledge, the current example’s trace trace as facts, a module
Pverify(label) which eliminates solutions that do not satisfy the example, and a trans-
formed rule Prule(r) for each rule r in the hypothesis space. Pverify(label) contains the set
{pos_valid_move(X,Y). | valid_move(X,Y) ∈ label} of facts which encode positive
example traces; a rule “covered:- label.” which recognizes coverage of positive example
parts; and the following rules which recognize the entailment of the example by checking
the coverage of positive examples and forbidding the violation of invalid moves:

violated :- valid_move(X,Y), not pos_valid_move(X,Y).
good_example :- covered, not violated.
:- not good_example.

Prule(r) contains (i) the original rule r with an additional body condition use(r ); (ii) a
guess {use(r ) }. which determines whether rule r is part of the hypothesis; and (iii) a weak
constraint that incurs the cost of r if use(r ) is true. In each answer set I of Phs , the set of
rules {r | use(r)}⊆ hspace is a hypothesis that entails the given example 〈trace, label〉. An
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optimal answer set of Phs is a hypothesis such that there is no cheaper hypothesis h′ ⊆ hspace
that entails the given example with smaller cost.

If such a hypothesis h exists, in line 11 we measure the quality of h by testing how many
of the given examples e are correctly predicted by h. This test is performed by repeatedly
evaluating an ASP program on bk, h, and the trace of the respective example. If the obtained
quality is higher than the best previously obtained quality, in lines 15–20 we store the quality
and the hypothesis and make a prediction attempt for all test traces. Prediction is performed
by evaluating an ASP program on bk, h, and on each trace. If we have correctly predicted the
labels of all training examples e, we immediately return the hypothesis after the prediction
attempt (because we have no possibility to measure hypothesis improvements beyond this
point). In case we do not find a hypothesis that entails all examples, we return the hypothesis
that entails most training examples. If we do not find any hypothesis, we return null.

For the competition, it was only required that the system makes prediction attempts. To
provide a more general approach, our algorithm also returns a hypothesis.

4.1 Soundness and completeness

The Inspire system makes a best effort: (i) it learns hypotheses from a single example at
a time, (ii) it checks if the found hypothesis covers all examples, (iii) it makes a prediction
attempt if the found hypothesis covers more examples than the previously best hypothesis,
and (iv) if not all examples were covered, it continues searching for a hypothesis in those
examples that were not used for hypothesis search so far.

The hypothesis search and optimization encoding of our system is sound and complete
for single examples, that means every hypothesis that is returned will entail the respective
example, and the encoding will find all possible minimal hypotheses for a given example.
Algorithm 1 ensures that the system will only make a prediction based on a hypothesis that
can be verified on more examples than any previously found hypothesis. This approach is a
best effort, but it is not sound, as it returns solutions that do not entail all examples. It is also
incomplete because the system can find various cheap hypotheses for each example while
missing a more expensive hypothesis that entails all examples. Soundness can be established
by returning only hypotheses that cover all given examples (which would reduce the score
in the competition because no partial credit would be gained). Incompleteness is the main
disadvantage of our system compared to Ilasp, which becomes visible in our analysis of
experiments on the instance level, see Sect. 5.2.1. Still, our system provides higher accuracy
in the competition settings by solving more instances and by obtaining partial credit for
hypotheses that entail only some examples. In a settingwhere all examples can be represented
in the same answer set without interfering with one another, for instance all ILP tasks that
can be processed by Xhail, completeness can be established by setting in line 8

Phs := bk ∪ {t | 〈t, l〉 ∈ e} ∪ {Prule(r) | r ∈ hspace} ∪
⋃

{Pverify(l) | 〈t, l〉 ∈ e}
and by modifying Algorithm 1 as follows: remove the example loop (line 4) and the quality
check (line 11–14 and line 21). The first hypothesis that is found with this modified approach
entails all examples.

5 Evaluation

The Inspire system is implemented in Python and uses the version 5.2.2 of the ASP sys-
tem Clingo which consists of the grounder Gringo (Gebser et al. 2011) and the solver
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Clasp (Gebser et al. 2012). Clingo is used for all ASP evaluations shown in Fig. 1. The
default configuration of this Clingo version provides anytime answer sets during optimiza-
tion due to mixed usage of core-guided and model-guided optimization (Andres et al. 2012;
Alviano et al. 2015) in combination with stratification heuristics (Ansótegui et al. 2013).
Due to the short timeouts of the ILP competition, we limited ASP computations to Tlim = 5
seconds each, which was achieved by using the Clingo parameter --time-limit=5.
(See Table 4 for experiments with Tlim.)

5.1 Comparison system based on ILASP

As there was no other participant in the competition, and as the competition used a novel
input format, there was no state-of-the-art system we could use for comparison. Therefore
we adapted the state-of-the-art Ilasp system (Law et al. 2017, 2016a) version 3.1.0, using
a wrapper script. The wrapper converts target and relevant predicates into mode bias com-
mands. Negative examples were specified implicitly in the competition: if a move was not
given as valid, it was invalid. Therefore, the wrapper creates for each competition example
one positive Ilasp example: valid moves are converted to positive atoms, trace atoms are
converted into example context [see (Law et al. 2017, Section 5)], and all implicitly given
invalid moves are converted into negative atoms.

Example 9 The trace and the valid moves from #Example(0) in Fig. 2 are converted into
the following Ilasp example.

1 #pos(ex0, { valid_move((0,1),0), valid_move((1,0),0), valid_move((1,1),1) },
2 { valid_move((0,0),0), valid_move((1,1),0), valid_move((0,0),1),
3 valid_move((0,1),1), valid_move((1,0),1) },
4 { agent_at((0,0),0). agent_at((0,1),1). }).

To increase Ilasp performance, we generate negative example atoms only for those time
points where an agent position exists in the trace (most competition examples define 100 time
points but use less than 20). We add the directives #maxv(3) and #max_penalty(100)
to configure the Ilasp bias; these parameters were found in preliminary experiments: lower
values did not yield any hypothesis and higher values yielded much worse performance. In
summary, we did our best to make Ilasp perform well.

As Ilasp realizes two evaluation algorithms that are suitable for different kinds of instances
(Mark Law, personal communication), we performed experiments with both algorithms:
by Ilasp2i we refer to Ilasp with parameter --version=2i, see (Law et al. 2016a),
and by Ilasp3 we refer to Ilasp with parameter --version=3, see (Law et al. 2017).
We provide the Ilasp wrapper at https://bitbucket.org/knowlp/inspire-ilp-comp in directory
ilasp-wrapper.

5.2 Results

We performed experiments on development set (D, 33 instances) and on the test set (T, 45
instances) of the ILP competition, both available on the competition homepage (Law et al.
2016b). Runs were performed for the resource limits of the competition (30 sec, 2 GB) and
for higher resource limits (600 sec, 5 GB). Tables show averages over three independent runs
for each configuration. The tables contain the number of timeouts (i.e., the system did not
terminate within the time limit) both absolute and in percent (lower is better); the accuracy of
the last attempt for predicting test traces (this value contains fractions if only some test traces
of an instance were predicted correctly); the number of attempts performed, and the average
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Table 1 Inspire cost parameters for experiments (defaults are in boldface)

System cost_negbodyliteral cost_inv cost_inv_pred Effect

InspireN+ 1 2 2 Early negation

InspireI+ 2 1 1 Early predicate invention

Inspire 2 2 2 Default parameters

InspireN - 3 2 2 Late negation

InspireI - 2 3 3 Late predicate invention

InspireI - N - 3 3 3 Late predicate invention/negation

InspireI - - 2 4 4 Even later predicate invention

We indicate the intuitive effect of parameters on the occurrance of rules with negation and predicate invention
in the hypothesis search

time T and memory usage M . Experimental results for the Inspire system are shown for
several cost settings for negation and predicate invention, see Table 1 for an overview.

Table 2 shows results comparing variations of Inspire and Ilasp2i . With respect to time-
outs, we can see that a timeout of 600 sec yields significantly fewer timeouts and higher
accuracy than the competition timeout of 30 sec (both for Inspire and Ilasp). A timeout
occurs if no hypothesis is found and no prediction attempt is made. Therefore, it does not
count as a timeout when the Inspire system found a hypothesis that predicted some given
examples incorrectly andmade a (best-effort) prediction attempt on the test data.While Ilasp
can learn frommultiple examples at once, it does not support automatic predicate invention.3

This explains the lower accuracy and the low number of prediction attempts (Ilasp per-
forms a prediction only if all examples are entailed by a hypothesis). The Inspire system
terminates without timeout for all instances for configurations InspireN - and InspireI - N -.
Due to learning from single examples, and due to the upper limit climitmax on hypothesis
cost, termination does not mean that all examples are covered, therefore termination does
not guarantee 100% accuracy (see also Sect. 4.1 about sound- and completeness).

With respect to accuracy, the Test dataset appears to be more challenging than the Devel-
opment dataset. InspireN - was used to participate in the competition, and this configuration
achieves the best accuracy for a time limit of 600 sec. For the lower time limit, InspireI - N -

(reduced negation and reduced predicate invention) yields the highest accuracy. Attempts are
generally correlated with accuracy, and it is visible that the limitation in this task is time, not
memory.

To find the best configuration, we compare accuracy using a one-tailed paired t-test (paired
because we perform experiments on the same instances). InspireI - N - and InspireN - are sig-
nificantly better than all other configurationswith p< 0.027, however comparing InspireI - N -

and InspireN - shows no significant difference (p= 0.1). Increasing predicate invention and
negation has the effect of more timeouts and lower accuracy. We analyse results on an
instance-by-instance basis in Sect. 5.2.1.

Table 3 shows a comparison of Ilasp algorithms. For the test set and high resources, Ilasp3
yields slightly higher accuracy than Ilasp2i , but overall, Ilasp2i provides significantly better
accuracy than Ilasp3 with p< 0.01. If we compare Development and Test instances for a
time budget of 600 sec, we notice that both Ilasp algorithms requires more time but less

3 Invented predicates can manually be added in an explicit specification of the search space, however we
provided Ilasp only with a mode bias.
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Table 2 Experimental results comparing several Inspire configurations (see Table 1) with Tlim = 5 and
Ilasp2i

DS Resources System Timeout Accuracy Attempts T(s) M(MB)

# % # % # Avg Avg

D 30s, 2GB InspireN+ 21.0 64 12.0 36 50 20 119

InspireI+ 21.0 64 12.0 36 50 21 113

Inspire 18.0 55 15.0 45 54 17 85

InspireN - 17.0 52 15.0 45 54 18 87

InspireI - 17.3 53 15.7 47 52 17 74

InspireI - N - 13.0 39 17.0 52 57 17 74

InspireI - - 15.0 45 17.0 52 56 17 68

Ilasp2i 23.0 70 3.0 9 36 25 44

600s, 5GB InspireN+ 5.0 15 17.4 53 58 195 468

InspireI+ 7.0 21 18.0 55 59 222 400

Inspire 1.0 3 22.6 68 65 107 353

InspireN - 0.0 0 23.4 71 66 64 206

InspireI - 1.0 3 22.6 68 62 86 266

InspireI - N - 0.0 0 23.4 71 66 47 179

InspireI - - 1.0 3 21.6 65 63 80 249

Ilasp2i 4.0 12 14.0 42 47 214 238

T 30s, 2GB InspireN+ 27.0 60 15.0 33 63 19 77

InspireI+ 29.0 64 13.0 29 61 20 86

Inspire 27.0 60 15.0 33 63 19 73

InspireN - 25.0 56 15.0 33 63 19 73

InspireI - 27.0 60 15.0 33 63 19 68

InspireI - N - 21.0 47 19.0 42 68 17 65

InspireI - - 25.0 56 15.0 33 63 19 66

Ilasp2i 39.0 87 3.0 7 48 27 25

600s, 5GB InspireN+ 10.0 22 15.4 34 65 245 640

InspireI+ 7.7 17 18.8 42 73 233 645

Inspire 3.0 7 19.9 44 70 158 471

InspireN - 0.0 0 23.0 51 75 95 311

InspireI - 1.7 4 16.8 37 67 133 410

InspireI - N - 0.0 0 20.9 46 72 65 236

InspireI - - 1.0 2 17.1 38 68 125 382

Ilasp2i 13.3 30 13.7 30 59 309 55

The best results in each category are given in bold

memory for the Test instances. This shows that the Test set was structurally different than
the Development set, see also Sect. 5.2.1.

Table 4 shows experimental results for several Tlim values and the default Inspire configu-
ration. The time limit Tlim has the primary purpose of providing some, potentially suboptimal,
solution within a limited time budget. For participating in the competition, we used Tlim = 5.
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Table 3 Experimental comparison of Ilasp algorithms

DS Resources System Timeout Accuracy Attempts T (s) M (MB)

# % # % # Avg Avg

D 30s, 2GB Ilasp2i 23.0 70 3.0 9 36 25 44

Ilasp3 23.3 71 3.0 9 36 26 51

600s, 5GB Ilasp2i 4.0 12 14.0 42 47 214 238

Ilasp3 7.0 21 11.0 33 44 255 266

T 30 s, 2GB Ilasp2i 39.0 87 3.0 7 48 27 25

Ilasp3 40.0 89 2.0 4 47 28 28

600s, 5GB Ilasp2i 13.3 30 13.7 30 59 309 55

Ilasp3 13.0 29 14.0 31 59 311 88

The best results in each category are given in bold

Table 4 Experimental results with Inspire and variations of the time limit parameter Tlim

DS Resources Tlim Timeout Accuracy Attempts T (s) M (MB)

# % # % # Avg Avg

D 30s, 2GB 5 18.0 55 15.0 45 54 17 85

10 18.0 55 15.0 45 54 18 106

15 18.0 55 15.0 45 54 17 118

∞ 18.0 55 15.0 45 54 18 111

600s, 5GB 5 1.0 3 22.6 68 65 107 353

10 2.0 6 21.8 66 64 120 389

15 1.3 4 22.3 68 65 127 488

∞ 16.0 48 17.0 52 59 320 966

T 30s, 2GB 5 27.0 60 15.0 33 63 19 73

10 27.0 60 15.0 33 63 19 93

15 27.0 60 15.0 33 63 19 106

∞ 27.0 60 15.0 33 63 19 99

600s, 5GB 5 3.0 7 19.9 44 70 158 471

10 4.0 9 19.9 44 70 177 579

15 4.0 9 19.3 43 72 185 733

∞ 26.0 58 16.0 36 64 351 1105

The best results in each category are given in bold

The results in the table show that for the low-resource setting, modifying this parameter has
no effect on accuracy. For the high-resource setting, limiting the time yields significantly
better accuracy than omitting the timeout (Tlim =∞) with p< 0.01. Note, that ASP Evalu-
ation is performed multiple times in each run, see Fig. 1 and Algorithm 1, therefore even a
low time limit of 5 sec per ASP call can yield an overall timeout of 600 sec.

5.2.1 Instance-by-instance analysis

The competition dataset comprises a development set of 11 instance types, numbered 4
through 12, 14, and 17, moreover there are 15 test instance types, numbered 13, 15, 16, 18,
29, 30, 32 through 35, and 37 through 41. Each instance type exists in three difficulty levels
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(easy, medium, and hard), which yields a total of 33 Development and 45 Test instances. In
the following, we refer to instance types unless otherwise noted.

In the experiments shown in Table 2, six instances (5, 14, 16, 29, 33, 40) are solved neither
by Inspire nor by Ilasp. A close inspection shows that this is the case for various reasons.
One reason is inconsistency in the mode bias: instance 5 contains atoms of form link(·, ·) in
background knowledge but not in the bias, while the bias contains a predicate full(cell)
that does not exist in the background knowledge. Another reason is, that the time limit Tlim
is too low: instance 14 can be solved by Inspire with Tlim = 60.

Ten instances (7, 9, 10, 11, 15, 16, 18, 32, 34, 38) yield a (partially) correct prediction
with Inspire and no prediction with Ilasp. From these, four instances (7, 11, 32, 38) require
invented predicates in the hypothesis. For two others, Ilasp terminates without finding a
hypothesis. For the other four instances, Ilasp exceeds the timeout. Instance 38 can be solved
with default parameters (Inspire) but notwith reduced predicate invention (InspireI - -), while
other instances yield results with both configurations. This is an effect of the maximum cost
limit setting climitmax , which makes the approach incomplete if climitmax < ∞, but yields
better performance in the competition setting. The successful hypothesis for Instance 38
comprises six rules where three rules define an invented predicate and one rule requires a
negated invented predicate in the body.

Three instances (17, 35, 39) are only solved by Ilasp. Of these, instance 39 can be solved
with Inspire with an increased timelimit Tlim = 60. The other instances require learning
from multiple examples at the same to achieve a correct hypothesis.

For instances 15 and 17, only the hard version can be solved. Hard versions of instances
are extensions of easy version with irrelevant mode bias instructions. It seems that in these
instances, superfluous predicates made the induction problem easier to solve.

In summary, several factors were important to solve competition instances in a tight time
budget, most notably predicate invention, learning from multiple examples, and choosing
correct limits for the timeout Tlim of intermediate ASP evaluations.

6 Discussion

The Inspire system uses a hypothesis search space of stepwise increasing complexity. This
is a commonly used approach in ILP for investigating more likely hypotheses first. Usually a
very coarse-grained measure of rule complexity is used such as the number of body atoms in
a rule. We extend this idea by using an ASP encoding that provides a fine-grained, flexible,
easily adaptable, and highly configurable way of describing hypothesis cost for controlling
the search space. Our experiments show that the choice of cost parameters has an influence
on finding hypotheses that generalize correctly within a given time budget.

We support predicate invention. Increasing the cost of predicate invention in the system
(InspireI - -) reduces the resource requirements of the system, but unfortunately it also reduces
the quality of hypotheses and leads to lower accuracy on the Test dataset. Likewise, increasing
predicate invention (InspireI+) leads to lower accuracy because of timeouts that are caused
the search space growing too fast. Hence, fine-grained configuration of predicate invention
is important for obtaining good results.

Invented predicates with arity one are implicitly created by hypotheses containing only
reflexive usage of an invented predicate inv, i.e., hypotheses containing only inv(V,V)
for some variable V. Having dedicated unary invented predicates would be a better solution,
however thiswould require to constrain binary invented predicates such that they are usedwith
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twodistinct arguments in at least one rule head in thehypothesis (otherwise they are effectively
unary predicates). Making a global constraint over the structure of the full hypothesis is
currently not possible in Inspire, however an approach for such constraints has beendescribed
by Athakravi et al. (2015).

Enumerating answer sets of our hypothesis space generation encodings inAlgorithm1 line
6 is computationally cheap compared with hypothesis search (line 9). For finding an optimal
hypothesis, the Inspire system uses an encoding which requires examples to be represented
in disjoint parts of the Herbrand Base, see challenge (C1) in Sect. 1. Therefore, we designed
an algorithm that learns from single examples at a time. Our fine-grained hypothesis search
space generation (described in Sect. 3) is independent from Algorithm 1 and it is compatible
with other approaches for hypothesis search that work with multiple examples and with noisy
examples.

The Inspire system learns from single examples and sorts them by trace length, which
reduces resource consumption in the hypothesis search step. This is a strategy that is specific
to the competition: we observed that even short examples often provide sufficient structure
for learning the final hypothesis, moreover competition examples were noiseless. We think
that future ILP competitions should prevent success of such a strategy by using instances
that require learning from all examples at once, e.g., by providing smaller, partial, or noisy
examples (even in the non-probabilistic track).

Testingwhether a hypothesis correctly predicts an input example is computationally cheap.
Therefore, for each newly found hypothesis we perform this check on all examples. If this
increases the amount of correctly predicted examples, we make a prediction attempt on the
test cases. If all examples were correctly predicted, we terminate the search, because we have
no metric for improving the hypothesis after predicting all examples correctly (competition
examples are noiseless and our search finds hypotheses with lower cost first).

A major trade-off in our approach is the blind search: we avoid to extract hypotheses from
examples as done in the systems Xhail (Ray 2009) and Iled (Katzouris et al. 2015). This
means we rely on the mode bias and on our incrementally increasing cost limit to obtain a
reasonably sized search space for hypothesis search.

Note that we did not compare Inspire with Xhail (Ray 2009), Mil (Muggleton et al.
2014), or Iled (Katzouris et al. 2015), partially because these approaches are not compatible
with challenge (C1), partially because these approaches are syntactically incompatible with
tuple terms (i.e., terms of form cell((1,2))) which are essential in the background
knowledge of the competition.

7 Related work

Inductive Logic Programming (ILP) is amultidisciplinary field and has been greatly impacted
by Machine Learning (ML), Artificial Intelligence (AI) and relational databases. Several
surveys such as those byGulwani et al. (2015) andMuggleton et al. (2012)mention about ILP
systems and applications of ILP in interdisciplinary areas. Important theoretical foundations
of ILP comprise Inverse Resolution and Predicate Invention (Muggleton and Buntine 1992;
Muggleton 1995).

Most ILP research has been based on Prolog and aimed at Horn programs that exclude
Negation as Failure which provides monotonic commonsense reasoning under incomplete
information. Recently, research on ASP-based ILP (Otero 2001; Ray 2009; Law et al.
2014) has made ILP more declarative (no necessity for cuts, unrestricted negation) but also
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introduced new limitations (scalability, predicate invention). Predicate invention is indeed a
distinguishing feature of ILP: Dietterich et al. (2008) writes that ‘without predicate invention,
learning always will be shallow’. Predicate invention enables learning an explicit represen-
tation of a ‘latent’ logical structure that is neither present in background knowledge nor in
the input, which is related to successful machine learning methods such as Latent Dirichlet
Allocation (Blei et al. 2003) and hidden layers in neural networks (LeCun et al. 2015). Mug-
gleton et al. (2015) recently introduced a novel predicate invention method and, to the best of
our knowledge for the first time, compared implementations of Metagol in ASP and Prolog.
Other ASP-based ILP solvers do not support predicate invention, or they support it only with
an explicit specification of rules involving invented predicates (Law et al. 2014). In purely
Prolog-based ILP, several systems with predicate invention have been built (Craven 2001;
Muggleton 1987; Flach 1993), however these systems also do not support the full power of
ASP-based ILP with examples in multiple answer sets (Otero 2001; Law et al. 2014). Note
that predicate invention in general is still considered an unsolved and very hard problem
(Muggleton et al. 2012).

The TAL (Corapi et al. 2010) ILP system is based on translating an ILP task into an
Abductive Logic Programming instance (Kakas et al. 1992), where each rule in the search
space is represented by a ground atom that holds a list of body atoms and a list of substitutions
of mode bias placeholders with variables in the rule. TAL is Prolog-based and does not
instantiate all of these atoms at once. The ASPAL (Corapi et al. 2012) ILP system, similar
to TAL, represents rules as single atoms, however ASPAL replaces constants by unique
variables in order to instantiate the full search space, followed by an ASP solver call that
instantiates these special variables with constants and finds the optimal hypothesis. Our
approach provides a declarative and configurable method for enumerating they hypothesis
space of an ILP problem. We represent a single hypothesis rule not as a single atom of form
rule(. . .) as done by TAL and ASPAL but as a structured representation in a set of atoms in
an answer set. This has the advantage of reducing the size of the instantiation and enables
a fast enumeration of all hypothesis candidates. The disadvantage of our approach is, that
after enumerating hypothesis candidates we still need another approach for finding the best
hypothesis, whereas TAL and ASPAL combine the search for hypothesis candidates with the
search for the optimal hypothesis in one representation.

The following extensions of ASPAL, which impose restrictions on hypotheses, have
important similarities with our approach. ASPAL was extended in order to perform mini-
mal revision of a logic program using ILP (Corapi et al. 2011) by giving hypotheses in the
bias a cost according to their edit distance to a given logic program. Revising a logic program
was applied to solving ILP tasks in another extension (Athakravi et al. 2014) of ASPAL: ini-
tially, a hypothesis that partially covers the examples and has limited complexity is learned,
followed by revisions, called change transactions, of limited complexity which aim to entail
more examples by modifying the hypothesis. This extension of ASPAL limits the search
space relative to an intermediate hypothesis, which can rule out the empty hypothesis as
solution of certain intermediate steps. Opposed to that, our approach never puts a lower limit
on the hypothesis complexity: in Inspire, the search space always increases with the number
of iterations, while change transactions have the potential to generate big hypotheses based
on a sequence of comparatively small searches for locally optimal ILP solutions. ASPALwas
extended with a constraint-driven bias (Athakravi et al. 2015) where the hypothesis search
space, usually given only by a set of head and body mode declarations, can be constrained in
a more fine-grained manner. A set of domain-specific rules and constraints (e.g., to require
that hypothesis rules with a specific predicate in the head must contain another specific pred-
icate in the body) or generic constraints (e.g., to require that the hypothesis is a stratified
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program) imposes hard constraints on hypotheses and these constraints can be formulated
differently for each predicate in the mode bias. Different from the constraint-driven bias, we
define a preference function and merely delay, but do not completely exclude, hypothesis
candidates from the search. Our approach is controlled by cost coefficients and does not
permit domain-specific formulation of preferences. Both approaches could be combined to
obtain (i) domain-specific control over the overall search space as well as (ii) domain-specific
control over search space extension (in case no solution is found in the initial search space).
This could be achieved by extending the ASPAL constraint-driven bias language with weak
constraints.

A recent application of ASP-based ILP was done byMitra and Baral (2016), who perform
QuestionAnswering on natural language texts. Based on statistical NLPmethods, they gather
knowledge and learn learning with ILP how to answer questions similar to a given training
set. They used Xhail (Ray 2009) to learn non-monotonic hypotheses in a formalization of
an agent theory with events.

8 Conclusion

Wecreated the Inspire InductiveLogic Programming systemwhich supports predicate inven-
tion and generates the hypothesis search space from the given mode bias using an ASP
encoding. This encoding provides many parameters for a fine-grained control over the cost
of rules in the search space.

It is useful to have a fine-grained control over the order in which the search space is
explored, in particular for controlling negation and predicate invention. Invented predicates
aremore often useful for abstracting fromother concepts, and less often useful if they generate
answer sets by introducing additional non-determinism. Similarly, abundance of negation
will easily introduce (potentially) undesired non-determinism within the hypothesis. For the
ILP competition, the Inspire system was configured to first explore hypotheses with mainly
positive body literals (see parameter cost_negbodyliteral) and hypotheses where invented
predicates are used in a stratified way (see parameter cost_inv_headbodyorder).

The performance of our system is provided by (i) appropriately chosen cost parameters for
the shape of rules in the hypothesis search space, (ii) incremental exploration of the search
space, (iii) an algorithm that learns from a single example at a time, and (iv) the usage of
modern ASP optimization techniques for hypothesis search. On ILP competition instances,
Inspire clearly outperforms Ilasp, which we adapted to the competition instance format.

The Inspire system was created specifically for the first ILP competition, but the fine-
grained control over the hypothesis search space generation is a generic method that is
independent from the learning algorithm and could be integrated into other systems, for
example into Xhail or Ilasp.

Hypothesis candidates are generated in a blind search, i.e., independent from examples.
This might seem like a bad choice, however it is a viable option in ASP-based ILP because
we found in recent research (Kazmi et al. 2017) that existing methods for non-blind search
have major issues which make their usage problematic: the Xhail algorithm (Ray 2009)
produces many redundancies in hypothesis generation, leading to a very expensive search
(Induction), while the Iled algorithm (Katzouris et al. 2015) is unable to handle even small
inconsistencies in input data, leading to mostly empty hypotheses or program aborts.

We conclude that the good performance of the Inspire system is based partially on our
novel fine-grained hypothesis search space generation, and partially on the usage of pecu-
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liarities of competition instances. To advance the field of Inductive Logic Programming for
answer set programming, future competitions should usemore diverse instances that disallow
finding solutions from single examples, while at the same time requiring the hypothesis for
separate examples to be entailed in separate answer sets. To avoid blind search, it will be
necessary to improve algorithms and systems to make them resistant to noise and scalable
in the presence of large amounts of training examples. We believe that theoretical methods
developed in Prolog-based ILP, for example (Muggleton et al. 2015), will be important and
useful for advancing ASP-based ILP.

As future work, our hypothesis space generation approach could be integrated into an
existing ILP system, for example into the open source Xhail system by modifying the
method getKernel() in class xhail.core.entities.Grounding. Note, that this
would not make Xhail compatible with examples of the ILP competition due to challenge
(C1). Another future work would be to make the Inspire input format more generic and
to replace the hypothesis optimization encoding with an approach that can process multiple
examples at once and noisy examples, e.g., with the fullXhail encoding or with the encoding
from Ilasp version 1 (Law et al. 2014).

The Inspire system and the Ilaspwrapper are open source software and publicly available
at https://bitbucket.org/knowlp/inspire-ilp-comp.
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