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Abstract Maximizing the area under the receiver operating characteristic curve (AUC) is a
standard approach to imbalanced classification. So far, various supervised AUC optimization
methods have been developed and they are also extended to semi-supervised scenarios to
cope with small sample problems. However, existing semi-supervised AUC optimization
methods rely on strong distributional assumptions, which are rarely satisfied in real-world
problems. In this paper, we propose a novel semi-supervised AUC optimization method that
does not require such restrictive assumptions. We first develop an AUC optimization method
based only on positive and unlabeled data and then extend it to semi-supervised learning
by combining it with a supervised AUC optimization method. We theoretically prove that,
without the restrictive distributional assumptions, unlabeled data contribute to improving the
generalization performance in PU and semi-supervised AUC optimization methods. Finally,
we demonstrate the practical usefulness of the proposed methods through experiments.
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1 Introduction

Maximizing the area under the receiver operating characteristic curve (AUC) (Hanley and
McNeil 1982) is a standard approach to imbalanced classification (Cortes and Mohri 2004).
While the misclassification rate relies on the sign of the score of a single sample, AUC is
governed by the ranking of the scores of two samples. Based on this principle, various super-
vised methods for directly optimizing AUC have been developed so far and demonstrated
to be useful (Herschtal and Raskutti 2004; Zhao et al. 2011; Rakhlin et al. 2012; Kotlowski
et al. 2011; Ying et al. 2016).

However, collecting labeled samples is often expensive and laborious in practice. To miti-
gate this problem, semi-supervised AUC optimization methods have been developed that can
utilize unlabeled samples (Amini et al. 2008; Fujino and Ueda 2016). These semi-supervised
methods solely rely on the assumption that an unlabeled sample that is “similar” to a labeled
sample shares the same label. However, such a restrictive distributional assumption (which
is often referred to as the cluster or the entropy minimization principle) is rarely satisfied
in practice and thus the practical usefulness of these semi-supervised methods is limited
(Cozman et al. 2003; Sokolovska et al. 2008; Li and Zhou 2015; Krijthe and Loog 2017).

On the other hand, it has been recently shown that unlabeled data can be effectively
utilized without such restrictive distributional assumptions in the context of classification
from positive and unlabeled data (PU classification) (du Plessis et al. 2014). Furthermore,
based on recent advances in PU classification (du Plessis et al. 2014, 2015; Niu et al. 2016), a
novel semi-supervised classification approach has been developed that combines supervised
classification with PU classification (Sakai et al. 2017). This approach inherits the advances
of PU classification that the restrictive distributional assumptions are not necessary and is
demonstrated to perform excellently in experiments.

Following this line of research,wefirst develop anAUCoptimizationmethod frompositive
and unlabeled data (PU-AUC) in this paper. Previously, a pairwise ranking method for PU
data has been developed (Sundararajan et al. 2011), which can be regarded as an AUC
optimization method for PU data. However, it merely regards unlabeled data as negative
data and thus the obtained classifier is biased. On the other hand, our PU-AUC method is
unbiased and we theoretically prove that unlabeled data contribute to reducing an upper
bound on the generalization error with the optimal parametric convergence rate without the
restrictive distributional assumptions.

Then we extend our PU-AUC method to the semi-supervised setup by combining it with
a supervised AUC optimization method. Theoretically, we again prove that unlabeled data
contribute to reducing an upper bound on the generalization error with the optimal parametric
convergence rate without the restrictive distributional assumptions, and further we prove that
the variance of the empirical risk of our semi-supervised AUC optimization method can
be smaller than that of the plain supervised counterpart. The latter claim suggests that the
proposed semi-supervised empirical risk is also useful in the cross-validation phase. Finally,
we experimentally demonstrate the usefulness of the proposed PU and semi-supervised AUC
optimization methods.

2 Preliminary

We first describe our problem setting and review an existing supervised AUC optimization
method.
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Let covariate x ∈ R
d and its corresponding label y ∈ {±1} be equipped with probability

density p(x, y), where d is a positive integer. Suppose we have sets of positive and negative
samples:

XP := {xPi }nPi=1
i.i.d.∼ pP(x) := p(x | y = +1), and

XN := {xNj }nNj=1
i.i.d.∼ pN(x) := p(x | y = −1).

Furthermore, let g : Rd → R be a decision function and classification is carried out based
on its sign: ŷ = sign(g(x)).

The goal is to train a classifier g by maximizing the AUC (Hanley and McNeil 1982;
Cortes and Mohri 2004) defined and expressed as

AUC(g) := EP
[

EN[I (g(xP) ≥ g(xN))]]

= 1 − EP[EN
[

I (g(xP) < g(xN))]]

= 1 − EP[EN
[

�0-1(g(xP) − g(xN))]] , (1)

where EP and EN be the expectations over pP(x) and pN(x), respectively. I (·) is the indicator
function, which is replaced with the zero-one loss, �0-1(m) = (1− sign(m))/2, to obtain the
last equation. Let

f (x, x′) := g(x) − g(x′)

be a composite classifier. Maximizing the AUC corresponds to minimizing the second term
in Eq. (1). Practically, to avoid the discrete nature of the zero-one loss, we replace the zero-
one loss with a surrogate loss �(m) and consider the following PN-AUC risk (Herschtal and
Raskutti 2004; Kotlowski et al. 2011; Rakhlin et al. 2012):

RPN( f ) := EP
[

EN[�( f (xP, xN))]] . (2)

In practice, we train a classifier by minimizing the empirical PN-AUC risk defined as

̂RPN( f ) := 1

nPnN

nP
∑

i=1

nN
∑

j=1

�
(

f
(

xPi , x
N
j

))

.

Similarly to the classification-calibrated loss (Bartlett et al. 2006) in misclassification
rate minimization, the consistency of AUC optimization in terms of loss functions has been
studied recently (Gao and Zhou 2015; Gao et al. 2016). They showed that minimization of the
AUC riskwith a consistent loss function is asymptotically equivalent to that with the zero-one
loss function. The squared loss �S(m) := (1−m)2, the exponential loss �E(m) := exp(−m),
and the logistic loss �L(m) := log(1+ exp(−m)) are shown to be consistent, while the hinge
loss �H(m) := max(0, 1 − m) and the absolute loss �A(m) := |1 − m| are not consistent.

3 Proposed method

In this section, we first propose an AUC optimization method from positive and unlabeled
data and then extend it to a semi-supervised AUC optimization method.
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3.1 PU-AUC optimization

In PU learning, we do not have negative data while we can use unlabeled data drawn from
marginal density p(x) in addition to positive data:

XU := {xUk }nUk=1
i.i.d.∼ p(x) = θP pP(x) + θN pN(x), (3)

where

θP := p(y = +1) and θN := p(y = −1).

We derive an equivalent expression to the PN-AUC risk that depends only on positive and
unlabeled data distributions without the negative data distribution. In our derivation and
theoretical analysis, we assume that θP and θN are known. In practice, they are replaced
by their estimate obtained, e.g., by du Plessis et al. (2017), Kawakubo et al. (2016), and
references therein.

From the definition of the marginal density in Eq. (3), we have

EP
[

EU[�( f (xP, xU))]] = θP EP
[

E�P[�( f (xP,�xP))]
] + θN EP

[

EN[�( f (xP, xN))]]

= θP EP
[

E�P[�( f (xP,�xP))]
] + θNRPN( f ),

where E�P denotes the expectation over pP(�xP). Dividing the above equation by θN and
rearranging it, we can express the PN-AUC risk in Eq. (2) based on PU data (the PU-AUC
risk) as

RPN( f ) = 1

θN
EP

[

EU[�( f (xP, xU))]] − θP

θN
EP[E�P

[

�( f (xP,�xP))]] := RPU( f ). (4)

We refer to the method minimizing the PU-AUC risk as PU-AUC optimization. We will
theoretically investigate the superiority of RPU in Sect. 4.1.

To develop a semi-supervised AUC optimization method later, we also consider AUC
optimization form negative and unlabeled data, which can be regarded as a mirror of PU-
AUC optimization. From the definition of the marginal density in Eq. (3), we have

EU
[

EN[�( f (xU, xN))]] = θP EP
[

EN[�( f (xP, xN))]] + θN EN
[

E�N[�( f (xN,�xN))]]

= θPRPN( f ) + θN EN
[

E�N[�( f (xN,�xN))]] ,

where E�N denotes the expectation over pN(�xN). Rearranging the above equation, we can
obtain the PN-AUC risk in Eq. (2) based on negative and unlabeled data (the NU-AUC risk):

RPN( f ) = 1

θP
EU

[

EN[�( f (xU, xN))]] − θN

θP
EN

[

E�N[�( f (xN,�xN))]] := RNU( f ). (5)

We refer to the method minimizing the NU-AUC risk as NU-AUC optimization.

3.2 Semi-supervised AUC optimization

Next, we propose a novel semi-supervised AUC optimization method based on positive-
unlabeled learning. The idea is to combine the PN-AUC risk with the PU-AUC/NU-AUC
risks, similarly to Sakai et al. (2017).1

1 In Sakai et al. (2017), the combination of the PU and NU risks has also considered and found to be less
favorable than the combination of the PN and PU/NU risks. For this reason, we focus on the latter in this paper.
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First of all, let us define the PNPU-AUC and PNNU-AUC risks as

Rγ
PNPU( f ) := (1 − γ )RPN( f ) + γ RPU( f ),

Rγ
PNNU( f ) := (1 − γ )RPN( f ) + γ RNU( f ),

where γ ∈ [0, 1] is the combination parameter. We then define the PNU-AUC risk as

Rη
PNU( f ) :=

{

Rη
PNPU( f ) (η ≥ 0),

R−η
PNNU( f ) (η < 0),

(6)

where η ∈ [−1, 1] is the combination parameter. We refer to the method minimizing the
PNU-AUC risk as PNU-AUC optimization. We will theoretically discuss the superiority of
Rγ
PNPU and Rγ

PNNU in Sect. 4.1.

3.3 Discussion about related work

Sundararajan et al. (2011) proposed a pairwise ranking method for PU data, which can
be regarded as an AUC optimization method for PU data. Their approach simply regards
unlabeled data as negative data and the ranking SVM (Joachims 2002) is applied to PU data
so that the score of positive data tends to be higher than that of unlabeled data. Although this
approach is simple and showncomputationally efficient in experiments, the obtained classifier
is biased. From the mathematical viewpoint, the existing method ignores the second term in
Eq. (4) and maximizes only the first term with the hinge loss function. However, the effect of
ignoring the second term is not negligible when the class prior, θP, is not sufficiently small.
In contrast, our proposed PU-AUC risk includes the second term so that the PU-AUC risk is
equivalent to the PN-AUC risk.

Our semi-supervised AUC optimization method can be regarded as an extension of the
work by Sakai et al. (2017). They considered the misclassification rate as a measure to train
a classifier and proposed a semi-supervised classification method based on the recently pro-
posed PU classification method (du Plessis et al. 2014, 2015). On the other hand, we train a
classifier bymaximizing theAUC,which is a standard approach for imbalanced classification.
To this end, we first developed an AUC optimization method for PU data, and then extended
it to a semi-supervised AUC optimization method. Thanks to the AUC maximization for-
mulation, our proposed method is expected to perform better than the method proposed by
Sakai et al. (2017) for imbalanced data sets.

4 Theoretical analyses

In this section, we theoretically analyze the proposed risk functions. We first derive general-
ization error bounds of our methods and then discuss variance reduction.

4.1 Generalization error bounds

Recall the composite classifier f (x, x′) = g(x) − g(x′). As the classifier g, we assume the
linear-in-parameter model given by

g(x) =
b

∑

�=1

w�φ(x) = w�φ(x),
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where � denotes the transpose of vectors and matrices, b is the number of basis functions,
w = (w1, . . . , wb)

� is a parameter vector, and φ(x) = (φ1(x), . . . , φb(x))� is a basis
function vector. Let F be a function class of bounded hyperplanes:

F := { f (x, x′) = w�(φ(x) − φ(x′)) | ‖w‖ ≤ Cw; ∀x : ‖φ(x)‖ ≤ Cφ},
where Cw > 0 and Cφ > 0 are certain positive constants. This assumption is reasonable
because the �2-regularizer included in training and the use of bounded basis functions, e.g.,
the Gaussian kernel basis, ensure that the minimizer of the empirical AUC risk belongs to
such the function class F . We assume that a surrogate loss is bounded from above by C� and
denote the Lipschitz constant by L . For simplicity,2 we focus on a surrogate loss satisfying
�0-1(m) ≤ �(m). For example, the squared loss and the exponential loss satisfy the condition.3

Let

I ( f ) = EP
[

EN[�0-1( f (xP, xN))]]

be the generalization error of f in AUC optimization. For convenience, we define

h(δ) := 2
√
2LC�CwCφ + 3

2

√

2 log(2/δ).

In the following, we prove the generalization error bounds of both PU and semi-supervised
AUC optimization methods.

For the PU-AUC/NU-AUC risks, we prove the following generalization error bounds (its
proof is available in Appendix 1):

Theorem 1 For any δ > 0, the following inequalities hold separately with probability at
least 1 − δ for all f ∈ F:

I ( f ) ≤ ̂RPU( f ) + h(δ/2)

(

1

θN
√
min(nP, nU)

+ θP

θN
√
nP

)

,

I ( f ) ≤ ̂RNU( f ) + h(δ/2)

(

1

θP
√
min(nN, nU)

+ θN

θP
√
nN

)

,

where ̂RPU and ̂RNU are unbiased empirical risk estimators corresponding to RPU and RNU,
respectively.

Theorem 1 guarantees that I ( f ) can be bounded from above by the empirical risk, ̂R( f ),
plus the confidence terms of order

Op

(

1√
nP

+ 1√
nU

)

and Op

(

1√
nN

+ 1√
nU

)

.

SincenP (nN) andnU can increase independently in our setting, this is the optimal convergence
rate without any additional assumptions (Vapnik 1998; Mendelson 2008).

For the PNPU-AUC and PNNU-AUC risks, we prove the following generalization error
bounds (its proof is also available in Appendix 1):

2 Our theoretical analysis can be easily extended to the loss satisfying �0-1(m) ≤ M�(m) with a certain
M > 0.
3 These losses are bounded in our setting, since the input to �(m), i.e., f is bounded.
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Theorem 2 For any δ > 0, the following inequalities hold separately with probability at
least 1 − δ for all f ∈ F:

I ( f ) ≤ ̂Rγ
PNPU( f ) + h(δ/3)

(

1 − γ√
min(nP, nN)

+ γ

θN
√
min(nP, nU)

+ γ θP

θN
√
nP

)

,

I ( f ) ≤ ̂Rγ
PNNU( f ) + h(δ/3)

(

1 − γ√
min(nP, nN)

+ γ

θP
√
min(nN, nU)

+ γ θN

θP
√
nN

)

.

where ̂Rγ
PNPU and ̂Rγ

PNNU are unbiased empirical risk estimators corresponding to Rγ
PNPU

and Rγ
PNNU, respectively.

Theorem 2 guarantees that I ( f ) can be bounded from above by the empirical risk, ̂R( f ),
plus the confidence terms of order

Op

(

1√
nP

+ 1√
nN

+ 1√
nU

)

.

Again, since nP, nN, and nU can increase independently in our setting, this is the optimal
convergence rate without any additional assumptions.

4.2 Variance reduction

In the existing semi-supervised classification method based on PU learning, the variance of
the empirical risk was proved to be smaller than the supervised counterpart under certain
conditions (Sakai et al. 2017). Similarly, we here investigate if the proposed semi-supervised
risk estimators have smaller variance than its supervised counterpart.

Let us introduce the following variances and covariances:4

σ 2
PN( f ) = VarPN

[

�( f (xP, xN))
]

,

σ 2
PP( f ) = VarPP̄

[

�( f (xP,�xP))] ,

σ 2
NN( f ) = VarNN̄

[

�( f (xN,�xN))
]

,

τPN,PP( f ) = CovPN,PP̄

[

�( f (xP, xN)), �( f (xP,�xP))] ,

τPN,NN( f ) = CovPN,NN̄

[

�( f (xP, xN)), �( f (xN,�xN))
]

,

τPU,PP( f ) = CovPU,PP̄

[

�( f (xP, xU)), �( f (xP,�xP))] ,

τNU,NN( f ) = CovNU,NN̄

[

�( f (xP, xU)), �( f (xN,�xN))
]

.

Then, we have the following theorem (its proof is available in Appendix 1):

Theorem 3 Assume nU → ∞. For any fixed f , the minimizers of the variance of the
empirical PNPU-AUC and PNNU-AUC risks are respectively obtained by

γPNPU = argminγ Var
[

̂Rγ
PNPU( f )

] = ψPN − ψPP/2

ψPN + ψPU − ψPP
, (7)

γPNNU = argminγ Var
[

̂Rγ
PNNU( f )

] = ψPN − ψNN/2

ψPN + ψNU − ψNN
, (8)

4 VarPN, VarPP̄, and VarNN̄ are the variances over pP(xP)pN(xN), pP(xP)pP(�xP), and

pN(xN)pN(�xN), respectively. CovPN,PP̄, CovPN,NN̄, CovPU,PP̄, and CovNU,NN̄ are the covariances

over pP(xP)pN(xN)pP(�xP), pP(xP)pN(xN)pN(�xN), pP(xP)p(xU)pP(�xP), and pN(xN)p(xU)pN(�xN),
respectively.
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where

ψPN = 1

nPnN
σ 2
PN( f ),

ψPU = θ2P

θ2NnP
2
σ 2
PP( f ) − θP

θ2NnP
τPU,PP( f ),

ψPP = 1

θNnP
τPN,PU( f ) − θP

θNnP
τPN,PP( f ),

ψNU = θ2N

θ2PnN
2
σ 2
NN( f ) − θN

θ2PnN
τNU,NN( f ),

ψNN = 1

θPnN
τPN,NU( f ) − θN

θPnN
τPN,NN( f ).

Additionally, we have Var[̂Rγ
PNPU( f )] < Var[̂RPN( f )] for any γ ∈ (0, 2γPNPU) if ψPN +

ψPU > ψPP and 2ψPN > ψPP. Similarly, we have Var[̂Rγ
PNNU( f )] < Var[̂RPN( f )] for any

γ ∈ (0, 2γPNNU) if ψPN + ψNU > ψNN and 2ψPN > ψNN.

This theorem means that, if γ is chosen appropriately, our proposed risk estimators, ̂Rγ
PNPU

and ̂Rγ
PNNU, have smaller variance than the standard supervised risk estimator ̂RPN.Apractical

consequence of Theorem 3 is that when we conduct cross-validation for hyperparameter
selection, wemay use our proposed risk estimators ̂Rγ

PNPU and ̂Rγ
PNNU instead of the standard

supervised risk estimator ̂RPN since they are more stable (see Sect. 5.3 for details).

5 Practical implementation

In this section, we explain the implementation details of our proposed methods.

5.1 General case

In practice, the AUC risks R introduced above are replaced with their empirical version ̂R,
where the expectations in R are replaced with the corresponding sample averages.

Here, we focus on the linear-in-parameter model given by

g(x) =
b

∑

�=1

w�φ(x) = w�φ(x),

where � denotes the transpose of vectors and matrices, b is the number of basis functions,
w = (w1, . . . , wb)

� is a parameter vector, and φ(x) = (φ1(x), . . . , φb(x))� is a basis
function vector. The linear-in-parameter model allows us to express the composite classifier
as

f (x, x′) = w�φ̄(x, x′),

where
φ̄(x, x′) := φ(x) − φ(x′)

is a composite basis function vector. We train the classifier by minimizing the �2-regularized
empirical AUC risk:

min
w

̂R( f ) + λ‖w‖2,
where λ ≥ 0 is the regularization parameter.
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5.2 Analytical solution for squared loss

For the squared loss �S(m) := (1 − m)2, the empirical PU-AUC risk5 can be expressed as

̂RPU( f ) = 1

θNnPnU

nP
∑

i=1

nU
∑

k=1

�S
(

f (xPi , x
U
k )

)

− θP

θNnP(nP − 1)

nP
∑

i=1

nP
∑

i ′=1

�S
(

f (xPi , x
P
i ′)

) + θP

θN(nP − 1)

= 1 − 2w�
̂hPU + w�

̂HPUw − w�
̂HPPw,

where

̂hPU := 1

θNnP
Φ�

P 1nP − 1

θNnU
Φ�

U1nU ,

̂HPU := 1

θNnP
Φ�

P ΦP − 1

θNnPnU
Φ�

U1nU1
�
nPΦP

− 1

θNnPnU
Φ�

P 1nP1
�
nUΦU + 1

θNnU
Φ�

UΦU,

̂HPP := 2θP
θN(nP − 1)

Φ�
P ΦP − 2θP

θNnP(nP − 1)
Φ�

P 1nP1
�
nPΦP,

ΦP := (

φ(xP1), . . . , φ(xPnP )
)�

,

ΦU := (

φ(xU1 ), . . . , φ(xUnU )
)�

,

and 1b is the b-dimensional vector whose elements are all one. With the �2-regularizer, we
can analytically obtain the solution by

ŵPU := (̂HPU − ̂HPP + λIb)−1
̂hPU,

where Ib is the b-dimensional identity matrix.
The computational complexity of computing ̂hPU, ̂HPU, and ̂HPP are O((nP + nU)b),

O((nP + nU)b2), and O(nPb2), respectively. Then, solving a system of linear equations
to obtain the solution ŵPU requires the computational complexity of O(b3). In total, the
computational complexity of this PU-AUC optimization method is O((nP + nU)b2 + b3).

As given by Eq. (6), our PNU-AUC optimization method consists of the PNPU-AUC risk
and the PNNU-AUC risk. For the squared loss �S(m) := (1−m)2, the empirical PNPU-AUC
risk can be expressed as

̂Rγ
PNPU( f ) = 1 − γ

nPnN

nP
∑

i=1

nN
∑

j=1

�S

(

f (xPi , x
N
j )

)

+ γ

θNnPnU

nP
∑

i=1

nU
∑

k=1

�S
(

f (xPi , x
U
k )

)

− γ θP

θNnP(nP − 1)

nP
∑

i=1

nP
∑

i ′=1

�S
(

f (xPi , x
P
i ′)

) + γ θP

θN(nP − 1)

= (1 − γ ) − 2(1 − γ )w�
̂hPN + (1 − γ )w�

̂HPNw

+ γ − 2γw�
̂hPU + γw�

̂HPUw − γw�
̂HPPw,

5 We discuss the way of estimating the PU-AUC risk in Appendix 1.
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where
̂hPN := 1

nP
Φ�

P 1nP − 1

nN
Φ�

N1nN ,

̂HPN := 1

nP
Φ�

P ΦP − 1

nPnN
Φ�

P 1nP1
�
nNΦN

− 1

nPnN
Φ�

N1nN1
�
nPΦP + 1

nN
Φ�

NΦN,

ΦN := (

φ(xN1 ), . . . ,φ(xNnN )
)�

.

The solution for the �2-regularized PNPU-AUC optimization can be analytically obtained by

ŵ
γ
PNPU :=

(

(1 − γ )̂HPN + γ ̂HPU − γ ̂HPP + λIb
)−1(

(1 − γ )̂hPN + γ̂hPU
)

.

Similarly, the solution for the �2-regularized PNNU-AUC optimization can be obtained by

ŵ
γ
PNNU :=

(

(1 − γ )̂HPN + γ ̂HNU − γ ̂HNN + λIb
)−1(

(1 − γ )̂hPN + γ̂hNU
)

.

where

̂hNU := 1

θPnU
Φ�

U1nU − 1

θPnN
Φ�

N1nN ,

̂HNU := θN

θPnN
Φ�

NΦN − θN

θPnNnU
Φ�

U1nU1
�
nNΦN

− θN

θPnNnU
Φ�

N1nN1
�
nUΦU + θN

θPnU
Φ�

UΦU,

̂HNN := 2θN
θP(nN − 1)

Φ�
NΦN − 2θN

θPnN(nN − 1)
Φ�

N1nN1
�
nNΦN.

The computational complexity of computinĝhPN and ̂HPN areO((nP+nN)b) andO((nP+
nN)b2), respectively. Then, obtaining the solution ŵPNPU (ŵPNNU) requires the computational
complexity of O(b3). Including the computational complexity of computing ̂hPU, ̂HPU,
and ̂HPP, the total computational complexity of the PNPU-AUC optimization method is
O((nP + nN + nU)b2 + b3). Similarly, the total computational complexity of the PNNU-
AUC optimizationmethod isO((nP+nN+nU)b2+b3). Thus, the computational complexity
of the PNU-AUC optimization method is O((nP + nN + nU)b2 + b3).

From the viewpoint of computational complexity, the squared loss and the exponential
loss are more efficient than the logistic loss because these loss functions reduce the nested
summations to individual ones. More specifically, for example, in the PU-AUC optimization
method, the logistic loss requires O(nPnU) operations for evaluating the first term in the
PU-AUC risk, i.e., the loss over positive and unlabeled samples. In contrast, the squared loss
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and exponential loss reduce the number of operations for loss evaluation to O(nP + nU).6

This property is beneficial especially when we handle large scale data sets.

5.3 Cross-validation

To tune the hyperparameters such as the regularization parameter λ, we use the cross-
validation.

For the PU-AUC optimization method, we use the PU-AUC risk in Eq. (4) with the zero-
one loss as the cross-validation score.

For the PNU-AUC optimization method, we use the PNU-AUC risk in Eq. (6) with the
zero-one loss as the score. To this end, however, we need to fix the combination parameter
η in the cross-validation score in advance and then, we tune the hyperparameters including
the combination parameter. More specifically, let�η ∈ [−1, 1] be the predefined combination
parameter. We conduct cross-validation with respect to R�η

PNU( f ) for tuning the hyperparam-
eters. Since the PNU-AUC risk is equivalent to the PN-AUC risk for any �η, we can choose
any �η in principle. However, when the empirical PNU-AUC risk is used in practice, choice
of�η may affect the performance of cross-validation.

Here, based on the theoretical result of variance reduction given in Sect. 4.2, we give a
practicalmethod to determine�η. Assuming the covariances, e.g., τPN,PP( f ), are small enough
to be neglected and σPN( f ) = σPP( f ) = σNN( f ), we can obtain a simpler form of Eqs. (7)
and (8) as

�γPNPU = 1

1 + θ2PnN/
(

θ2NnP
) ,

�γPNNU = 1

1 + θ2NnP/
(

θ2PnN
) .

They can be computed simply from the number of samples and the (estimated) class-prior.
Finally, to select the combination parameter η, we use ̂R�γPNPU

PNPU for η ≥ 0, and ̂R�γPNNU
PNNU for

η < 0.

6 Experiments

In this section, we numerically investigate the behavior of the proposedmethods and evaluate
their performance on various data sets. All experiments were carried out using a PC equipped
with two 2.60 GHz Intel® Xeon® E5-2640 v3 CPUs.

6 For example, the exponential loss over positive and unlabeled data can be computed as follows:

nP
∑

i=1

nU
∑

k=1

�E

(

f (xPi , xUk )
)

=
nP
∑

i=1

nU
∑

k=1

exp(−g(xPi ) + g(xUk ))

=
nP
∑

i=1

exp
(

−g(xPi )
)

nU
∑

k=1

exp
(

g(xUk )
)

.

Thus, the number of operations for loss evaluation is reduced to nP + nU + 1 rather than nPnU.
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As the classifier, we used the linear-in-parameter model. In all experiments except text
classification tasks, we used the Gaussian kernel basis function expressed as

φ�(x) = exp

(

−‖x − x�‖2
2σ 2

)

,

where σ > 0 is the Gaussian bandwidth, {x�}b�=1 are the samples randomly selected from
training samples {xi }ni=1 and n is the number of training samples. In text classification tasks,
we used the linear kernel basis function:

φ�(x) = x�x�.

The number of basis functions was set at b = min(n, 200). The candidates of the Gaussian
bandwidth were median({‖xi − x j‖}ni, j=1)×{1/8, 1/4, 1/2, 1, 2} and that of the regulariza-
tion parameter were {10−3, 10−2, 10−1, 100, 101}. All hyper-parameters were determined
by five-fold cross-validation. As the loss function, we used the squared loss function
�S(m) = (1 − m)2.

6.1 Effect of variance reduction

First, we numerically confirm the effect of variance reduction.We compare the variance of the
empirical PNU-AUC risk against the variance of the empirical PN-AUC risk, Var[̂Rη

PNU( f )]
vs. Var[̂RPN( f )], under a fixed classifier f .

As the fixed classifier, we used the minimizer of the empirical PN-AUC risk, denoted by
̂fPN. The number of positive and negative samples for training varied as (nP, nN) = (2, 8),
(10, 10), and (18, 2). We then computed the variance of the empirical PN-AUC and PNU-
AUC risks with additional 10 positive, 10 negative, and 300 unlabeled samples. As the data
set, we used the Banana data set (Rätsch et al. 2001). In this experiment, the class-prior was
set at θP = 0.1 and assumed to be known.

Figure 1 plots the value of the variance of the empirical PNU-AUC risk divided by that
of the PN-AUC risk,

r := Var
[

̂Rη
PNU( ̂fPN)

]

Var
[

̂RPN( ̂fPN)
] ,

as a function of the combination parameter η under different numbers of positive and negative
samples. The results show that r < 1 can be achieved by an appropriate choice of η, meaning
that the variance of the empirical PNU-AUC risk can be smaller than that of the PN-AUC
risk.

We then investigate how the class-prior affects the variance reduction. In this experiment,
the number of positive and negative samples for ̂fPN are nP = 10 and nN = 10, respectively.
Figure 2 showed the values of r as a function of the combination parameter η under different
class-priors. When the class-prior, θP, is 0.1 and 0.2, the variance can be reduced for η > 0.
When the class-prior is 0.3, the range of the value of η that yields variance reduction becomes
smaller. However, this may not be that problematic in practice, because AUC optimization
is effective when two classes are highly imbalanced, i.e., the class-prior is far from 0.5;
when the class-prior is close to 0.5, we may simply use the standard misclassification rate
minimization approach.
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Fig. 1 Average with standard error of the ratio between the variance of the empirical PNU risk and that of
the PN risk, r = Var[̂Rη

PNU( ̂fPN)]/Var[̂RPN( ̂fPN)], as a function of the combination parameter η over 100
trials on the Banana data set. The class-prior is θP = 0.1 and the number of positive and negative samples
varies as (nP, nN) = (2, 8), (10, 10), and (18, 2). Left: values of r as a function of η. Right: values for η > 0
are magnified. a −1 ≤ η ≤ 1. b η > 0
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Fig. 2 Average with standard error of the ratio between the variance of the PNU-AUC risk and that of the
PN-AUC risk, r = Var[̂Rη

PNU( ̂fPN)]/Var[̂RPN( ̂fPN)], as a function of the combination parameter η over 100
trials on the Banana data set. A class-prior varies as θP = 0.1, 0.2, and 0.3. Left: values of r as a function of
η. Right: values for η > 0 are magnified. When θP = 0.1, 0.2, the variance of the empirical PNU-AUC risk
is smaller than that of the PN risk for η > 0. a −1 ≤ η ≤ 1. b η > 0

6.2 Benchmark data sets

Next, we report the classification performance of the proposed PU-AUC and PNU-AUC
optimizationmethods, respectively.Weused 15benchmark data sets from the IDABenchmark
Repository (Rätsch et al. 2001), the Semi-Supervised Learning Book (Chapelle et al. 2006),
the LIBSVM (Chang et al. 2011), and theUCIMachine Learning Repository (Lichman 2013).
The detailed statistics of the data sets are summarized in Appendix 1.

6.2.1 AUC optimization from positive and unlabeled data

We compared the proposed PU-AUC optimization method against the existing AUC opti-
mization method based on the ranking SVM (PU-RSVM) (Sundararajan et al. 2011). We
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Table 1 Average and standard
error of the estimated class-prior
over 50 trials on benchmark data
sets in PU learning setting

Data set d θP = 0.1 θP = 0.2

Banana 2 0.15 (0.01) 0.24 (0.01)

skin_nonskin 3 0.10 (0.00) 0.20 (0.01)

cod-rna 8 0.32 (0.01) 0.40 (0.02)

Magic 10 0.34 (0.01) 0.39 (0.01)

Image 18 0.13 (0.01) 0.24 (0.01)

Twonorm 20 0.27 (0.00) 0.34 (0.00)

Waveform 21 0.31 (0.00) 0.38 (0.01)

mushrooms 112 0.19 (0.00) 0.28 (0.00)

Table 2 Average and standard error of the AUC over 50 trials on benchmark data sets

Data set d θP = 0.1 θP = 0.2

PU-AUC PU-RSVM PU-AUC PU-RSVM

Banana 2 95.4 (0.1) 88.5 (0.2) 95.0 (0.1) 85.9 (0.2)

skin_nonskin 3 99.9 (0.0) 86.2 (0.3) 99.8 (0.0) 73.8 (0.5)

cod-rna 8 98.1 (0.1) 62.8 (0.3) 97.6 (0.1) 59.4 (0.4)

Magic 10 87.4 (0.2) 82.8 (0.2) 86.4 (0.2) 81.9 (0.1)

Image 18 97.5 (0.1) 82.2 (0.2) 96.7 (0.2) 77.0 (0.4)

Twonorm 20 99.6 (0.0) 85.5 (0.2) 99.5 (0.0) 79.2 (0.4)

Waveform 21 96.6 (0.1) 73.9 (0.6) 96.3 (0.1) 59.5 (1.0)

mushrooms 112 99.8 (0.0) 93.9 (0.3) 99.6 (0.1) 84.7 (0.3)

#Best/Comp. 8 0 8 0

The boldface denotes the best and comparable methods in terms of the average AUC according to the t test at
the significance level 5%. The last row shows the number of best/comparable cases of each method

trained a classifier with samples of size nP = 100 and nU = 1000 under the different class-
priors θP = 0.1 and 0.2. For the PU-AUC optimization method, the squared loss function
was used and the class-prior was estimated by the distribution matching method (du Plessis
et al. 2017). The results of the estimated class-prior are summarized in Table 1.

Table 2 lists the average with standard error of the AUC over 50 trials, showing that
the proposed PU-AUC optimization method achieves better performance than the existing
method. In particular, when θP = 0.2, the difference between PU-RSVM and our method
becomes larger compared with the difference when θP = 0.1. Since PU-RSVM can be
interpreted as regarding unlabeled data as negative, the bias caused by this becomes larger
when θP = 0.2.

Figure 3 summarizes the average computation time over 50 trials. The computation time of
the PU-AUC optimization method includes both the class-prior estimation and the empirical
risk minimization. The results show that the PU-AUC optimization method requires almost
twice computation time as that of PU-RSVM, but it would be acceptable in practice to obtain
better performance.
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Fig. 3 Average computation time on benchmark data sets when θP = 0.1 over 50 trials. The computation time
of the PU-AUC optimization method includes the class-prior estimation and the empirical risk minimization

6.2.2 Semi-supervised AUC optimization

Here, we compare the proposed PNU-AUC optimization method against existing AUC opti-
mization approaches: the semi-supervised rankboost (SSRankboost) (Amini et al. 2008),7

the semi-supervised AUC-optimized logistic sigmoid (sAUC-LS) (Fujino and Ueda 2016),8

and the optimum AUC with a generative model (OptAG) (Fujino and Ueda 2016).
We trained the classifier with samples of size nP = θP ·nL, nN = nL−nP, and nU = 1000,

where nL is the number of labeled samples. For the PNU-AUC optimization method, the
squared loss function was used and the candidates of the combination parameter η were
{−0.9,−0.8, . . . , 0.9}. For the class-prior estimation, we used the energy distanceminimiza-
tion method (Kawakubo et al. 2016). The results of the estimated class-prior are summarized
in Table 3.

For SSRankboost, the discount factor and the number of neighbors were chosen from
{10−3, 10−2, 10−1} and {2, 3, . . . , 7}, respectively. For sAUC-LS and OptAG, the regular-
ization parameter for the entropy regularizer was chosen from {1, 10}. Furthermore, as the
generative model of OptAG, we adapted the Gaussian distribution for the data distribution
and the Gaussian and Gamma distributions for the prior of the data distribution.9

Table 4 lists the average with standard error of the AUC over 50 trials, showing that the
proposed PNU-AUC optimization method achieves better performance than or comparable
performance to the existing methods on many data sets. Figure 4 summarizes the average
computation time over 50 trials. The computation time of the PNU-AUCoptimizationmethod
includes both the class-prior estimation and the empirical riskminimization. The results show
that even though our proposed method involves the class-prior estimation, the computation
time is relatively faster than SSRankboost and much faster than sAUC-LS and OptAG. The
reason for longer computation time of sAUC-LS and OptAG is that their implementation is

7 We used the code available at http://ama.liglab.fr/~amini/SSRankBoost/.
8 Thismethod is equivalent toOptAGwithout a generativemodel, which only employs a discriminativemodel
with the entropy minimization principle. To eliminate the adverse effect of the wrongly chosen generative
model, we added this method for comparison.
9 As the generative model, we used the Gaussian distributions for positive and negative classes:

pg
(

xP; μP

)

∝ τ
d
2
P exp

(

− τP

2
‖xP − μP‖2

)

,

pg
(

xP; μN

)

∝ τ
d
2
N exp

(

− τN

2
‖xN − μN‖2

)

,
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Table 3 Average and standard
error of the estimated class-prior
over 50 trials on benchmark data
sets in semi-supervised learning
setting

Data set nL θP = 0.1 θP = 0.2

Banana 50 0.12 (0.01) 0.21 (0.02)

(d = 2) 100 0.10 (0.01) 0.20 (0.01)

skin_nonskin 50 0.11 (0.01) 0.21 (0.01)

(d = 3) 100 0.10 (0.01) 0.20 (0.01)

cod-rna 50 0.12 (0.01) 0.22 (0.01)

(d = 8) 100 0.12 (0.01) 0.21 (0.01)

Magic 50 0.09 (0.01) 0.17 (0.01)

(d = 10) 100 0.07 (0.01) 0.20 (0.01)

Image 50 0.12 (0.01) 0.22 (0.01)

(d = 18) 100 0.11 (0.01) 0.20 (0.01)

SUSY 50 0.10 (0.01) 0.20 (0.01)

(d = 18) 100 0.10 (0.01) 0.19 (0.01)

Ringnorm 50 0.06 (0.00) 0.15 (0.00)

(d = 20) 100 0.07 (0.00) 0.17 (0.00)

Twonorm 50 0.10 (0.00) 0.20 (0.00)

(d = 20) 100 0.10 (0.00) 0.20 (0.00)

Waveform 50 0.11 (0.01) 0.20 (0.01)

(d = 21) 100 0.09 (0.01) 0.19 (0.01)

covtype 50 0.09 (0.01) 0.20 (0.01)

(d = 54) 100 0.09 (0.01) 0.18 (0.01)

phishing 50 0.10 (0.00) 0.20 (0.00)

(d = 68) 100 0.10 (0.00) 0.20 (0.00)

a9a 50 0.10 (0.01) 0.20 (0.01)

(d = 83) 100 0.10 (0.00) 0.21 (0.01)

mushrooms 50 0.10 (0.00) 0.20 (0.00)

(d = 112) 100 0.10 (0.00) 0.20 (0.00)

USPS 50 0.10 (0.00) 0.20 (0.01)

(d = 241) 100 0.09 (0.01) 0.19 (0.01)

w8a 50 0.10 (0.00) 0.19 (0.00)

(d = 300) 100 0.09 (0.00) 0.20 (0.01)

Footnote 9 continued
where τP and τN denote the precisions and μP and μN are the means. As the prior of μP, μN, τP, and τN,
we used the Gaussian and Gamma distributions:

p
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P

)

∝ τ
d
2
P exp
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Fig. 4 Average computation time of each method on benchmark data sets when nL = 100 and θP = 0.1 over
50 trials

Table 5 Average with standard error of the AUC over 20 trials on the text classification data sets

Data set d ̂θP PNU-AUC SSRankboost sAUC-LS OptAG

rcv1 47236 0.21 (0.00) 91.1 (0.7) 76.6 (0.7) 79.6 (2.3) 79.4 (2.0)

amazon2 262144 0.21 (0.01) 87.2 (1.3) 68.7 (1.8) 55.9 (0.4) 56.8 (0.5)

news20 1355191 0.20 (0.00) 79.8 (1.1) 74.2 (2.0) 66.4 (1.6) 71.5 (1.2)

The boldface denotes the best and comparable methods in terms of the average AUC according to the t test at
the significance level 5%

based on the logistic loss in which the number of operations for loss evaluation isO(nPnN +
nPnU + nNnU), unlike the PNU-AUC optimization method with the squared loss in which
the number of operations for loss evaluation is O(nP + nN + nU) (cf. the discussion about
the computational complexity in Sect. 5).

6.3 Text classification

Next, we apply our proposed PNU-AUC optimization method to a text classification task.
We used the Reuters Corpus Volume I data set (Lewis et al. 2004), the Amazon Review data
set (Dredze et al. 2008), and the 20 Newsgroups data set (Lang 1995). More specifically, we
used the data set processed for a binary classification task: the rcv1, amazon2, and news20
data sets. The rcv1 and news20 data sets are available at the website of LIBSVM (Chang
et al. 2011), and the amazon2 is designed by ourselves, which consists of the product reviews
of books and music from the Amazon7 data set (Blondel et al. 2013). The dimension of a
feature vector of the rcv1 data set is 47, 236, that of the amazon2 data set is 262,144, and
that of the news20 data set is 1, 355, 191.

We trained a classifier with samples of size nP = 20, nN = 80, and nU = 10, 000. The
true class-prior was set at θP = 0.2 and estimated by the method based on energy distance
minimization (Kawakubo et al. 2016). For the generative model of OptAG, we employed
naive Bayes (NB) multinomial models and a Dirichlet prior for the prior distribution of the
NB model as described in Fujino and Ueda (2016).

Table 5 lists the average with standard error of the AUC over 20 trials, showing that
the proposed method outperforms the existing methods. Figure 5 summarizes the average
computation time of each method. These results show that the proposed method achieves
better performance with short computation time.

Footnote 9 continued
where μ0

P, μ0, a0P, b0P, a0N, b0N, ρ0P, andρ0N are the hyperparameters.
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Fig. 5 Average computation
time of each method on the text
classification data sets

60

70

80

90

60

70

80

90

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

50

60

70

80

(a) (b) (c)

Fig. 6 Average with standard error of the AUC as a function of the noise ρ over 100 trials. The PNU-AUC
optimizationmethod used the noisy class-prior̂θP = θP+ρ in training. The plots show that when θP = 0.2 and
0.3, the performance of the PNU-AUC optimization method is stable even when the estimated class-prior has
some noise. However, when θP = 0.1, as the noise is close to ρ = −0.09, the performance largely decreases.
Since the true class-prior is small, it is sensitive to the negative bias. a Banana (d = 2). b cod-rna (d = 8). c
w8a (d = 300)

6.4 Sensitivity analysis

Here, we investigate the effect of the estimation accuracy of the class-prior for the PNU-
AUC optimization method. Specifically, we added noise ρ ∈ {−0.09,−0.08, . . . , 0.09} to
the true class-prior θP and used ̂θP = θP + ρ as the estimated class-prior for the PNU-AUC
optimization method. Under the different values of the class-prior θP = 0.1, 0.2, and 0.3, we
trained a classifier with samples of size nP = θP × 50, nN = θN × 50, and nU = 1000.

Figure 6 summarizes the average with standard error of the AUC as a function of the noise.
The plots show that when θP = 0.2 and 0.3, the performance of the PNU-AUC optimization
method is stable even when the estimated class-prior has some noise. On the other hand,
when θP = 0.1, as the noise is close to ρ = − 0.09, the performance largely decreases.
Since the true class-prior is small, it is sensitive to the negative bias. In particular, when
ρ = − 0.09, the gap between the estimated and true class-priors is larger than other values.
For instance, when ρ = − 0.09 and θP = 0.2, θP/̂θP ≈ 1.8, but when ρ = −0.09 and
θP = 0.1, θP/̂θP ≈ 10. In contrast, the positive bias does not heavily affect the performance
even when θP = 0.1.

6.5 Scalability

Finally, we report the scalability of our proposed PNU-AUC optimization method. Specifi-
cally, we evaluated the AUC and computation time while increasing the number of unlabeled
samples. We picked two large data sets: the SUSY and amazon2 data sets. The number of
positive and negative samples were nP = 40 and nN = 160, respectively.
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Fig. 7 Average with standard error of the AUC as a function of the number of unlabeled data nU over 20
trials. a AUC. b Computation time

Figure 7 summarizes the average with standard error of the AUC and computation time
as a function of the number of unlabeled samples. The AUC on the SUSY data set slightly
increased at nU =1,000,000, but the improvement on the amazon2 data set was not noticeable
or the performance decreased slightly. In this experiment, the increase of the size of unlabeled
data did not significantly improve the performance of the classifier, but it did not affect
adversely, i.e., it did not cause significant performance degeneration.

The result of computation time shows that the proposed PNU-AUC optimization method
can handle approximately 1,000,000 samples within reasonable computation time in this
experiment. The longer computation time on the SUSYdata set before nU =10,000 is because
we need to choose one additional hyperparameter, i.e., the bandwidth of the Gaussian kernel
basis function, compared with the linear kernel basis function. However, the effect gradually
decreases; after nU =10,000, the matrix multiplication of the high dimensional matrix on
the amazon2 data set (d = 262, 144) requires more computation time than the SUSY data
set (d = 18).

7 Conclusions

In this paper, we proposed a novel AUC optimization method from positive and unlabeled
data and extend it to a novel semi-supervised AUC optimization method. Unlike the exist-
ing approach, our approach does not rely on strong distributional assumptions on the data
distributions such as the cluster and the entropy minimization principle. Without the distri-
butional assumptions, we theoretically derived the generalization error bounds of our PU
and semi-supervised AUC optimization methods. Moreover, for our semi-supervised AUC
optimization method, we showed that the variance of the empirical risk can be smaller than
that of the supervised counterpart. Through numerical experiments, we demonstrated the
practical usefulness of the proposed PU and semi-supervised AUC optimization methods.

Acknowledgements TS was supported by KAKENHI 15J09111. GN was supported by the JST CREST
program and Microsoft Research Asia. MS was supported by JST CREST JPMJCR1403. We thank Han Bao
for his comments.
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Appendix A: PU-AUC risk estimator

In this section, we discuss the way of estimating the proposed PU-AUC risk. Recall that the
PU-AUC risk in Eq. (4) is defined as

RPU( f ) = 1

θN
EP

[

EU[�( f (xP, xU))]] − θP

θN
EP

[

E�P[�( f (xP,�xP))]
]

.

If one additional set of positive samples {�xPi }nPi=1 is available, we obtain the unbiased PU-AUC
risk estimator by

̂RPU( f ) = 1

θN

nP
∑

i=1

nU
∑

k=1

�
(

f (xPi , x
U
k )

) − θP

θNnP2

nP
∑

i=1

nP
∑

i ′=1

�
(

f (xPi ,�xPi ′)
)

.

We used this estimator in our theoretical analyses because learning is not involved. However,
obtaining one additional set of samples is not always possible in practice. Thus, instead of
the above risk estimator, we use the following risk estimator in our implementation:

̂RPU( f ) = 1

θN

nP
∑

i=1

nU
∑

k=1

�
(

f (xPi , x
U
k )

) − θP

θN

(

1

nP(nP − 1)

nP
∑

i=1

nP
∑

i ′=1

�
(

f (xPi , x
P
i ′ )

) − �(0)

nP − 1

)

.

This estimator is also unbiased. To show unbiasedness of this estimator, let us rewrite the
second term of the PU-AUC risk without coefficient in Eq. (4) as

EP[E�P
[

�( f (xP,�xP))]] = ExP,�xP
[

�( f (xP,�xP))] .

The unbiased estimator can be expressed as

1

nP(nP − 1)

nP
∑

i=1

nP
∑

i ′=1

�( f (xPi , x
P
i ′)) − �(0)

nP − 1
,

because the expectation of the above estimator can be computed as follows:

ExP1 ,...,xPnP

[ 1

nP(nP − 1)

nP
∑

i=1

nP
∑

i ′=1

�( f (xPi , x
P
i ′)) − �(0)

nP − 1

]

= ExP1 ,...,xPnP

[ 1

nP(nP − 1)

(
nP
∑

i=1

�( f (xPi , x
P
i )) +

nP
∑

i=1

nP
∑

i ′ �=i

�( f (xPi , x
P
i ′))

)

− �(0)

nP − 1

]

= ExP1 ,...,xPnP

[ 1

nP(nP − 1)

(
nP
∑

i=1

�(0) +
nP
∑

i=1

nP
∑

i ′ �=i

�( f (xPi , x
P
i ′))

)

− �(0)

nP − 1

]

= 1

nP(nP − 1)

nP
∑

i=1

nP
∑

i ′ �=i

ExPi ,xP
i ′

[

�( f (xPi , x
P
i ′))

]

= 1

nP(nP − 1)

nP
∑

i=1

nP
∑

i ′ �=i

ExP,�xP
[

�( f (xP,�xP))
]

= ExP,�xP
[

�( f (xP,�xP))
]

,
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where we used f (x, x) = w�(φ(x) − φ(x)) = 0 from the second to third lines. If the
squared loss function �(m) = (1 − m)2 is used, �(0) = 1 (cf. the implementation with the
squared loss in Sect. 5). Therefore, the proposed PU-AUC risk estimator is unbiased.

Appendix B: Proof of generalization error bounds

Here, we give the proofs of generalization error bounds in Sect. 4.1. The proofs are based
on Usunier et al. (2006).

Let {xi }mi=1 and {x′
j }nj=1 be two sets of samples drawn from the distribution equipped with

densities q(x) and q ′(x), respectively. Recall F be a function class of bounded hyperplanes:

F := { f (x) = 〈w,φ(x) − φ(x′)〉 | ‖w‖ ≤ Cw; ∀x : ‖φ(x)‖ ≤ Cφ},
where Cw > 0 and Cφ > 0 are certain positive constants. Then, the AUC risk over distribu-
tions q and q ′ and its empirical version can be expressed as

R( f ) := Ex∼q
[

Ex′∼q ′ [�( f (x, x′))]] ,

̂R( f ) := 1

mn

m
∑

i=1

n
∑

j=1

�
(

f (xi , x′
j )

)

.

For convenience, we define

h(δ) := 2
√
2LC�CwCφ + 3

2

√

2 log(2/δ).

We first have the following theorem:

Theorem 4 For any δ > 0, the following inequality holds with probability at least 1− δ for
any f ∈ F:

R( f ) − ̂R( f ) ≤ h(δ)
1√

min(n, n′)
.

Proof By slightly modifying Theorem 7 in Usunier et al. (2006) to fit our setting, for any
δ > 0, with probability at least 1 − δ for any f ∈ F , we have

R( f ) − ̂R( f ) ≤ 2LC�Cw

√
max(n, n′)

nn′

√

√

√

√

√

n
∑

i=1

n′
∑

j=1

‖φ(xi ) − φ(x j )‖2

+ 3

√

log(2/δ)

2min(n, n′)
. (9)

Applying the inequality

n
∑

i=1

n′
∑

j=1

‖φ(xi ) − φ(x j )‖2 ≤ n′
n

∑

i=1

‖φ(xi )‖2 + n
n′

∑

j=1

‖φ(x j )‖2

≤ 2nn′C2
φ,

to the first term in Eq. (9), we obtain the theorem. ��
By using Theorem 4, we prove the risk bounds of the PU-AUC and NU-AUC risks:
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Lemma 1 For any δ > 0, the following inequalities hold separately with probability at least
1 − δ for any f ∈ F:

RPU( f ) − ̂RPU( f ) ≤ h(δ/2)

(

1

θN
√
min(nP, nU)

+ θP

θN
√
nP

)

,

RNU( f ) − ̂RNU( f ) ≤ h(δ/2)

(

1

θP
√
min(nN, nU)

+ θN

θP
√
nN

)

.

Proof Recall that the PU-AUC and NU-AUC risks are expressed as

RPU( f ) = 1

θN
EP

[

EU[�( f (xP, xU))]] − θP

θN
EP[E�P

[

�( f (xP,�xP))]] ,

RNU( f ) = 1

θP
EU

[

EN[�( f (xU, xN))]] − θN

θP
EN

[

E�N[�( f (xN,�xN))]] .

Based on Theorem 4, for any δ > 0, we have these uniform deviation bounds with
probability at least 1 − δ/2:

sup
f ∈F

(

EP[EU[�( f (xP, xU))]] − 1

nPnU

nP
∑

i=1

nU
∑

k=1

�( f (xPi , x
U
k ))

)

≤ h(δ/2)
1√

min(nP, nU)
,

sup
f ∈F

(

EU[EN[�( f (xU, xN))]] − 1

nNnU

nU
∑

k=1

nN
∑

j=1

�( f (xUk , xNj ))
)

≤ h(δ/2)
1√

min(nN, nU)
,

sup
f ∈F

(

EP[E�P[�( f (xP,�xP))]] − 1

nP2

nP
∑

i=1

nP
∑

i ′=1

�( f (xPi ,�xPi ′))
)

≤ h(δ/2)
1√
nP

,

sup
f ∈F

(

EN[E�N[�( f (xN,�xN))]] − 1

nN2

nN
∑

j=1

nN
∑

j ′=1

�( f (xNj ,�xNj ′))
)

≤ h(δ/2)
1√
nN

,

Simple calculation showed that for any δ > 0, with probability 1 − δ, we have

sup
f ∈F

(

RPU( f ) − ̂RPU( f )
) ≤ 1

θN
sup
f ∈F

(

EP[EU[�( f (xP, xU))]] − 1

nPnU

nP
∑

i=1

nU
∑

k=1

�( f (xPi , x
U
k ))

)

+ θP

θN
sup
f ∈F

(

EP[E�P[�( f (xP,�xP))]] − 1

nP2

nP
∑

i=1

nP
∑

i ′=1

�( f (xPi ,�xPi ′ ))
)

≤ h(δ/2)

(

1

θN
√
min(nP, nU)

+ θP

θN
√
nP

)

, (10)

where we used

sup(x + y) ≤ sup(x) + sup(y),

RPU( f ) ≤ 1

θN
EP

[

EU[�( f (xP, xU))]] + θP

θN
EP

[

E�P[�( f (xP,�xP))]
]

.

Similarly, for the NU-AUC risk, we have

sup
f ∈F

(

RNU( f ) − ̂RNU( f )
) ≤ h(δ/2)

(

1

θP
√
min(nN, nU)

+ θN

θP
√
nN

)

. (11)

Equations (10) and (11) conclude the lemma. ��
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Finally, we give the proof of Theorem 1.

Proof Assume the loss satisfying �0-1(m) ≤ M�(m). We have I ( f ) ≤ MR( f ). When
M = 1 such as �S(m) and �E(m), I ( f ) ≤ R( f ) holds. This observation yields Theorem 1.

��
Next, we prove the generalization error bounds of the PNPU-AUC and PNNU-AUC risks

in Theorem 2. We first prove the following risk bounds:

Lemma 2 For any δ > 0, the following inequalities hold separately with probability at least
1 − δ for all f ∈ F:

Rγ
PNPU( f ) − ̂Rγ

PNPU( f ) ≤ h(δ/3)
( 1 − γ√

min(nP, nN)
+ γ

θN
√
min(nP, nU)

+ θPγ

θN
√
nP

)

,

Rγ
PNNU( f ) − ̂Rγ

PNNU( f ) ≤ h(δ/3)
( 1 − γ√

min(nP, nN)
+ γ

θP
√
min(nN, nU)

+ θNγ

θP
√
nN

)

.

Proof Recall the PNPU-AUC and PNNU-AUC risks:

Rγ
PNPU( f ) := (1 − γ )RPN( f ) + γ RPU( f ),

Rγ
PNNU( f ) := (1 − γ )RPN( f ) + γ RNU( f ).

Based on Theorem 4, for any δ > 0, we have these uniform deviation bounds with
probability at least 1 − δ/3:

sup
f ∈F

(

EP[EN[�( f (xP, xN))]] − 1

nPnN

nP
∑

i=1

nN
∑

j=1

�( f (xPi , x
N
j ))

)

≤ h(δ/3)
1√

min(nP, nN)
,

sup
f ∈F

(

EP[EU[�( f (xP, xU))]] − 1

nPnU

nP
∑

i=1

nU
∑

k=1

�( f (xPi , x
U
k ))

)

≤ h(δ/3)
1√

min(nP, nU)
,

sup
f ∈F

(

EU[EN[�( f (xU, xN))]] − 1

nNnU

nU
∑

k=1

nN
∑

j=1

�( f (xUk , xNj ))
)

≤ h(δ/3)
1√

min(nN, nU)
,

sup
f ∈F

(

EP[E�P[�( f (xP,�xP))]] − 1

nP2

nP
∑

i=1

nP
∑

i ′=1

�( f (xPi ,�xPi ′))
)

≤ h(δ/3)
1√
nP

,

sup
f ∈F

(

EN[E�N[�( f (xN,�xN))]] − 1

nN2

nN
∑

j=1

nN
∑

j ′=1

�( f (xNj ,�xNj ′))
)

≤ h(δ/3)
1√
nN

.

Combining three bounds from the above, for any δ > 0, with probability 1 − δ, we have

sup
f ∈F

(

Rγ
PNPU( f ) − ̂Rγ

PNPU( f )
)

≤ (1 − γ ) sup
f ∈F

(

EP[EN[�( f (xP, xN))]] − 1

nPnN

nP
∑

i=1

nN
∑

j=1

�( f (xPi , x
N
j ))

)

+ γ

θN
sup
f ∈F

(

EP[EU[�( f (xP, xU))]] − 1

nPnU

nP
∑

i=1

nU
∑

k=1

�( f (xPi , x
U
k ))

)
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+ γ θP

θN
sup
f ∈F

(

EP[E�P[�( f (xP,�xP))]] − 1

nP2

nP
∑

i=1

nP
∑

i ′=1

�( f (xPi ,�xPi ′))
)

≤ h(δ/3)
( 1 − γ√

min(nP, nN)
+ γ

θN
√
min(nP, nU)

+ γ θP

θN
√
nP

)

.

This concludes the risk bounds of the PNPU-AUC risk.
Similarly, we prove the risk bounds of the PNNU-AUC risk. ��

Again, I ( f ) ≤ R( f ) holds in our setting. This leads to Theorem 2.

Appendix C: Proof of variance reduction

Here, we give the proof of Theorem 3.

Proof The empirical PNPU-AUC risk can be expressed as

̂Rγ
PNPU( f ) = (1 − γ )̂RPN( f ) + γ ̂RPU( f )

= 1 − γ

nPnN

nP
∑

i=1

nN
∑

j=1

�
(

f (xPi , x
N
j )

)

+ γ

θNnPnU

nP
∑

i=1

nU
∑

k=1

�
(

f (xPi , x
U
k )

)

− γ θP

θNnP2

nP
∑

i=1

nP
∑

i ′=1

�
(

f (xPi ,�xPi ′)
)

.

Assume nU → ∞, we obtain

Var
[

̂Rγ
PNPU( f )

] = (1 − γ )2

nPnN
σ 2
PN( f ) + γ 2θ2P

nP2θ2N
σ 2
PP( f ) + (1 − γ )γ

θNnP
τPN,PU( f )

− γ 2θP

θ2NnP
τPU,PP( f ) − (1 − γ )γ θP

θNnP
τPN,PP( f )

= (1 − γ )2ψPN + γ 2ψPU + (1 − γ )γψPP,

where the terms divided by nU are disappeared. Setting the derivative with respect to γ at
zero, we obtain the minimizer in Eq. (7).

For the empirical PNNU-AUC risk, when nU → ∞, we obtain

Var
[

̂Rγ
PNNU(g)

] = (1 − γ )2

nPnN
σ 2
PN(g) + γ 2θ2N

nN2θ2P
σ 2
NN(g) + (1 − γ )γ

θPnN
τPN,NU(g)

− γ 2θN

θ2PnN
τNU,NN(g) − (1 − γ )γ θN

θPnN
τPN,NN(g)

= (1 − γ )2ψPN + γ 2ψNU + (1 − γ )γψNN.

Setting the derivative with respect to γ at zero, we obtain the minimizer in Eq. (8). ��

Appendix D: Statistics of data sets

Table 6 summarizes the statistics of the data sets used in our experiments. The class balance
is the number of positive samples divided by that of total samples. The sources of data sets
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Table 6 The statistics of the data sets

Data set Dimension #Samples Class balance Source

Banana 2 5,300 0.45 IDA

skin_nonskin 3 245,057 0.21 LIBSVM

cod-rna 8 331152 0.67 LIBSVM

Magic 10 19020 0.35 UCI

Image 18 2,310 0.39 IDA

SUSY 18 5,000,000 0.46 LIBSVM

Ringnorm 20 7,400 0.50 IDA

Twonorm 20 7,400 0.50 IDA

Waveform 21 5,000 0.33 IDA

covtype 54 581,012 0.51 LIBSVM

phishing 68 11,055 0.44 LIBSVM

a9a 83 48,842 0.24 LIBSVM

mushrooms 112 8,124 0.48 LIBSVM

USPS 241 1,500 0.20 SSL

w8a 300 64,700 0.03 LIBSVM

rcv1 47,236 697,641 0.53 LIBSVM

amazon2 262,144 1,149,374 0.18 Amazon7

news20 1,355,191 19,996 0.50 LIBSVM

The source of data sets is as follows: the IDA Benchmark Repository (IDA) (Rätsch et al. 2001), the UCI
Machine Learning Repository (UCI) (Lichman 2013), the LIBSVM data sets (LIBSVM) (Chang et al. 2011),
the Semi-Supervised Learning Book (SSL) (Chapelle et al. 2006), and the Amazon Review (Amazon7) (Blon-
del et al. 2013)

are as follows: the IDA Benchmark Repository (IDA) (Rätsch et al. 2001), the UCI Machine
Learning Repository (UCI) (Lichman 2013), the LIBSVM data sets (LIBSVM) (Chang et al.
2011), the Semi-Supervised Learning Book (SSL) (Chapelle et al. 2006), and the Amazon
Review (Amazon7) (Blondel et al. 2013).
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