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Abstract The goal of this paper is to analyze the intriguing instability of classifiers to adver-
sarial perturbations (Szegedy et al., in: International conference on learning representations
(ICLR), 2014). We provide a theoretical framework for analyzing the robustness of classi-
fiers to adversarial perturbations, and show fundamental upper bounds on the robustness of
classifiers. Specifically, we establish a general upper bound on the robustness of classifiers
to adversarial perturbations, and then illustrate the obtained upper bound on two practical
classes of classifiers, namely the linear and quadratic classifiers. In both cases, our upper
bound depends on a distinguishability measure that captures the notion of difficulty of the
classification task. Our results for both classes imply that in tasks involving small distin-
guishability, no classifier in the considered set will be robust to adversarial perturbations,
even if a good accuracy is achieved. Our theoretical framework moreover suggests that the
phenomenon of adversarial instability is due to the low flexibility of classifiers, compared
to the difficulty of the classification task (captured mathematically by the distinguishability
measure). We further show the existence of a clear distinction between the robustness of
a classifier to random noise and its robustness to adversarial perturbations. Specifically, the
former is shown to be larger than the latter by a factor that is proportional to ~/d (with d being
the signal dimension) for linear classifiers. This result gives a theoretical explanation for the
discrepancy between the two robustness properties in high dimensional problems, which was
empirically observed by Szegedy et al. in the context of neural networks. We finally show
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experimental results on controlled and real-world data that confirm the theoretical analysis
and extend its spirit to more complex classification schemes.

Keywords Adversarial examples - Classification robustness - Random noise - Instability -
Deep networks

1 Introduction

State-of-the-art deep networks have recently been shown to be surprisingly unstable to adver-
sarial perturbations (Szegedy et al. 2014). Unlike random noise, adversarial perturbations are
minimal perturbations that are sought to switch the estimated label of the classifier. On vision
tasks, the results of Szegedy et al. (2014) have shown that perturbations that are hardly per-
ceptible to the human eye are sufficient to change the decision of a deep network, even if
the classifier has a performance that is close to the human visual system. This surprising
instability raises interesting theoretical questions that we initiate in this paper. What causes
classifiers to be unstable to adversarial perturbations? Are deep networks the only classi-
fiers that have such unstable behaviour? Is it at all possible to design training algorithms
to build deep networks that are robust or is the instability to adversarial noise an inher-
ent feature of all deep networks? Can we quantify the difference between random noise
and adversarial noise? Providing theoretical answers to these questions is crucial in order
to achieve the goal of building classifiers that are robust to adversarial hostile perturba-
tions.

In this paper, we introduce a framework to formally study the robustness of classifiers
to adversarial perturbations in the binary setting. We provide a general upper bound on the
robustness of classifiers to adversarial perturbations, and then illustrate and specialize the
obtained upper bound for the families of linear and quadratic classifiers. In both cases, our
results show the existence of a fundamental limit on the robustness to adversarial perturba-
tions. This limit is expressed in terms of a distinguishability measure between the classes,
which depends on the considered family of classifiers. Specifically, for linear classifiers, the
distinguishability is defined as the distance between the means of the two classes, while
for quadratic classifiers, it is defined as the distance between the matrices of second order
moments of the two classes. For both classes of functions, our upper bound on the robustness
is valid for all classifiers in the family independently of the training procedure, and we see
the fact that the bound is independent of the training procedure as a strength. This result has
the following important implication: in difficult classification tasks involving a small value
of distinguishability, any classifier in the set with low misclassification rate is vulnerable to
adversarial perturbations. Importantly, the distinguishability parameter related to quadratic
classifiers is much larger than that of linear classifiers for many datasets of interest, which
suggests the existence of robust classifiers in flexible classification families, even for tasks
where no linear robust and accurate classifiers exist (provably). We further compare the
robustness to adversarial perturbations of linear classifiers to the more traditional notion of
robustness to random uniform noise, where perturbation vectors are sampled uniformly at
random from a sphere. The latter robustness is shown to be larger than the former by a factor
of +/d (with d the dimension of input signals), thereby showing that in high dimensional
classification tasks, linear classifiers can be robust to random noise even for small values of
the distinguishability. We illustrate the newly introduced concepts and our theoretical results
on a running example used throughout the paper. We complement our theoretical analysis
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with experimental results, and show that the intuition obtained from the theoretical analysis
also holds for more complex classifiers.

The phenomenon of adversarial instability has recently attracted a lot of attention from
the deep network community. In Szegedy et al. (2014), the adversarial robustness of different
classifiers is measured as the magnitude of the perturbation required to misclassify a data
point. State-of-the-art classifiers are moreover shown to achieve small robustness. Several
attempts have then been made to make deep networks robust to adversarial perturbations
(Chalupka et al. 2014; Gu and Rigazio 2014; Bendale and Boult 2016), while more advanced
techniques are proposed to defeat the classifiers (Carlini and Wagner 2016). Moreover, a
distinct but related phenomenon has been explored in Nguyen et al. (2014). Closer to our work,
the authors of Goodfellow et al. (2015) provided an empirical explanation of the phenomenon
of adversarial instability, and designed an efficient method to find adversarial examples.
Specifically, contrarily to the original explanation provided in Szegedy et al. (2014), the
authors argue that it is the “linear” nature of deep nets that causes the adversarial instability.
Instead, our paper adopts a rigorous mathematical perspective to the problem of adversarial
instability and shows that adversarial instability is due to the low flexibility of classifiers
compared to the difficulty of the classification task.

Our work should not be confused with works on the security of machine learning algo-
rithms under adversarial attacks (Biggio et al. 2012; Barreno et al. 2006; Dalvi et al. 2004).
These works specifically study attacks that manipulate the learning system (e.g., change
the decision function by injecting malicious training points), as well as defense strategies
to counter these attacks. This setting significantly differs from ours, as we examine the
robustness of a fixed classifier to adversarial perturbations (that is, the classifier cannot be
manipulated). The stability of learning algorithms has also been defined and extensively
studied in Bousquet and Elisseeff (2002), Lugosi and Pawlak (1994). Again, this notion of
stability differs from the one studied here, as we are interested in the robustness of fixed
classifiers, and not of learning algorithms. The security of machine learning algorithms at
test time have also been previously examined in different scenarios, in particular when the
adversary has only limited knowledge about the classifier (Biggio et al. 2013; Dekel et al.
2010; Srndic and Laskov 2014). Unlike these papers that provide an empirical assessment
(and improvement) of the robustness of classifiers to different types of attacks, the goal of
our work is significantly different, as we show fundamental upper bounds on the robustness
of classifiers, which cannot be violated by any learning algorithm.

The construction of learning algorithms that achieve robustness of classifiers to data cor-
ruption has been an active area of research in machine learning and robust optimization (see
e.g., Caramanis et al. 2012 and references therein). For a specific disturbance model on the
data samples, the robust optimization approach for constructing robust classifiers seeks to
minimize the worst possible empirical error under such disturbances (Lanckriet et al. 2003;
Xu et al. 2009). It is shown that, for many disturbance models, the desired objective function
can be written as a tractable convex optimization problem. Our work studies the robustness of
classifiers from a different perspective; we establish upper bounds on the robustness of clas-
sifiers independently of the learning algorithms. That is, using our bounds, we can certify the
instability of a class of classifiers to adversarial perturbations, independently of the learning
mechanism. In other words, while algorithmic and optimization aspects of robust classifiers
have been studied in the above works, we focus on fundamental limits on the adversarial
robustness of classifiers that are independent of the learning scheme.

The paper is structured as follows: Sect. 2 introduces the problem setting. In Sect. 3, we
introduce a running example that is used throughout the paper. We introduce in Sect. 4 a
theoretical framework for studying the robustness to adversarial perturbations. In the follow-
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ing two sections, two case studies are analyzed in detail. The robustness of linear classifiers
(to adversarial and random noise) is studied in Sect. 5. In Sect. 6, we study the adversarial
robustness of quadratic classifiers. Experimental results illustrating our theoretical analysis
are given in Sect. 7. Proofs and additional discussion on the choice of the norms to measure
perturbations are finally deferred to the “Appendix”.

2 Problem setting

We first introduce the framework and notations that are used for analyzing the robustness of
classifiers to adversarial and uniform random noise. We restrict our analysis to the binary
classification task, for simplicity. We expect similar conclusions for the multi-class case, but
we leave that for future work. Let u denote the probability measure on R? of the data points
that we wish to classify, and y(x) € {—1, 1} be the label of a point x € R4 ! The distribution
i is assumed to be of bounded support. That is, P,,(x € B) = 1, with B = {x € RY -
x|l < M} for some M > (. We further denote by 11 and p_ the distributions of class
1 and class —1 in R?, respectively. Let f : RY — R be an arbitrary classification function.
The classification rule associated to f is simply obtained by taking the sign of f(x). The
performance of a classifier f is usually measured by its risk, defined as the probability of
misclassification according to u:

R(f) = Pu(sign(f(x)) # y(x))
= p1Pu (f () <0) + p1Pyu_ (f(x) =2 0),

where p4+1 =P, (y(x) = £1), and sign(a) = lifa > 0, sign(a) = —1ifa < 0.

The focus of this paper is to study the robustness of classifiers to adversarial perturbations
in the input space R?. Given a datapoint x € R? sampled from s, we denote by Auqy(x; f)
the norm of the smallest perturbation that switches the sign? of f:

Aaay(x; f) = min [[7]l2 subject to £ () f (x +7) < 0. (1)
reR

Here, we use the £> norm to quantify the perturbation; we refer the reader to “Appendix C”
for a discussion of the norm choice. Unlike random noise, the above definition corresponds
to a minimal noise, where the perturbation r is sought to flip the estimated label of x. In other
words, it corresponds to the minimal distance from x to the decision boundary of the classifier
{x : f(x) = 0}. It is important to note that, while x is a datapoint sampled according to u,
the perturbed point x + r is not required to belong to the dataset (i.e., x 4 r can be outside
the support of 1). The robustness to adversarial perturbation of f is defined as the average
of Auav(x; f) over all x:

Padv(f) = Ep(Aaav(x; £)). (@)

In words, paqv (f) is defined as the average norm of the minimal perturbations required to flip
the estimated labels of the datapoints. Note that p,q,( f) is a property of both the classifier f
and the distribution 1, but it is independent of the true labels of the datapoints y.> Moreover,

1 The label is assumed here to be a non-stochastic function of the datapoints.

2 We make the assumption that a perturbation r that satisfies the equality f(x + r) = 0 flips the estimated
label of x.

3 In that aspect, our definition slightly differs from the one proposed in Szegedy et al. (2014), which
defines the robustness to adversarial perturbations as the average of the norms of the minimal perturbations
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Aunif,e (ZE, f)
Lro—>

{z: f(x) =0}

Fig. 1 Illustration of Ayqy (x: f) and Aypif,e (x; f). The red line represents the classifier boundary. In this
case, the quantity A,gy(x; f) is equal to the distance from x to this line. The radius of the sphere drawn
around x is Aypif,e (x; f). Assuming f(x) > 0, observe that the spherical cap in the region below the line has
measure €, which means that the probability that a random point sampled on the sphere has label +1is 1 — €
(Color figure online)

it should be noted that p,qy is different from the margin considered by SVMs. In fact, SVM
margins are traditionally defined as the minimal distance to the (linear) boundary over all
training points, while p,qy is defined as the average distance to the boundary over all training
points. In addition, distances in our case are measured in the input space, while the margin
is defined in the feature space for kernel SVMs.

In this paper, we also study the robustness of classifiers to random uniform noise, that we
define as follows. For a given € € [0, 1], let

Aunif,e (x; f) =minn 3)
1>0

s.t.Prys(f(X) f(x +1n) =0) = €,

where 7S denotes the uniform measure on the sphere centered at 0 and of radius 7 in R?. In
words, Aypif.e (x; f) denotes the minimal radius of the sphere centered at x, such that per-
turbed points sampled uniformly at random from this sphere are misclassified with probability
larger than €. An illustration of Aypir,e(x; f) and Augy(x; f) is given in Fig. 1. Similarly
to adversarial perturbations, the point x + n can lie outside the support of w, in general.
Note moreover that Ayir,e (x; f) provides an upper bound on A,gy(x; f), for all €. The
e-robustness of f to random uniform noise is defined by:

punif,e(f) = E,U,(Aunif,e(x§ . “)

We summarize the quantities of interest in Table 1.

Footnote 3 continued

required to misclassify all datapoints. As our notion of robustness is larger (since A,gy(x; f) is positive
even when x is misclassified), the upper bounds derived in our paper also directly apply for the definition of
robustness in Szegedy et al. (2014).
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Table 1 Quantities of interest in the paper and their dependencies

Quantity Definition Dependence

Risk R(f) =Pu(sign(f(x)) # y(x)) oy, f

Robustness to adversarial Padv(f) = Ep(Aady (x5 £)) w, f
perturbations

Robustness to random punif,e (f) = By (Aunif,e (x5 f)) s f

uniform noise

3 Running example

We introduce in this section a running example used throughout the paper to illustrate the
notion of adversarial robustness, and highlight its difference with the notion of risk. We
consider a binary classification task on square images of size ~/d x ~/d. Images of class 1
(resp. class —1) contain exactly one vertical line (resp. horizontal line), and a small constant
positive number a (resp. negative number —a) is added to all the pixels of the images. That is,
for class 1 (resp. —1) images, background pixels are set to a (resp. —a), and pixels belonging
to the line are equal to 1 + a (resp. 1 — a). Figure 2 illustrates the classification problem for
d = 25. The number of datapoints to classify is N = 2+/d.

Clearly, the most relevant concept (in terms of visual appearance) that permits to separate
the two classes is the orientation of the line (i.e., horizontal vs. vertical). The bias of the
image (i.e., the sum of all its pixels) is also a valid concept for this task, as it separates the
two classes, despite being much more difficult to detect visually. The class of an image can
therefore be correctly estimated from its orientation or from the bias. Let us first consider
the linear classifier defined by

fin) = o=17x — 1, )
Vd
where 1 is the column vector of size d whose entries are all equal to 1, and x is the vectorized
image. This classifier exploits the difference of bias between the two classes and achieves a
perfect classification accuracy for all @ > 0. Indeed, a simple computation gives fiin(x) =
Jda (resp. fiin(x) = —4/da) for class 1 (resp. class —1) images. Therefore, the risk of fii,
is R(fiin) = 0. It is important to note that fi;, only achieves zero risk because it captures
the bias, but fails to distinguish between the images based on the orientation of the line.
Indeed, when a = 0, the datapoints are not linearly separable.* Despite its perfect accuracy
forany a > 0, fii, is not robust to small adversarial perturbations when a is small, as a minor
perturbation of the bias a switches the estimated label. Indeed, a simple computation gives
Padv(flin) = J/da; therefore, the adversarial robustness of fiin can be made arbitrarily small
by choosing a to be small enough. More than that, among all linear classifiers that satisfy
R(f) = 0, fiin is the one that maximizes p,qy(f) (as we show later in Sect. 5). Therefore, all
zero-risk linear classifiers are non-robust to adversarial perturbations, for this classification
task.
Unlike linear classifiers, a more flexible classifier that correctly captures the orientation
of the lines in the images will be robust to adversarial perturbation, unless this perturbation
significantly alters the image and modifies the direction of the line. To illustrate this point, we

4 To see this, note that the average of class 1 images is equal to the average of class —1 images. Hence, the
convex hulls of the two sets of points intersect, which shows that these sets are not linearly separable.
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Fig. 2 a-e: Class | images. f-j: class-1 images
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Fig. 3 Robustness to adversarial noise of linear and quadratic classifiers. a Original image (d = 4, and
a = 0.1/4/d), b, ¢ minimally perturbed image that switches the estimated label of b fi;n, ¢ Jquad- Note that
the difference between b and a is hardly perceptible, this demonstrates that fi;, is not robust to adversarial
noise. On the other hand images ¢ and a are clearly different, which indicates that fquaq is more robust to
adversarial noise. a Original, b fjin, ¢ fquad

compare the adversarial robustness of fji, to that of a second order polynomial classifier fquad
that achieves zero risk in Fig. 3, for d = 4.5 While a hardly perceptible change of the image
is sufficient to switch the estimated label for the linear classifier, the minimal perturbation
for fquad is one that modifies the direction of the line, to a great extent.

The above example highlights several important facts, which are summarized as follows:

— Risk and adversarial robustness are two distinct properties of a classifier. While R ( fiin) =
0, fiin is definitely not robust to small adversarial perturbations.6 This is due to the fact
that fji, only captures the bias in the images and ignores the orientation of the line.

— To capture orientation (i.e., the most visual concept), one has to use a classifier that is
flexible enough for the task. Unlike the class of linear classifiers, the class of polynomial
classifiers of degree 2 correctly captures the line orientation, for d = 4.

— The robustness to adversarial perturbations provides a quantitative measure of the strength
of a concept. Since pady(fiin) <K Padv(fquad), one can confidently say that the concept
captured by fquaq is stronger than that of fiin, in the sense that the essence of the clas-
sification task is captured by fquad, but not by fii, (while they are equal in terms of
misclassification rate). In general classification problems, the quantity pagy(f) provides

5 We postpone the detailed analysis of fquad to Sect. 6.

6 The opposite is also possible, since a constant classifier (e.g., f(x) = 1 for all x) is clearly robust to
perturbations, but does not achieve good accuracy.
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a natural way to evaluate and compare the learned concept; larger values of pady(f)
indicate that stronger concepts are learned, for comparable values of the risk.

Asillustrated in the above toy example, the robustness to adversarial perturbations is key to
assess the strength of a concept. In real-world classification tasks, weak concepts correspond
to partial information about the classification task (which are possibly sufficient to achieve a
good accuracy), while strong concepts capture the essence of the classification task.

In the next sections, our goal is to quantify how large can the robustness to adversarial
perturbations be, for fixed classification families (e.g., family of linear classifiers). To do so,
we establish upper bounds on the adversarial robustness pyqy(f) in terms of the classifier
risk R(f) for all classifiers in the family. These learning-independent limits show that it is
not possible to achieve a large robustness jointly with a small risk for many classification
tasks of interest, independently of the training algorithm used to choose f.

4 Upper limit on the adversarial robustness

We now introduce our theoretical framework for analyzing the robustness to adversarial per-
turbations. We first present a key assumption on the classifier f for the analysis of adversarial
robustness.

Assumption (A). There exist t > 0 and 0 < y < 1 such that, for all x € B,

dist(x, S_) < rmax(0, f(x))”,

dist(x, S+) < Tmax(0, — f(x))”, ©

where dist(x, ) = miny{[lx — yll> : y € S} and S; (resp. S_) is the set of points x such
that f(x) > 0 (resp. f(x) <O0):

Sy ={x:f(x) =0}
S_={x:f(x)<0}.

In words, the assumption (A) states that for any datapoint x, the residual max(0, f(x))
(resp. max (0, — f(x))) can be used to bound the distance from x to a datapoint y classified
—1 (resp. 1), or that is exactly on the decision boundary of the classifier (i.e., f(y) = 0).

Bounds of the form Eq. (6) have been established for various classes of functions since
the early of work of Lojasiewicz (1961) in algebraic geometry and have found applications
in areas such as mathematical optimization (Pang 1997; Lewis and Pang 1998). For exam-
ple, Lojasiewicz (1961) and later Luo and Pang (1994) have shown that, quite remarkably,
assumption (A) holds for the general class of analytic functions.” In Ng and Zheng (2003),
(A) is shown to hold with y = 1 for piecewise linear functions. In Luo and Luo (1994), error
bounds on polynomial systems are studied. Proving inequality (6) with explicit constants T
and y for different classes of functions is still an active area of research (Li et al. 2014). In
Sects. 5 and 6, we provide examples of function classes for which (A) holds, and explicit
formulas for the parameters t and y.

The following result establishes a general upper bound on the robustness to adversarial
perturbations:

Lemma 1 Let f be an arbitrary classifier that satisfies (A) with parameters (t, y). Then,
Padv(f) <477 T (P1Ey, (f () — paBu (f () + 21 fleoR() .

7 It should be noted that such results assume that the function is defined on a compact set. When this condition
is not met, it is easy to find functions where assumption (A) is not satisfied.
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The proof can be found in “Appendix A.1”. The above result provides an upper bound on
the adversarial robustness that depends on the risk of the classifier, as well as a weighted
difference between the expectations of the classifier values computed on distribution |
and p_1. This result is general, as we only assume that f satisfies assumption (A). In the
next two sections, we apply Lemma 1 to two classes of classifiers, and derive interpretable
upper bounds in terms of a distinguishibality measure (that depends only on the dataset)
which quantifies the notion of difficulty of a classification task. Studying the general result
in Lemma 1 through two practical classes of classifiers shows the implications of such a
fundamental limit on the adversarial robustness, and illustrates the methodology for deriving
class-specific and practical upper bounds on adversarial robustness from the general upper
bound.

5 Robustness of linear classifiers to adversarial and random perturbations

The goal of this section is twofold; first, we specialize Lemma 1 to the class of linear functions,
and derive interpretable upper bounds on the robustness of classifiers to adversarial perturba-
tions (Sect. 5.1). Then, we derive a formal relation between the robustness of linear classifiers
to adversarial perturbations, and the robustness to random uniform noise (Sect. 5.2).

5.1 Adversarial perturbations

We define the classification function f(x) = w7 x+b. Note that any linear classifier for which
|b| > M| w]||> is a trivial classifier that assigns the same label to all points, where we recall
that M is defined such that P, (|| x|l2> < M) = 1. We therefore assume that [b] < M|w]>.

We first show that the family of linear classifiers satisfies assumption (A), with explicit
parameters T and y.

Lemma 2 Assumption (A) holds for linear classifiers f(x) = wlx +bwitht = 1/1lwll2
andy = 1.

Proof Let x be such that f(x) > 0, and the goal is to prove that dist(x, S_) < tf(x)Y
(the other inequality can be handled in a similar way). We have f(x) = w’ x + b. Observe
that dist(x, S_) = min,{[|x — z]2 : wlz + b < 0}, which corresponds to the distance
between x and its projection onto the affine plane {z : w’ z + b = 0}. Hence, dist(x, S_) =
f/lwlz = v =1/llwl2,y = 1. o

Using Lemma 1, we now derive an interpretable upper bound on the robustness to adversarial
perturbations. In particular, the following theorem bounds p,qy(f) from above in terms of
the first moments of the distributions (| and p—1, and the classifier’s risk:

Theorem 1 Let f(x) = w! x + b such that |b| < M||w||>. Then,

Padv(f) = IIP1Ey; () — p—1Ep (D2 + M p1 — p—1l +4R(f)). @)

In the balanced setting where py = p_1 = 1/2, and if the intercept b = 0 the following
inequality holds:

1
Padv(f) = EII]E,“ () —Epu_ ()2 +2MR(f). ®)
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Proof Using Lemma 1 with t = 1/||w]|2 and y = 1, we have

1
paav() = o (07 (P10 = Pty 09) +b(p1 = o) + 21 f R (D) )

Observe that

i w (p1Ey, () — p1Eu_ (1) < llwl2lpiEy, x) — p-1E,_, (x)||2 using Cauchy-
Schwarz inequality.
ii. b(p1 — p—1) < M|lwll21p1 — p—1] using the assumption |b| < M|w|2,
i, || flloo = maxy:prp,<pm{lw’ x + b} < 2M|Jw|>.

By plugging the three inequalities in Eq. (9), we obtain the desired result in Eq. (7).
When p; = p_; = 1/2, and the intercept b = 0, inequality (iii) can be tightened to
I flloo < M|lw||2, and directly leads to the stated result Eq. (8). O

Our upper bound on p,gv(f) depends on the difference of means ||E,, (x) — E,_, (x)|l2,
which measures the distinguishability between the classes. Note that this term is classifier-
independent, and is only a property of the classification task. The only dependence on f
in the upper bound is through the risk R(f). Thus, in classification tasks where the means
of the two distributions are close (i.e., [|E,, (x) —E,_, (x)||2 is small), any linear classifier
with small risk will necessarily have a small robustness to adversarial perturbations. Note
that the upper bound logically increases with the risk, as there clearly exist robust linear
classifiers that achieve high risk (e.g., constant classifier). Figure 4a pictorially represents the
Pady Versus R diagram as predicted by Theorem 1. Each linear classifier is represented by
a point on the p,gy—R tradeoff diagram, and our result shows the existence of a region that
linear classifiers cannot attain.

Quite importantly, in many interesting classification problems, the quantity [|E,, (x) —
E,_; (x)l2 is small due to large intra-class variability (e.g., due to complex intra-class geo-
metric transformations in computer vision applications). Therefore, even if a linear classifier
can achieve a good classification performance on such a task, it will not be robust to small
adversarial perturbations. In simple tasks involving distributions with significantly different
averages, it is likely that there exists a linear classifier that can separate correctly the classes,
and have a large robustness to adversarial perturbations.

5.2 Random uniform noise

We now examine the robustness of linear classifiers to random uniform noise. The following
theorem compares the robustness of linear classifiers to random uniform noise with their
robustness to adversarial perturbations.

Theorem 2 Let f(x) = wlx + b. For any € € [0, 1/12), we have the following bounds on
Punif,e (f)

puipe (1) = max (CLONVT, 1) paan (), (10)
punzf,e(f) = 6;(5, d) paav(f) < C2(€)‘/gpadv(f)a (11)
with C1(€) = 21In(2/€))" V2, Ca(e, d) = (1 — (126)/4)"1/2 and C»(e) = (1 — 12¢)~ /2.

The proof can be found in “Appendix A.2”. In words, punif.c (f) behaves as Jd, Padv (f) for
linear classifiers (for constant €). Linear classifiers are therefore more robust to random noise
than adversarial perturbations, by a factor of +/d. In typical high dimensional classification
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padV(f)

A 5

——Upper bound estimate -
i —Exact -
Not achievable by 4 xact curve

linear classifiers

padv

(@) (b)

Fig.4 Adversarial robustness paqy versus risk diagram for linear classifiers. Each point in the plane represents
alinear classifier f. a Illustrative diagram, with the non-achievable zone (Theorem 1). b The exact p,qy versus
risk achievable curve, and our upper bound estimate on the running example (details in Sect. 5.3)

problems, this shows that a linear classifier can be robust to random noise even if ||E,, (x) —
E,,_, (x)]l2 is small. Note moreover that our result is tight for € = 0, as we get puif,0(f) =
Padv ().

Our results can be put in perspective with the empirical results of Szegedy et al. (2014),
that showed a large gap between the two notions of robustness on neural networks. Our
analysis provides a confirmation of this high dimensional phenomenon on linear classifiers.

5.3 Illustration of the results on the running example

We now illustrate our theoretical results on the example of Sect. 3. In this case, we have
IE ) =E, ) = 2/da. By using Theorem 1, any zero-risk linear classifier satisfies
Padv(f) = Vda. As we choose a < 1/ V/d, accurate linear classifiers are therefore not robust
to adversarial perturbations for this task. We note that fji, [defined in Eq. (5)] achieves the
upper bound and is therefore the most robust accurate linear classifier one can get, as it can
easily be checked that p,qy ( fiin) = Jda.In Fig. 4b the exact p,gy versus R curve is compared
to our theoretical upper bound,? for d = 25, N = 10 and a bias a = 0.1/ Vd. Besides the
zero-risk case where our upper bound is tight, the upper bound is reasonably close to the
exact curve for other values of the risk (despite not being tight).

We now focus on the robustness to uniform random noise of fj;,. For various values
of d, we compute the upper and lower bounds on the robustness to random uniform noise
(Theorem 2) of fiin, where we fix € to 0.01. In addition, we compute a simple empirical
estimate Punif.e Of the robustness to random uniform noise of fiin (see Sect. 7 for details on
the computation of this estimate). The results are illustrated in Fig. 5. While the adversarial
noise robustness is constant with the dimension (equal to 0.1, as paav(fiin) = Jda and
a=0.1/ J/d), the robustness to random uniform noise increases with d. For example, for
d = 2500, the value of pypif,¢ is at least 15 times larger than the adversarial robustness pady.
In high dimensions, a linear classifier is therefore much more robust to random uniform noise
than adversarial noise.

8 The exact curve is computed using a bruteforce approach that enumerates all possible partitions of the data
pOthS with linear classifiers.
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Fig.5 Adversarial robustness
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6 Adversarial robustness of quadratic classifiers

In this section, we derive specialized upper bounds on the robustness to adversarial pertur-
bations of quadratic classifers using Lemma 1.

6.1 Analysis of adversarial perturbations

We study the robustness to adversarial perturbations of quadratic classifiers of the form
f(x) = xT Ax, where A is a symmetric matrix. Besides the practical use of quadratic classi-
fiers in some applications (Goldberg and Elhadad 2008; Chang et al. 2010), they represent a
natural extension of linear classifiers. The study of linear versus quadratic classifiers provides
insights into how adversarial robustness depends on the family of considered classifiers. Sim-
ilarly to the linear setting, we exclude the case where f is a trivial classifier that assigns a
constant label to all datapoints. That is, we assume that A satisfies

Amin(A) <0, Apax(A) >0, (12)

where Amin(A) and Anax(A) are the smallest and largest eigenvalues of A. We moreover
impose that the eigenvalues of A satisfy

max( )Lmin(A) , )\max(A)D <K, (13)
)\max(A) )\min(A)

for some constant value K > 1. This assumption imposes an approximate symmetry around
0 of the extremal eigenvalues of A, thereby disallowing a large bias towards any of the two
classes.

We first show that the assumption (A) is satisfied for quadratic classifiers, and derive
explicit formulas for v and y.

Lemma 3 Assumption (A) holds for the class of quadratic classifiers f(x) = xT Ax where
Amin(A) < 0, Amax (A) > 0 with T = max (|Amin(A)|~"/%, [Amax (A)|71/?), and y = 1/2,

Proof Let x be such that f(x) > 0, and the goal is to prove that dist(x, S_) < tf(x)? (the
other inequality can be handled in a similar way). Assume without loss of generality that
A is diagonal (this can be done using an appropriate change of basis). Let v = —Apin(A).
We have f(x) = Z?;ll Aixl.z — vxg. By setting r; = O foralli € {1,...,d — 1} and
rq = sign(xg)+/ f (x)/v, (Where sign(x) = 1 if x > 0 and —1 otherwise) we have
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d—1
fOtr) =Y 2ix} = v(xa + sgnxa)y/ f(x)/v)*
i=1

= [ () = 2uxgsgn(xa)y/ f (/v — ()
= —2lxgly/ @) v < 0.

Hence, dist(x, S_) < [Irl]2 = v '2J/F(x) = t=v" 12y =1/2. o

The following result builds on Lemma 1 and bounds the adversarial robustness of quadratic
classifiers as a function of the second order moments of the distribution and the risk.

Theorem 3 Let f(x) = xT Ax, where A satisfies Egs. (12) and (13). Then,
padv(f) < 2/ KIp1Ci — p-1C—ill« + 2MKR(f),

where C11(i, j) = By, (XiXj))1<i,j<a> and || - ||« denotes the nuclear norm defined as the
sum of the singular values of the matrix.

Proof The class of classifiers under study satisfies assumption (A) with 7 =
max(Mmin(A)l_l/z, |kmax(A)|_1/2), and y = 1/2 (see Lemma 3). By applying Lemma 1,
we have

1/2
paae(f) = 27 (P1Byu 7 A%) = poiBp, 67 AX) + 20 flowR(N) -
We then use three inequalities:

i. Note first that
PiBu, T Ax) = p B T Ax) =) i jpi By, (xixj) — Y ai jp-iBy_ (xix))
ij i,j
= plTrace(ATCl) — p,lTrace(ATC,l)
= Trace(A” (p1C1 — p_1C_1))
= (A, p1C1 — p—1C-1),
where we have used the canonical inner product for matrices (¥, Z) = Trace(YT Z).
Using Holder’s inequality for matrices (Bhatia 2013), we have (A, p1C; — p—1C—1) <
IA|ll p1C1—p—1C—1llx, where || - || and || - ||« denote respectively the spectral and nuclear
matrix norms.
ii. |f()] = xTAx| < J|Alllx] < [IA|IM,
i, [| A2 7 = max(|2min(A)], Amax (A max(Amin ()72, Amax (A7) < VK.

Applying these three inequalities, we obtain
paav(f) < 21A1 22 (Ip1C1 = p-1Coills +2MR(N'?
< 2VK (Ip1C1 = p1Coill + 2MR( ).

O
In words, the upper bound on the adversarial robustness depends on a distinguishability
measure, defined by [|[C; — C_1||«, and the classifier’s risk. In difficult classification tasks,

where ||C1 —C_1 || is small, all quadratic classifiers with low risk that satisfy our assumptions
in Egs. (12, 13) are non-robust to adversarial perturbations.
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It should be noted that, while the distinguishability is measured with the distance between
the means of the two distributions in the linear case, it is defined here as the difference
between the second order moments matrices ||C; — C_||.. Therefore, in classification tasks
involving two distributions with close means, and different second order moments, any zero-
risk linear classifier will not be robust to adversarial noise, while zero-risk and robust quadratic
classifiers are a priori possible according to our upper bound in Theorem 3. This suggests
that robustness to adversarial perturbations can be larger for more flexible classifiers, for
comparable values of the risk.

Finally, it is important to emphasize that the above result does not show that any linear
classifier is always less robust than any quadratic classifier, for a fixed problem. In contrast,
we show that for a fixed problem, the upper bound on pyqy (f) obtained for the family of linear
classifiers is usually much smaller than that of quadratic classifiers (for similar accuracy).
This therefore suggests that, while for many problems of interest, it is not possible to find
robust (and accurate) linear classifiers, we can find higher-order classifiers that achieve large
robustness (and accuracy).

6.2 Illustration of the results on the running example

We now illustrate our results on the running example of Sect. 3, with d = 4. In this case, a
simple computation gives ||[C; — C_1l|lx = 2+ 8a > 2. This term is significantly larger than
the difference of means (equal to 4a), and there is therefore hope to have a quadratic classifier
that is accurate and robust to small adversarial perturbations, according to Theorem 3. In
fact, the following quadratic classifier

Squad(X) = x1x2 + X3x4 — X1X3 — X2X4,

outputs 1 for vertical images, and —1 for horizontal images (independently of the bias a).
Therefore, fquaa achieves zero risk on this classification task, similarly to fjin. The two
classifiers however have different robustness properties to adversarial perturbations. Using
straightforward calculations, it can be shown that pav(fquad) = 1/ V2, for any value of a
(see “Appendix B” for more details). For small values of a, we therefore get puqv( fiin) <
Padv (fquad)- This result is intuitive, as fquaq differentiates the images from their orientation,
unlike fiiy that uses the bias to distinguish them. The minimal perturbation required to switch
the estimated label of fquaq is therefore one that modifies the direction of the line, while a
hardly perceptible perturbation that modifies the bias is enough to flip the label for fji,. This
explains the result originally illustrated in Fig. 3.

7 Experimental results
7.1 Setting

In this section, we illustrate our results on practical classification examples. Specif-
ically, through experiments on real data, we seek to confirm the identified limit on
the robustness of classifiers, and we show the large gap between adversarial and ran-
dom robustness on real data. We also study more general classifiers to suggest that
the trends obtained with our theoretical results are not limited to linear and quadratic
classifiers.

Given a binary classifier f, and a datapoint x, we use an approach close to that of Szegedy
et al. (2014) to approximate Auqy(x; f). Specifically, we perform a line search to find the
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maximum ¢ > 0 for which the minimizer of the following problem satisfies f(x) f(x +
ry< 0:

minc|rll2 + L(f (x + r)sign(f (),

where we set L(x) = max(0, x). The first term in the above optimization problem favors per-
turbation vectors with small norm, ||7||2, while the second term favors perturbations that lead
to a misclassification; the parameter ¢ controls the tradeoff between these goals. The above
problem (for ¢ fixed) is solved with a subgradient procedure, and we denote by AAadv x; f)
the obtained solution.” The empirical robustness to adversarial perturbations is then defined
by Paav(f) = % Z;-":l Zadv (xi; f), where x1, ..., x,, denote the training points. To evaluate
the robustness of f, we compare paqy (f) to the following quantity:

m
K= lZA min  [x; — x| (14)

P Jiy(xj)#y(xi)
It represents the average norm of the minimal perturbation required to “transform” a training
point to a training point of the opposite class, and can be seen as a distance measure between
the two classes. The quantity « therefore provides a baseline for comparing the robustness
to adversarial perturbations, and we say that f is not robust to adversarial perturbations
when paay(f) < k. We also compare the adversarial robustness of the classifiers with their
robustness to random uniform noise. We estimate Ay, (x; f) using a line search procedure
that finds the largest n for which the condition

THI= ST fG )0 =0) =6

is satisfied, where n1, ..., ny are iid samples from the sphere 1S. By calling this estimate
Zunif’e (x; f), the robustness of f to uniform random noise is the empirical average over all
training points, i.e., punif.c (f) = ;11 Z;"zl Zunif’e (xi; f).Inthe experiments, we set J = 500,
and € = 0.01.1°

7.2 Binary classification using SVM

We perform experiments on several classifiers: linear SVM (denoted L-SVM), SVM with
polynomial kernels of degree ¢ (denoted poly-SVM (g)), and SVM with RBF kernel with
a width parameter o2 (RBF-SVM(c?)). To train the classifiers, we use the efficient Liblin-
ear (Fan et al. 2008) and LibSVM (Chang and Lin 2011) implementations, and we fix the
regularization parameters using a cross-validation procedure.

We first consider a classification task on the MNIST handwritten digits dataset (LeCun
et al. 1998). We consider a digit “4” versus digit “5” binary classification task, with 2000
and 1000 randomly chosen images for training and testing, respectively. In addition, a small
random translation (of at most 3 pixels horizontally and vertically) is applied to all images,
and the images are normalized to be of unit Euclidean norm. Table 2 reports the accuracy

9 This procedure is not guaranteed to provide the optimal solution (for arbitrary classifiers f), as the problem
is clearly non convex. Strictly speaking, the optimization procedure is only guaranteed to provide an upper
bound on Apgy (x; f).

10 we compute the robustness to uniform random noise of all classifiers, except RBF-SVM, as this classifier
is often asymmetric, assigning to one of the classes “small pockets” in the input space, and the rest of the
space is assigned to the other class. In these cases, the robustness to uniform random noise can be equal to
infinity for one of the classes, for a given €.
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Table2 Training and testing accuracy of different models, and robustness to adversarial noise for the MNIST
task

Model Train error (%) Test error (%) Dadv Punif, e
L-SVM 4.8 7.0 0.08 0.97
poly-SVM(2) 0 1 0.19 2.15
poly-SVM(3) 0 0.6 0.24 2.51
RBF-SVM(1) 0 1.1 0.16 -
RBF-SVM(0.1) 0 0.5 0.32 -

Note that for this example, we have x = 0.72

(a) (b) © (Y] (e) (®

Fig. 6 Original image a and minimally perturbed images (b)—(f) that switch the estimated label of linear (b),
quadratic (c¢), cubic (d), RBF(1) (e), RBF(0.1) (f) classifiers. The image in g corresponds to the original image
perturbed with a random uniform noise of norm Aypif ¢ (x; f), where f is the learned linear classifier. That
is, the linear classifier gives the same label to a and g, with high probability. The norms of the perturbations
are reported in each case. b Aygy = 0.08, ¢ Aygy = 0.19,d Apgy = 0.21, e Apgy = 0.15,f Apgy =041, g
Aynif,e = 0.8

of the different classifiers, and their robustness to adversarial and random perturbations.
Despite the fact that L-SVM performs fairly well on this classification task (both on training
and testing), it is highly non robust to small adversarial perturbations. Indeed, paqy(f) is
one order of magnitude smaller than k = 0.72. Visually, this translates to an adversarial
perturbation that is hardly perceptible (see Fig. 6 for illustrative examples). The instability
of the linear classifier to adversarial perturbations is not surprising in the light of Theorem 1,
as the distinguishability term %IIIE,L1 (x) — E,_,(x)]l2 is small (see Table 4). In addition
to improving the accuracy, the more flexible classifiers are also more robust to adversarial
perturbations, as predicted by our theoretical analysis. That is, the third order classifier is
slightly more robust than the second order one, and RBF-SVM with small width o2 = 0.1 is
more robust than with 2 = 1. Note that o controls the flexibility of the classifier in a similar
way to the degree in the polynomial kernel. Interestingly, in this relatively easy classification
task, RBF-SVM(0.1) achieves both a good performance, and a high robustness to adversarial
perturbations. Concerning the robustness to random uniform noise, the results in Table 2
confirm the large gap between adversarial and random robustness for the linear classifier,
as predicted by Theorem 2. Moreover, the results suggest that this gap is maintained for
polynomial SVM. Figure 6 illustrates the robustness of the different classifiers on an example
image.

‘We now turn to a natural image classification task, with images taken from the CIFAR-10
database (Krizhevsky and Hinton 2009). The database contains 10 classes of 32 x 32 RGB
images. We restrict the dataset to the first two classes (“airplane” and “automobile”), and
consider a subset of the original data, with 1000 images for training, and 1000 for testing.
Moreover, all images are normalized to be of unit Euclidean norm. Compared to the first
dataset, this task is more difficult, as the variability of the images is much larger than for
digits. We report the results in Table 3. It can be seen that all classifiers are not robust to
adversarial perturbations for this experiment, as padgy(f) < « = 0.39. Despite that, all
classifiers (except L-SVM) achieve an accuracy around 85%, and a training accuracy above
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Table3 Training and testing accuracy of different models, and robustness to adversarial noise for the CIFAR

task

Model Train error (%) Test error (%) Dadv Punif, e
L-SVM 14.5 21.3 0.04 0.94
poly-SVM(2) 42 153 0.03 0.73
poly-SVM(3) 4 15 0.04 0.89
RBF-SVM(1) 7.6 16 0.04 -
RBF-SVM(0.1) 0 13.1 0.06 -

Note that for this example, we have x = 0.39

(2)

Fig. 7 Same as Fig. 6, but for the “airplane” versus “automobile” classification task. a Original image, b
Aady = 0.04, ¢ Aygy = 0.02,d Aygy = 0.03, e Aygy = 0.03,f Ayqy = 0.05, g Aypir,e =0.8

Table 4 The parameter «, and distinguishability measures for the two classification tasks

Quantity Definition Digits Natural images
Distance between classes k [see Eq. (14)] 0.72 0.39
Distinguishability (linear class.) lP1Eu, () = p—1Eu_; (Oll2 0.14 0.06
Distinguishability (quadratic class.) 2/KlpiCi — p—1C_il+ 1.4 0.87

For the numerical computation, we used K = 1

92%, and are robust to uniform random noise. Figure 7 illustrates the robustness to adversarial
and random noise of the learned classifiers, on an example image of the dataset. Compared to
the digits dataset, the distinguishability measures for this task are smaller (see Table 4). Our
theoretical analysis therefore predicts a lower limit on the adversarial robustness of linear
and quadratic classifiers for this task (even though the bound for quadratic classifiers is far
from the achieved robustness of poly-SVM(2) in this example).

The instability of all classifiers to adversarial perturbations on this task suggests that the
essence of the classification task was not correctly captured by these classifiers, even if a fairly
good test accuracy is reached. To reach better robustness, two possibilities exist: use a more
flexible family of classifiers (as our theoretical results suggest that more flexible families of
classifiers achieve better robustness), or use a better training algorithm for the tested nonlinear
classifiers. The latter solution seems possible, as the theoretical limit for quadratic classifiers
suggests that there is still room to improve the robustness of these classifiers.

7.3 Multiclass classification using CNN

Since our theoretical results suggest that more flexible classifiers achieve better robustness
to adversarial perturbations in the binary case, we now explore empirically whether the same
intuitions hold in scenarios that depart from the theory in two different ways: (i) we con-
sider multiclass classification problems, and (ii) we consider convolutional neural network
architectures. While classifiers’ flexibility is relatively well quantified for polynomial clas-
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Fig.8 Evolution of the normalized robustness of classifiers with respect to a the depth of a CNN for CIFAR-10
task, and b the number of feature maps

sifiers by the degree of the polynomials, this is not straightforward to do for neural network
architectures. In this section, we examine the effect of breadth and depth on the robustness
to adversarial perturbations of classifiers.

We perform experiments on the multiclass CIFAR-10 classification task, and use the
recent method in Moosavi-Dezfooli et al. (2016) to compute adversarial examples in the
multiclass case. We focus on baseline CNN classifiers, and learn architectures with 1,2 and 3
hidden layers. Specifically, each layer consists of a successive combination of convolutional,
rectified linear units and pooling operations. The convolutional layers consist of 5 x 5 filters
with 50 feature maps for each layer, and the pooling operations are done on a window
of size 3 x 3 with a stride parameter of 2. We build the three architectures gradually, by
successively stacking a new hidden layer on top of the previous architecture (kept fixed). The
last hidden layer is then connected to a fully connected layer, and the softmax loss is used.
All architectures are trained with stochastic gradient descent. To provide a fair comparison
of the different classifiers, all three classifiers have approximately similar classification error
(35%). To ensure similar accuracies, we perform an early stop of the training procedure
when necessary. The empirical normalized robustness to adversarial perturbations of the
three networks are compared in Fig. 8a.!!

We observe first that increasing the depth of the network leads to a significant increase
in the robustness to adversarial perturbations, especially from 1 to 2 layers. The depth of
a neural network has an important impact on the robustness of the classifier, just like the
degree of a polynomial classifier is an important factor for the robustness. Going from 2 to
3 layers however seems to have a marginal effect on the robustness. It should be noted that,
despite the increase of the robustness with the depth, the normalized robustness computed
for all classifiers is relatively small, which suggests that none of these classifiers is really
robust to adversarial perturbations. Note also that the results in Fig. 8a showing an increase
of the robustness with the depth are inline with recent results showing that depth provides
robustness to adversarial geometric transformations (Fawzi and Frossard 2015). In Fig. 8b,
we show the effect of the number of feature maps in the CNN (for a one layer CNN) on
the estimated normalized robustness to adversarial perturbations. Unlike the effect of depth,
we observe that the number of feature maps has barely any effect on the robustness to

o %ﬁ’zﬁ . This normalized version is easier
- 1
to interpret in practice; e.g., a normalized robustness of order 1 indicates that a perturbation of the same order

as the image is necessary to change the estimated label.

1 More precisely, we report the normalized robustness %

@ Springer



Mach Learn (2018) 107:481-508 499

adversarial perturbations. Finally, a comparison of the normalized robustness measures of
very deep networks VGG-16 and VGG-19 (Simonyan and Zisserman 2014) on ImageNet
shows that these two networks behave very similarly in terms of robustness (both achieve a
normalized robustness of 3 - 10~3). This experiment, along with the experiment in Fig. 8a,
empirically suggest that adding layers on top of shallow network helps in terms of adversarial
robustness, but if the depth of the network is already sufficiently large, then adding layers
only moderately changes that robustness.

8 Discussion and perspectives

In this paper, we provided a quantitative analysis of the robustness of classifiers to adversarial
perturbations, and showed the existence of upper limits on the adversarial robustness of clas-
sifiers. We showed that for the family of linear classifiers, the established limit is very small
for most problems of interest. Hence, linear classifiers are usually not robust to adversarial
noise (even though robustness to random noise might be achieved). Linear classifiers are,
however, seldom used directly on the input/pixel space. Instead, the features of the image
(e.g., SIFT features Lowe 2004 or features resulting from the first layers of a convolutional
neural network) are first computed, and only then fed to a linear classifier. While our bounds
(in Sect. 5) can be directly applied in the feature space, such results would be difficult to
interpret as they do not translate easily to the input space. In fact, the feature mapping is usu-
ally non bijective (and non-smooth), which implies that the robustness of the linear classifier
might significantly differ from the robustness of the overall classification system. Besides,
using the ¢, metric in the feature space might not be adapted to measure the robustness of
the system.

Towards the goal of studying more realistic classifiers, we studied the robustness of
quadratic classifiers, and provided a general result that is (in theory) applicable to a large
set of classification functions (Lemma 1). Our results for quadratic classifiers show that the
limit on the robustness for the family of quadratic classifier is usually larger than for linear
classifiers, which gives hope to have classifiers that are robust to adversarial perturbations.
In fact, by using an appropriate training procedure, it might be possible to get closer to the
theoretical bound. For general nonlinear classifiers (e.g., neural networks), designing training
procedures that specifically take into account the robustness in the learning is an important
future work. We also believe that the application of our general upper bound in Lemma 1 to
derive explicit upper bounds that are specific to e.g., deep neural networks is an important
future work. To do that, we believe that it is important to derive explicitly the parameters
(z, y) of assumption (A) for the class of functions under consideration. Even though this
problem is still open, results from algebraic geometry seem to suggest that establishing such
bounds might be possible for general classes of functions (e.g., piecewise linear functions).
In addition, experimental results suggest that, unlike the breadth of the neural network, the
depth plays a crucial role in the adversarial robustness. Identifying an upper bound on the
adversarial robustness of deep neural networks in terms of the depth of the network would
be a great step towards having a better understanding of such systems.
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Appendix A: Proofs
A. 1 Proof of Lemma 1

We begin by proving the following inequality:

Lemmad Letzy,...,z, be non-negative real numbers, and let 0 < y < 1. Then,

n n Y
1—

E zf <n'7 E zi| -

i=1 i=I

Proof We prove that the quantity

Z;lzlz’?/ :i< Zi >)/
(Z?:l Zi)y i=1 2o

2

is bounded from above by n 1=¥ Todoso,letu; = L and let us determine the maximum

Doz
of the concave function g(uy, ..., uy—1) = u’f +--+ {0 —uy—---—u,—1)¥. Setting the
derivative of g with respect to u; to zero, we get
= g =0,
hence u; =1 —u; — -+ — u,_1. We therefore get u; = - - - = u,_1, and conclude that the
. . V. .
maximum of ) /_, (Z”Zflz) isreached when z; = - - - = z, and the value of the maximum
i=1 %t
isnl=7. O

We now prove Lemma 1.
Proof The goal is to find an upper bound on paay (f) = Ey (Aaay (x; f)).
Padv(f) = P1Ey, (Aaav(x; ) + p—1Eyu_ (Aaav(x; f))
= p1(Bu (Qaav (e NIF () = OB, () = 0)
+ B (a5 DI () < OP, (£(0) < 0)
+ 1 (Buy (A (s NIF ) < 0P, (f(x) < 0)

+Euy (Qaav(xs HIF ) = OP,, (f (x) = 0))-
Using assumption (A), the following upper bounds hold:

]Eﬂi] (Aaav(x; HIf(x) = 0) < T]Eﬂi] (f(x)Vlf(x) > 0)
Epyy (Aaay(xs HIf () <0) < 7By, (f ()7 [ f(x) < 0)

Hence, we obtain the following inequality on pagy (f):
paae(f) = 01 (B (F @7 1£0) = OBy () 2 0)
+ By () 1) < 0P, (f() < 0)
+ tpo1 (B (£ 1) < OB, (f(x) < 0)
+ B, (SO () 2 O, () 2 0).
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Using Jensen’s inequality, we have E(X?) < E(X)?, for any random variable X, and y < 1.
Using this inequality together with P(A) < IP(A)”, we obtain

paav(f) < r((mﬂam (fOLf(x) = 0P, (f(x) = 0))"
+ (P1Eu (—f @) f(x) < Oy, (f(x) < 0))”
+ (Po1Eu (= fOIf () < OP,_, (f(x) < 0))”
+ (P1By (FOI ) 2 0P, (f(0) = 0))7).

We use the result in Lemma 4 with n = 4, and obtain

paae(f) = T4 (DI (FOIF (@) = 0P, (f () = 0)

+ P1Eu (=1 () < 0Py, (f(x) <0)
+ p-1Eu (= fOIf(x) < OP,_ (f(x) <0)

Y
+ P11 Eu (O x) Z 0P, (f(x) = 0)) .
Note moreover that the following equality holds

— PPy (f () < OE,, (f ()] f(x) <0)
=2p1Pu, (f (x) < O)|E, (fOLf () < 0) 4+ p1Pu, (f (x) < O)E,, (f ()] f(x) <0),

Using the above equality along with a similar one for p_1P,,_, (f(x) = O)E,_, (f(x)|f(x) >
0), the following upper bound is obtained

paav(f) <747V (mIE,“ SOOI 2 OPy, (f () = 0) + piEy, (f (1 f (x) < OPy, (f(x) < 0)
= P=1Eu  (FOOIf () < OP,_, (f(x) <0) = p—1Eu, (fO1f () = OF,_, (f (x) = 0)
+2p1Pp (f () < OIE, (fOOLf (x) < 01+2p_1Pp (f (¥) Z OIE,_, (f (O] f (x) = 0\))

Y
which simplifies to
paav(f) <7477 (pﬂE,“ (f) = p=1Ep (f () +2pi Py, (f (x) < OIE,, (f () f(x) < 0]

+2p 1P (@) 2 OB, (FOIF0) 2 01)

Observe moreover that R(f) = piP,, (f(x) < 0) + p1P,_,(f(x) = 0), and that
|Eu._, (f(x)|f(x) = 0)] is bounded from above by || f||oc. We therefore conclude that

pan(f) = T4 (P (F0) = pt By (F ) + 2RO o)

A.2 Proof of Theorem 2

The proof of this theorem relies on the concentration of measure on the sphere. The following
result from Matousek (2002) precisely bounds the measure of a spherical cap.

Theorem 4 Let S?~! be the unit sphere embedded in RY. Let € (7) = {x € ! : x1 > 1}
denote the spherical cap of height 1 — t. Then for 0 < v < \/2/d, we have ﬁ <P@ (1)) <
%, and for \/2/d < t < 1, we have:
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- <P@@) = ——(1 - )T

6tv/d 2t/d

Based on Theorem 4, we show the following result:

Lemma 5 Let w be a vector of unit £y norm in RY. Lett € [0, 1), and x be a vector sampled
uniformly at random from the unit sphere in R%. Then,

2
1%(1 — Tz)d < IF’({wa > 1}) <2exp <—%) .

Proof Using an appropriate change of basis, we can assume that w = (1,0, ..., 0)7. For
Tt € [4/2/d, 1), we have
P(r = o) € —
X1 275 =
2t/d

where (a) uses the upper bound of Theorem 4, and (b) uses the inequality (1— 72) < exp(— 72).
Note moreover that for T € [0, /2/d), the inequality 2 exp(—t2d/2) > 2exp(—1) > 1/2
holds, which proves the upper bound.

We now prove the lower bound. Observe that the following lower bound holds for

(z+/d)~ 1, for any t € [+/2/d, 1):

—1 (b)
(1-— 1:2)(1721 (5 Zexp(—tzd/Z),

1
—_— > exp(—rzd/Z).
T/d
To see this, note that the maximum of the function a > In(a)/a? is equal to 1/(2¢) < 1/2.
Therefore, ln(r\/g)/(rzd) < 1/2, or equivalently, (tJd) ! > exp(—rzd/Z). Therefore,
we get 1 >(1- rz)d/z, and using Theorem 4, we obtain for any t € [/2/d, 1):

T/d
Pl = th> — (- = L2
Xy >1}) > -7 > — (1 — 194,
6t/d 12
where we have used (l—rz)_l/2 > 1. Note also that this inequality holds for 7 € [0, /2/d],
1 2yd 1
as ; (1 —79)% < 5. m]

Armed with the concentration of measure result on the sphere, we now focus on the proof
of Theorem 2. Let f(x) = wTx + b. Let x be fixed such that f(x) > 0, and let n > 0 and
€ € (0, 1/12). Then,

Pueys (f (6 +1) = 0) =Py (wTn = —w”x = b)
= Pags (w7 n/lwll2 < —Aua(x: /)
=Pos (w"n/lwll2 < —Auar(s £)/n)

Using the upper bound in Lemma 5, we obtain:

Agay (x; f)zd)

Prys (f (x +n) =0) < 2exp (- 202

Therefore, for n = (21n(2/e))_1/2ﬂAadV(x; ) = Cl(e)ﬂAadv(x; f), we obtain
Pyps(f(x +n) <0) < e, and we deduce that

Aunif.e (x5 f) = Cr(€)Vd Agay (x5 f).
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Using the lower bound result of Lemma 5, we have:

A2 (e A\
% (1 - advn(j’f)) =< PnNnS(f(x+n) <0

This implies that for any > % = 6'2(6, d)Agav(x; ), wehave P s (f(x +n)

< 0) > €. Hence, we obtain the following upper bound on Aypif.e (x; f):
Auit.e(x: f) < Cae, d) Auav (x: f).

We also derive a lower bound on Aypif e (x; f) of the form Ca(€)v/d Apay (x; f) by noting
that
1

~ 1
Ca(e, dyd™"? = <
(6D Vd(1 = (12e)1/d)y — JT—=12¢

= Ca(e),

where we have used the fact that is a decreasing function of d. To see that this

I S
Jd(1=(12¢)1/d)

function is indeed decreasing, note that its derivative (with respect to d) can be written as
P(d) (d&"? — 1) —€"/?1n(e)), with P(d) non-negative, and € = 12¢. Then, by using the
inequality In((1/€)'/9) < (1/€)'/? — 1, the negativity of the derivative follows.

By combining the lower and upper bounds, and taking the expectations on both sides of
the inequality, we obtain:

Cy (G)ﬁEu (Aadv(x§ f)lf(x)>0) =< ]Eu (Aunif,e(X; f)lf(x)>0)
< Cale, DE, (Aaav(x; )1 py=0)
< Co(WAE,, (Aaay (x5 )1 f(x)>0) -

A similar result can be proven for x such that f(x) < 0. We therefore conclude that

max(C1(€)vVd, 1)pady(f) < punit.c (f) < Cal€, d)paay(f) < Ca(€)vdpaay (),

where we have used the inequality punif.e (f) = Paav(f)- ]

Appendix B: Vertical-horizontal example: quadratic classifier

We consider the quadratic classifier fquaa(x) = xT Ax, with

0 1 -1 0

I1f1 o o -1
A=3121 0 o0 1
0 -1 1 0

We perform a change of basis, and work in the diagonalizing basis of A, denoted by P. We
have
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I e

p_ll0 V2 V2 0

“2(v2 0 0 V2|’
-1 1 -l
100 0
000 0

_ pT

A=PT 0 0 0 o P
00 0 —I

By letting X = Px, we have:
fauaa(D) = 7 — 35

Given a point x and label y, the following problem is solved to find the minimal perturbation
that switches the estimated label:

min 7} + 77 s.ty((E1 +71)% — (@ +74)%) < 0.
i

Let us consider the first datapoint x = [1 +a, | +a, a, a]” (the other points can be handled
in an exactly similar fashion). Then, it is easy to see that X; = 1 and X4 = 0, and the
optimal point is achieved for 7 = —1/2 and 74 = 1/2. In the original space, this point
corresponds to r = P77 = [0, —1/2,1/2,0]”. Therefore, ||r|l» = 1/+/2, and we obtain
/Oadv(fquad) = ]/\/i

Appendix C: Discussion on the norms used to measure the magnitude of
adversarial perturbations

The goal of this section is to discuss different ways of measuring the robustness to adversarial
perturbations.
Given a datapoint x, let > 0 be such that we know a priori that all points in the region

Rx) ={z:N(z—x)<n},

have the same true class as x (i.e., a human observer would classify all images in this region
similarly). Here N : RY — R defines a norm in the image space. Note that R(x) only
depends on the dataset, but does not depend on any classifier f. We defined the robustness
of f to adversarial perturbations, at x, to be

Aadgy(x; f) = min N(r) subject to f(x +r) f(x) <O.
r
The classifier f is said to be not robust at x if

Agav(x; f) <. (15)

In words, this means that there exists a point z in the region R(x) (i.e., z and x are classified
in the same way by a human observer), but 7 is classified differently than x by f. Our main
theoretical result provides upper bounds to p,gy(f) (the expectation of Aygy (x; f)) in terms
of interpretable quantities (i.e., distinguishability and risk): pagy(f) < U(u, R(f)). Using
this upper bound and Eq. (15), we certify that f is not robust to adversarial perturbations
when the following sufficient condition holds:

U, R(f)) <. (16)
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Table 5 Different choices of N and 7 in different papers

N n
Szegedy et al. (2014) 12 -
Goodfellow et al. (2015) I lloo Determined by the image precision (in theory).
Larger in practice
Ours -2 «/10

The main difficulty in the above definitions lies in the choice of N and n: how can (N, 1)
be chosen to guarantee that R(x) contains all images of the same underlying class as x? In
the original paper (Szegedy et al. 2014), N is set to be the £2 norm, but no n is formally
derived; classifiers are said to be not robust to adversarial perturbations when pagy(f)/ Jd
is judged to be “sufficiently small”. For example, it appears from Table 1 in Szegedy et al.
(2014) that if paav(f)/ Jd < 0.1, the minimum required perturbation is thought to be small
enough to guarantee that the images do not change their true underlying label. Motivated by
the fact that pixels (or features) have limited precision, Goodfellow et al. (2015) consider
instead the £, norm, and ideally assume that a perturbation that have £, norm smaller than
the precision of the pixels (e.g., 1/255 of the dynamic range for 8-bit images) is guaranteed
to conserve the true underlying class. While this corresponds to setting 7 to be the precision
of the pixels, in practice it is set to be much larger for the MNIST case, as the images are
essentially binary. In our case, the £, norm is considered, and we define the quantity « to
be the average norm of the minimal perturbation required to transform a training point to a
training point of the opposite class:

1
K= — min lxi —xjll2.
Ej:yuj);ey(m o

We assume that the image x + r is of the same underlying label as x if |7 || is one order of
magnitude smaller than «. This corresponds to setting = «/10. A summary of the different
choices is shown in Table 5.

All the above choices represent proxies of what we really would like to capture (i.e., the
notion of perceptibility and class change). They all have some benefits and drawbacks, which
we mention briefly now. We first acknowledge that the £, norm with n ~ 0.1 blocks class
changes (and therefore provides a sufficient condition for certifying the non-robustness of
classifiers) for images that are essentially binary (e.g, MNIST digit images). In those cases,
the £, norm seems more appropriate to use than the £, norm. However, in order to compare
both norms, we need to carefully (and fairly) choose the 1 parameter for both norms. In
fact, if it is acknowledged that N = || - ||c and n = 0.1 provides a valid region R where
underlying image classes do not change, then N = || - || and n = 0.1 also provides a
valid region, as ||r|lco < |72 for any vector r. It is therefore all a matter of choosing a right
threshold 7 that is fair for all norms, if we wish to compare the norms for the task that we
have at hand. A comparison between the £, and £, norm is provided in Goodfellow (2015),
and it is concluded that, while the £, norm allows for class changes within its region, the £,
essentially blocks the class changes and therefore constitutes a better choice. In more details,
the comparison goes as follows: it is first argued that by choosing N = || - || and n = 3.96,
the region R contains both a “natural” 3 and 7, and therefore does not provide a valid region.
To show the benefits of the £, norm, the author proceeds by considering N = || - || and
n = 3.96/+/d ~ 0.1414. It is then argued that this region blocks previous attempts for class
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changes, and therefore the ¢, norm provides a better choice for the task at hand. While this
type of comparison is important in order to reach a better understanding of the norms used
to measure the adversarial examples, it is not conclusive as it is unfair to the £, norm. Let us
recall the following inequalities

Vr e RY, Irllos < lIrll2 < Vdlirlios. (7
For a fixed ng > 0, define the regions:

Roo ={z: Iz — xlloo < 10},
Ra = {z:llz — xll2 < nov/d).

It should be noted that for any ng, we have R, C R using Eq. (17). Not only that, but R
constitutes a tiny portion of R in high dimensional spaces (i.e., the volume of R, over that
of R, decays exponentially with the dimension). Therefore, a comparison of R to R Will
typically lead to problematic images in R but not in Reo, as R2 is much bigger than R .
Therefore, the fact that R, is a much smaller set than R, (i.e., it contains much less images)
is already known from Eq. (17) and is not conclusive in terms of the comparison of the two
norms for measuring the robustness to adversarial perturbations. Just like the comparison
of Ry to R« is unfair to the £, norm, saying that the £> norm is better than the £, norm
because R, contains much more images (potentially problematic ones with class changes,
for sufficiently large ng) that are not in R, = {z : ||z — x|l2 < no} is unfair to the £, norm.

One possible way for providing a fair comparison between both norms is to find the
coefficient ¢ such that R, has the same volume as the following ¢, ball

Ry ={z: |z — xl2 < n~/d}, with nj = noc.

Using mathematical derivations that we omit for the flow of this short discussion, we obtain

c = % ~ (.48 asymptotically as d — oo. We argue that the comparison of R, to

R’ provides a more conclusive experiment than comparing R, to Ro, as it highlights the
advantage of one norm with respect to the other without biases on the volume of the region.
In practice, this new comparison implies the following change for the “3” versus “7” example
in Goodfellow (2015): instead of allowing perturbations of max-norm 0.1414, perturbations
with £, norm up to & 0.3 are allowed. This will result in images that are roughly twice as
much perturbed, for the £, case. Even with this comparison, it is possible that the max-norm
in this case will also block attempts to change the class, as the images are essentially binary.
We believe that the £, is probably a better choice in this case.

However, this is not a general statement, as in some cases of non-binary images, the £»
norm might be a better choice. We illustrate the above statement on a toy example where the
goal is to classify sport balls. Some example images are shown in Fig. 9. In this example, the
£~ norm between any two images is less than 0.11. Setting nop = 0.11 with N = || - || does
not define a valid region (i.e., it does not guarantee that no class changes will occur within
the region). On the other hand, the region R computed with ny = 0.11 (i.e., n; = 0.0532)
rightfully excludes the images b) and c) from the space of valid perturbations of a). This
toy example provides a proof of concept that shows that, in some cases, the £, norm might
actually be a better choice than the £, norm.

In conclusion, we stress that this example has no intention of proving that the ¢, norm
is universally better than the £+, norm to measure the norm of adversarial perturbations.
Through this discussion and example, we show that there is no universal answer to which
norm one has to use to measure the robustness to adversarial perturbations, as it is strongly
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(a) (b) (o

Fig. 9 Example images in a toy classification problem where the goal is to distinguish the different balls (a
basketball, b soccer). ¢ represents an umbrella that does not belong to any class. Black pixels are equal to 0,
white pixels are equal to 1, grey pixels are set around 0.9

application-dependent. We believe more theoretical research in that area is needed in order
to fully grasp the advantage of each norm, and probably design new norms that are suitable
for measuring adversarial perturbations.
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