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Abstract This article provides the first survey of computational models of emotion in rein-
forcement learning (RL) agents. The survey focuses on agent/robot emotions, and mostly
ignores human user emotions. Emotions are recognized as functional in decision-making
by influencing motivation and action selection. Therefore, computational emotion models
are usually grounded in the agent’s decision making architecture, of which RL is an impor-
tant subclass. Studying emotions in RL-based agents is useful for three research fields. For
machine learning (ML) researchers, emotionmodelsmay improve learning efficiency. For the
interactive ML and human–robot interaction community, emotions can communicate state
and enhance user investment. Lastly, it allows affective modelling researchers to investigate
their emotion theories in a successful AI agent class. This survey provides background on
emotion theory and RL. It systematically addresses (1) from what underlying dimensions
(e.g. homeostasis, appraisal) emotions can be derived and how these can be modelled in
RL-agents, (2) what types of emotions have been derived from these dimensions, and (3)
how these emotions may either influence the learning efficiency of the agent or be useful
as social signals. We also systematically compare evaluation criteria, and draw connections
to important RL sub-domains like (intrinsic) motivation and model-based RL. In short, this
survey provides both a practical overview for engineers wanting to implement emotions in
their RL agents, and identifies challenges and directions for future emotion-RL research.
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1 Introduction

This survey systematically covers the literature on computational models of emotion in
reinforcement learning (RL) agents. Computationalmodels of emotions are usually grounded
in the agent decision-making architecture. In this work we focus on emotion models in a
successful learning architecture: reinforcement learning, i.e. agents optimizing some reward
function in a Markov Decision Process (MDP) formulation. To avoid confusion, the topic
does not imply the agent should ‘learn its emotions’. Emotions are rather derived from aspects
of the RL learning process (for example from the value function), and may also persist after
learning has converged.

Onemay question why it is useful to study emotions in machines at all. The computational
study of emotions is an example of bio-inspiration in computational science. Many important
advancements inmachine learning and optimizationwere based on biological principles, such
as neural networks, evolutionary algorithms and swarm-based optimization (Russell et al.
1995). An example encountered in this survey is homeostasis, a concept closely related to
emotions, and a biological principle that led researchers to implement goal switching in RL
agents.

The study of emotions in learning agents is useful for three research fields. First, for the
machine learning (ML) community, emotions may benefit learning efficiency. For exam-
ple, there are important connections to the work on (intrinsically) motivated RL. Second,
researchers working on interactive machine learning and human–robot interaction (HRI)
may benefit from emotions to enhance both transparency (i.e. communicate agent internal
state) and user empathy. Finally, from an affective modelling (AM) perspective, where emo-
tions are mostly studied in cognitive agents, RL agents provide the general benefits of the
MDP formulation: these agents require few assumptions, can be applied to a variety of tasks
without much prior knowledge, and, allow for learning. This also gives AM researchers
access to complex, high-dimensional test domains to evaluate emotion theories.

Emotion is an important part of human intelligence (Johnson-Laird and Oatley 1992;
Damasio 1994; Baumeister et al. 2007). On the one hand, emotion has been defined as a
response to a significant stimulus—characterized by brain and body arousal and a subjective
feeling—that elicits a tendency towards motivated action (Calvo et al. 2015; Frijda et al.
1989). This emphasizes the relation of emotions with motivation and action. On the other
hand, emotions have also been identified as complex feedback signals used to shape behaviour
(Baumeister et al. 2007; Broekens et al. 2013). This view emphasizes the feedback function
of emotion. The common ground in both: (1) emotions are related to action selection mech-
anisms and (2) emotion processing is in principle beneficial to the viability of the individual.
As an illustration, Damasio (1994) showed that people with impaired emotional processing
(due to brain damage) show failures in work and social life. These observations connecting
emotions to action selection and adaptive decision-making sparked interest in the computer
science community as well, mainly following the initial work by Cañamero (1997b) and
Gadanho and Hallam (1998).

We wrote this survey for two reasons. First, while the topic of emotion in RL agents
has received attention for nearly 20years, it appears to fall in between the machine learning
and affective modelling communities. In particular, there is no framework connecting the
variety of models and implementations. Although Rumbell et al. (2012) compared emotion
models in twelve different agents, their work does not provide a full survey of the topic,
nor does it focus on agents with a learning architecture. Our main aim is to establish such a
framework, hoping to bridge the communities and potentially align research agendas. As a
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secondmotivation, this survey is also useful to engineers working on social agents and robots.
Emotion has an important functional role in social interaction and social robotics (Fong et al.
2003). Our survey is also a practical guideline for engineerswhowish to implement emotional
functionality in their RL-based agents and robots.

As a final note, the term ‘reinforcement learning’ may be misleading to readers from a
cognitive AI or psychological background. RLmay reminisce of ‘instrumental conditioning’,
with stimulus-response experiments on short time-scales. Although indeed related, RL here
refers to the computational term for a successful class of algorithms solvingMarkovDecision
Processes by sampling and learning from data. MDPs (introduced in Sect. 2.4) provide a
generic specification for short-term and long-term sequential decision-making problemswith
minimal assumptions. Note that many cognitive AI approaches, that usually employ a notion
of ‘goal’, are also expressible in MDP formulation by defining a sparse reward function with
positive reward at the goal state.

The structure of this review is as follows. First, Sect. 2 provides the necessary background
on emotion and reinforcement learning from psychology, neuroscience and computer sci-
ence. Section 3 discusses the survey’s methodology and proposed taxonomy. Subsequently,
Sects. 4–6 contain the main results of this survey by systematically categorizing approaches
to emotion elicitation, emotion types and emotion functionality. Additionally, a comparison
of evaluation criteria is presented in (Sect. 7). The survey ends with a general discussion of
our findings, highlights some important problems and indicates future directions in this field
(Sect. 8).

2 Background

As many papers included in this survey build upon psychological (Sect. 2.1) and neurosci-
entific (Sect. 2.2) theories of emotion, this section provides a high-level overview of these
fields. Subsequently, we position our work in the computer science and machine learning
community (Sect. 2.3). We conclude these preliminaries by formally introducing computa-
tional reinforcement learning (Sect. 2.4).

2.1 Psychology

We discuss three dominant psychological emotion theories: categorical, dimensional, and
componential theories (see also Lisetti and Hudlicka 2015).

Categorical emotion theory assumes there is a set of discrete emotions forming the ‘basic’
emotions. These ideas are frequently inspired by the work by Ekman et al. (1987), who
identified the cross-cultural recognition of anger, fear, joy, sadness, surprise and disgust on
facial expressions. In an evolutionary perspective, each basic emotion can be considered as
an elementary response pattern, or action tendency (Frijda et al. 1989). For example, fear has
the associated action tendency of avoidance, which helps the organism to survive a dangerous
situation, accompanied by a negative feeling and prototypical facial expression. However,
the concept of ‘basic’ emotions remains controversial within psychology, as is reflected in
the ongoing debate about which emotions should be included. The number of emotions to
be included ranges from 2 to 18, see Calvo et al. (2015).

Dimensional emotion theory (Russell 1978) assumes an underlying affective space. This
space involves at least two dimensions; usually valence (i.e. positive/negative evaluation)
and arousal (i.e. activation level) (Russell and Barrett 1999). For example, fear is a highly
arousing and negative affective state. The theory was originally developed as a ‘Core affect’
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model, i.e. describing a more long-term, underlying emotional state. Osgood et al. (1964)
originally added dominance as a third dimension, resulting in the PAD (pleasure, arousal,
dominance) model. Dimensional models have difficulty separating some emotion categories
such as anger and disgust, which is a common critique of this theory.

Finally, componential emotion theory, best known as cognitive appraisal theory (Lazarus
1991), considers emotions as the results of evaluations (appraisals) of incoming stimuli
according to personal relevance. Someexamples of frequently occurring appraisal dimensions
are valence, novelty, goal relevance, goal congruence and coping potential. Distinct emotions
relate to specific patterns of appraisal activation. For example, anger is a result of evaluating
a situation as harmful to one’s own goals with the emotion attributed to the responsible actor
and at least some feeling of power. Some well-known appraisal theories that have been a
basis for computational models are the OCC model (named after the authors Ortony, Clore
and Collins) (Ortony et al. 1990), the component process theory of emotions (CPT) (Scherer
et al. 2001), and the belief-desire theory of emotions (BDTE) (Reisenzein 2009). Although
cognitive appraisal theories describe the structure of emotion well, they are limited with
respect to explaining where appraisals themselves come from, what the function of emotion
is in cognition and intelligence, and how they are related to evolution.

Note that the presented theories focus on different aspects of emotions. For example,
appraisal theory focuses on how emotions are elicited, while categorical emotion models
focus on action tendencies, i.e. the immediate function of emotions. Some consider emotions
to precede action selection, while others focus on emotions as feedback signals (Baumeister
et al. 2007). In this survey emotions are considered in a reward-based feedback loop, which
involves both emotion elicitation and function.

2.2 Neuroscience

Affective responses and their relation to behaviour and learning have also been extensively
studied in neuroscience; for a survey seeRolls andGrabenhorst (2008).Wediscuss theories by
LeDoux, Damasio and Rolls. The work by LeDoux (2003) mainly focussed on the role of the
amygdala in fear conditioning. LeDoux identified that incoming sensory stimuli can directly
move from thalamus to amygdala, thereby bypassing the previously assumed intermediate
step through the neo-cortex. As such, the work showed that emotional responses may also
be elicited without neo-cortical reasoning.

Damasio (1994) took a different perspective on rational emotions through the ‘somatic
marker hypothesis’. He proposes that emotions are the result of bodily sensations, which
tell the organism that current sensations (i.e. events) are beneficial (e.g. pleasure) or harmful
(e.g. pain). The somatic marker is therefore a signal that can be interpreted as feedback about
the desirability of current and imagined situations. The somatic marker hypothesis has been
interpreted in terms of RL as well (Dunn et al. 2006).

Later work by Rolls shifted the attention from the amygdala to the orbito-frontal cortex
(OFC) (Rolls and Grabenhorst 2008) Imaging studies have implicated the OFC in both rein-
forcement and affect, with direct input connections of most sensory channels (taste, olfactory,
visual, touch), while projecting to several brain areas involving motor behaviour (striatum)
and autonomic responses (hypothalamus) (Rolls and Grabenhorst 2008). Also, single neuron
studies have shown that visual and taste signals (the latter being a well-known primary rein-
forcer) converge on the same neurons (Rolls and Baylis 1994), coined ‘conditional reward
neurons’. Earlier work already identified ‘error neurons’, which mainly respond when an
expected reward is not received (Thorpe et al. 1983).
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Together, these theories suggest that emotions are closely linked to reward processing.
These ideas are implicitly reflected in part of the reinforcement learning-based implementa-
tions in this survey. These ideas are also reflected in Rolls’ evolutionary theory of emotion
(Rolls and Grabenhorst 2008), which identifies emotions as the results of primary reinforcers
(like taste, affiliative touch, pain) which specify generic goals for survival and reproductive
success (like food, company and body integrity). According to Rolls, emotions exclusively
emerge from these goal-related events. This view is also compatible with the cognitive
appraisal view that emotions are the result of stimuli being evaluated according to their
goal/need relevance. However, in cognitive appraisal theory the ‘goal’ is defined at a differ-
ent level of abstraction.

2.3 Computer science

Affective modelling is a vibrant field in computer science with active subfields (Calvo et al.
2015), includingwork on affect detection and social signal processing (Vinciarelli et al. 2012;
Calvo and D’Mello 2010), computational modelling of affect in robots and virtual agents
(Marsella et al. 2010), and expression of emotion in robots and virtual agents (Ochs et al.
2015; Paiva et al. 2015; Lhommet andMarsella 2015). Since this survey focusses on affective
modelling, in particular in RL-based agents, we provide some context by discussing emotions
in different agent architectures, in particular symbolic and (non-RL)machine learning-based.

One of the earliest symbolic/cognitive architectures was Velasquez’ Cathexis model
(Velasquez 1998). It incorporated Ekman’s six emotions in the pet robot Yuppy, which later
also formed the basis for the well-known social robot Kismet (Breazeal 2003). Several well-
known symbolic architectures have also incorporated emotions, either based on categorical
emotions (Murphy et al. 2002), somatic marker hypothesis (Laird 2008), or appraisal theories
[EMIB (Michaud 2002), EMA (Marsella and Gratch 2009) and LIDA (Franklin et al. 2014)].
Although symbolic/cognitive architecture approaches are capable of solving a variety of AI
tasks, they are limited with respect to learning from exploration and feedback in unstructured
tasks.

In contrast, machine learning implementations focus on learning, as the agent should
gradually adapt to its environment and task. The dominant research direction in this field is
reinforcement learning (RL) (Sutton and Barto 1998), which we formally introduce in the
next section. There are however other machine learning implementations that incorporate
emotions. Some examples include agents based on evolutionary neural networks (Parisi and
Petrosino 2010), the free-energy principle (Joffily and Coricelli 2013), Bayesian models
(Antos and Pfeffer 2011) or entropy (Belavkin 2004).

Finally, we want to stress that the focus of this review is on agent emotion, i.e. how it is
elicited andmay influence the agent’s learning loop. A related but clearly distinct topic is how
human emotion may act as a teaching signal for this loop. Broekens (2007) showed human
emotional feedback speeds up agent learning in a grid-world task compared to a baseline
agent. There are a few other examples in this direction (Hasson et al. 2011; Moussa and
Magnenat-Thalmann 2013), but in general the literature of emotion as a teaching signal is
limited. Although the way in which humans actually tend to provide feedback is an active
research topic (Thomaz and Breazeal 2008; Knox et al. 2012, 2013), it remains a question
whether emotions would be a viable channel for human feedback. We do not further pursue
this discussion here, and place our focus on agent emotions in RL agents.
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2.4 Computational reinforcement learning

Computational reinforcement learning (RL) (Sutton andBarto 1998;Wiering andVanOtterlo
2012) is a successful approach that enables autonomous agents to learn from interaction
with their environment. We adopt a Markov Decision Process (MDP) specified by the tuple:
{S,A, T, r, γ }, whereS denotes a set of states,A a set of actions, T : S×A → P(S) denotes
the transition function, r : S × A × S → R denotes the reward function and γ ∈ (0, 1]
denotes a discount parameter. The goal of the agent is to find a policy π : S → P(A) that
maximizes the expected (infinite-horizon) discounted return:

Qπ (s, a) = Eπ,T

{ ∞∑
t=0

γ t r(st , at , st+1)|s0 = s, a0 = a
}

=
∑
s′∈S

T (s′|s, a)
[
r(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ (s′, a′)
]

(1)

where we explicitly write out the expectation over the (possibly) stochastic policy and tran-
sition function. The optimal value function is defined as

Q�(s, a) = max
π

Qπ (s, a) (2)

from which we can derive the optimal policy

π�(s) = argmax
a∈A

Q�(s, a) (3)

There are several approaches to learning the optimal policy. When the environmental
dynamics T (s′|s, a) and reward function r(s, a, s′) are known, we can use planning algo-
rithms like Dynamic Programming (DP). However, in many applications the environment’s
dynamics are hard to determine. As an alternative, we can use sampling-based methods to
learn the policy, known as reinforcement learning.

There is a large variety of RL approaches. First, we can separate value-function methods,
which try to iteratively approximate the cumulative return specified in Eq. (1), and policy
search, which tries to directly optimize some parameterized policy. Policy search shows
promising results in real robotic applications (Kober and Peters 2012). However, most work
in RL utilizes value-function methods, on which we also focus in this survey.

Among value-function methods we should identify model-free versus model-based
approaches. In model-free RL we iteratively approximate the value-function through tempo-
ral difference (TD) learning, thereby avoiding having to learn the transition function (which is
usually challenging).Well-known algorithms are Q-learning (Watkins 1989), SARSA (Rum-
mery and Niranjan 1994) and TD(λ) (Sutton 1988). The update equation for Q-learning is
given by:

Q(s, a) = Q(s, a) + α
[
r(s, a, s′) + γ max

a′ Q(s′, a′) − Q(s, a)
]

(4)

where α specifies a learning rate. With additional criteria for the learning and exploration
parameters we can show this estimation procedure converges to the optimal value function
(Sutton and Barto 1998).

Model-based RL (Hester and Stone 2012b) is a hybrid form of planning (like DP) and
sampling (like TD learning). In model-based RL, we approximate the transition and reward
function from the sampled experience. After acquiring knowledge of the environment, we
can mix real sample experience with planning updates. We will write M = {T̂ , r̂} to denote
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the estimatedmodel. Note that a model is derived from the full agent-environment interaction
history at time-point t , as given by gt = {s0, a0, s1, a1, s2, . . . st−1, at−1, st }.

A final aspectwe have not yet discussed is the nature of the reward function. Traditional RL
specifications assume an external reward signal (known as an ‘external Critic’). However, as
argued by Chentanez et al. (2004), in animals the reward signal is by definition derived from
neuronal activations, and the Critic therefore resides inside the organism. It therefore also
incorporates information from the internal environment, making all reward ‘internal’. Singh
et al. (2010) identifies two types of internal reward: extrinsic internal and intrinsic internal
(we will omit ‘internal’ and simply use extrinsic and intrinsic from now on). Extrinsic reward
is related to resources/stimuli/goals in the external world (e.g. food), possibly influenced by
internal variables (e.g. sugar level). In RL terms, extrinsic reward explicitly depends on the
content of the sensory information (i.e. the observed state). On the contrary, intrinsic reward is
not dependent on external resources, but rather derived from the agent-environment history g
and current model M . An example of intrinsic reward in animals is curiosity. Intrinsic reward
is domain-independent, i.e. curiosity is not related to any external resource, but can happen
at any state (dependent on the agent history g). In contrast, extrinsic reward for food will
never occur in domains where food does not occur. Intrinsic motivation has been identified
to serve a developmental role to organisms.

3 Survey structure and methodology

We intended to include all research papers in which reinforcement learning and emotion play
a role.We conducted a systematicGoogle Scholar search for ‘Emotion’AND ‘Reinforcement
Learning’ AND ‘Computational’, and for ‘Emotion’ AND ‘Markov Decision Process’. We
scanned all abstracts for the joint occurrence of emotion and learning in the proposed work.
When in doubt, we assessed the full article to determine inclusion. Moreover, we investigated
all papers citing several core papers in the field, for example, Gadanho and Hallam (2001),
Salichs and Malfaz (2012), Broekens et al. (2007a) and Marinier and Laird (2008). This
resulted in 52 papers included in this survey. A systematic overview of these papers can be
found in Tables 9 and 10.

The proposed taxonomy of emotion elicitation, type and function is shown in Table 1,
also stating the associated subsection where each category is discussed. The elicitation and
function categories are also visually illustrated in Fig. 1, a figure that is based on themotivated
RL illustration (with internal Critic) introduced in Chentanez et al. (2004). Figure 1 may
be useful to refer back to during reading to integrate the different ideas. Finally, for each
individual paper the reader can verify the associated category of emotion elicitation, type
and function through the colour coding in the overview in Table 9.

There is one important assumption throughout this work, which we want to emphasize
here. We already introduced the distinction between extrinsic and intrinsic motivation in
RL at the end of the last section. Throughout this work, we parallel extrinsic motivation
with homeostasis (Sect. 4.1), and intrinsic motivation with appraisal (Sect. 4.2). The extrin-
sic/intrinsic distinction is clearly part of the RL literature, while homeostasis and especially
appraisal belong to the affective modelling literature. We group these together, as the con-
cept of extrinsic motivation is frequently studied in combination with homeostasis, while
intrinsic motivation shows large overlap with appraisal theory. We will identify this overlap
in the particular sections. However, the point we want to stress is that the concepts are not
synonyms. For example, it is not clear whether some intrinsic motivation or appraisal dimen-
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Table 1 Overview of categories in emotion elicitation, emotion type and emotion function

Emotion elicitation Emotion type Emotion function

Section 4.1 Homeostasis and extrinsic motivation Section 5.1 Categorical Section 6.1 Reward modification

Section 4.2 Appraisal and intrinsic motivation Section 5.2 Dimensional Section 6.2 State modification

Section 4.3 Value/reward-based Section 6.3 Meta-learning

Section 4.4 Hard-wired Section 6.4 Action selection

Section 6.5 Epiphenomenon

The number before each category identifies the paragraph where the topic is discussed. Emotion elicitation and
function are also visually illustrated in Fig. 1

Fig. 1 Schematic representation of motivated reinforcement learning based on Chentanez et al. (2004).
Although traditional RL assumes an external Critic (to provide the reward signal), this actually happens
inside the brain of real-world organisms. Thereby the Critic also incorporates, apart from external sensations,
internalmotivations to determine the current reward and state.Motivations have been derived fromhomeostatic
variables and/or internal models. The Critic then feeds the state and reward to the Agent. The Agent usually
learns a value function (AdaptiveCritic) and determines the next action (Actor).Note that ordinaryRL, inwhich
the reward is a fully external stimulus, is still a specific case of this scheme (with the Critic as identity function).
Emotion elicitation (green) has been associated to (A) Homeostasis and extrinsic motivation (Sect. 4.1), (B)
Appraisal and intrinsic motivation (Sect. 4.2), (C) Reward and value function (Sect. 4.3) and (D) Hard-wired
connections from sensations (Sect. 4.4). Subsequently, the elicited emotion may also influence the learning
loop. Emotion function (blue) has been linked to (I) Reward modification (Sect. 6.1), (II) State modification
(Sect. 6.2), (III) Meta-learning (Sect. 6.3), (IV) Action selection (Sect. 6.4) and finally as (V) Epiphenomenon
(Sect. 6.5) (Color figure online)
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sions also show homeostatic dynamics [a point at which we tend to disagree with Singh et al.
(2010)]. However, a full discussion of the overlap and difference moves towards psychology,
and is beyond the scope of our computational overview. We merely identify the overlap we
observed in computational implementations, and therefore discuss both extrinsic/homeostasis
and intrinsic/appraisal as single sections.

4 Emotion elicitation

We identify four major categories of emotion elicitation: extrinsic/homeostatic (Sect. 4.1),
intrinsic/appraisal (Sect. 4.2), value function and reward-based (Sect. 4.3), and finally hard-
wired (Sect. 4.4).

4.1 Homeostasis and extrinsic motivation

Several computational implementations of emotions involve homeostatic variables, drives
and motivations. The notion of internal drives originates from the Drive Reduction Theory
developed by Hull (1943), which identifies drive reduction as a central cause of learning.
These innate drives are also known as primary reinforcers, as their rewarding nature is hard-
wired in our system (due to evolutionary benefit). An example of a homeostatic variable
is energy/sugar level, which has a temporal dynamic, an associated drive when in deficit
(hunger) and can be satiated by an external influence (food intake). The reader might now
question why machines even need something like ‘hunger’. However, for a robot the current
energy level shows similarity to human sugar levels (and body integrity and pain show
similarity to a robot’s mechanical integrity, etc.). Thereby, homeostasis is a useful concept
to study in machines as well (see also the remark about bio-inspiration in the Introduction).
There is a vast literature on motivated reinforcement learning, see e.g. Konidaris and Barto
(2006) and Cos et al. (2013), mainly for its potential to naturally switch between goals.
Early implementations of these ideas outside the reinforcement learning framework were by
Cañamero (1997a, b).

We denote a homeostatic variable by ht , where t identifies the dependency of this variable
on time. The organism’s full physiological state is captured by Ht = {h1,t , h2,t . . . hN ,t },
where hi,t indicates the i th homeostatic variable. Each homeostatic variable has a certain
set point H � = {h�

1, h
�
2 . . . h�

N } (Keramati and Gutkin 2011). Furthermore, each homeostatic
variable is affected by a set of external resources, associated to a particular action or state.
For example, a particular homeostatic variable may increase upon resource consumption,
and slightly decrease with every other action (Konidaris and Barto 2006). More formally,
denoting resource consumption by ā and the presence of a resource by s̄, a simple homeostatic
dynamic would be

hi,t+1 =
{
hi,t + ψ(st , at ) if at ∈ ā, st ∈ s̄

hi,t − ε otherwise
(5)

for a resource effect of sizeψ(st , at ). We can also explicitly identify a drive as the difference
between the current value and setpoint, i.e. di,t = |h�

i − hi,t | (Cos et al. 2013). The overall
drive of the system can then be specified by

Dt =
N∑
i=1

θi di,t =
N∑
i=1

θi |h�
i − hi,t | (6)
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Fig. 2 Schematic illustration of homeostasis and drives. The figure shows a two-dimensional homeostatic
space consisting (as an example) of energy (h1) and water level (h2). The set point (H�) indicates the desired
values for the homeostatic variables. At the current time point t the agent’s homeostatic status is Ht (red).
The associated drive Dt can be visualized as the distance to the set point. Note that we use the Euclidean
distance for the drive here (i.e. Dt = ||H� − Ht ||2), while the text describes the L1-norm example (i.e.
Dt = ||H� − Ht ||1, Eq. 6). We are free to choose any distance metric in homeostatic space. After taking an
action the new homeostatic status becomes Ht+1 (green), in this case bringing both homeostatic levels closer
to their set point. The difference between the drives at both time points has been associated to reward and joy
(see Sect. 6.1). Figure is partially based on Keramati and Gutkin (2011) (Color figure online)

where we introduced θi to specify the weight or importance of the i-th homeostatic variable.
Most examples take the absolute difference between current value and setpoint (i.e. the L1

norm) as shown above. However, we can consider the space of homeostatic variables H ∈ R
N

and in principle define any distance function in this space with respect to the reference point
H � (see e.g. Fig. 2 for a Euclidean distance example).

Theweight of each homeostatic variable (θi ) does not need to befixed in time. For example,
Konidaris makes it a non-linear function of the current homeostatic level hi,t and a priority
parameter ρi,t : θi,t = f (hi,t , ρi,t ). The former dependence allows priorities (i.e. rewards)
to scale non-linearly with the sensory input levels [an idea reminiscent of Prospect Theory
(Kahneman and Tversky 1979)]. The priority parameters ρi,t can be estimated online, for
example assigning more importance to resources which are harder to obtain (i.e. that should
get priority earlier). As a final note on homeostatic RL systems, note that internal variables
need to be part of the state-space as well. One can either include all homeostatic variables and
learn generic Q-values, or include only the dominant drive and learn drive-specific Q-values
(Konidaris and Barto 2006).

The connection between drives/homeostasis and emotions is partially reflected in Dama-
sio’s somaticmarker hypothesis (Damasio 1994), stating that emotions are the result of bodily
sensations. In general, we identify two ways in which homeostatic systems have been used
to elicit emotions. The first elicits categorical emotions from a subset of homeostatic vari-
ables, while the second derives an overall well-being W from the sum of the homeostatic
dimensions.

One of the first RL systems deriving emotions from homeostasis was by Gadanho and
Hallam (1998, 2001). They describe an extensive set of internal variables (drives), including
e.g. hunger (rises per timestep in lack of resources), pain (rises with collisions), restlessness
(rises with non-progress) and temperature (rises with highmotor usage). Emotions are related
to these physiological variables, e.g. happiness is derived from the frequent motor use or
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Table 2 Overview of most frequently investigated homeostatic dimensions, their associated drive in case of
deficit, and the papers in which example implementations can be found

Homeostasic variable Drive Papers

Food/energy Hunger Gadanho and Hallam (2001), Salichs and Malfaz (2012),
Coutinho et al. (2005), Von Haugwitz et al. (2012),
Goerke (2006) and Tanaka et al. (2004)

Water level Thirst Salichs and Malfaz (2012) and Coutinho et al. (2005)

Body integrity Pain Gadanho and Hallam (2001), Coutinho et al. (2005), Tanaka
et al. (2004) and Lee-Johnson et al. (2010)

Activity Restlessness Gadanho and Hallam (2001), Coutinho et al. (2005) and
Von Haugwitz et al. (2012)

Energy (movement) Sleep/tiredness Salichs and Malfaz (2012), Coutinho et al. (2005), Von
Haugwitz et al. (2012), Goerke (2006) and Tanaka et al.
(2004)

Social interaction Loneliness Salichs and Malfaz (2012)

decreasing hunger, sadness from low energy, fear from collisions (with less sensitivity if the
agent is hungry or restless), and anger from high restlessness. Similar ideas are put forward by
Coutinho et al. (2005), who specifies a more biological homeostasis: blood sugar (increases
with food intake), endorphine (increases with play), energy (increases with bed rest), vascular
volume (increases with water intake) and body integrity (decreases with obstacle collision).
Similar examples of homeostatic emotions can be found in Von Haugwitz et al. (2012),
Tanaka et al. (2004) and Goerke (2006).

A second group of implementations first defines the overall well-being (W ). An example
of a well-being specification is

Wt = K − Dt = K −
N∑
i=1

θi |h�
i − hi,t | (7)

where K denotes a reference value. Compared to the previous paragraph, now all internal
variables (instead of subsets) are combined into a single emotion. Some papers leave the
specification of well-being as their emotion (Gadanho 2003). Others actually identify the
positive or negative difference in well-being as happy and unhappy (Salichs and Malfaz
2012) or ‘hedonic value’ (Cos et al. 2013).

In conclusion, there have been numerous approaches to homeostatic systems in emotional
implementations.A summaryof someof themost frequently encounteredhomeostatic dimen-
sions is shown in Table 2. Although most papers use slightly different specifications for their
homeostatic dimensions, it is usually a matter of labelling that does not affect the underlying
principle. Homeostatic variables provide a good way to naturally implement goal and task
switching. The implementation of this functionality usually involves reward modification,
which is covered in Sect. 6.1.

4.2 Appraisal and intrinsic motivation

Appraisal theory is an influential psychological emotion theory (see Sect. 2). Appraisals
are domain independent elements that provide (affective) meaning to a particular stimu-
lus. As such, they are a basis for emotion elicitation, as different combinations of appraisal
dimensions have different associated emotions. Examples of appraisal dimensions are nov-
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elty, recency, control and motivational relevance. These terms of course refer to abstract
cognitive concepts, but in RL literature they show a large overlap with intrinsic motivation
features, being independent of a specific external resource. Instead, they are functions of the
agent-environment interaction history g and derived model M :

ζ j (s, a, s′) = f j (g, M) (8)

for the j th appraisal variable. Note that the current state and action are actually included
in g, but we emphasize that f j (·) is not a function of the actual content of any state s
(see Sect. 2.4 for a discussion of the extrinsic/intrinsic distinction). Rather, f j (·) computes
domain-independent characteristics, like ‘recency’ which may be derived from g, and ‘moti-
vational relevance’ which can be derived by planning over M .

Intrinsic motivation is an active topic in developmental robotics (Oudeyer and Kaplan
2007). Singh et al. (2010) shows how incorporating these dimensions as extra reward pro-
vides better task achievement compared to non-intrinsically motivated agents (see Sect. 6.1).
We discuss two implementations based on these ideas more extensively: Marinier and Laird
(2008) and Sequeira et al. (2011). The work by Marinier and Laird (2008) takes a diverse set
of appraisal dimensions based on Scherer’s appraisal theory (Scherer 1999). These include
both sensory processing dimensions, like suddenness, intrinsic pleasantness and relevance,
and comprehension and reasoning dimensions, like outcome probability, discrepancy from
expectation, conduciveness, control and power. The implementation by Sequeira et al. (2011)
uses a smaller subset of appraisal dimensions: novelty, relevance, valence and control. Note
that these appraisal-based papers only elicit appraisal dimensions, without specifying cate-
gorical or dimensional emotions on top (see Table 9, i.e. appraisal papers with empty middle
column).

We now highlight some appraisal implementations, both to concretize their specification
in MDPs, and illustrate the differences between models. Sequeira et al. (2011) specifies
‘motivational relevance’ as inversely related to the distance to the goal. If we implement a
planning procedure over our model M which returns an estimated distance d̂(s, s◦) to the
goal node s◦ from our current node s, then the associated appraisal variable for motivational
relevance could be (Sequeira et al. 2011):

ζrelevance(s) = 1

1 + d̂(s, s◦)
(9)

Similarly, if we denote by c(s) the number of time-steps since node s was last visited, then
we can specify a ‘recency’ feature as (Bratman et al. 2012):

ζrecency(s) = 1 − 1

c(s)
(10)

This example intrinsic motivation vector ζ = {ζrelevance, ζrecency} is used in Sect. 6.1 to
show its use in reward modification.

There are several more specifications in intrinsic motivation RL literature that reflect
appraisal dimensions. For example, Hester and Stone (2012a)maintain an ensemble of transi-
tionmodels (by stochastically adding new data to eachmodel) and derive ‘model uncertainty’
from the KL-divergence (as a measure of the distance between two probability distributions)
between the ensemble model’s predictions:

ζuncertainty(s, a) =
∑
i �= j

DK L

[
Ti (s

′|s, a)‖Tj (s
′|s, a)

]
(11)
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for all pairs ofmodels i and j in the ensemble.As a second example from their paper, ‘novelty’
of a state-action pair is identified from the closest L1-distance to a historical observation:

ζnovelty(s, a) = min
<si ,ai>∈g ‖〈s, a〉 − 〈si , ai 〉‖1 (12)

Recently, Houthooft et al. (2016) derive ‘curiosity/surprise’ from the KL-divergence between
the old and new transition models (i.e. after updating based on the observed transition):

ζcuriosi t y(s, a, s′) = DKL

[
T (ω|gt , a, s′)‖T (ω|gt )

]
(13)

where T (ω) denotes the transition model parameterized by ω. Together, Eqs. 9–13 illustrate
how intrinsic motivation and appraisal theory have modelled similar notions, and gives a
short illustration of the variety of concepts that are expressible in the MDP setting.

It is also important to note that appraisal theory bears similarities to many ‘domain-
independent’ heuristics developed in the planning community (Russell et al. 1995). These
of course include heuristics without a clear psychological or biological interpretation, but
we mainly emphasize the potential for cross-breeding between different research fields.
For example, some appraisal theories partition novelty into three sub-elements: familiarity,
suddenness and predictability (Gratch and Marsella 2014). Each of these seem to capture
different computational concepts, and such inspirationmay benefit intrinsicmotivation and/or
planning researchers. The other way around, psychologist could seek for results from the RL
or planning literature to develop and verify psychological theory as well.

There are several other implementations of appraisal dimensions, e.g. by Yu et al. (2015),
Lee-Johnson et al. (2010), Williams et al. (2015), Si et al. (2010), Kim and Kwon (2010),
Hasson et al. (2011) and Moussa and Magnenat-Thalmann (2013). We also encounter a few
explicit social dimensions, like social fairness (Yu et al. 2015) and social accountability (Si
et al. 2010), although the latter for example requires some symbolic reasoning on top of
the RL paradigm. This illustrates how current RL algorithms (for now) have trouble learning
complex social phenomena. Some of the appraisal systems also include homeostatic variables
(Yu et al. 2015). Both Williams et al. (2015) and Lee-Johnson et al. (2010) do not mention
appraisal in their paper, but their dimensions can be conceptualized as intrinsic motivation
nevertheless.

In summary, some appraisal-based dimensions require cognitive reasoning, and are harder
to implement. However, dimensions like novelty, motivational relevance and intrinsic pleas-
antness are frequently implemented (see Table 3). Table 4 provides a more systematic
overview of the actual connections to the RL framework. These features usually require
learned transition functions, recency features or forward planning procedures over the model
space, which can all be derived from the history g. Also note that a single concept may
be interpreted in very different ways (Table 4). For example, control and power have been
derived from the transitions function (Kim and Kwon 2010), from the number of visits to a
state (Sequeira et al. 2011), from a forward planning procedure (Si et al. 2010) and from the
overall success of the agent (Williams et al. 2015). We encounter a fundamental challenge
in the field here, namely how to translate abstract cognitive concepts to explicit (broadly
accepted) mathematical expressions.

4.3 Value function and reward

The third branch of emotion elicitation methods in RL focusses on the value and reward
functions. We can generally identify four groups: value-based, temporal difference-based,
average reward-based and reward-based (Table 5).
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Table 3 Overview of frequently investigated appraisal dimensions

Appraisal dimension Paper

Novelty Sequeira et al. (2011), Kim and Kwon (2010), Si et al.
(2010) and Williams et al. (2015)

Recency Marinier and Laird (2008)

Control/power Marinier and Laird (2008), Sequeira et al. (2011), Kim and
Kwon (2010), Si et al. (2010) and Williams et al. (2015)

Motivational relevance
Marinier and Laird (2008), Sequeira et al. (2011), Hasson
et al. (2011), Kim and Kwon (2010), Si et al. (2010) and
Williams et al. (2015)

Intrinsic pleasantness Marinier and Laird (2008), Sequeira et al. (2011) and
Lee-Johnson et al. (2010)

Model uncertainty Marinier and Laird (2008), Lee-Johnson et al. (2010), Kim
and Kwon (2010) and Williams et al. (2015)

Social fairness/attachment Yu et al. (2015) and Moussa and Magnenat-Thalmann
(2013)

Social accountability Si et al. (2010) and Kim and Kwon (2010)

One of the earliest approaches to sequential decision making based on emotion was by
Bozinovski (1982) and Bozinovski et al. (1996), who considered emotion to be the expected
cumulative reward (i.e. the state-action value) received from taking an action in that state.
Thereby, Bozinovski actually developed a precursor of Q-learning grounded in emotional
ideas. Other implementations have also considered emotion as the state value. For example,
Matsuda et al. (2011) maintains a separate value function for fear, which is updated when the
agent gets penalized. Recent work by Jacobs et al. (2014) considers the positive and negative
part of the state as the hope and fear signal. Another value-based approach is by Salichs
and Malfaz (2012), who model the fear for a particular state as the worst historical Q-value
associated with that state. As such, their model remembers particular bad locations for which
it should be afraid.

A second group of value function related implementations of emotions are based on the
temporal difference error (TD). For Q-learning, the TD is given by

δ = r(s, a, s′) + γ max
a′ Q(s′, a′) − Q(s, a) (14)

There has been extensive research in neuroscience on the connection between dopamine
and the TD. Following these ideas, there have also been implementations connecting happi-
ness and unhappiness to the positive and negative TD, respectively (Moerland et al. 2016;
Jacobs et al. 2014; Lahnstein 2005). Models based on the temporal difference are robust
against shifting the reward function by a constant (a trait that is not shared by the models of
the first group of this section). More recently, Moerland et al. (2016) extended these ideas
by deriving hope and fear signals from anticipated temporal differences (through explicit
forward simulation from the current node).

Another branch of emotion derivations base themselves on the average reward. For exam-
ple, Broekens et al. (2007a), Schweighofer and Doya (2003) and Hogewoning et al. (2007)
derive a valence from the ratio between short- and long-term average reward. Shi et al.
(2012) also derives emotions from the temporal change in reward function, while Blanchard
and Canamero (2005) uses the average reward. Other implementations interpreted the reward
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Table 5 Overview of elicitation methods based on value and/or reward functions

Method Papers

Value Bozinovski (1982); Bozinovski et al. (1996), Matsuda et al.
(2011), Jacobs et al. (2014) and Salichs and Malfaz (2012)

Temporal difference Moerland et al. (2016), Jacobs et al. (2014) and Lahnstein
(2005)

Average reward Broekens et al. (2007a), Schweighofer and Doya (2003),
Hogewoning et al. (2007), Shi et al. (2012) and Blanchard
and Canamero (2005)

Reward Moren and Balkenius (2000), Balkenius and Morén (1998)
and Ahn and Picard (2006)

Implementations are either based on the raw value function, the temporal difference error, some derivative of
an average reward or from the raw reward function

itself as the emotional signal (Moren and Balkenius 2000; Balkenius and Morén 1998; Ahn
and Picard 2006).

In conclusion, emotions have been related to the value function, temporal difference error
or direct derivative of the reward function (Table 5). Note that some implementations try to
incorporate a time dimensions aswell (besides only the reward or value signal), e.g.Moerland
et al. (2016), Salichs and Malfaz (2012) and Broekens et al. (2007b).

4.4 Hard-wired

While all three previous groups used internal agent/robot aspects, a final category specifies
hard-wired connections from sensory input to emotions. A first group of implementations
use the detected emotional state of another person to influence the emotion of the agent/robot
(Hoey et al. 2013; Ficocelli et al. 2016).Hasson et al. (2011) uses facial expression recognition
systems to detect human emotion, while Kubota and Wakisaka (2010) uses human speech
input. Note that if these agent emotions subsequently influence agent learning, then we come
very close to learning from human emotional feedback (as briefly described in Sect. 2.3).

There are several other implementations that pre-specify sensation-emotion connections.
In general, these approaches are less generic compared to the earlier categories. Some use
for example fuzzy logic rules to connect input to emotions (Ayesh 2004). Another example
we encountered is the previous emotional state (at t − 1) influencing the current emotional
state (Kubota and Wakisaka 2010). An example is the Markovian transition model between
emotions in Ficocelli et al. (2016), with similar ideas in Zhang and Liu (2009). This is a
reasonable idea for smoother emotion dynamics, but we still categorize it as hard-wired
since it does not explain how initial emotions should be generated.

Finally, there is also overlap with previously described elicitation methods. For example,
Tsankova (2002) derives an emotion (frustration) directly from the collision detector. This
is very similar to some homeostatic specifications, but Tsankova does not include a body
integrity or pain variable (i.e. it is therefore not a homeostatic system, but the author does
make the connection between pain or non-progress and frustration). In conclusion, the hard-
wired emotion elicitation does not seem toprovide us anydeeper understanding about emotion
generation in RL agents, but the papers in this category may actually implement ideas from
different elicitation methods.
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5 Emotion type

Having discussed the methods to elicit emotions, this section discusses which types of emo-
tions are specified.We cover both categorical (Sect. 5.1) and dimensional (Sect. 5.2) emotion
models. Note however that some appraisal theory-based papers only elicit appraisal dimen-
sions, without specifically identifying emotions (see Table 9).

5.1 Categorical

Most papers in the emotion and RL literature elicit categorical emotions. An overview of
the most occurring emotions and their associated papers is presented in Table 6. Joy (or
happiness) is the most implemented emotion by a wide variety of authors. We did not include
the papers that specify a valence dimension (see Sect. 5.2), but this could also be interpreted
as a happy-sad dimension. A few papers Von Haugwitz et al. (2012) and Tanaka et al.

Table 6 Overview of categorical emotion implementations

Categorical emotion Paper

Joy/happy Gadanho and Hallam (2001), Von Haugwitz et al. (2012),
Ficocelli et al. (2016), Tanaka et al. (2004), Goerke
(2006), Yu et al. (2015), Lee-Johnson et al. (2010),
Williams et al. (2015), Hasson et al. (2011), Moussa and
Magnenat-Thalmann (2013), Salichs and Malfaz (2012),
Cos et al. (2013), Moerland et al. (2016), Jacobs et al.
(2014), Lahnstein (2005), Shi et al. (2012), El-Nasr et al.
(2000) and Kubota and Wakisaka (2010)

Sad/unhappy/distress Gadanho and Hallam (2001), Von Haugwitz et al. (2012),
Ficocelli et al. (2016), Tanaka et al. (2004), Yu et al.
(2015), Lee-Johnson et al. (2010), Moussa and
Magnenat-Thalmann (2013), Salichs and Malfaz (2012),
Moerland et al. (2016), Jacobs et al. (2014), Lahnstein
(2005), El-Nasr et al. (2000) and Kubota and Wakisaka
(2010)

Fear Gadanho and Hallam (2001), Von Haugwitz et al. (2012),
Tanaka et al. (2004), Goerke (2006), Yu et al. (2015),
Lee-Johnson et al. (2010), Williams et al. (2015), Salichs
and Malfaz (2012), Moerland et al. (2016), Jacobs et al.
(2014), Matsuda et al. (2011), Shi et al. (2012), El-Nasr
et al. (2000) and Kubota and Wakisaka (2010)

Anger Gadanho and Hallam (2001), Von Haugwitz et al. (2012),
Ficocelli et al. (2016), Tanaka et al. (2004), Goerke
(2006), Yu et al. (2015), Hasson et al. (2011), Moussa and
Magnenat-Thalmann (2013), Shi et al. (2012), El-Nasr
et al. (2000) and Kubota and Wakisaka (2010)

Surprise Von Haugwitz et al. (2012), Tanaka et al. (2004) and
Lee-Johnson et al. (2010)

Hope Moerland et al. (2016), Jacobs et al. (2014), Lahnstein
(2005) and El-Nasr et al. (2000)

Frustration Hasson et al. (2011), Huang et al. (2012) and Tsankova
(2002)
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Table 7 Overview of four categorical emotion (columns) elicitations for different papers (rows) (Color figure
online)

Happy/Joy Sad/Distress Fear Anger

 Gadanho and
Hallam. (1998)

High energy Low energy Pain High
restlessness
(low progress)

 Goerke. (2006) All drives low – Homesick and
low energy

Hunger and
homesick and
high energy

 Kim and
Kwon. (2010)

Goal
achievement

No goal
achievement

Pain No progress

 Williams
etal. (2015)

Progress and
control and low
pain

– Pain and novelty –

 Salichs and
Malfaz. (2012)

Positive delta
well-being

Negative delta
well-being

Worst
historical
Q(s,a)

–

 Moerland
etal. (2016)

Positive TD Negative TD Anticipated
negative TD

–

 Shi et al.
(2012)

Increasing
positive reward

– Increasing
negative
reward

Decreasing
positive reward

 Yu et al.
(2015)

High
well-being

Egoistic agent
and low
well-being

Agent defects
and others
cooperate

Agent
cooperates and
others defect

The text in each cell specifies the elicitation condition. We observe different categories of emotion elicitation,
i.e. homeostatic (blue, Sect. 4.1), appraisal (green, Sect. 4.2) and value-based (red, Sect. 4.3). We see how
single emotions are connected to different elicitation methods (multiple colours in single column) and how
single papers use different elicitation methods (multiple colours in single row)

(2004) specifically address Ekman’s six universal emotions (happy, sad, fear, anger, surprise,
disgust), while most papers drop the latter two emotions.

In general, happy, sad, fear and anger have been implemented in all elicitation categories
(homeostatic, appraisal and value-based). However, hope has mainly been connected to value
function based systems. The implementations of hope try to assess anticipation (by addressing
the value function (Jacobs et al. 2014), the dynamicswithin a decision cycle (Lahnstein 2005),
or explicitly forward simulating from the current node towards expected temporal differences
(Moerland et al. 2016). Hope therefore needs a time component, a notionwhich is not directly
available from for example an extrinsic homeostasis dimension.

An overview of the most often elicited emotions (happy, sad, fear and angry) is provided
in Table 7. The table shows that different elicitation methods have been associated to similar
sets of categorical emotions. For example, anger (fourth column) has been associated to
extrinsic homeostasis (e.g. hunger), intrinsic appraisal (e.g. non-progress) and reward-based
(decreasing received reward) elicitation. Note that frustration, a closely related emotion, has
been associated to obstacle detection (Tsankova 2002) and non-progress (Hasson et al. 2011)
as well. The other three emotions in Table 7 have also been associated to each elicitation
dimension, as is easily observed from the colour coding.

Note that Table 7 also shows how different researchers apply different elicitation methods
within one paper (i.e. looking at rows instead of columns now). Moreover, a few papers
even combine elicitation methods for an individual emotion. For example, Williams et al.
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Table 8 Overview of dimensional emotion implementations

Dimensional emotion Paper

Valence Kuremoto et al. (2013), Ahn and Picard (2006), Zhang and Liu
(2009), Broekens et al. (2007a), Broekens (2007), Obayashi et al.
(2012), Hogewoning et al. (2007), Hoey et al. (2013), Guojiang
et al. (2010) and Coutinho et al. (2005)

Arousal Kuremoto et al. (2013), Obayashi et al. (2012), Ayesh (2004), Hoey
et al. (2013), Guojiang et al. (2010) and Coutinho et al. (2005)

Control Hoey et al. (2013)

(2015) derives fear from a combination of pain (extrinsic) and novelty (intrinsic/appraisal).
It is important to realize that the elicitation methods of the previous section are clearly only
a framework. These are not hard separations, and combining different approaches is clearly
possible (and probably necessary), as these papers nicely illustrate.

Finally, many included papers did not fully specify the implemented connections between
elicitationmethod and emotion type,making it difficult to replicate these studies. For example,
Von Haugwitz et al. (2012) only mentions the connections between homeostatic dimensions
and emotions are based on fuzzy logic, but does not indicate any principles underlying the real
implementation. Similar problems occur in Tanaka et al. (2004), Ayesh (2004) and Obayashi
et al. (2012), while Zhou and Coggins (2002) and Shibata et al. (1997) leave the implemented
connections unspecified.

5.2 Dimensional

Relative to the number of implementations of categorical emotions, there is a much smaller
corpus of work on dimensional emotions (Table 8). The most implemented dimension is
valence. Not surprisingly, valence has mostly been derived from reward-based elicitation
methods (Broekens et al. 2007a; Ahn and Picard 2006; Zhang and Liu 2009; Obayashi et al.
2012; Hogewoning et al. 2007). It is also connected to a few extrinsic homeostasis papers
(Coutinho et al. 2005; Gadanho 2003), but then it is referred to as ‘well-being’. Although
this is not completely the same concept, we group these together here for clarity.

Following the dimensional emotion models of Russell and Barrett (1999) introduced in
Sect. 2.1, the second most implemented dimension is arousal. Arousal has been connected to
extrinsic homeostatic dimensions [e.g. pain and overall well-being (Coutinho et al. 2005)],
appraisal-like dimensions [e.g. continuation of incoming stimulus (Kuremoto et al. 2013)],
and a few hard-wired implementations (Ayesh 2004; Guojiang et al. 2010). Note that some
do not use the term arousal but refer to similar concepts, e.g. relaxation (Coutinho et al.
2005) and restlessness (Ayesh 2004). The only paper to extend the valence-arousal space is
by Hoey et al. (2013), who also include control.

In general, the dimensional emotion models seem somewhat under-represented compared
to the categorical emotion implementations. Although the implementation for valence shows
some consistency among papers, there is more difficulty to specify arousal or different emo-
tion dimensions. Nevertheless, the continuous nature of dimensional emotionmodels remains
appealing from an engineering perspective. A possible benefit is the identification of a desir-
able target area in affective space, towards which the agent aims to progress (Guojiang et al.
2010).
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6 Emotion function

We now discuss the ways in which emotions may influence the learning loop. It turns out
emotions have been implicated with all main aspects of this loop: Reward (Sect. 6.1), State
(Sect. 6.2), Adaptive Critic (Sect. 6.3) and Actor (Sect. 6.4). Finally, emotion has also been
studied as an epiphenomenon, i.e. without any effect on the learning loop, but for example to
communicate the learning/behavioural process to other social companions (Sect. 6.5). These
categories are visualized in Fig. 1 (labels I–V). Note that this Section introduces the ways in
which emotion may influence the RL loop on a conceptual level. We summarize the resulting
effect, for example on learning efficiency, in Sect. 7.

6.1 Reward modification

A large group of emotional RL implementations use emotions to modify the reward function.
These approaches add an additive term to the reward function that relies on emotions (we
have only encountered additive specifications). The reward function is given by

rt = r̃t + r�
t (15)

where r̃(t) denotes the external reward function and r�(t) an internal reward based on
emotional mechanisms. In the RL community, Eq. 15 is known as reward shaping (Ng et al.
1999). The internal reward can be targeted at maximizing positive emotions, but is also
frequently associated to homeostatic variables or appraisal dimensions (see Sects. 4.1, 4.2
for elicitation). However, the general underlying principle usually remains that agents seek
to maximize positive emotions and minimize negative emotions.

Homeostasis For homeostatic systems the reward becomes dependent on the current state
of the internal homeostatic variables. Some implementations use the difference in overall
well-being,

r�
t = Wt − Wt−1 = Dt−1 − Dt (16)

where the step from well-being W to overall drive D naturally follows from Eq. (7). In this
specification, the acquisition of fooddoes not provide any reward if the associated homeostatic
variable (e.g. energy/sugar level) is already satiated. Implementations of the above idea can
be found in Gadanho and Hallam (2001), Salichs and Malfaz (2012) and Cos et al. (2013).
Variants of this have focussed on using positive emotions [instead of well-being) as the
reinforcement learning signal, e.g. in Gadanho and Hallam (1998)] and Goerke (2006)).

Appraisal-based Similar ideas are used for appraisal-based reward modifications. Some
examples of appraisal dimension specifications were discussed in Sect. 4.2, with some for-
mal examples in Eqs. 9–13. Appraisal dimensions are related to generic concepts of the
agent history (novelty, recency, consistency of observations with world model) and expecta-
tions with respect to the goal (motivational relevance, intrinsic pleasantness). Several studies
in the intrinsically motivated reinforcement learning literature have identified the learning
and survival benefit of these dimensions (Oudeyer and Kaplan 2007; Oudeyer et al. 2007).
Some authors therefore took appraisal theory as an inspiration to develop intrinsic motivation
features.
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Specifications in this direction therefore usually take the following form:

r�
t =

J∑
j=1

φ jζ j (gt ) (17)

for J appraisal variables and φ j denoting the weight of the j-th appraisal dimension. We
could for example use the two features in Eqs. 9–10, specifying an agent that gets rewarded for
motivational relevance and recency. Note that appraisal specifications usually do not include
the difference with (t − 1), probably because they are usually assumed not to satiate (i.e. no
underlying homeostatic dynamics). We also note that a reward bonus for novelty (e.g. as in
Eq. 12) is in the RL literature usually referred to as ‘optimism in the face of uncertainty’, i.e.
we want to explore where we have not been yet.

Sequeira et al. (2011) actually tries to optimize the vector of weights φ (with respect to
overall goal achievement). In a more recent publication, Sequeira et al. (2014) also extends
this work to actually learn the required appraisal dimensions through genetic programming.
Similar ideas can be found in Marinier and Laird (2008). One of the problems with both
implementations is the distance-to-goal heuristic used by both emotion-based agents, which
has access to additional information compared to the baseline agent (although the heuristic
does not monotonically increase with the actual distance to goal). We discuss the empirical
results of these papers more systematically in Sect. 7.

6.2 State modification

Emotions have also been used as part of the state-space (learning emotion specific value
functions and policies). An example is the social robotMaggie (Castro-González et al. 2013).
When fear is elicited it becomes part of the state-space (replacing the dominant drive in a
homeostatic system), which makes Maggie learn fear-specific action values.

Some papers explicitly write Q(s, a, e), where e denotes the emotional state, to illustrate
this dependency (AhnandPicard2006;Ayesh2004).More examples of such implementations
can be found in Zhang and Liu (2009), Ficocelli et al. (2016), Obayashi et al. (2012) and
Matsuda et al. (2011). Hoey developed a POMDP variant called Bayesian Affect Control
Theory that includes the three-dimensional emotional space (valence, control, arousal) of a
companion (Hoey et al. 2013) and the agent itself (Hoey and Schröder 2015). There are also
implementations that use reinforcement learning to model the affective state of a human or
group (Kim 2015), but note that this is a different setting (i.e. RL to steer human emotional
state instead of agent emotional state).

Using emotion to modify the state can also be seen as a form of representation learning.
There are not many architectures that learn the modification (most hard-code the emotion
elicitation), with the exception ofWilliams et al. (2015). Their architecture has similarities to
the bottle-neck structure frequently encountered in deep neural network research, for example
in (deep) auto-encoders (Goodfellow et al. 2016). We return to the fully-learned approach in
the Discussion (Sect. 8).

6.3 Meta-learning

The previous two sections showed how emotion has been implicated with determining both
the reward and state, which together can be considered as the (Internal) Critic. Afterwards,
the state and reward are used to learn a value function, a process that is usually referred to
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as the Adaptive Critic (see Fig. 1). The learning process requires appropriate (and tedious)
scaling of learning parameters, most noteworthy the learning rate α (see Sect. 2.4).

The connection between emotion and these learning parameters was inspired by the work
of Doya (2000, 2002). He identified neuroscientific grounding for the connection between
several neurotransmitters and several reinforcement learning parameters. In particular, he
proposed connections between dopamine and the temporal difference error (δ), serotonin
and the discount factor (γ ), noradrenaline and the Boltzmann action selection temperature
(β) and acetylcholine and the learning rate (α).

This work inspired both Shi et al. (2012) and Von Haugwitz et al. (2012) to implement
emotional systems influencing these metaparameters. Shi identifies the connections joy→ δ,
anger → β, fear → α and relief → γ , while von Haugwitz changes only the latter two to
surprise → (1 − α) and fear → (1 − γ ).

Recently, Williams et al. (2015) also investigated metaparameter steering in navigation
tasks. Together with Sequeira et al. (2014) they are the only ones to learn the emotional
connections, and then post-characterize the emerged phenomena. Williams trains a classifier
connecting a set of primary reinforcers (both appraisal and homeostasis-based) to themetapa-
rameters of their navigation algorithm. They train two emotional nodes, and only afterwards
anthropomorphized these. One node learned positive connections to progress and control and
negatively to pain and uncertainty, while it caused the robot to increase its speed and reduce
the local cost bias. In contrary, their second node was elicited by pain and novelty, while it
caused the opposite effect of node 1. They afterwards characterized these nodes as ‘happy’
and ‘fear’, respectively.

6.4 Action selection

The final step of the RL loop involves action selection. This incorporates another crucial RL
challenge, being the exploration/exploitation trade-off. Emotions have long been implicated
with action readiness, andwe actually already encountered two papers steering theBoltzmann
action selection temperature β above (as it is technically also a metaparameter of the RL
system). We next focus on those papers that specifically target action selection.

One branch of research focusses on directly modifying the exploration parameter.
Broekens et al. (2007a, b) has done extensive investigations of the connections between
valence and the exploration/exploitation trade-off. In one implementation (Broekens et al.
2007a) selection was based on internal simulation, where a valency determined the thresh-
old for the simulation depth. In another paper (Broekens et al. 2007b) this valency directly
influenced the β parameter in a Boltzmann action selection mechanism. Schweighofer and
Doya (2003) applied small perturbations to the exploration parameters based on emotion,
and subsequently kept the parameters if they performed better. Finally, Hogewoning et al.
(2007) investigated a hybrid system of Broekens and Schweighofer, trying to combine their
strengths.

Other papers use emotion to switch between multiple sets of value functions, thereby
effectively determining which set should currently be used for action selection. For example,
both Tsankova (2002) and Hasson et al. (2011) use a high frustration to switch between
behaviour. Similarly, Kubota and Wakisaka (2010) use several emotions to switch between
the weighting of different value functions. For example, happiness leads to exploration by
selecting a value function derived from inverse recency. Note that such a recency feature was
used in the appraisal section described previously, but there it modified the reward function,
while now emotion is used to switch between value functions. Although this technically leads
to similar behaviour, emotion intervenes at a different level.
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6.5 Epiphenomenon

The final category of functions of emotions seems an empty one: Epiphenomenon. Several
papers have studied emotion elicitation in RL, without the emotion influencing the learning
or behavioural loop. These papers usually focus on different evaluation criteria as well (see
Sect. 7). Examples of papers that only elicit emotions are Coutinho et al. (2005), Goerke
(2006), Si et al. (2010), Kim and Kwon (2010), Bozinovski (1982); Bozinovski et al. (1996),
Jacobs et al. (2014), Lahnstein (2005) and Moerland et al. (2016).

There can however still be a clear function of the emotion for the agent in a social commu-
nication perspective (node V in Fig. 1). Emotion may communicate the current learning and
behavioural process, and also create empathy and user investment. The potential of emotions
to communicate internal state and enhance empathy is infrequently evaluated in current rein-
forcement learning related emotion literature. This seems a fruitful direction when emotions
serve to make an agent or robot more sociable and likeable.

This concludes our discussion of emotion functions in RL agents. The full overview
is provided in Table 10, which mainly lists the categories per paper. The most important
connections between Sects. 4–6 (i.e. column 1 to 3 in Table 9) were described in the text and
tables (e.g. Tables 4, 7).

7 Evaluation

This section systematically addresses the embodiment, test scenario and main empirical
results found in the different papers. A systematic overview of this section is provided in
Table 10.

7.1 Embodiment

We can grossly identify 5 embodiment categories: standard single agent, multiple agents,
screen agents, simulated robot and real robot. The standard agent setting usually concerns
a (gridworld) navigation simulation in some environment designed by the researcher. Some
agents are also designed to appear on a screen for interaction with a user (El-Nasr et al. 2000).
Another group of embodiments concern simulated or real robots. Simulated robots are based
on models of existing real robots, i.e. they usually incorporate more realistic physics and
continuous controls.

There are also real robotic implementations in navigation and resource tasks. However,
several robotic implementations (especially those involving human interaction) use the robot
mainly as physical embodiment (withoutmovingmuch, for example in a dialogue task).Over-
all, most implementations have focussed on simulated agents. It is important to note that most
state-spaces stay relatively small, i.e. sensory information usually has narrowbandwidth (or is
assumed to be appropriately pre-processed). Although this facilitates interpretation, a remain-
ing question is whether the current emotion modelling methods scale to high-dimensional
and complex problems.

7.2 Test scenario

Emotion implementations have been tested in different scenarios: navigation tasks with
resources and/or obstacles, multiple agent interaction settings and human-agent/robot inter-
action tasks.
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Table 9 Systematic overview of emotion elicitation, emotion type and emotion function in the reinforcement
learning loop (see Fig. 1) (Color figure online)

Paper         Emotion elicitation         Emotion type  Emotion function

Gadanho
andHal-
lam.
(1998,
2001)

Homeostasis: hunger,
pain, restlessness, tem-
perature, eating, smell,
warmth, proximity

Categorical: happiness,
sadness, fear, anger

Reward modification:
positive emotion is
reward

Gadanho
(2003)

Homeostasis: energy, wel-
fare, activity

Dimensional: well-being Reward modification:
delta well-being is re-
ward

Cos
e al. 
(2013)

Homeostasis hunger,
tiredness, restlessness

Categorical: hedonic
value

Reward modification:
delta well-being is re-
ward

Coutinho
et al.
(2005)

Homeostasis: blood
sugar, energy, pain, vas-
cularvolume, endorphine

Dimensional: wellness,
relaxation, fatigue

Epiphenomenon

Von
Haugwitz
et al.
(2012)

Homeostasis: hunger,fa-
tigue,interest

Categorical: happiness,
sadness, anger, surprise,
fear, disgust.

Metalearning: reward =
delta happiness, learning
rate =( 1-surprise), dis-
countfactor = (1-fear),
Boltzmann temperature
=anger

Tanaka
et al.
(2004)

Homeostasis: hunger,
fullness, pain, comfort,
fatigue,sleepiness

Categorical: happiness,
sadness, anger, surprise,
disgust,fear,neutral

Epiphenomenon: gesture,
voice, facial expression

Goerke,
(2006)

Homeostasis: fatigue,
hunger, homesickness,
curiosity

Categorical: happiness,
fear, anger, boredom

Reward modification:
positive emotionis
reward

Sequeira
et al.
(2011,
2014)

Appraisal: valency, con-
trol, novelty, motivation

None Reward modification:
summed appraisals
added toreward function

Marinier
and
Laird
(2008)

Appraisal: suddenness,
intrinsic pleasantness,
relevance, conducive-
ness, discrepancy from
expectation, control,
power.

None Reward modification:
summed appraisals is
reward

Yuetal.
(2015,
2013)

Appraisal: social fairness
Value: average reward

Categorical: happiness,
sadness, fear, anger

Reward modification:
positive/negativeemo-
tion is positive/negative
reward

Lee-
Johnson
et al.
(2010,
2007)

Appraisal: model mis-
match
Value: average achieved
reward, global planned
reward
Homeostatic: collision

Categorical: Happiness,
sadness, fear, anger, sur-
prise

Reward modification:
change local reward
(happy and surprise higher,
fear and anger lower)

Williams
et al.
(2015)

Appraisal: novelty,
progress, control, uncer-
tainty
Homeostatic: pain.

Categorical: happiness,
fear (post-characterized)

Metalearning: happy
gives positive reward
bias and higher travel
speed, fear giver negative
reward bias and lower
travel speed

 Sietal,
(2010)

Appraisal: motivational
relevance and congruence,
accountability, control,
novelty.

None Epiphenomenon
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Table 9 continued

 Kim and
Kwon.
(2010)

Appraisal: unexpected-
ness, motive consistency,
control, uncertainty,
agency/accountability

Dimensional: valence,
arousal (not fully explic-
it)

Epiphenomenon: facial a-
vatar, voice, movement of
ears, music

 Hasson
et al.

(2011)

Appraisal: non-progress
Human affective state

Categorical: frustration,
anger, happiness

Action selection: switch
between targets

 Moussa
and
Magnenat-
Thalmann.
(2013)

Appraisal: desirability,
 attachment (OCC
model)

Categorical joy, dis-
tress, happy for, resent-
ment, sorry for, gloating,
gratitude, admiration,
anger, reproach

Reward modification:
reward is difference of
largest positive and
negative current emotion

 Huang
et al.

(2012)

Appraisal: motivational
relevance + goal
reachable

Categorical: Happy, sad,
anger, surprise, fear,
frustration

Epiphenomenon

 Kuremoto
et al.

(2013)

Appraisal: distance to
goal, continuation of
eliciting event

Dimensional: valence,
arousal

Action selection: sepa-
rate emotional Q-value as
part of total summed Q-
value

 Castro-
González
et al.
2013;
Salich-
s and
Malfaz,
(2012)

Value: worst historical
Q-value +
Homeostasis: energy,
boredom, calm, loneli-
ness

Categorical: happiness,
sadness, fear

Reward modification:
delta well-being
State modification: fear
replaces dominant moti-
vation (when threshold is
exceeded)

 Ahn and
Picard.
(2006)

Reward: difference between
experienced reward
and expected immediate
reward of best two avail-
able actions

Dimensional: feeling
good, bad

Action selection: emo-
tional Q-value is part of
total Q-value

 Zhang
and Liu.
(2009)

Reward: difference between
experienced reward
and expected immediate
reward of best action

Dimensional: feeling
good/bad

Action selection: emo-
tional Q-value is part of
total Q-value

 Broekens
et al.
(2007a,b)

Reward: short versus long
term average reward

Dimensional: valence Action selection: emotion
tunes exploration param-
eter and simulation depth

 Moerland
et al.
(2016)

Value: Anticipated tem-
poral difference

Categorical: hope, fear Epiphenomenon

 Jacobs
et al.
(2014)

Value: temporal difference
and posi-
tive/negativepartof
value

Categorical: joy, dis-
tress, hope, fear

Epiphenomenon

 Bozinovski,
(1982)

Value None Epiphenomenon

 Moren
and
Balke-
nius.
(2000)

Value None Epiphenomenon

 Lahnstein.
(2005)

Value: temporal difference Categorical: happiness,
sadness, hope

Epiphenomenon

 Obayashi
et al.
(2012)

Reward: not explicit
Hard-wired: not-explicit

Dimensional: valence,
arousal (with unlabelled
categories)

State modification: emo-
tion specific Q-value

 Matsuda
et al.
(2011)

Reward: only negative re-
ward

Categorical: fear Action selection: separate
emotional value function
is part of action selection

 Schweighofer
and Doy-
a, 2003;
Doya.
(2002)

Reward: mid versus long-
term average reward

None Metalearning: perturba-
tion of discount, learning
and temperature parame-
ter based on emotion
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Table 9 continued

 Hogewoning
et al.
(2007)

Reward: short/midver-
sus long-term average re-
ward

Dimensional: valence Action selection: emotion
tunes exploration (com-
bines (Broekens et al,
2007b) and (Schweighofer
and Doya, 2003) with chi-
square test)

 Shi et al.
(2012)

Reward: change in re-
ward signal

Categorical: joy, fear,
anger, relief

Metalearning: joy = T-
D, anger = temperature,
fear = learning rate, re-
lief = discount parameter
(connection not explicit)

 Blanchard
and
Canamero.
(2005)

Reward: average Categorical: comfort Metalearning: emotion
modulates the learning
rate

 El-Nasr
et al.
(2000)

Value: combined with
fuzzy logic

Categorical: joy, sad-
ness, disappointment,
relief, hope, fear, pride,
shame, reproach, anger,
gratitude, gratification,
remorse

Action selection: emo-
tions are input to a fuzzy
logic action selection sys-
tem

 Kubota
and Wak-
isaka.
(2010)

Hard-wired: from object-
s(users, balls, charger-
s, obstacles), speech and
previous emotional state

Categorical: happiness,
sadness, fear, anger

Action selection: switch
between value functions

 Ayesh.
(2004)

Hard-wired: from state
through fuzzy cognitive
maps

Dimensional: restless,
neutral, stable

State modification: emo-
tion specific Q-values

 Ficocelli
et al.
 (2016)

Human affective state
Hard-wired

Categorical: happiness,
neutral, sadness, angry.

State modification
Action selection: modify
intonation of speech

 Hoey
and
Schröder.
(2015)

Hard-wired from object
observations (social inter-
action)

Dimensional: valence,
control, arousal

State modification: ex-
tended POMDP deriva-
tion with 3D emotional s-
tate

 Tsankova.
(2002)

Hardwired: from obstacle
detectors

Categorical: frustration Action selection: emotion
controls the balancing be-
tween value functions

 Zhou
and Cog-
gins.
(2002)

Hardwired: from sight of
resources
Homeostasis: hunger,
thirst (not connected to
emotion but to reward)

None Reward modification:
reward calculated from
maximum emotion or
motivation.

 Doshi
and Gmy-
trasiewicz.
(2004)

Hard-wired: from sight of
enemy or resource.

Categorical: Contented,
elation, fear, panic.

Action selection: emotion
adjust planning depth
and biases considered ac-
tions

 Gmytrasiewicz
and
Lisetti.
(2002)

Hard-wired: Markovian
transition from previous
emotions and state

Categorical: Coopera-
tive, slightly annoyed,
angry

Meta-learning: emotion
biases transition function
Action selection: emotion
biases available action
subset, biases value
function

 Guojiang
et al.
(2010)

Hard-wired: from exte-
rior incentive like safe-
ty, threat, fancy, surprise
(assumed pre-given)

Dimensional: valence,
arousal

State modification: 2D e-
motional state space
Reward modification: a-
gent should move to de-
sirable area in emotion-
al space (implementation
not specified)

 Shibata
et al.
(1997)

Not explicit Not explicit Not explicit

Papers are ordered by their elicitation method (first column). Note that for homeostatic specification, we try
to use the terms mentioned in the original paper, which may sometimes refer to the drive (i.e. the deficit in
homeostatic variable) rather than the homeostatic dimension itself. Colour coding is based on the first term
mentioned in each cell, grouping the categories as encountered in Sects. 4–6 and Table 1
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Table 10 Systematic overview of test embodiment, scenario, evaluation criterion and main results (Color
figure online)

Paper Embodi-
ment

Scenario Criterion Main result

 Gadanho
and Hal-
lam, 1998,
2001;
Gadanho.
(2003)

Simulated
robot

Multiple
resource
task

Learning Less collisions and higher average reward
with emotional agent

 Cos et al.
(2013)

Grid-
world
agent

Multiple
resource
task

Learning Emergent behavioural cycles fulfilling d-
ifferent drives

 Coutinho
et al.
(2005)

Grid-
world
agent

Multiple
resource
task

– No emotion results

 Von
Haugwitz
et al.
(2012)

Multiple
agents

Game/
competi-
tion

Learning Increased average reward compared to
non-emotional agents

 Tanaka
et al.
(2004)

Real
robot

Human
interacting
(hitting/
padding
robot)

Dynamics Appropriate emotion response (fear and
joy) to bad and good acting person

 Goerke.
(2006)

Simulated
robot +
real robot

Multiple
resource
task

Learning Different behaviour types with emotion
functionality

 Sequeira
et al.
(2011)

Grid-
world
agent

Resource-
predator
task

Learning Improved average fitness compared to
non-appraisal agent

 Marinier
and Laird.
(2008)

Grid-
world
agent

Maze Learning Emotional agent needs less learning
episodes

 Yu et al.
(2015,
2013)

Multiple
agents

Game/ne-
gotiation

Learning Emotional/social agents have higher av-
erage reward and show co-operation

 Lee-
Johnson
et al.
(2010,
2007)

Simulated
robot

Navigation
task

Learning Emotional agent has less collisions and
more exploration, against a higher aver-
age travel time

 Williams
et al.
(2015)

Real
robot

Navigation
task

Learning Less collisions with fear enabled, more
exploration with surprise, quicker routes
with happiness enabled

 Si et al.
(2010)

Multiple
agents

Social
interaction

Dynamics Different appraisal with deeper planning
+ Social accountability realistically de-
rived (compared to other computational
model)

Kim and
Kwon.
(2010)

Real
robot

Social in-
teraction
(question
game) with
human

HRI Users report higher subjective feeling of
interaction and higher pleasantness for
emotional robot + humans correctly i-
dentify part of the underlying robot ap-
praisals based on a questionnaire

 Hasson
et al.
(2011)

Real
robot

Multiple
resource
navigation
task

Learning Robot with emotion can switch between
drives (in case of obstacles) and escape
deadlocks

 Moussa
and
Magnenat-
Thalmann.
(2013)

Real
robot

Human
dialogue
task (while
playing
game)

Dynamics
+ Learn-
ing

Appropriate emotion responses to friend-
ly and unfriendly users + learn different
attitudes towards them

Huang
et al.
(2012)

Grid-
world
agent

Navigation
task

Dynamics Dynamics show how emotion elicitation
varies with planning depth and goal
achievement probability
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Table 10 continued

 Kuremoto
et al.
(2013)

Grid-
world
agent

Predator
task

Learning Quicker goal achievement for emotional
agent compared to non-emotional agent

 Castro-
González
et al.
2013;
Salichs
and
Malfaz.
(2012)

Real
robot

Multiple
resources
task in-
cluding
human
objects

Learning
+ Dy-
namics

Less harmful interactions compared to
non-fear robot + realistic fear dynamics
(compared to animal)

 Ahn and
Picard.
(2006)

Agent Conditioning
experiment

Learning Affective agent learns optimal policy
faster

 Zhang
and Liu.
(2009)

Simulated
robot

Navigation
task

Learning Emotional robot needs less trials to learn
the task

 Broekens
et al.
(2007a,b)

Grid-
world
agent

Maze Learning Emotional control of simulation depth
improves average return. Emotional con-
trol of exploration improves time to goal
and time to find the global optimum

 Moerland
et al.
(2016)

Grid-
world
agent +
Pacman

Resource-
predator
task

Dynamics Appropriate hope and fear anticipation
in specific Pacman scenarios

 Jacobs
et al.
(2014)

Grid-
world
agent

Maze Dynamics Emotion dynamics (habituation, extinc-
tion) simulated realistically compared to
psychological theory

 Bozinovski,
1982;
Bozinovs-
ki et al.
(1996)

Grid-
world
agent

Maze Learning First investigation of emotion as primary
reward, shows agent is able to solve maze
task

 Moren
and Balke-
nius, 2000;
Balke-
nius and
Morén.
(1998)

Agent Conditioning
experiment

Dynamics Agent shows habituation, extinction,
blocking (i.e. of learning signal, not emo-
tion)

 Lahnstein.
(2005)

Real-
robot

Multiple
objects
grasping
task

Dynamics Models dynamics within single decision
cycle, shows plausible anticipation, hedo-
nic experience and subsequent decay

 Obayashi
et al.
(2012)

Grid-
world
agent

Maze Learning Emotional agent needs less steps to goal
(ordinary agent does not converge)

 Matsuda
et al.
(2011)

Multiple
agent
grid-
world

Co-
operation
task

Learning Emotional agents show more co-
operation and adapt better to envi-
ronmental change compared to non-
emotional agents

 Schweighofer
and Doy-
a, 2003;
Doya.
(2002)

Agent Conditioning
experiment
+ Sim-
ulated
pendulum

Learning Dynamic adaptation of meta-parameters
in both static and dynamic environmen-
t. Task not achieved for fixed meta-
parameters

Hogew oning
et al.
(2007)

Grid-
world
agent

Maze Learning Emotional agent cannot improve results
of (Broekens et al, 2007b; Schweighofer
and Doya, 2003)

Shi et al.
(2012)

Grid-
world
agent

Obstacle
and re-
source
task

Learning
+ Dy-
namics

Emotional agent avoids obstacle better.
Different emotion lead to different paths

 Blanchard
and
Canamero.
(2005)

Real
robot

Conditioning
task

Dynamics Robot can imprint desirable stimuli
based on comfort (reward) signal, and
subsequently show approach or avoidance
behaviour
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Table 10 continued

 El-Nasr
et al,
(2000)

Screen a-
gent

Human
interaction
task

HRI Users perceive agent with emotional ac-
tion selection as more convincing

 Kubota
and Wak-
isaka.
(2010)

Simulated
robot

Multiple
objects and
human

Dynamics Emotional robot avoids dangerous areas
due to fear, and starts exploring when
happy

 Ayesh.
(2004)

Real
robot

None None None

 Ficocelli
et al.
(2016)

Real
robot

Human di-
alogue task

HRI +
Dynam-
ics +
Learning

Effective emotion expression (user ques-
tionnaire) + Robot changing emotions to
satisfy different drives

 Hoey and
.redörhcS

(2015)

Agent Social
agent
interaction

Dynamics Model can accurately modify own dimen-
sional emotion with respect to the client
it is interacting with

 Tsankova.
(2002)

Simulated
robot

Navigation
task.

Learning Emotional robot reaches goal more often,
but need more timesteps

 Zhou and
Coggins.
(2002)

Real
robot

Multiple
resources

Learning Emotional robot has higher average re-
ward and less intermediate behaviour
switching compared to non-emotional
robot

 Doshi
and Gmy-
trasiewicz.
(2004)

Grid-
world

Multiple
resource,
predator
task

Learning Emotional agent (with meta-learning)
has higher average return compared to
non-emotional agent

 Gmytrasiewicz
and Lisetti.
(2002)

None None (the-
oretical
model)

None None

 Guojiang
et al.
(2010)

Agent Conditioning
task

Dynamics Agent moves towards beneficial emotion-
al state-space and stays there

 Shibata
et al.
(1997)

Real
robot

Human
stroke/pad
robot

HRI Humans reported a coupling with the
robot, some reported it as intelligent.
Subjects report positive emotions them-
selves

Papers are ordered according to Table 9. Colour coding presented for the evalution criterion column

There is a wide variety of navigation tasks with additional (multiple) resources and obsta-
cles (with associated positive and negative rewards). When resources and obstacles are
non-stationary we usually see the terminology ‘prey’ and ‘predators’. Within this group we
mainly see navigation tasks with a single goal and multiple obstacles [i.e. ‘mazes’ (Marinier
and Laird 2008) or robot navigation (Lee-Johnson et al. 2010; Williams et al. 2015)]. A
second group involves multiple resources, which are mostly connected to underlying homeo-
static systems to investigate behaviour switching. A few tasks also specifically include virtual
enemies (Sequeira et al. 2011) or humans with adversarial intentions (Castro-González et al.
2013; Tanaka et al. 2004).

A second, much smaller group of scenarios involves multiple agents in a social simulation
scenario, either a competitive (Von Haugwitz et al. 2012; Yu et al. 2015) or co-operative
one (Matsuda et al. 2011). The third category tests their implementation in interaction with
humans. This can either involve a human dialogue task (Ficocelli et al. 2016; Moussa and
Magnenat-Thalmann 2013) or physical interaction with a human (Blanchard and Canamero
2005; Shibata et al. 1997).

In general, most papers have constructed their own scenario. We have not seen any test
scenarios being borrowed fromother emotion-learning implementations, nor from the general
reinforcement learning literature. This makes it hard to compare different implementations
amongst each other.
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7.3 Main results

Finally, we discuss what empirical results were found by the various authors. We identify
three main categories in which emotions may be useful to the agent: learning efficiency,
emotion dynamics and human–robot interaction (HRI) (Table 10, third column).

Learning efficiency Most authors in emotion-RL research have focussed on learning effi-
ciency (see Table 10). Overall, emotions have been found beneficial in a variety of learning
tasks. Agents with emotional functionality achieved higher average rewards (Gadanho and
Hallam 2001; Sequeira et al. 2014; Yu et al. 2015) or learned faster (Marinier and Laird
2008; Ahn and Picard 2006; Zhang and Liu 2009). Others researchers focussed on the ability
to avoid specific negative rewards, like the ability to avoid collisions (Gadanho and Hallam
2001; Lee-Johnson et al. 2010) and navigate away from obstacles (Shi et al. 2012). Other
researchers report improved behaviour switching, where emotional agents better alternate
between goals (Cos et al. 2013; Hasson et al. 2011; Goerke 2006). Finally, some authors
specifically show improved exploration (Broekens et al. 2007b). Many authors that focussed
on learning performance do compare to a non-emotional baseline agent, which is of course
a necessary comparison. Altogether, the results show emotions may be a useful inspiration
to improve learning performance of RL agents.

Emotion dynamics A second group of researchers focusses on emotion dynamics, usually
comparing the emergent emotion signals to known psychological theories. For example,
Jacobs et al. (2014) showed patterns of habituation and extinction, Moren and Balkenius
(2000) reproduced blocking, while Blanchard and Canamero (2005) observed approach
and avoidance behaviour in their emotional agent. Other researchers qualitatively interpret
whether the emotion dynamics fit the (social) interaction (Tanaka et al. 2004; Moussa and
Magnenat-Thalmann 2013) or occurs at appropriate states in the scenario (Moerland et al.
2016). Altogether, results in this category show that emotion in RL agents might be a viable
tool to study emotion theories in computational settings.

Human–robot interaction Finally, a third group of researchers focusses on human–robot
interaction evaluation. Their primary focus is to show how emotions may benefit social
interaction with humans, usually by taking questionnaires with the participants after the
experiment. Participants of Ficocelli et al. (2016) report more effective communication,
participants of El-Nasr et al. (2000) found the agent more convincing, and participants of
Shibata et al. (1997) report an increased notion of connection as well as increased perception
of robot intelligence. Kim and Kwon (2010) describe an enhanced pleasant feeling of the
participant after the human-agent interaction. Therefore, there is clear indication that emotion
in RL agents may benefit an interactive learning setting. However, there are relatively few
papers in this category compared to the other two, and this may be a direction for more
research.

8 Discussion

This article surveyed the available work on emotion and reinforcement learning in agents and
robots, by systematically categorizing emotion elicitation, type and function in RL agents.
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We first summarize the main results and identify the challenges encountered throughout the
article.

Emotions have been elicited from extrinsic motivation (in combination with homeostasis),
intrinsic motivation (in combination with appraisal), value and reward functions and as hard-
wired implementation.Wewant to emphasize again that extrinsicmotivation and homeostasis
are not synonyms, nor are intrinsic motivations and appraisal (see Sect. 3). The hard-wired
emotion elicitation seems least useful, as it does not provide any deeper understanding about
emotion generation, and is by definition hand-crafted to the task. The other three elicitation
methods are useful and appear to address different aspects of emotions. Homeostasis focusses
on the inner resource status, appraisal on the inner model status and value/reward focusses
on the learning process. They seem to cover different aspects of emotions. For example,
surprise seems only elicitable from a model, joy from food requires extrinsic motivation and
homeostasis, while aspects like anticipated change need value functions. Finally, note that
there remains slight overlap among categories, i.e. they serve as a framework, but are not
mutually exclusive. This is also illustrated by the overlap among implementations in Table 7.

Regarding emotion types we observed a relatively larger corpus of categorical imple-
mentations than dimensional models. Although dimensional models are appealing from an
engineering perspective, they are usually implemented in 1D (valence) or 2D (valence-
arousal) space. This makes it challenging to implement a diverse set of emotions. We do
want to present a hypothesis here: dimensional and categorical emotions may fit into the
same framework, but at different levels. Concepts like ‘well-being’, as encountered through-
out this survey, do not appear to be categorical emotions, but could be interpreted as valence.
However, an agent can have categorical emotions on top of a well-being/valence system,
joining both emotion types in one system. Similarly, arousal could be related to the speed of
processing of the RL loop, also entering the RL process at a different level.

Finally, emotion function could involve nearly every node in the RL loop: reward, state,
value function and action selection. It seems like all approaches are useful, as each ele-
ment targets a different RL challenge. The fifth emotion function category (epiphenomenon)
should get more attention because it involves a different kind of usefulness (communicative).
Although quite some papers are focussing on emotion dynamics, there is less work on eval-
uating the potential of emotions to communicate the learning process. Thomaz and Breazeal
(2006) found that transparency of the learner’s internal process (in their case through the
robot’s gaze direction) can improve the human’s teaching. We hypothesize emotional com-
munication to express internal state may serve a similar role, which is a topic that could get
more research attention in the future.

Advice for implementation We expect this article is useful to engineers who want to imple-
ment emotional functionality in their RL-based agent or robot. We advise to first consider
what type of functionality is desired. When the goal is to have emotions visualize agent state,
or have believable emotions to enhance empathy and user investment, then emotions can be
implemented as an epiphenomenon (i.e. focus on Sects. 4, 5). The reader could for example
first decide on the desired emotion types, and then check which available elicitation methods
seem applicable (e.g. via Table 9). When one desires emotion function in their agent/robot
as well, then Sect. 6 becomes relevant. We advise the reader to first consider the desired
functionality, e.g. a more adaptive reward function, learning parameter tuning, or modulated
exploration, and then work ‘backwards’ to emotion type and emotion elicitation. Readers
may verify whether there are existing implementations of their requirements through the
colour coding in Table 9.

123



474 Mach Learn (2018) 107:443–480

In general, we believe researchers in the field should start focussing on integrating
approaches. This survey intended to provide a framework and categorization of emotion
elicitation and function, but it seems likely that these categories actually jointly occur in the
behavioural loop. We look forward to systems that integrate multiple approaches. Moreover,
we want to emphasize the paper by Williams et al. (2015) that took a fully learned approach.
Their system contains nodes that were trained for their functional benefit, and later on charac-
terized for the emotion patterns. We expect such an approach to both be more robust against
the complexity problems encountered when developing integrated systems, and to transfer
more easily between problem settings as well.

Testing and quality of the field We also systematically categorized the testing scenarios and
evaluation criteria (Sect. 7; Table 10). There are several points to be noted about the current
testing. First we want to stress a point already made by Cañamero (2003), who noted that
‘one should not put more emotion in the agent than what is required by the complexity
of the system-environment interaction’. Many of the current implementations design their
own (grid) world. While these artificial worlds are usually well-suited to assess optimization
behaviour, it is frequently hard to assess which emotions should be elicited by the agent
at each point in the world. On the other hand, more realistic scenarios quickly become
high-dimensional, and therefore the challenge changes to a representation learning problem.
Potentially, the advances in solving more complex AI scenarios with (deep) RL (Silver et al.
2016; Mnih et al. 2015) may provide more realistic test scenarios in the future as well.

There are two other important observations regarding testing and evaluation. We have not
encountered any (emotional) scenario being reproduced by other researchers. This appears
to us as an important problem. To enhance the standard of the field, researchers should
start reproducing scenarios from other’s work to compare with, or borrow from different
RL literature. The second topic we want to emphasize is the use of different evaluation
criteria. Researchers should choosewhether they target learning efficiency, emotion dynamics
or HRI criteria. If learning performance is your criterion, then your implementation must
include a baseline. When you focus on emotion dynamics, then you should try to validate
by a psychological theory, or ideally compare to empirical (human) data. When you focus
on human interaction criteria, then this should usually involve a questionnaire. Although
questionnaires seems to be consistent practice already, we did observe authors reporting on a
smaller subset of the questions (i.e. posing the risk to have a few results pop out by statistical
chance).

This brings us to a final problem in the field, being the thoroughness of the papers.
Frequently we were unable to fully deduce the details of each implementation. Indeed a full
system description with all the details requires valuable space, but on the other hand, a well-
informed colleague reading a conference paper should be able to reproduce your results.
Only listing the homeostatic/appraisal variables and the emotions that were implemented
does not provide deeper understanding about how the system works. This also makes it
harder to compare between implementations. Differences in notational conventions and slight
differences in definitions further complicate comparisons. Paying attention to these aspects
of reproducibility, for example sticking to conventional RL notation (Sutton and Barto 1998),
will facilitate broader uptake of the work in this field.

Future A core challenge for the future will be to integrate all aspects into one larger system,
potentially taking a fully learned approach. Along the same line, it is a remaining challenge
of this field (and AI in general) to translate higher-level (psychological) concepts into imple-
mentablemathematical expressions. Examples of such translations can be found in Eqs. 9–13,
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and we expect comparing different translations may help identify more consensus. At least
the RL framework provides a common language to start comparing these translations.

With social robots increasingly positioned at our research horizon, we expect interest in
emotion in functional agents to increase in the forthcoming years. However, the current imple-
mentations seldom investigate the full social interaction. Although this is a very high-level AI
challenge, we believe research should focus in this direction to show empirical success. This
involves all aspects of RL in a social context, i.e. robots learning from human demonstration
(LfD) (Argall et al. 2009), learning from human feedback [possibly emotional (Broekens
2007)], human emotions influencing agent emotions, and agent emotions communicating
internal processes back to humans.

From an affective modelling perspective, it is promising to see how a cognitive theory
like appraisal theory turns out to be well-applicable to MDP settings. Apart from integrating
important lines of emotion and learning research, this also illustrates how cognitive and learn-
ing theories are not mutually exclusive.We hope the affectivemodelling community will start
to benefit from the literature on intrinsic motivation in RL as well (Bratman et al. 2012). A
crucial requisite herein will be improving the types of problems that (model-based) RL can
solve.Many scenarios that are interesting from an affectivemodelling viewpoint, for example
high-dimensional social settings, are still challenging forRL.Advances in deep reinforcement
learning (Mnih et al. 2015) might makemore complex scenarios available soon. However, for
affective modelling we especially need the transition function and model-based RL (Deisen-
roth and Rasmussen 2011). Recent work has also shown the feasibility of high-dimensional
transition function approximation (Oh et al. 2015) in stochastic domains (Moerland et al.
2017) under uncertainty (Houthooft et al. 2016). Further progress in this direction should
make the ideas covered in this survey applicable to more complicated scenarios as well.

9 Conclusion

This article surveyed emotionmodelling in reinforcement learning (RL) agents. The literature
has been structured according to the intrinsically motivated RL framework. We conclude by
identifying themain benefits encountered in thiswork for themachine learning (ML), human–
robot interaction (HRI), and affective modelling (AM) communities. For machine learning,
emotion may benefit learning efficiency by providing inspiration for intrinsic motivation,
exploration and formeta-parameter tuning. The current results should stimulate further cross-
over between (intrinsic) motivation, model-based RL and emotion-RL research. For HRI
research, emotions obviously are important for social interaction. More work should be
done on implementing emotion models in interactive reinforcement learning algorithms, for
which the survey presents a practical guideline on implementing emotions in RL agents. For
affective modelling, we conclude that cognitive theories (like appraisal theory) can well be
expressed in RL agents. The general benefits of RL agents (they require few assumptions,
are easily applicable to all kinds of domains, and allow for learning) make them a promising
test-bed for affective modelling research. This survey identifies opportunities for future work
with respect to implementation and evaluation of emotion models in RL agents.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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