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Abstract This paper introduces a new event model appropriate for classifying (binary) data
generated by a “destructive choice” process, such as certain human behavior. In such a pro-
cess,making a choice removes that choice from future consideration yet does not influence the
relative probability of other choices in the choice set. The proposed Wallenius event model
is based on a somewhat forgotten non-central hypergeometric distribution introduced by
Wallenius (Biased sampling: the non-central hypergeometric probability distribution. Ph.D.
thesis, Stanford University, 1963). We discuss its relationship with models of how human
choice behavior is generated, highlighting a key (simple) mathematical property. We use this
background to describe specifically why traditional multivariate Bernoulli naive Bayes and
multinomial naive Bayes each are suboptimal for such data. We then present an implemen-
tation of naive Bayes based on the Wallenius event model, and show experimentally that
for data where we would expect the features to be generated via destructive choice behavior
Wallenius Bayes indeed outperforms the traditional versions of naive Bayes for prediction
based on these features. Furthermore, we also show that it is competitive with non-naive
methods (in particular, support-vector machines). In contrast, we also show that Wallenius
Bayes underperforms when the data generating process is not based on destructive choice.
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1 Introduction

As humans interact more with technology, we are increasingly seeing data sets incorporating
people’s fine-grained behaviors. In this paper we present a new classification technique
based on naive Bayes, which can take into account two properties of many such datasets: the
proportionality of choice and its destructiveness.

Proportionality of choice is a concept borrowed from psychological research: we select
choices proportional to our preference for them (Luce 1959). Destructiveness is present when
a person’s choice to take a particular action removes that action from that person’s future
consideration. For example, you might “Like” Sheldon Cooper on Facebook at most once.
After you do, Sheldon will not be in your subsequent consideration set. Similarly, you might
not want to watch the same movie or read the same book twice.

Despite its simplicity, naive Bayes (Langley 1992; Domingos and Pazzani 1997) is
a workhorse of machine learning in practice. Its assumption of class-conditional inde-
pendence between feature probabilities renders the model simple to understand and
to implement. Since it also exhibits relatively low variance (Ng and Jordan 2002), it
is particularly accommodating for high-dimensional, sparse feature data, such as often
are exhibited in data based on fine-grained human behavior (Junqué de Fortuny et al.
2013). Naive Bayes is based on an underlying event model, the dominant alternatives
being multivariate Bernoulli (MV) and multinomial (MN) (McCallum and Nigam 1998).
Following common practice, let us call the corresponding methods for learning and
inference Multivariate Bernoulli Naive Bayes (MVNB) and Multinomial Naive Bayes
(MNNB).

This paper addresses the concern that neither the MV nor the MN event model is a good
approximation for destructive choice behavior, and therefore they might be expected not to
perform well for prediction problems where the data are generated by such a process. The
proposed Wallenius event model is based on the somewhat forgotten non-central hypergeo-
metric distribution introduced by Wallenius (1963). We discuss its relationship with models
of how human choice behavior is generated, highlighting a key (simple) mathematical prop-
erty. Our main claim is that the Wallenius event model produces a version of naive Bayes
(Wallenius Bayes) that is more appropriate for building predictive models from destructive
behavioral choice data.

In the coming sections we will first frame the motivating principles behind the proposed
method. We will illustrate these with an example and show how they match well to the
Wallenius distribution. To support our main claim, we experiment with the three versions
of naive Bayes on data where we would expect the features to be generated via destruc-
tive choice behavior. While not the main focus of the paper, we also compare Wallenius
to the Support Vector Machine (SVM), which often performs very well on classification
tasks. We close the paper by pointing out that although Wallenius Bayes is “naive” in
the usual sense of naive Bayes, the event model creates a dependency on the order of
choices in the true data-generating process. This matches the behavioral theory we present
next, but also renders the implementation of Wallenius Bayes more computationally inten-
sive than the alternative naive Bayes methods, opening an interesting avenue for future
work.
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2 Properties of human choice behavior

Wewill assume the standard supervised learning setting, where for a set of instances a certain
set of features of these instances will be used to estimate or predict the value of some other,
unknown but valuable, variable about the instance. We will presume that our instances are
people, the features indicate actions they have chosen to take, and the target variable is some
other trait of interest. We will not concern ourselves with theoretical justifications for why
certain behaviors ought to predict other traits.1 What is important here is that choice processes
may place constraints on the sort of behavior data that may be generated.

2.1 Destructive choice

As introduced above, the important aspect of human behavior on which this paper focuses
is the destructive nature of certain choices. Various sorts of constraints produce destructive
choice. Often, after having made a choice, duplicate choices simply do not make sense. This
is the case in our Facebook Likes example (and further, there the computer system embodies
the constraint), as well as in the selection of keywords for research papers, the choice of
players for one’s fantasy football team, the phone numbers one puts in one’s contact list, and
many other settings.

Other problems are well approximated as destructive choice problems because of the
constraints placed by what may be called “behavioral capital”: a limitation on the time,
money, and other resources a person can expend on the behaviors in question. For example,
someone’s partner may refuse to rent a movie for a second time. Thus, even though she might
be convinced once in a blue moon to do so, her movie-viewing choice process would be well
approximated as one of destructive choice.

2.2 Luce’s choice axiom

There has been prior research focused on measuring choice behavior, and it is useful to ask
whether our understanding of machine learning over choice behavior data can be informed or
motivated by this prior work. Thurstone was one of the first to suggest a mathematical scale
of psychological affinity with particular choices, proposing a “[discriminal process] where
a single observer compares a series of stimuli by the method of paired comparison when no
equal judgments are allowed” (Thurstone 1927). This scale implied the existence of a ranking
of preferences and as such probabilities of a subject choosing one option over another. Others
later noted that, although very often choice is a function of many influences and thus such a
simple scale might not suffice, “it may be well to limit our scope to choice that exhibits both
transitivity and unidimensional control [until we have succeeded in this task]” (Fantino and
Navarick 1975). Transitivity enforces a consistent ranking, whereas unidimensional control
captures our inability to account for external factors outside of the measured process. Exper-
iments on pigeons followed to assess the validity of Thurstone’s seminal work (Thurstone
1927). These experiments revealed that choice responses by pigeons indeed approximately
match the proportions of reinforcements given (Herrnstein 1961).

1 The interested reader may consider various theories of “inner drivers”, including personal maxims (Kant
1790), moral inclinations (Kant 1790), social drivers (Bourdieu 1984) or simply a combination of experience
and predisposition (Sapolsky and Bonetta 1997). All of these theories imply at least to some extent that there
are correlations between our behaviors and our inner drivers, and that the realization of all of these aspects is
part of what defines us as an individual.
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For humans, it was Luce (among others), who produced the widely used generalization
of this proportionality, called the choice axiom, leading to a definition of measurable choice
probabilities (Luce 1959):

PR(xi ) = w(xi )
/∑

j∈R

w(x j ) . (1)

Here, w(xi ) is the response strength (or the preference), associated with a response xi . The
choice axiom instantiates the proportionality via division by the total response strength over
the choice set R.

In the problem setting for the present paper, we might envision a data generating process
as follows. Given subjects of two particular groups (classes; e.g., smokers vs. non-smokers),
each of the subjects makes various choices, one by one, based on her intrinsic drivers and
preferences. These choices are destructive, in that a subject can choose an option only once.2

Then in the standard mode of generative modeling, given a history of such choices can we
predict what trait class a subject belongs to? TheWallenius Bayes model will tie the learning
algorithm over the behaviors to the proportional choice probabilities of the Choice Axiom
(Eq. 1), taking into account destructive choice behavior.

2.3 The learning task and notation

Formally, wemodel the choices of an individual i as a vector xi and asmentioned above adopt
the standard supervised classification formulation in which we want to predict labels yi (e.g.,
gender) based on the choices individual i has made. Each of the individual scalar entries xi, j

in xi is Boolean valued and represents whether user i has chosen an item j or not. The labeled
data then comprise a set of n examples D = {xi , yi }n

i=1, where the label yi represents the
class of the individual (encoded as either 0 or 1). The question we concern ourselves with
is whether we can predict the class memberships for previously unseen individuals. Can we
find a function f : X → {0, 1} such that f (xi ) predicts yi well for any individual i making
choices in the known feature set?

2.4 The data generating process: an illustrative example

Imagine going to the movies and finding yourself faced with a choice of m movies. If want
to model the probability that you will choose any particular movie, we need to know and
quantify your personal preferences. That is, you are likely to prefer some movies over others
and this can be encoded with a preference weight w j for any particular movie j . According
to the reasoning presented in Sect. 2, the chances of you picking any particular movie are
proportional to its preference score w j and inversely proportional to the total preference
weight of the movies presented at the movie theater.3

It is clear that you may go to the movies more than once so let us for this example assume
that you go to the movies k times. Complicating things further, wemight also want to account
for the fact that a movie is not always screened at your local theater. Perhaps the next time you
visit the theater, they will screen a new movie instead of an older one. Generally speaking,
we say that each of the movies is presented to you as an option m j times. Figure 1 shows

2 Furthermore, constraints on behavioral capital will limit the total number of choices she can make. This is
interesting in that it can explain the extreme sparsity of many behavioral data sets (Junqué de Fortuny et al.
2013), and can lead to efficient algorithm implementations, but is not essential for the present theory.
3 While the notation differs slightly, these w j directly map to the w(x j ) weights in the choice axiom (Eq. 1)
and can be considered to be the same.
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A B C D

(c)(b)(a)

Fig. 1 Illustration of how a destructive choice process occurs in movie selection. a In the beginning of the
process, the viewer has a fixed preference or utility (w) for eachmovie. bBased on this preference, she chooses
to watch the second movie. c Having watched this movie, it is now very unlikely that she will watch it again
and thus her preference for movie B needs to be updated accordingly

how the concept of destructive choice then applies to this scenario: after picking a movie
(movie B in this example), your preferences change dynamically. As (in our model) you
never want to watch a movie twice, subsequently you have a preference score of zero for that
movie—movie B is removed from your choice set.

More generally, the probability of watching a set of movies x with x j personal “views”
for movie j can be represented by a multivariate Wallenius’ non-central hypergeometric
distribution with parameter vectors: movie history x, number of screenings presented m and
preferences w. We will elaborate on this distribution in the following sections, but let us for
now first calculate the movie history probability for our toy example to capture the intuition
behind the distribution.

Consider a scenario containing fourmovies {A, B, C, D}. For this examplewewill assume
movie preferences for a person being wA = 3, wB = 4, wC = 2, wD = 1. What then would
be the probability of a particularmovie-watchinghistory, sayB thenA thenC?4 This particular
history would have a probability of:

P(B → A → C) = P(B) · P(A | B) · P(C | A, B)

= 4

10
· 3
6

· 2
3

= 13.3% (2)

Note how the denominator changes from ten ( 4
10 ) to six ( 36 ) and from six to three ( 23 ) after

removing choices B and A respectively from the set.
Now, as with many data that are collected on human actions, let us assume that we do

not actually observe the order, but just which movies were picked by each individual. This
makes it more difficult to calculate the probability of the observation: we would need to sum
the probabilities of all the possible orderings of movie views. We can represent the set of all
possible movie view orders using a permutation set σ(x). We denote one such ordering as
an ordered set X ∈ σ(x). For instance, in the above example B → A → C is one possible
instantiation of X . Another could be A → C → B, and so forth. In total, there are k! such
instantiations or permutations for a selection of k specific movies from a universe which
contains M movies.

4 Note that we restricted the number of seen movies in the history of this example to three for brevity and
clarity reasons. We could of course expand this logic to longer sequences as well.
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It is clear that each of the X belonging to permutation set contains the same elements, but
in a different order. As such, we could also say that each orderingX indexes (∼) the sequence
differently:

X1 ∼ x1,1 → x1,2 → . . . → x1,k

X2 ∼ x2,1 → x2,2 → . . . → x2,k
...

X j ∼ xk!,1 → xk!,2 → . . . → xk!,k .

Averaging the probabilities of all of the above sequences through summation and nor-
malization over the total number of possible permutations in the population, then reveals
the estimated probability of having watched this particular set of movies (without observed
order):

P(x) = P({A, B, C})
= 1

k!
∑

X∈σ(x)

P(X ) (3)

In our example from before, Eq. (3) evaluates to:

P(x) = 1

3! ·
[

P(A → B → C) + P(A → C → B) + P(B → A → C)

+ P(B → C → A) + P(C → A → B) + P(C → B → A)

]

= 1

6
·
[
24

210
+ 24

350
+ 24

240
+ 24

180
+ 24

400
+ 24

320

]

= 9.19%

Note again how the denominator changes to reflect the destructive choice being taken into
account for different orderings. Generalizing for sequences of arbitrary size k, we get that:

P(x) = 1

k!
∑

X j ∈σ(x)

P(x j,0 → x j,1 → . . . → x j,k) (4)

= 1

k!
∑

X j ∈σ(x)

k∏
t=1

P(x j,t | x j,t−1 . . . x j,1) (5)

= 1

k!
∑

X j ∈σ(x)

k∏
t=1

w jt∑
t ′≥t w jt ′

(6)

= 1

k!
∑

X j ∈σ(x)

k∏
t=1

w j∑M
j=1 w j − ∑

t ′<t wt ′
(7)

In Eq. (5), we combine two elements from before: (a) a multiplication over all ele-
ments in a sequence of draws in “time” (position) t to get the probability of that particular
sequence (Eq. 2) and (b) a sum over all possible sequence permutations σ(x) (Eq. 3). As
before, the normalizing constant k! is equal to the total number of possible orderings for the
choices—the orders one could have watched k movies from a set of M movies. In Eq. (6) we
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then write the fractions explicitly by dividing the weight w jt of watching movie jt (chosen
at time t), by the weights of the choices (movies) that are still left in the theater at that choice
point in the sequence. This is then expanded to arrive at the final formulation in Eq. (7).

Note the close resemblance of Eq. (6) with the proportionality of response strengths given
by the choice axiom when dealing with human choice behavior (Eq. 1). The right side of
Eq. (6) describes a process that follows the choice axiom, but here we look at the joint
probability of all events that were produced by such a process (product over t) and average
over sequences since we do not observe the actual sequence (sum over σ(x)). It is then easy
to see that the movie history probability is indeed in line with the probabilities resulting from
human behavior given a sequence of historical choices (we show this in more detail in the
Appendix).

Unfortunately the direct computations can take a long time. Using an efficient depth-first
treemethodwithmemory still requiresO(k!) computations, becauseweneed to compute each
of the permutations individually. InSect. 4.1,wewill introduce amore efficient approximation
of the above distribution, after briefly discussing the alternative naive Bayes event models.

3 Naive Bayes event models

In this section, we describe how traditional event generating distributions used with Naive
Bayes would model the data presented in the previous section, and discuss the associated
limitations for the destructive choice setting.

3.1 Multivariate Bernoulli Naive Bayes

The multivariate Bernoulli event model for naive Bayes (MVNB) assumes that the data are
generated according to an independent Bernoulli process for each of the M features. The
probability of an observed vector x (with feature values x j for each feature X j ), given that
the underlying observations result from the behavior of a particular class y, is then simply the
product of all of the independent Bernoulli probabilities P(X j = x j | Y = y). The resulting
class-conditional probability then becomes:

P(xi | Y = 0) =
M∏

j=1

[
P(X j = x j | Y = 0)

]xi, j
[
1 − P(X j = x j | Y = 0)

](1−xi, j ) , (8)

where the powers xi, j serve as a selection mechanism since they are either 1 or 0, depending
on the observed value. Optimizing the log likelihood, equating to zero and taking a Laplacian
prior, yields the following parameter estimates for binary data (McCallum and Nigam 1998):

P̂(X j = x j | Y = 0) = 1+ | X j = 1 ∧ Y = 0 |
2+ | Y = 0 | , (9)

where we used the typical bar notation | C | to refer to the count of elements in the set that
satisfy condition C.

Naive Bayes based on the multivariate event model is very fast to compute, but by design
does not take into account the influence of context or correlations of the choices. Previous
research has shown that it is possible to incorporate additional dependencies, but the price
of such “bona-fide” probability distributions is an exponential increase in time as the num-
ber of dependencies grows (Flach and Lachiche 2000, 2004). In MVNB, each choice is
treated as a coin-flip with a fixed probability, estimated on the training data. As shown in the
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Appendix this leads to a violation of the choice axiom, and thus renders the model dubious
for faithfully representing choice behavior based on preference. Furthermore, MVNB does
not take into account the destructive nature of the choice data (see Sect. 4.2). The result
is that MVNB produces highly skewed posterior probabilities for human behavioral data
sets.

3.2 Multinomial Naive Bayes

The main idea behind the multinomial event model is that each input sample is the result of a
series of independent draws from a bag of items (the choices, corresponding to the features).
To determine the items present in an input vector xi , a total of ki independent draws is
undertaken from an underlying multinomial distribution, each time picking one item from
all the M possible items (X1 . . . X M ) with replacement. The probability of one such draw
(picking a feature X j from all possible features) is modeled as P(X j = x j | Y = y),
dependent only on the count evidence seen in the historical data. The aggregated probability
of seeing the input vector given that it belongs to a certain class can then be modeled as a
multinomial:

P(xi | Y = 0) = (ki !) ·
M∏

j=1

P(X j = xi, j | Y = 0)xi, j

xi, j ! . (10)

The probability parameters θX j =x j |Y=y = P(X j = xi, j |Y = yy) for this model are the
probabilities for each feature occurring, conditional on the class (i.e., these are estimated
for each class separately). Assuming a Laplacian prior θ̂c on the parameters, we obtain
the Bayes-optimal (maximal likelihood) estimates of the parameters for the formulation in
Eq. (10) (McCallum and Nigam 1998):

P(X j = x j | Y = 0; θ̂c) = 1 + ∑n
i=1 xi, j P(Y = 0 | xi )

M + ∑M
j=1

∑n
i=1 xi, j P(Y = 0 | xi )

.

In the case of binary data this becomes:

θ̂X j =x j |Y=0 = 1+ | X j = 1 ∧ Y = 0 |
M + ∑M

k=1 | Xk = 1 ∧ Y = 0 | , (11)

where we used the | C | notation again to indicate the count of elements over the full data set
that satisfy condition C.

One of the main advantages of this formulation is that it only requires two passes
over the non-zero (“active”) elements for all of the parameters to be estimated. As we
show in the Appendix, MNNB does not violate the choice axiom and might thus seem
to be a better alternative than MVNB for the choice data we are considering. Unfortu-
nately, MNNB is not well aligned with our problem setting either. The reason is that as
it draws with replacement from the bag of items, it does not take into account destruc-
tive choice. This means that if one were repeatedly to visit a movie theater, all previous
movie choices would be ignored (i.e. each visit would look the same a priori). As we
will see in Sect. 4.2, this also leads MNNB to produce skewed posterior probability esti-
mates.
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4 Wallenius Bayes

In this section we first describe the general form of the Wallenius distribution which lies at
the core of the new event model, followed by some refinements and technical remarks on
implementation.

4.1 Wallenius’s non-central hypergeometric

4.1.1 General form

Comparing to the brute force representation of destructive choice presented in Sect. 2.1, a
more elegant solution to the ordering problemmentioned in Sect. 2.4. was found byWallenius
(1963) [and later generalized in Chesson (1976)] by looking at the problem as a Markov
process and computing the stable points using backward Kolmogorov equations. This leads
to the Wallenius distribution with probability mass function:

wall(x;m,w) = Λ(x;m) I (x;m,w)

Λ(x;m) =
M∏

j=1

(
m j

x j

)

I (x;m,w) =
∫ 1

0

M∏
j=1

(
1 − t

w j
s

)x j
dt

s =
M∑

j=1

w j .

As before, m is a vector representation of the number of times each choice can be made—
in our running example, the number of screenings of each movie—and w a vector of the
(preference) weights corresponding to the choices. Note that in our example, x is a binary
vector of length M , containing a one (x j = 1) if movie j was watched and a zero (x j = 0)
otherwise. Note that this expansion does not explicitly consider ordering information; this is
one of its main strengths since it avoids the explicit summation over all of the permutations.

4.1.2 Binary form

Derivation Computing this integral is still quite hard and we would do well to simplify it
as much as possible. In the case of binary variables (∀ j : x j ∈ {0, 1}) and assuming a
uniform one-shot distribution of presented choices (m is a vector of ones), we can rewrite
the Wallenius distribution as:

wall(x;m,w) = Λ(x;m) I (x;m,w)

Λ(x;m) = 1

I (x;m,w) =
∫ 1

0

∏
j |x j =1

(
1 − t

w j
s

)
dt

s =
∑

j |x j =0

w j .
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This simplifies the computation substantially. Note also how no equation is dependent on
m anymore; we will make the uniform screening assumption explicit by dropping m as an
input to the distribution when dealing with the binary case. Even so, the fractional exponent
in the simplified form still makes the integral difficult to compute efficiently using typical
numerical integration methods. Fortunately, we can simplify the integrand to a polynomial
using variable substitution (u = s

√
t):

wall(x;w) = s ·
∫ 1

0
us−1 ·

∏
j |x j =1

(
1 − uw j

)
du. (12)

This accounts for all non-degenerate cases, the exception being the degenerate case of s = 0
(having watched all the movies) which should of course return 1.

Similar to other event models, there is a degeneration of the accuracy when features
are completely unobserved in the training data: w j = 0 for any j | x j = 1 causes
wall(x;w) = 0, which is not the desired behavior. We can remedy this in the usual manner
by adding a pseudo-count to the weight vectors that determine how telling each movie is for
the class prediction (i.e., each movie’s weight is set to one before model training begins).
This corresponds to the prior belief that every feature is equally probable and results in a
uniform smoothing of the probabilities that decreases as the evidence grows.

Since all w j are integers and s −1 is an integer, this is indeed a valid polynomial of order:

order = (s − 1) +
∑

j |x j =1

w j .

As a last simplification, we remark that the order of this polynomial can be further reduced
by dividing the weights by their greatest common divisor.

Numerical evaluation A polynomial of integer degree order can be computed exactly by the
Gauss–Legendre polynomial quadrature method in (order − 1)/2 steps, which in our case
becomes:

steps = 1

2

M∑
j=1

w j − 1.

When fewer steps are used, the approximation suffers froman accuracy degeneration bounded
by (Kahaner et al. 1989):

error ≤ (b − a)2n+1(n!)4
(2n + 1)[(2n)!]3 I (2n)(ξ), a < ξ < b.

with I the integrand with 2n = order continuous derivatives. It should be noted that other
ways of calculating exist, but we will not further elaborate on them since this is out of
the scope for of this paper [and a comprehensive overview is given in Fog (2008)]. In our
experiments we could deal with up to a thousand instances using thousands of features in a
reasonable amount of time on a low-end computer. Scaling up further is an avenue for future
work.5

5 An open source implementation is available on http://github.com/ciri.
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4.1.3 Using the model for prediction

As explained in the previous section, the final form given in Eq. (12) can be computed
relatively easily. To actually predict the class membership of a test instance, one would have
to calculate the class conditional probabilities for each class separately and compare them.
One easy way to aggregate information on both classes is to look at the normalized difference
between both conditional probabilities:

P(Y = yi | x) ∝ P(Y = yi ) · P(x | Y = yi ) (13)

Score(x) = P(Y = 1 | x) − P(Y = 0 | x)
P(Y = 1 | x) + P(Y = 0 | x)

= P(Y = 1) · P(x | Y = 1) − P(Y = 0) · P(x | Y = 0)

P(Y = 1) · P(x | Y = 1) + P(Y = 0) · P(x | Y = 0)
. (14)

The sign of the score indicates the predicted class and estimation certainty is represented by
large absolute values of this score, representing starkly different predicted class membership
probabilities in the comparison.

In order to calculate the score, we applied the Bayes’ rule and the common (but not
necessary) assumption that each input sample is as likely to occur as any other [revealing
the likelihood in Eq. (13)]. The maximum likelihood (point) estimate for the prior class
probability P(Y = yi ) can be calculated by looking at the fraction of samples belonging
to class Ci in the total training set. The class conditional probabilities P(x | Y = yi ) can
be calculated using wall(x;wi ), where wi is a weight vector for class i . Weight vector w
is estimated from the training set and requires a linear pass through the active (non-zero)
elements of the data. That is, we can calculate w by summing the number of movie watches
of people from the relevant class (this is simply a conditional column sum over the matrix
if we represent the subjects as rows and behaviors as columns). Making predictions requires
two computations of theWallenius class-conditional probability estimate (one for each class).

4.2 Comparison with other event models

We mentioned before that using the multivariate Bernoulli event model or the multinomial
event model can result in skewed posterior probabilities. In this section we present an elab-
oration of our toy example to illustrate the effects of the destructive choice setting, where
the Wallenius event model would match much better to our intuition than either of these
traditional event models.

Let us consider a scenario in which we try to predict gender based on movie-viewing
history in a movie theater where they screen only three movies: a blockbuster (M1) and two
niche movies (M2 and M3). We are given the movie viewing history for 100 male and 100
female visitors (as shown in Table 1).

Table 1 Artificial data set of movie-watching behavior of 100 male (M) and 100 female (F) subjects

Movie 1 Movie 2 Movie 3

F 90 1 10

M 90 10 10

Note that the sum of a row might be larger than 100 because any single subject may watch more than one
movie
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4.2.1 Difference 1: What happens when additional choices are presented?

Consider if the data were extended to reveal an additional choice (movie) with a high pref-
erence weight. A subject would be inclined to make that choice at least to some extent and
this should be accounted for in a model’s individual probabilities. Let us see how each model
deals with the inclusion of an additional movie in our example, all else being equal (a more
formal treatment is given in the Appendix).

In the initial state displayed in Table 1, the probabilities for movie 1 (M1) according to
the multivariate Bernoulli (MV ) and the Multinomial (M N ) model are respectively:

PMV (M1 | Male) = 90

100
= 90%

PM N (M1 | Male) = 90

110
= 81.82%.

Due to the complete independence of other choices, the Bernoulli probabilities would be
unchanged after adding the new choice (each of the P(Mi | M) is constant). In contrast, the
multinomial model (and the Wallenius model) would take the context into account via the
renormalization of the probabilities. As such, observing say a fourth blockbuster movie with
100 watches for each gender, would result in:

PMV ′(M1 | Male) = 90

100
= 90%

PM N ′(M1 | Male) = 90

110 + 100
= 40.91%.

Indeed, if our favorite movie theater were to add a blockbuster movie that we are very
eager to see, that might alter our initial choice of movie even if we did not have the block-
buster in mind initially. Note, however, that in accord with the choice axiom, the relative
proportionalities of the probabilities (their ratios with respect to one another) do not change
for MNNB.

4.2.2 Difference 2: Dealing with destructive choice

Meet Sophie. Sophie has already seen the blockbuster (M1) and is now faced with the choice
between the predominantly male movie (M2) and the mixed-gender movie (M3). She decides
to see M3. Can we predict Sophie’s gender given only her movie watching history?

Bernoulli’s answer The conditional probability of Sophie seeing any of the movies is inde-
pendent of her previous choices and comes down to a (weighted) coin flip for each of the
choices:

P(M1, M3 | Male) = 90

100
· 10

100
·
(
1 − 10

100

)
= 8.10%

P(M1, M3 | Female) = 90

100
· 10

100
·
(
1 − 1

100

)
= 8.91%.

Due to the independence assumption, both genders are almost equally likely with a resulting
score (recall Eq. 14) of SB(M1, M3) = 0.0476 (slightly in favor of female).
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Table 2 Summary of differences between various underlying event models for naive Bayes

Choice changes preferences Proportionality of preferences constant

Bernoulli No No

Multinomial No Yes

Wallenius Yes Yes

Multinomial’s answer The conditional probability of the events is independent of the context,
but the probabilities should be normalized per class:

P(M1, M3 | Male) = 90

110
· 10

110
= 7.44%

P(M1, M3 | Female) = 90

101
· 10

101
= 8.82%.

The multinomial takes into account the fact that, faced with the choice between all three
movies, a female would likely choose M3 over M2, but only in a very subtle way because the
multinomial assumes that Sophie is given the choice of seeing all three of the movies every
time with equal probability.

Of course, ideally in our example, the probability of seeing a previously seenmovie should
plummet to near zero. Thus, Sophie’s choosing the balanced-gender movie rather than the
male-dominated movie ought to be a telling event. However, since the multinomial event
model keeps all three movies in consideration, the result is only a relatively small increase
in the estimated probability that she is female (resultant score SM (M1, M3) = 0.0849).

Wallenius’s answer The Wallenius event model considers the data to have been generated
via a destructive choice process. However, we assume that we have the same data as in the
traditional setting—namely, that we do not know the actual sequence of events. Thus, the
Wallenius model for the conditional probability averages over all possible sequences:

P(M1, M3 | Male) = 1

2
·
(

90

110
· 10

110 − 90
+ 10

110
· 90

110 − 10

)
= 24.55%

P(M1, M3 | Female) = 1

2
·
(

90

101
· 10

101 − 90
+ 10

101
· 90

101 − 10

)
= 45.40%.

Although there is still somebias due to the fact thatwedonot know the true sequence order, the
conditional probabilities reflectmore certainty, resulting in a score of SW (M1, M3) = 0.298.6

The conclusions of this section are summarized in Table 2, which should also give some
insights as to when to use which method.

5 Empirical evaluation

The example discussed in the previous section was constructed artificially and it stands to
reason that the models might behave differently when applied to destructive-choice data
from empirical settings. In this section, we compare the performance of all of the previously
mentioned methods, using human behavioral data from various settings where destructive

6 Had we actually known the true ordering, it would have been easier to discriminate between both with the
probabilities being 40.91% for the male and 81.01% for the female case (leading to a score of 0.329).
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Table 3 Overview of destructive choice data sets

Dataset n d Order Prediction task

*Politic 8515 132,351 ≥ 1,975,761 Liberal versus democrat

*Religion 13,692 183,384 ≥ 2,783,392 Catholic versus Islam

†IQ 6377 134,420 ≥ 919,684 Subject has high IQ

*Gay M 2491 54,106 ≥ 433,561 Exclusive same-sex interest for men

†Smoking 3746 95,186 ≥ 821,457 Daily smoking behavior

Yahoo Movies 7642 11,917 ≥ 220,809 Gender of user based on movie
views

Book-Crossing (Ziegler
and McNee 2005)

118,270 61,309 ≥ 618,886 Age based on book interests

Ta-Feng 31,640 23,721 ≥ 723,449 Age based on product interest

Dating 135,359 220,970 ≥ 17,359,099 User is attractive based on social
network

The data sets above the horizontal center line use Facebook Likes as choices and originate from (Kosinski
et al. 2013). For the Facebook tasks, the values for the target variables are based either on information revealed
by the user (indicated by a *) or tests (Kosinski et al. 2013; Etter et al. 2003) (indicated by †)

choice is a reasonable approximation. In doing so, we want to address the following four
questions, presented in order of importance:

1. Is the Wallenius event model indeed more appropriate in settings where destructiveness
and proportionality of choice influence the probability regime?

2. At which sample/data set size does the advantage of its richer model representation stop
mattering?

3. Is Wallenius naive Bayes competitive with other state-of-the-art methods?
4. How well does Wallenius naive Bayes fare in settings outside of the proposed destruc-

tive/proportional choice context?

As noted before, the computational difficulty for each experimental setting depends on
the maximal order of the integral. As shown in Table 3, this order varies between data sets
and is not necessarily dependent on the number of choices or instances, but rather on the
number of active elements (choices made). In essence, the sparser the data, the easier it is
for Wallenius Bayes to come up with a solution fast. For the experiments conducted in this
setting, we set the maximum number of steps in the integral approximation to 2000, leading
to an acceptable speed-accuracy trade-off with most models being generated in a matter of
seconds.

5.1 Is Wallenius a better alternative for destructive-choice data?

In order to know whether Wallenius is a better alternative we compare the performance of
naive Bayes using the three alternative event models experimentally on empirical data.

Let us start by focusing on the Yahoo Movies data set. As shown in Table 3, this data set
is a collection of 7, 642 users’ movie choices. In total, these users watched a quite diverse
selection of 11, 917 movies. The total number of choices recorded is 220, 809, or about 29
movies per person on average. This results in a very sparse dataset; this is typical for choice
data (Junqué de Fortuny et al. 2013).
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Fig. 2 Experimental results for MV Bernoulli, the multinomial and the Wallenius event models on the Yahoo
Movies data set for increasing numbers of choices. TheWallenius event model outperforms the other methods
in terms of AUC for increasing numbers of randomly selected choices. Also shown is the performance of
linear support vector machines

Similar to the toy example, the goal is to predict the gender of the user, based on which
movies the person has chosen.7 As explained before, one would expect the data generating
process to be both destructive and proportional. We therefore expect Wallenius to do better
than the multinomial event model, which in turn should do better than the multivariate
Bernoulli event model (due to proportionality being modeled).

The results of the experiment are shown in the Fig. 2. In the experiment, we assess
predictive power on a held-out test set, evaluated in terms of Area Under the ROC curve
(Fawcett 2006) which, equivalent to the Mann–Whitney–Wilcoxon statistic, measures how
well a model’s scores rank positive versus negative instances from a data set.

To assess the stability of the results and to later answer the secondquestion, the experiments
vary the choice sets used for each prediction task. Specifically, for each prediction task
we experiment with randomly chosen choice sets of increasing size, i.e., the experiments
incrementally build increasingly large choice sets and rerun the experiments on each. In the
figures, the AUC values are plotted for these increasing numbers of choices. That is, the
resulting curves resemble standard learning curves, but instead of increasing numbers of
instances, the horizontal axis represents increasing numbers of choices.

Each point on each curve is the average AUC over ten training/testing splits. For each,
the data set is randomly split into a training set containing 90% of the data and a testing set
(held out during training), containing the remaining 10% of the data and used to estimate the
generalization performance. The results therefore not only compare across prediction tasks
but also across choice set sizes.

7 Fating a movie is used as a proxy for a person having watched it.
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The Yahoo curve is typical for the experiments to come and shows that the Wallenius
event model is indeed better than the other event models for this data set. The black curve
(Wallenius) dominates the orange dashed curve (the multinomial event model) which itself
dominates the red dotted curve (themultivariate eventmodel). These results therefore support
our insights from Sect. 4.2.

We also evaluate theWallenius Bayes event model on other prediction tasks that should be
well approximated by destructive choice. Five of the prediction tasks are based on Facebook
users’ choices [shown in Table 3, first used in a study by Kosinski et al. (2013)]. For each of
these data sets, the choice set comprises possible Facebook ‘Likes’: on Facebook, a user can
choose to indicate whether or not she likes something. Importantly, a Facebook user indeed
can only Like something once. We use these Likes to predict several of the users’ personal
traits. The personal traits either were revealed by the user (directly or indirectly) on Facebook
or inferred from a psychological test. We also examine other data sets where predictions are
made based on users’ choices, shown below the horizontal center line in Table 3. These
include data on movie watching (presented above), book reading, product purchasing, and
friend choice.

We repeat the experiment described above;Fig. 3 compares theperformanceof naiveBayes
with the three different event models for the eight remaining prediction tasks in a similar
way as before, for varying numbers of choices. The results show superior performance for
Wallenius Bayes over almost all of the data sets. Testing this result using a Wilcoxon signed
rank test shows that this superiority is significant across the panel (p < 0.02). On the other
hand, for these data there is no systematic superiority of the Multinomial event model over
the Bernoulli event model.

Figure 5 (Appendix) studies the correlation between the different models using 1000
and 10,000 choices in the same experiment. We plot both the individual experiments (blue
dots) as well as a diagonal line, corresponding to the theoretical equal performance line
(i.e., dots on the line indicate identical performance for that experiment). The correlation
coefficient between WNB and MVNB is higher (r1000 = 0.72, r10,000 = 0.84) than the one
between WNB and MNNB (r1000 = 0.36, r10,000 = 0.78), indicating that the Wallenius
and Multinomial event model perform similarly on the same problems. In the next section
we investigate further how the multinomial and Wallenius event model differ. Generally, we
see that most of WNB’s results lie above the diagonal when comparing to both MVNB and
MNNB, confirming the superior performance by Wallenius across different datasets.

These results confirm that taking into account the destructive choice setting can confer
advantage when applying naive Bayes to human behavioral data.

Note that we see the strongest advantage for the Wallenius event model when modeling
with smaller choice sets. This may be expected, as for larger choice sets the change in
the renormalized probabilities after removing the “destroyed” choice is smaller, and so all
else being equal the advantage of explicitly taking destructive choice into account ought
to decrease. As the choice sets grow very large, the differences between Wallenius NB
and MNNB or MVNB often decrease, with MNNB surpassing Wallenius NB in one case
(Smoking) for the largest choice sets and with MBNB essentially indistinguishable from
Wallenius NB for one data set (Dating).

5.2 Destructive choice versus alternatively generated data

Given thepromising results from theprevious section, it is important not to give the impression
thatWallenius Bayes is simply a better naive Bayes. Therefore, let us examine howWallenius
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Fig. 3 Experimental results for themultivariate Bernoulli, multinomial andWallenius eventmodels on various
data sets for increasing number of choices. In the majority of cases the Wallenius event model performs better
than the other event models, in terms of AUC for increasing numbers of randomly selected choices. Also
shown are curves for linear support vector machines
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Fig. 3 continued

Fig. 4 Comparison of multivariate Bernoulli, multinomial, and Wallenius naive Bayes models for a text
classification task. The data generating process for text documents is not a destructive choice process, and the
multinomial event model clearly fares better than the destructive-choice-oriented Wallenius event model

Bayes responds to a data setwhere destructive choicewould not characterize (or approximate)
the data-generating process.

We compare the different versions of naive Bayes on the binarized Dexter subset of the
famous RCV-1 data set (Asuncion and Newman 2007), where the prediction is whether the
text is related to corporate acquisition or not.Whenwriting documents, choosing a word does
not exclude choosing that word again in the same document. It has been shown (McCallum
and Nigam 1998) that multinomial naive Bayes works well for text classification, where each
document is represented by either a vector of term frequencies or a binary value indicating
whether a word is present in a document or not. Often MVNB is applied to binarized text-
classificationdata,with success, even thoughdoing sodoes not alignwellwith themultivariate
event model. When inspecting the learning curve in Fig. 4, we see that the outcome is as
expected: the Wallenius and Bernoulli multivariate event models do not perform as well as
the multinomial event model for this data set.
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(a)

(b)

Fig. 5 ComparisonofAUCsacrossmodels, over all experiments conducted in this studyusing1000and10,000
choices. We plot both the individual experiments (blue dots) as well as the equal performance (diagonal)
line. Compared to MVNB and MNNB, most of WNB’s results lie above the diagonal, indicating superior
performance by Wallenius. This superiority is significant with p values below 0.001 using a Wilcoxon signed
rank test. Additionally, WNB compares comparably to (slightly better than) the SVM, with the correlation (r )
becoming high as we consider a larger number of choices. a Results for 1000 choices. b Results for 10,000
choices (Color figure online)
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5.3 Comparison with SVM

While not the main goal of this paper, to give additional context we also compare the three
naive Bayes models on the behavioral data with a linear support vector machine (SVM).
Figures 3 and 5 include curves (computed as described above) for each of the data sets.

When comparing with the SVM using the correlation analysis (Fig. 5), we notice that the
SVM clearly does significantly better than MVNB and MNNB for both 1000 and 10,000
choices. Comparing versus Wallenius, we see that the models perform almost equally well.
The test results indicate a (slightly) significant difference in model performance, with an
advantage for Wallenius with 1000 choices and an advantage for SVM with 10,000 choices.
While not shown here, similar results were found for lower and higher numbers of choices
with the tipping point being at about 2, 500 choices. At the same time, we also notice a
trend with both models becoming increasingly indistinguishable in data regimes with higher
numbers of choices. This is also shown by an increase in correlation (r ) in Fig. 5.

6 Discussion

Experimental results
From the above experiments, we conclude that for destructive choice data, the Wallenius

event model appears to be generally superior to the multinomial and MV Bernoulli models.
For small to intermediately sized data sets this conclusion extends to the SVM as well. In
scenarios where we already have a lot of information or where the event model violates the
prescribed conditions (proportionality, destructive choice) this advantage vanishes and other
models may indeed become more appropriate.
Naiveness

The experimental results look very promising for the application of Wallenius Bayes in
the context of destructive choice, which could be seen as a form of conditional dependence.
This begs the question of whether we should still be calling it a “naive” method.We believe it
should: the “naiveness” of Naive Bayes generally is considered to be the assumption of prior
class-conditional independence of the choices. This assumption remains intact in Wallenius
Naive Bayes—albeit the probabilities are renormalized in the context of considering the
different possible orderings.
Ordering

Wallenius Bayes is slower than the alternatives (MVNB andMNNB). This is partly due to
us not having information on the actual timing of events. If we had true sequences of events,
we could simply apply Eq. (2), thus avoiding any expensive computations at all (this would
essentially render the method linear in time complexity). As such, we hope that our results
might be a precursor for more to come. To this end, research is needed into (a) the speeding
up of Wallenius Bayes for non-sequence data and (b) the application of Wallenius Bayes to
time-stamped data sets.
Ubiquity of the data generating process in online data

We have shown how the Wallenius method differs from more traditional event models
theoretically (this was summarized in Table 2). While our method was motivated by explicit
human behavioral choice data, it is not limited to such data. Indeed, as mentioned in Sect. 2.1
there are other scenarios in which the Wallenius method is applicable. First we have those
scenarios where a system might embody the destructive constraint: Liking something on
Facebook, favoriting a picture online, adding a product to one’s wish-list, adding a friend on
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Twitter, the choice of players for one’s fantasy football team, etc. Furthermore there are plenty
of scenarios where the constraint is implicitly true: the selection of keywords for research
papers, adding a phone number to one’s contact list, etc. In terms of proportionality, there are
domains for which it is well known that proportionality is appropriate. One such case is the
proportionality of choice behavior in horizontally differentiable goods. It stands to reason
that there will be many more scenarios that may be approximated using the proportionality
of choice.

7 Conclusion

We presented a new event model for naive Bayes, based on the Wallenius distribution, and
showed that it substantially outperforms the two traditional event models when working
with behavioral data generated via destructive choice processes—which are common in the
sort of data we increasingly are seeing as a result of monitoring human behavior. The model
explicitly takes into account destructive choice and the proportionality of human preferences.
The superiority of Wallenius Bayes may apply to other situations where destructive choice
is part of the data generating process. We also show that in contexts where the data likely
are not generated by a process well approximated by destructive choice—such as for text
classification—Wallenius Bayes can be inferior toNaive Bayeswith traditional eventmodels.

There are several promising paths of future research that show potential. First, the per-
formance of Wallenius Bayes for time-stamped data sets might show even greater advantage
both in terms of accuracy as well as speed. For aggregated data (without timing information),
further research into speeding up Wallenius Bayes is the obvious next step. A natural exten-
sion to the actual event model would be to include a length prior to the distribution as well
using a more sophisticated Bayesian formulation. On a broader level, the work presented in
this paper shows potential for rekindling the development of new event models to fit different
scenarios as opposed to thinking of our algorithms simply as all-purpose learning methods.
It may also be advantageous to consider whether considering destructive choice could be
helpful beyond generative modeling.
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Appendix: Event models and choice axiom

The choice axiom is stated in terms of the probabilities of choices. In this Section we will
adopt the notation of Luce (1959) for sets of choices R, S, T, U , individual choices x, y and
preference probability P(x, y) (indicating how probable it is that x will be chosen over y in a
pairwise comparison). A subindex PS(·) indicates the preference probability in a set S. And
set-probability P(R) indicates the probability that any choice in R would be picked over the
complement set R. The relationship under investigation is then such that it follows Axiom 1,
presented below.

Axiom 1 [The Choice Axiom; Luce (1959)] Let T be a finite subset of U such that, for every
S ⊂ T , PS is defined.
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1. If P(x, y) = 0, 1 for all x, y ∈ T , then for R ⊂ S ⊂ T :

PT (R) = PS(R)PT (S).

2. If P(x, y) = 0 for some x, y ∈ T , then for every S ⊂ T :

PT (S) = PT −{x}(S − {x}).

In what follows, we will drop the conditional dependency on class since it is not needed
for our argument and leads to simpler notation. For brevity’s sake, we shall also assume that
case 2 never occurs (i.e. there are no elements that will always be picked over other elements
with deterministic certainty). This relaxation has negligible influence and the proof for case 2
is pretty straightforward should it be of concern.

Lemma 1 The (binary) multinomial event model agrees with the choice axiom.

Proof Let us again consider three finite sets R ⊂ S ⊂ T defined as follows:

T = {X1, X2, . . . , Xm} S = {X1, X2, . . . Xk} R = {X1, . . . Xl},
with l < k. We know from Eq. (11) that the probability of picking any choice within a set
depends on the proportional weight with respect to the other elements from the set.

PT (R) =
l∑

j ′=1

1 + ∑n
i=1 xi, j ′ P(Y = y | xi )

m + ∑n
i=1

∑n
j=1 xi, j P(Y = y | xi )

= l + ∑n
i=1

∑l
j=1 xi, j P(Y = y | xi )

m + ∑n
i=1

∑n
j=1 xi, j P(Y = y | xi )

PT (S) = k + ∑n
i=1

∑k
j=1 xi, j P(Y = y | xi )

m + ∑n
i=1

∑n
j=1 xi, j P(Y = y | xi )

.

The probability of picking a member of set R over a member in its complement set R in S is
easily found as the sum of the individual multinomial probabilities of each element in R in
the bag of choices S.

PS(R) =
l∑

j=1

1 + ∑n
i=1 xi, j P(Y = y | xi )

k + ∑n
i=1

∑k
j=1 xi, j P(Y = y | xi )

= l + ∑n
i=1

∑l
j=1 xi, j P(Y = y | xi )

k + ∑n
i=1

∑k
j=1 xi, j P(Y = y | xi )

.

Luce’s choice axiom follows trivially by multiplying these three equations.

Lemma 2 The binary multi-variate Bernoulli event model violates the choice axiom.

Proof Wewill provide a counter-example using the binaryBernoulli variant presented before.
Let us consider three sets R ⊂ S ⊂ T defined as follows:

T = {X1, X2, . . . , Xm} S = {X1, . . . , Xk} R = {X1, . . . , Xl},
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with l < k. We know from Eq. (9) that the probability of picking any choice depends on two
counters, the number of non-zeroes for a particular choice (column) and the total number of
instances (rows) in the data set, which without prior distribution leads to:

PT (R) =
l∑

j=1

PT (X j )

=
l∑

j=1

1 + ∑n
i=1 xi, j P(Y = y | xi )

2 + ∑n
i=1 P(Y = y | xi )

PT (S) =
k∑

j=1

1 + ∑n
i=1 xi, j P(Y = y | xi )

2 + ∑n
i=1 P(Y = y | xi )

.

More importantly, the denominator in probabilities involving the subset S (PS(·)), potentially
changes due to not all samples being in the member set under consideration. That is, there
exist records for which we have no observed values in S, thus the total number of observed
instances under consideration (n′) is smaller than the original number of observations (n):

PS(R) =
l∑

j=1

1 + ∑n′
i=1 xi, j P(Y = y | xi )

2 + ∑n′
i=1 P(Y = y | xi )

(15a)

=
l∑

j=1

1 + ∑n
i=1 1

[∑k
j=1 xi, j > 0

]
xi, j P(Y = y | xi )

2 + ∑n
i=1 1

[∑k
j=1 xi, j > 0

]
P(Y = y | xi )

(15b)

=
l∑

j=1

1 + ∑n
i=1 xi, j P(Y = y | xi )

2 + ∑n
i=1 1

[∑k
j=1 xi, j > 0

]
P(Y = y | xi )

. (15c)

Note how we changed notation from n′ to n in Eq. (15b) by taking under consideration only
samples for which at least one of the xi, j is observed for at least one X j ∈ S by using the
indicator operator which selects exactly these elements (indeed, the sum will be greater than
zero if one of the elements is active). In the numerator we can drop this condition since any
element for which xi, j is zero, would be cancelled out anyway due to the multiplication with
xi, j ; this leads to the final formulation in Eq. (15c).

Clearly, for any non-trivial case containing non mutually exclusive variables:

∑n

i=1

⎛
⎝

k∑
j=1

xi, j P(Y = y | xi )

⎞
⎠>

∑n

i=1

⎛
⎝1

⎡
⎣

k∑
j=1

xi, j >0

⎤
⎦ P(Y = y | xi )

⎞
⎠ , (16)

and thus after combination of the individual equations we arrive at:

PT (R) < PS(R) · PT (S).

Therefore, the Bernoulli event model does not satisfy the Choice Axiom.

Lemma 3 The Wallenius event model is in agreement with the choice axiom.

Proof Let us again consider three finite sets R ⊂ S ⊂ T defined as follows:

T = {X1, X2, . . . , Xm} S = T − {X1} R = {X1}
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We know from Eq. (6) that the probability of picking any choice within a set, depends on the
proportion of the weight of that choice with respect to the weight of the other elements from
the set:

PT (X1) = w1∑
s∈S ws

PS(X1) = w1∑
t∈T wt

PT (S) =
∑

s∈S ws∑
t∈T wt

.

Just like for the multinomial event model, the first part of the axiom follows by filling in
these values. Of course, matters get a little bit more complicated when multiple choices are
selected since the permutations need to be taken into account. These will again factor out
when multiplied with each other, leading to the confirmation of the axiom.
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