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Abstract Businesses are naturally interested in detecting anomalies in their internal pro-
cesses, because these can be indicators for fraud and inefficiencies. Within the domain of
business intelligence, classic anomaly detection is not very frequently researched. In this
paper, we propose a method, using autoencoders, for detecting and analyzing anomalies
occurring in the execution of a business process. Our method does not rely on any prior
knowledge about the process and can be trained on a noisy dataset already containing the
anomalies. We demonstrate its effectiveness by evaluating it on 700 different datasets and
testing its performance against three state-of-the-art anomaly detection methods. This paper
is an extension of our previous work from 2016 (Nolle et al. in Unsupervised anomaly detec-
tion in noisy business process event logs using denoising autoencoders. In: International
conference on discovery science, Springer, pp 442–456, 2016). Compared to the original
publication we have further refined the approach in terms of performance and conducted an
elaborate evaluation on more sophisticated datasets including real-life event logs from the
Business Process Intelligence Challenges of 2012 and 2017. In our experiments our approach
reached an F1 score of 0.87, whereas the best unaltered state-of-the-art approach reached an
F1 score of 0.72. Furthermore, our approach can be used to analyze the detected anomalies
in terms of which event within one execution of the process causes the anomaly.
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1 Introduction

Anomaly detection is becoming an integral part of business intelligence. Businesses are nat-
urally interested in detecting anomalies in their processes, because these can be indicators for
inefficiencies in their process, badly trained employees, or even fraudulent behavior. Conse-
quently, being able to detect such anomalies is of great value, for they can have enormous
impact on the economic well-being of the businesses.

More and more companies rely on process-aware information systems (PAISs) (Dumas
et al. 2005) to improve their processes. This increasing number of PAISs has generated a lot
of interest in the data these systems are gathering. The log files these systems are storing
can be used to extract the events executed in the process, and thereby create so called event
log files. Event logs are comprised of activities (and other miscellaneous information) that
occurred during the execution of the process. These event logs enable process analysts to
explore the underlying process. In other words, the event log consists of footprints of the
process. Consequently, it is possible to recreate the process model by evaluating its event
log. This is known as process model discovery and is one of the main ideas in the domain of
process mining (Van der Aalst et al. 2011).

Process mining provides methodologies to detect anomalies in the execution of a process;
e.g., by discovering the as-is process model from the event log (Van der Aalst et al. 2004)
using discovery algorithms and then comparing the discovered model to a reference model.
This is known as conformance checking (Rozinat and Van der Aalst 2008). Another way
of detecting anomalies is to compare the event log to the reference model. However, this
approach requires the existence of such a reference model.

If no reference model is available, process mining relies on discovering a reference model
from the event log itself (Bezerra et al. 2009; Bezerra and Wainer 2013). These methods
make use of a threshold to deal with infrequent behavior in the log, so that the discovered
model is a good representation of the normal behavior of the process. Hence, this model can
be used as a reference model for the conformance check.

A key assumption in anomaly detection is that the anomalous executions occur less fre-
quent than normal executions. This skewed distribution can be taken advantage of when
applying anomaly detection techniques.

In this paper, we propose a method for detecting anomalies in business process data. Our
method works under the following assumptions.

– No prior knowledge about the process
– Training data already contains anomalies
– No reference model needed
– No labels needed (i.e., no knowledge about anomalies)
– The algorithm must detect the exact activity at which the anomaly occurred

The systemmust deduce the difference between normal and anomalous executions purely
based on the patterns in the raw data. Our approach is based on a special type of neural
network, called an autoencoder, that is trained in an unsupervised fashion.

The main contribution of this work is the application of an autoencoder to analyze the
detected anomalies in terms of which event within a sequence is anomalous as opposed to the
whole sequence at once. This can be refined further by analyzing which characteristic of the
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event (e.g., the executing user) is anomalous, not just the event itself. We demonstrate that,
using this approach, we can accurately identify activities that have been executed in thewrong
order, skipped, or unnecessarily reworked. Furthermore, we can detect when unauthorized
users have illegally executed an activity.

To demonstrate the feasibility of our approach we compare its performance to seven state-
of-the-art methods for anomaly detection. In addition to these six methods, we also present
an adaptation of one of the methods. All methods were applied to a comprehensive set of
600 different artificial event logs featuring authentic business process anomalies as well as
100 real-life event logs coming from the Business Process Intelligence Challenge (BPIC).

In summary, the contributions of this paper are as follows.

1 Novel application of autoencoders to automatically analyze anomalies in the domain of
business process intelligence.

2 Adaptation of the t-STIDE anomaly detection method from Warrender et al. (1999) to
work with event attributes.

3 Comprehensive evaluation of state-of-the-art anomaly detection methods in the domain
of business process intelligence.

4 Provision of a representative, labelled, set of artificial process event logs containing
authentic anomalies.

2 Related work

In the field of process mining (Van der Aalst et al. 2011) anomaly detection is not very
frequently researched. Most proposed methods work by using discovery algorithms to mine
a reference model from the event log (Bezerra et al. 2009) and then using it for conformance
checking to detect anomalous behavior. The bigger part of these methods relies on a clean
dataset to work correctly. Unfortunately, this violates our assumptions, as the data coming
from the PAISs will naturally contain anomalies.

Recently there has been some research on approaches that can deal with noisy event logs.
Through the use of special discovery algorithms, that can deal with noise and infrequent
behavior in the process, the approach from Bezerra et al. (2009) can be refined to work with
noisy logs (Bezerra and Wainer 2013). The authors in Bezerra and Wainer (2013) give three
different algorithms in their paper. Within this work we will compare our approach to two of
the proposed approaches.

A more recent publication proposes the use of likelihood graphs to analyze business pro-
cess behavior (Böhmer and Rinderle-Ma 2016). Specifically, the authors describe a method
to extend the likelihood graph to include event attributes. This method works both on noisy
event logs and includes important characteristics of the process itself by including the event
attributes. We will also compare our method to the method from Böhmer and Rinderle-Ma
(2016) in the evaluation section.

A review of classic anomaly detectionmethodology can be found in Pimentel et al. (2014).
Here, the authors describe and compare many methods that have been proposed over the last
decades. Another elaborate summary on anomaly detection in discrete sequences is given
by Chandola et al. (2012). The authors differentiate between five different basic methods for
novelty detection: probabilistic, distance-based, reconstruction-based, domain-based, and
information-theoretic novelty detection.

Probabilistic approaches try to estimate the probability distribution of the normal class,
and thus can detect anomalies as they were sampled from a different distribution. In speech
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recognition (Juang and Rabiner 1991), hidden Markov models (HMMs) (Rabiner and Juang
1986; Rabiner 1989) are a popular choice for modeling sequential data. HMMs can also be
used for anomaly detection as shown in Warrender et al. (1999) and Jain and Abouzakhar
(2012), where they are used successfully for system intrusion detection. However, as Chan-
dola et al. pointed out in 2008, the performance of such HMMs strongly depends on the fact
that the raw data can be sufficiently modeled by a Markov process.

Another important probabilistic technique is the sliding window approach as proposed
in Forrest et al. (1996), where it is used for intrusion detection. In window based anomaly
detection, every window of a sequence is assigned an anomaly score. Then the anomaly
score of the sequence can be inferred by aggregating the window anomaly scores. Recently,
Wressnegger et al. (2013) used this approach for intrusion detection and give an elaborate
evaluation.While being inexpensive and easy to implement, slidingwindow approaches show
a robust performance in finding anomalies in sequential data, especially within short regions
of the data (Chandola et al. 2012).

Distance-based novelty detection does not require a cleaned dataset, yet it is only partly
applicable for process traces, as anomalous traces are usually very similar to normal ones.
A popular distance-based approach is the one-class support vector machine (OC-SVM).
Schölkopf et al. (1999) first used support vector machines (Cortes and Vapnik 1995) for
anomaly detection. Tax, in his PhD thesis (Tax 2001), gives a sophisticated overview over
one-class classification methods, also mentioning the OC-SVM. OC-SVMs have shown to
be successful in the field of intrusion detection as demonstrated by Heller et al. (2003).

Reconstruction-based novelty detection (e.g., neural networks) is similar to the aforemen-
tioned approaches in Hawkins et al. (2002) and Japkowicz (2001). However, training a neural
network usually also requires a cleaned dataset. Nevertheless, wewill show that our approach
works on the noisy dataset by taking advantage of the skewed distribution of normal data and
anomalies, as demonstrated in Eskin (2000).

Domain-based novelty detection requires domain knowledge, which violates our assump-
tion of no prior knowledge about the process. Information-theoretic novelty detection defines
anomalies as the examples that most influence an information measure (e.g., entropy) on the
whole dataset. Iteratively removing the data with the highest impact will yield a cleaned
dataset, and thus a set of anomalies.

The approach within this paper is highly influenced by the works in Dong and Japkowicz
(2016), Hawkins et al. (2002) and Japkowicz (2001), in which they propose the use of
replicator neural networks (Hecht-Nielsen 1995) for anomaly detection, i.e., networks that
reproduce their input, which are based on the idea of autoencoders from Hinton (1989).
Autoassociative neural network encoders use a similar concept and have been used to model
the nominal behavior of complex systems (Thompson et al. 2002). They have also been used
for residual generation in Diaz andHollmén (2002), demonstrating that thesemodels can also
model behavior not directly observed in the training data, which increases generalization.
A comprehensive study of replicator neural networks for outlier detection can be found in
Williams et al. (2002). The approaches from Diaz and Hollmén (2002), Dong and Japkowicz
(2016), Hawkins et al. (2002), Japkowicz (2001) and Thompson et al. (2002), however, do
not work well with variable length input. In our approach, we address this problem by using a
padding technique.We opted to use a neural network based approach, for recent achievements
in machine translation and natural language processing indicate that neural networks are an
excellent choice when modeling sequential data (Dai and Le 2015; LeCun et al. 2015).

The main distinction between all other methods and the proposed approach is that it
can be used to identify which exact event and furthermore which attribute characteristic is
the cause of the anomaly. The only other approach that can deal with event attributes is
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Table 1 Example event log of a
procurement process

Trace ID Timestamp Activity User

1 2015-03-21 12:38:39 PR created Roy

1 2015-03-28 07:09:26 PR released Earl

1 2015-04-07 22:36:15 PO created James

1 2015-04-08 22:12:08 PO released Roy

1 2015-04-21 16:59:49 Goods receipt Ryan

2 2015-05-14 11:31:53 SC created Marilyn

2 2015-05-21 09:21:26 SC purchased Emily

2 2015-05-28 18:48:27 SC approved Roy

2 2015-06-01 04:43:08 PO created Johnny

the method from Böhmer and Rinderle-Ma (2016). However, it can not deal with long-
term dependencies, because it works on a general likelihood graph, which disregards the
past events when calculating the probability of an event occurring at a specific point in the
process. Our approach can deal both with the attributes and with non-local dependencies in
the logs.

3 Dataset

PAISs keep a record of almost everything that happened during the execution of a business
process. This information can be extracted from the systems in formof an event log. Event logs
are the most common data structure when working with process data from PAISs, especially
in the field of process mining.

3.1 Event logs

An event log consists of traces, each consisting of the activities that have been executed.
Table 1 shows an excerpt of such an event log. In this case, it is representative for the
execution of a procurement process. Notice that an event log must consist of at least three
columns: a trace ID, to uniquely assign an executed activity to a trace; a timestamp, to
order the activities within a trace; and an activity label, to distinguish the different activities.
Optionally, the event log can contain so called event attributes. In the example event log from
Table 1, the user column is such an event attribute, indicating which user has executed the
respective activity.

3.2 Process model generation

To create a test setting for our approach we randomly generated process models and then
sampled event logs from them. The process models were generated using PLG2 (Burattin
2015), a process simulation and randomization tool. Each process model has a different
complexity, with regard to the number of possible activities and the branching factors (i.e.,
out-degrees). The complexity of a process model can also be measured by the number of
possible variants. A variant is a valid path through the complete process model from a valid
start activity to a valid end activity. Table 2 shows the processmodelswith their corresponding
complexities. Note that the Wide process model was specifically generated to evaluate the
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Table 2 Overview over the 5 different randomly generated process models and the P2P process

Model #Nodes #Edges #Variants Max length ∅ Out-degree

P2P 14 16 6 9 1.14

Small 22 26 6 10 1.18

Medium 34 48 25 8 1.41

Large 44 56 28 12 1.27

Huge 56 75 39 11 1.34

Wide 36 53 19 7 1.47

approach on a dataset that has low complexity in terms of the number of variants, but a high
branching factor.

Now, we generated authentic event logs from these process models by randomly sampling
variants of the process with replacement. In real process models these variants are not equally
distributed. Therefore, we randomly generated a distribution for the variants each time we
were sampling an event log. These probabilities were sampled from a normal distribution
withμ = 1 and σ = 0.2, and then normalized so they sum up to 1. Furthermore, we randomly
generated a set of users in the process (between 10 and 30 different users per process). Then
we sampled subsets of the user set for each activity, denoting which users are permitted to
execute the activity. The number of possible users per activity lies between 1 and 5. After
computing all variants, we also introduced a long-term dependency for the user variable in
each variant at random. Therefore, we randomly chose two activities in each variant that must
be executed by the same user.

3.3 Example process

In addition to the five randomly generated models, we also used a simplified version of a
purchase to pay (P2P) process model as is depicted by the BPMN model in Fig. 1. This
model was mainly created for purposes of evaluation, as it features interpretable activity
names unlike the randomly generated models. The resulting event log for the P2P model was
generated in the same fashion as those of the randomly generated models using the same
parameters as mentioned above. Notice the possible users for each activity as indicated by
the italic names in Fig. 1.

3.4 Anomalies

To introduce noise into the event logs we randomly applied mutations to a fixed percentage
of the traces in the event log. These mutations represent the anomalies in the data. Each trace
can be affected by one of the following five anomalies (we will use their respective names
from now on):

1 Skipping A necessary activity has not been executed,
2 Switching Two consecutive events have been executed in the wrong order,
3 Reworking An activity has been executed twice in a row,
4 Incorrect user A user has executed an activity to which he was not permitted,
5 Incorrect LTD The wrong user has executed the long-term dependent activity.

Compared to our work in Nolle et al. (2016), we have added two more anomalies that
we found occur very frequently in real-life scenarios. A classic problem in real-life business
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Fig. 1 BPMN model of a
simplified purchase to pay
process; the italic names
represent the users allowed to
execute that activity

PR Created
James, Johnny

SC Created
Emily

SC Purchased
Roy, James

SC Approved
Earl, Emily

PR Released
Ryan, Johnny

PO Created
Earl

PO Released
Johnny

PO Dec.
James, Amanda

PO Inc.
Ryan, Craig

Goods Receipt
Craig

Invoice
Howard, Brian

Payment
Craig

processes is the segregation of duty. For example, a user that approves a purchase order must
not be the same user that has initially created it. Many anomalies in real-life processes are
related to the users executing the events, which is why we included this event attribute here.

Our way of generating the artificial event logs is very similar to the methods of Bezerra
and Wainer (2013) and Böhmer and Rinderle-Ma (2016). One difference is, that we also
introduce anomalies affecting event attributes. We will make these datasets, the generation
algorithm, and our implementation of the algorithm publicly available. For more information
on this, please consider contacting the corresponding author.

For each process model, we randomly generated a set of permitted users for each activity.
We did this ten times, resulting in 60 different process models. For each of these 60 process
models, we then generated 10 event logs, each featuring a different percentage of anomalies
and a random variant distribution. The percentage of anomalous traces in the training log
ranged from10, 20, up to 100%.That is, we generated training logs containing 10%anomalies
and 90% normal traces, as well as logs with 80% anomalies and 20% normal traces, and so
on up to a log which entirely consists of anomalies, i.e., 100%. In total, we generated 600
different artificial event logs. Each event log consisted of 12,500 traces. For each event log we
created a separate test event log containing 2500 traces featuring the same variant distribution
and users.
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3.5 Real-life event logs

In addition to the artificial event logs we also generated training and test event logs from the
public datasets of the Business Process Intelligence Challenge 20121 and 2017,2 which we
will refer to as BPIC12 and BPIC17 respectively. BPIC17 is an updated version of BPIC12,
representing the same loan application process. However, BPIC17 contains data from the last
5 years, after the company has introduced a new workflow system.

Similarly to the artificial logs, we used the event logs as a basis and randomly applied
anomalies to a fixed percentage of traces in the logs. As these logs did not feature a user
attribute we did not include the Incorrect user and Incorrect LTD anomalies. For BPIC12
and BPIC17 we generated training sets featuring between 10 and 100% anomalies, as was
done for the artificial logs. We also generated separate test sets for both logs, resulting in 100
real-life training event logs with artificial anomalies.

4 Method

Recently, artificial neural networks have gotten a lot of attention by outclassing the state-
of-the-art methods in many domains such as object recognition in images (Krizhevsky et al.
2012) or machine translation (Bahdanau et al. 2014). Before we introduce our method, we
first want to give a brief overview over the neural network architecture we employed.

A feed-forward neural network consists of multiple layers, each containingmany neurons.
Every neuron in one layer is connected to all neurons in the preceding and succeeding layers.
These connections have weights attached to them, which can be used to control the impact a
neuron in one layer has on the activation of a neuron in the next layer. To calculate the output
of a neuronwe apply a non-linear activation function [a popular choice is the rectifier function
f (x) = max(0, x) (Nair and Hinton 2010) to the sum over all outputs of the neurons in the
previous layer times their respective connection weights. The initialization of these weights
is important, as pointed out in Glorot and Bengio (2010), for no two weights within one layer
must be initialized to the same value. Then, the back-propagation algorithm (Rumelhart et al.
1988) is used to iteratively tune the weights, so that the neural network produces the desired
output, or a close enough approximation of it.

In a classification setting, the desired output of the neural network is the class label.
However, a neural network can also be trained without the use of class labels. One such type
of neural network is called an autoencoder. Instead of using class labels, we are using the
original input as the target outputwhen training the autoencoder. Obviously, a neural network,
if given enough capacity and time, can simply learn the identity function of all examples in
the training set. To overcome this issue, some kind of capacity limitation is needed. This can
be done by forcing one of the autoencoder’s hidden layers to be narrow (i.e., narrower than
the input dimension), thereby not allowing the autoencoder to learn the identity function.
Another common way of limiting the capacity is to distribute additive Gaussian noise over
the input vector of the autoencoder. Thus, the autoencoder—even if repeatedly trained on
the same trace—will always receive a different input. We use a combination of both these
strategies for our method.

1 http://www.win.tue.nl/bpi/doku.php?id=2012:challenge.
2 http://www.win.tue.nl/bpi/doku.php?id=2017:challenge.
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Noise

Event log ReplicationAutoencoder

Fig. 2 Autoencoder is trained to replicate the traces in the event log after the addition of Gaussian noise

4.1 Setup

To train an autoencoder on the generated event logs, we first must transform them. The first
step is to encode each activity and user using a one-hot encoding. Each activity is encoded
by an n-dimensional vector, where n is the number of different activities encountered in the
event log. To encode one activity, we simply set the corresponding dimension of the one-
hot vector to a fixed value of one, while setting all the other dimensions to zero. We use
the same method to encode the user event attribute. This results in a one-hot vector for the
activity and another for the user for each event in a trace. Now we combine these vectors by
concatenating them into one vector. If the activity vectors are a1, a2, ..., an and the respective
user vectors are u1, u2, ..., un , the resulting vector will be a1‖u1‖a2‖u2‖...‖an‖un , where ‖
denotes concatenation.

Note that another option of dealing with variable size traces is dividing the traces into
subsequences of equal size (n-grams). However, using n-grams of events loses the connection
between distant events, if the n-gram size is too narrow. Consequently, the system is unable
accurately model long-term dependencies between events. Therefore, we chose to use the
one-hot encoding method.

Because feed-forward neural networks have a fixed size input, we must apply one more
step of pre-processing. To force all encoded trace vectors to have the same size we pad all
vectors with zeros, so each vector has the same size as the longest vector (i.e., the longest
trace) in the event log.

Suppose an event log consists of 10 different activities, 20 different users, and the max-
imum length of all traces in the event log is 12. The longest trace within the event log will
have a size of (10 + 20) · 12 = 360. Therefore, we must pad all shorter vectors with zeros
so they reach size 360.

Using the one-hot encoded event log we can train the autoencoder with the back-
propagation algorithm (Rumelhart et al. 1988), using the event log both as the input and
the label. Figure 2 shows a simplified version of the architecture. The special noise layer
adds Gaussian noise before feeding the input into the autoencoder. This layer is only active
during training. Now the autoencoder is trained to reproduce its input, that is, to minimize
the mean squared error between the input and its output.

We trained on mini batches of size 50 for 200 epochs, allowing early stopping when the
loss on the validation set did not decrease within the last 10 epochs. We used the Adam
optimizer (Kingma and Ba 2014), which utilizes the momentum technique (Sutskever et al.
2013). We set the optimizer parameters to β1 = 0.9, β2 = 0.99 and ε = 10−8. The learning
rate was set to 0.001 initially, and was scaled by a factor of 0.1 when the validation loss did
not improve within the last 5 epochs. Additionally, we used a dropout of 0.5 between all
layers, as suggested in Srivastava et al. (2014); the additive noise applied to the input was
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sampled from a Gaussian distribution with μ = 0 and σ = 0.1. Each autoencoder consists
of an input and an output layer with linear units, and 2 hidden layers with rectified linear
units. These training parameters were used for each of the different event logs, but the size
of the hidden layer was adapted depending on the event log, i.e., the number of neurons in
the hidden layer was set to be half the size of the input layer. For the real-life BPIC event
logs we only used 1 hidden layer.

4.2 Classifying traces

After training the autoencoder, it can be used to reproduce the traces in the test event logs, but
without applying the noise. Now, we can measure the mean squared error between the input
vector and the output vector to detect anomalies in the event log. Because the distribution
of normal traces and anomalous traces in the event log is one sided, we can assume that the
autoencoder will reproduce the normal traces with less reproduction error than the anomalies.
Therefore, we can define a threshold τ , where if the reproduction error of a trace succeeds this
threshold τ , we consider it an anomaly. To set the threshold we use the mean reproduction
error over the training dataset and apply a scaling factor α. We define the threshold as in
Eq. 1, where ei is the reproduction error for trace i , and n the number of traces in the dataset.

τ = α

n

n∑

i=1

ei (1)

4.3 Classifying events and attributes

We have described how to detect anomalous traces in the event log; now we want to refine
this method. Not only can we detect that a trace is anomalous, but also which event in the
trace influences the reproduction error the most. Hence, we must change our calculation
of the reproduction error from trace based to event based. Up until now, we calculated the
reproduction error as the mean squared error between the entire one-hot encoded input and
output sequence of the autoencoder. However, we can also consider the mean squared error
for every event in the sequence separately. Furthermore, we can also compute the error for
each activity and user separately.

Let us consider the example input vector i from Eq. 2. We can divide the vec-
tor into the corresponding subvectors, as indicated by the curly braces. This gives us
a1, u1, a2, u2, ..., an, un . Nowwe can split the reproduced version of i (i.e., the output vector)
identically, obtaining â1, û1, â2, û2, ..., â3, û3.

i = [ 00001︸ ︷︷ ︸
a1

0100︸︷︷︸
u1

10000︸ ︷︷ ︸
a2

0010︸︷︷︸
u2

... 01000︸ ︷︷ ︸
an

0100︸︷︷︸
un

] (2)

The error E for an activity vector ai is then given by the mean squared error between ai and
âi . For a user vector ui the method works analogously. Thus, we can compute the error for
all activity vectors and all user vectors over the whole dataset. Notice that this works for any
number of event attributes.

The benefit is that we can distinguish between activity related anomalies and user related
anomalies. We will elaborate on this in the evaluation section below.
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5 Evaluation

We evaluated the autoencoder approach (DAE) on all 700 event logs and compared it to state-
of-the-art anomaly detection methods mentioned (Chandola et al. 2012). Namely: a sliding
window approach named t-STIDE (Warrender et al. 1999); the one-class SVM approach
(OC-SVM); and the Markovian approach using a hidden Markov model (HMM) (Warrender
et al. 1999). In addition to that, we also compared our approach to two approaches proposed
in Bezerra and Wainer (2013), the Naive algorithm and the Sampling algorithm. Lastly, we
compared our approach to the most recent approach proposed in Böhmer and Rinderle-Ma
(2016), using an extended likelihood graph (Likelihood). As a baseline we provide the results
of a random classifier.

For the OC-SVM we relied on the implementation of the scikit-learn package for Python
(Pedregosa et al. 2011) using an RBF kernel of degree 3 and a ν = 0.6. The HMM approach
was implemented using the hmmlearn package for Python. We implemented the t-STIDE
algorithm ourselves using a window size k = 4. The hyperparameters for both approaches
were optimized using grid search. TheNaive, Sampling, and Likelihoodmethodswere imple-
mented as described in the original papers.

At last, we used our own implementation of the t-STIDE method which we will refer to
as t-STIDE+. The classic t-STIDE approach only takes into account the activities of an event
log, but not the attributes. To make use of the attributes we must adapt the original method.

A window of size k is a tuple of k events, where each event consists of a tuple of the
activity name a and the corresponding user u. Let us consider an example window size of
three. A window w is defined as w = {(a1, u1), (a2, u2), (a3, u3)}. The approach works
by employing a frequency analysis over all windows of size k in the training set, and then
comparing the relative frequencies of all windows in the test set to the corresponding ones
from the training set. Whenever a window’s relative frequency is significantly lower than its
frequency in the training set, the trace containing this window is considered an anomaly. We
evaluated the t-STIDE and the t-STIDE+ approach on all datasets and for all feasible choices
of k, i.e., k was chosen to lie between 2 and the maximum trace length in the dataset. The
evaluation showed that k = 4 performed the best for both approaches.

We used the threshold technique fromEq. 1 for all approaches except theOC-SVM, for the
scikit-learn implementation automatically optimizes the threshold. For the other approaches,
we optimized the scaling factor α by an exhaustive grid search. One requirement when setting
α was that α must be the same for all event logs, i.e., we strive for a general setting of α.

We also considered isolation forests (Liu et al. 2008, 2012) for our experiments; however,
this approach relies on setting a contamination parameter indicating the noise level of the
data, rendering the approach unusable as we assume no prior knowledge about the noise
level.

We evaluated the 9 methods on all 600 artificial, as well as the 100 real-life event logs. In
total, we evaluated 6300 models.

5.1 Experiment results

Figure 3 shows the F1 score of all methods for each process model. The F1 score per model
was calculated using the macro average for each model. Then all F1 scores were averaged
over all models for the corresponding process model. A more detailed evaluation is given in
Tables 3 and 4, which show the F1 scores and their standard deviation for each processmodel,
best results being shown in bold typeset. Notice that the DAE approach performs best in all
settings, closely followed by t-STIDE+, whereas the other approaches perform significantly
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Fig. 3 F1 score by process model and method

Table 3 Results of the experiments for all evaluated methods for each process model

P2P Small Medium Large Huge Wide

Baseline 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01

HMM (Warrender
et al. 1999)

0.47 ± 0.02 0.46 ± 0.01 0.46 ± 0.01 0.45 ± 0.02 0.47 ± 0.01 0.45 ± 0.02

OC-SVM (Schölkopf
et al. 1999)

0.72 ± 0.06 0.72 ± 0.05 0.70 ± 0.05 0.65 ± 0.04 0.68 ± 0.05 0.72 ± 0.05

Naive (Bezerra and
Wainer 2013)

0.61 ± 0.01 0.62 ± 0.01 0.61 ± 0.03 0.62 ± 0.01 0.62 ± 0.02 0.62 ± 0.02

Sampling (Bezerra
and Wainer 2013)

0.47 ± 0.03 0.48 ± 0.05 0.48 ± 0.06 0.50 ± 0.06 0.50 ± 0.06 0.48 ± 0.05

t-STIDE (Warrender
et al. 1999)

0.61 ± 0.01 0.61 ± 0.03 0.62 ± 0.02 0.62 ± 0.01 0.63 ± 0.01 0.62 ± 0.02

Likelihood (Böhmer
and Rinderle-Ma
2016)

0.77 ± 0.17 0.75 ± 0.14 0.73 ± 0.15 0.62 ± 0.10 0.68 ± 0.11 0.75 ± 0.17

t-STIDE+ 0.85 ± 0.09 0.85 ± 0.08 0.82 ± 0.09 0.82 ± 0.07 0.81 ± 0.05 0.83 ± 0.11

DAE 0.87 ± 0.09 0.90 ± 0.07 0.85 ± 0.08 0.88 ± 0.07 0.84 ± 0.08 0.86 ± 0.08

Best results are shown in bold typeface

worse. Another interesting point is that the HMM approach performs no better than the
random baseline, which supports Chandola’s claim that HMMs are not a good method for
anomaly detection in sequential data (Chandola et al. 2008). Also the sampling approach
performs only slightly better than chance. However, this is due to the fact that we average all
results over all training sets including training event logs with higher share of anomalies. In
Fig. 4 we can see that the Sampling method works only for low noise levels.

Overall, we can conclude that the DAE performs better than the state-of-the-art methods
in all of our test settings.

5.2 The impact of the noise level

As described before, we used different noise levels when generating the datasets, by gener-
ating training sets which included between 10 and 100% anomalous traces. We use the word
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Table 4 Results on the BPIC event logs

BPIC12 BPIC17

Baseline 0.46 ± 0.01 0.47 ± 0.01

HMM (Warrender et al. 1999) 0.46 ± 0.00 0.51 ± 0.00

OC-SVM (Schölkopf et al. 1999) 0.58 ± 0.07 0.71 ± 0.04

Naive (Bezerra and Wainer 2013) 0.61 ± 0.12 0.75 ± 0.12

Sampling (Bezerra and Wainer 2013) 0.41 ± 0.00 0.42 ± 0.00

t-STIDE (Warrender et al. 1999) 0.68 ± 0.14 0.81 ± 0.02

Likelihood (Böhmer and Rinderle-Ma 2016) 0.61 ± 0.12 0.75 ± 0.12

t-STIDE+ 0.68 ± 0.14 0.81 ± 0.02

DAE 0.72 ± 0.08 0.82 ± 0.05

Best results are shown in bold typeface

Fig. 4 F1 score by percentage of anomalous traces in the training set

noise to refer to the share of traces in the training set which are anomalous. Notice that an
anomalous trace still contains normal subsequences of events. Only a small part of the trace
is affected by the anomaly in our test settings. Hence, there is still normal behavior present
in parts of each trace, even when each trace has been affected by an anomaly, as in the 100%
case. We specifically included these harsh noise levels to test the different approaches on
their ability to generalize. We want to point out, however, that noise levels greater than 50%
are extremely unlikely in real-world settings.

One can also argue that a noise level greater than 50% is illogical, because the classification
task just gets inverted; hence, the anomaly class becomes the normal class. This is not true
for the same reason as before. As we are dealing with sequential data and many different
events in sequence (i.e., a trace) are assigned one label, there are still events that carry
information about the normal behavior of the process. And in most cases the normal events
in an anomalous trace, still overpower the anomalous ones. Hence, a noise level of 60% is
not the same as a noise level of 40% with classes inverted.

Figure 4 shows the F1 score for all methods for the different noise levels. Again, we find
that the DAE outperforms the other approach at all noise levels, again closely followed by
t-STIDE+.
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Fig. 5 DAE error heatmap, trained on a P2P event log with 10% anomalous traces

Notice that the DAE still performs remarkably well, even when trained on the 100% train-
ing set. This is due to its ability to generalize over multiple traces. The t-STIDE approaches
can also generalize over multiple traces, because they classify based on windows; and the
windows itself can contain a completely valid sequence of events. These approaches can
learn what a normal trace ought to look like, by combining the knowledge they gathered of
normal subsequences over multiple traces. For the t-STIDE approaches this is obvious, as
the window size is usually smaller than the trace is long; hence, it is only trained on subse-
quences in the first place. The DAE, on the other hand, is trained on the whole trace at once,
which makes this level of generalization much more remarkable and unique among all the
approaches.

5.3 Interpreting the anomalies

An interesting feature of the DAE approach is that it can be used to detect not only anomalous
traces, but also which event or which event attribute has influenced the reproduction error
the most. This can be done by computing the reproduction error for each event attribute
separately, as described earlier. Figure 5 shows 12 example traces of the P2P test dataset for a
DAE trained on a training set with 10% anomalous traces. For clarity, we only show the first
6 events omitting the remaining events. The cells are colored according to the reproduction
error; the higher the error the darker the color.

As we can clearly see, it is never the whole trace that leads to a high reproduction error.
The DAE succeeds to reproduce the normal parts of the traces quite well, whereas it fails
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to reproduce the anomalous parts. For example, the first two Normal traces are reproduced
with almost no error at all, which is exactly what we expected. Let us now look at the four
examples at the bottom (Incorrect user and Incorrect LTD). The DAE is remarkably good
at detecting incorrect users. Neither Craig, nor Earl, are permitted to execute the activity PR
Created (cf. Fig. 1). Detecting Incorrect LTD works just as fine.

Moving to the three anomalies from the original paper, we want to recall one problem
that we have observed during the evaluation in Nolle et al. (2016). Whenever an activity is
skipped or reworked, the remaining subsequence is shifted by one to the left, or the right
respectively. In Nolle et al. (2016) this led to the effect that all activities after the initial
skipped (or reworked) activity had high reproduction error. This phenomenon does not occur
as severely in the extended approach, but it is still noticeable. We assume that the additional
hidden layers provide enough abstraction so the DAE can adapt to this problem.

Overall, we can see that the approach is very precise in narrowing down the exact cause of
the anomaly. In fact, this approach can be used to perform an automatic root cause analysis
on the detected anomalies, without the need of an extra processing step. Most other anomaly
detection algorithms can only be used to divide the normal examples from the anomalies, but
then an additional algorithm has to be used to, for instance, cluster the anomalies. Another
important point about this is that it allows to follow what the DAE has learned as well as to
interpret it. Usually, not being interpretable is a notorious problem for neural network based
approaches. Not in this case.

5.4 Discussion

At last we want to point out some interesting observations. You might notice that in the two
Skipping examples the user at index 5, Amanda, produces a high reproduction error. This is
due to the fact that this event has a long-term dependency to an earlier event. In the first case
the event is connected to the PO Decreased event, in the second one the connected event
is the event that has been skipped. Now that the trace has, in part, been shifted due to the
skipping, the original event from index 6 is now at index 5. Essentially, we have detected
a fluke anomaly, that was not supposed to be there, yet the DAE approach has found it,
demonstrating the feasibility of the approach.

This indicates, as alreadymentioned inNolle et al. (2016), that theDAE is sensitive towards
the actual position of an event within a trace, which also becomes apparent in the second
Skipping example. The event PO Created is wrong, yet the DAE reproduces it correctly.
This is due to the fact the PO Created can be correct here when the trace starts with the SC
Created event.

Furthermore, we still observe some cross-talk between adjacent events. If we inspect the
first Switching example, we notice that SC Approved and SC Purchased have been switched,
as correctly identified by the DAE. However, the first event also produces a high reproduction
error, albeit being correct at that location. This error, compared to the error at indices 2 and
3, is significantly lower.

Table 5 provides the average F1 score of the approaches when classifying traces, events,
and attributes respectively. When classifying attributes we classify the activity and the user
separately, whereas when classifying events we do not separate the attributes. Therefore, we
also produced labels indicating anomalous and normal event attributes, when generating the
datasets. Any event attribute that had not been affected by any of the anomalies, has been
labeled normal, whereas all other attributes have been labeled as anomalous. An event is an
anomalous when any of its attributes is anomalous and similarly a trace is anomalous when
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Table 5 Results of the experiments for the anomalous event classifier per label and process model

Resolution Method Average Normal Anomaly

Traces Baseline 0.44 ± 0.01 0.25 ± 0.01 0.62 ± 0.01

HMM (Warrender et al. 1999) 0.46 ± 0.02 0.17 ± 0.06 0.75 ± 0.05

OC-SVM (Schölkopf et al. 1999) 0.70 ± 0.06 0.51 ± 0.09 0.89 ± 0.05

Naive (Bezerra and Wainer 2013) 0.62 ± 0.02 0.49 ± 0.02 0.74 ± 0.02

Sampling (Bezerra and Wainer 2013) 0.48 ± 0.05 0.11 ± 0.18 0.86 ± 0.09

t-STIDE (Warrender et al. 1999) 0.62 ± 0.02 0.49 ± 0.02 0.74 ± 0.02

Likelihood (Böhmer and Rinderle-Ma 2016) 0.72 ± 0.15 0.52 ± 0.26 0.91 ± 0.07

t-STIDE+ 0.83 ± 0.08 0.73 ± 0.12 0.93 ± 0.05

DAE 0.87 ± 0.08 0.78 ± 0.13 0.95 ± 0.03

Events Sampling (Bezerra and Wainer 2013) 0.44 ± 0.17 0.64 ± 0.20 0.25 ± 0.14

t-STIDE (Warrender et al. 1999) 0.66 ± 0.03 0.90 ± 0.02 0.42 ± 0.04

t-STIDE+ 0.61 ± 0.03 0.86 ± 0.03 0.36 ± 0.05

DAE 0.72 ± 0.02 0.92 ± 0.02 0.53 ± 0.04

Attributes t-STIDE+ 0.59 ± 0.03 0.87 ± 0.03 0.31 ± 0.06

DAE 0.70 ± 0.03 0.94 ± 0.01 0.47 ± 0.05

Best results are shown in bold typeface

any of its events is anomalous. Consequently, we can now calculate the performance of the
DAE based on single events.

Sampling, t-STIDE, and t-STIDE+ can all also naturally be used to classify events. Apart
from DAE, only t-STIDE+, due to our adaption of the algorithm, can also be used to classify
single attributes. This can be done, for instance, by assigning the specific window anomaly
scores to the respective last event or attribute in the window. Sampling relies on a confor-
mance check, which per definition gives a per event resolution. Table 5 shows that the DAE
outperforms the other approaches in all three categories.

We can conclude that this approach can discover the special characteristics of anomalies
in an otherwise unknown process, while still being able to correctly identify normal behavior.
All together, we can say that the DAE approach is the most versatile out of all the approaches,
as it works well in all of our test settings.

6 Conclusion

We have presented a novel application of denoising autoencoders to detect anomalies in
business process data. Our approach does not rely on any prior knowledge about the process
itself. Also, we do not rely on a clean dataset for the training; our approach is trained on a
noisy dataset already containing the anomalies. Furthermore, we have demonstrated that the
autoencoder can also be used to easily identify the anomalous event(s) or event attribute(s),
making results interpretable with regards to why an anomaly has been classified as such.
Even though we showed that this approach works for business process data, it can be applied
just as easily to other domains with discrete sequential data.

We conducted a comprehensive evaluation using representative artificial and real-life event
logs. These event logs featured a range of different anomalies, different complexities in terms

123



Mach Learn (2018) 107:1875–1893 1891

of the process model, variable variant probabilities, random user sets for each activity, and
different shares of anomalous traces, ranging from10 to 100%.We compared the autoencoder
approach to 7other state-of-the-art anomaly detectionmethods, as described inChandola et al.
(2012), Bezerra and Wainer (2013), Böhmer and Rinderle-Ma (2016) and Warrender et al.
(1999), showing that our approach outperforms all other methods in all of the test settings,
reaching an F1 score of 0.87 on average, whereas the second-best approach, our own adaption
of the t-STIDE algorithm reached 0.83. The next best unaltered anomaly detection algorithm,
using an extended likelihood graph, reached an F1 score of 0.72. To our knowledge, this is
the most sophisticated evaluation and comparison of anomaly detection methodology within
the domain of process intelligence to date.

The biggest advantage of the autoencoder approach over the other methods is that it allows
to analyze the detected anomalies even further. Computing the anomaly score for each event
attribute individually, the approach indicates the anomalous attribute very convincingly. To
our knowledge, this method of analyzing the anomalies is novel to the field of discovery
science, as well as business intelligence and process mining.

The presented approach is an extended version of the approach from Nolle et al. (2016).
In the original paper, we postulated that the approach is susceptible to anomalous behavior
in the event log that is very frequent. However, by showing that the approach works well
for all noise levels, especially the higher noise levels where the exact same anomaly can
occur many times, we have shown this not to be the case. We also showed, by using skewed
variant distributions, that the autoencoder is robust towards process models with unequally
distributed variants, that is, some variants (i.e., one valid path through the process model)
are more likely than others. By including the user as an event attribute, we demonstrated that
more dimensions can be added easily to the approach, without a significant loss of accuracy.

As an inspiration for future work on the matter we want to give a few remarks. Note
that for the DAE approach to work in a real-time setting the trace length of all future traces
must be conform with the input size of the neural network. If traces surpass the input size,
they cannot be fed into the autoencoder. There are some strategies to compensate for this
problem. For example, the autoencoder can be set up with spare padding input units. Instead
of padding all traces to match the maximum length encountered in the training set, we pad
all traces to an arbitrary length greater than the maximum length. If we do want to reuse
the already trained autoencoder, we can use another strategy. Every trace that is too long to
feed into the autoencoder is divided into subsequences of exactly the size of the input. For
example, if an autoencoder has input size 10 and a trace has size 12, we would first feed the
sequence starting from the first event until the tenth event, then the sequence from the second
until the eleventh, and so on. Then we can average the anomaly scores over all subsequences.
Another solution to the problem is the use of recurrent neural networks, which can be used
to consume sequences of arbitrary length.

Another problem arises if one of the attributes is set to a value not encountered during
training. Consequently, there will be no dimension allocated in the one-hot encoding for it.
A simple solution to this problem is to add one extra dimension to the encoding vector which
is used to encode all unknown attribute characteristics. Nevertheless, the autoencoder should
be retrained regularly to counteract concept drift.

With t-STIDE+ and DAE we have presented two approaches to detect anomalies in busi-
ness process data. It is quite costly to train a neural network on big datasets, because the
dataset needs to be iterated many times. The t-STIDE+ approach has the advantage that it
can be trained with just iteration.

However, due to the nature of the algorithm, it has some drawbacks; it cannot capture
long-term dependencies if the window size is too small and if the windows size is too big
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the accuracy decreases. Furthermore, it is not trivial to assign an anomaly score to a single
attribute of an event, because anomaly scores are based on windows. Lastly, it cannot deal
with numerical event attributes (e.g., prices), without resorting to binning or grouping, which
is not obvious.

TheDAE approach does not have these drawbacks. Numerical data can easily bemodelled
by using a single linear input and output neuron for real-valued numbers. Certainly, it does
require more training time, but with the introduction of evermore powerful GPUs and lately
TPUs the trade-off between accuracy and efficiency is not as severe.

Overall, the results presented in this paper suggest that a denoising autoencoder is a reli-
able and versatile method for detecting—and interpreting—anomalies in unknown business
processes.
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