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Abstract The Naive Bayes approximation (NBA) and associated classifier are widely used
and offer robust performance across a large spectrum of problem domains. As it depends on a
very strong assumption—independence among features—this has been somewhat puzzling.
Various hypotheses have been put forward to explain its success and many generalizations
have been proposed. In this paper we propose a set of “local” error measures—associated
with the likelihood functions for subsets of attributes and for each class—and show explicitly
how these local errors combine to give a “global” error associated to the full attribute set.
By so doing we formulate a framework within which the phenomenon of error cancelation,
or augmentation, can be quantified and its impact on classifier performance estimated and
predicted a priori. These diagnostics allow us to develop a deeper and more quantitative
understanding of why the NBA is so robust and under what circumstances one expects it to
break down. We show how these diagnostics can be used to select which features to combine
and use them in a simple generalization of the NBA, applying the resulting classifier to a set
of real world data sets.
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1 Introduction

Although superseded by more sophisticated classifiers, the Naive Bayes classifier (NBC) is
still widely used in a multitude of different areas of application [see, for example, Wang
et al. (2007), Turhan and Bener (2009), Wei et al. (2011), Broos et al. (2011), Panda and
Patra (2007), Farid et al. (2014), Bermejo et al. (2014), Ng et al. (2014), Mohamad et al.
(2014), as a small, but representative sample]. It has been shown to be remarkably robust,
both in its range of applicability and its performance. Although it is well known that it is a
high-bias/low-variance classifier, and therefore might be expected to have relatively better
performance on small data sets, the robustness of its performance across so many problems
withwidely differing characteristics remains somewhat of a puzzle, especially given its strong
independence assumption on the features, and has led to several papers trying to understand
and explain why it seems to be “unreasonably” successful.

There have also been many papers associated with different proposals for generalizing the
NBC so as to circumvent its strong independence assumption. However, these generalizations
are invariably more complicated to implement and much more resource intensive than the
NBC. It is therefore important to develop diagnostics with which, for a given problem, one
can gauge if and when the NBC will lead to significant error relative to a more sophisticated
classifier that tries to account for potential feature correlations, while at the same time devel-
oping a deeper intuitive and theoretical understanding of how and why the NBC is so robust.
In this paper, we analyze under what circumstances the NBA (Naive Bayes approximation)
and associated NBC can be expected to be suboptimal and develop general diagnostics with
which a problem can be examined a priori to ascertain if the NBA is adequate, or if a more
sophisticated generalization is required. We then use those diagnostics to determine which
features should be combined and from that construct a simple generalization of the NBC.

As far as explaining the robust performance of the NBC, Domingos and Pazzani (1996)
have argued that it is largely due to its being applied to classification problems, where errors
are counted with respect to whether the classification was correct (yes/no) for a given predic-
tion, not whether the corresponding probability estimate was accurate. Further support for
this type of hypothesis comes from the work of Frank et al. (2000), who showed that the per-
formance of the NBA is substantially worse when applied to regression type problems. Pure
classification accuracy, however, is only a single, global measure of classifier performance
and there are others that can be more appropriate. For instance, it has been demonstrated
in Ling et al. (2003) that the area under the ROC curve is a more discriminating measure
than pure classification accuracy. Often of more interest are relative risk scores. This is espe-
cially the case in problems such as healthcare costs where a very small (∼1%), but high
risk group, can generate a large fraction of healthcare costs (∼30%). In this circumstance it
is very unlikely that a classifier is sufficiently accurate that it would place anyone in such
a small group. Rather, what is of interest is the relative degree of risk from one patient to
another (Stephens et al. 2005). This reasoning, that beyond pure classification theNBA can be
more rigorously judged, is circumstantially supported by the fact that the NBA can produce
poor probability estimates (Bennett 2000; Monti and Cooper 1999), though in Lowd and
Domingos (2005) it was shown that NB models can be as effective as more general Bayesian
networks for general probability estimation tasks.

However, even in the case of classification, as noted by Zhang (Zhang and Ling 2003;
Zhang 2004), Domingos and Pazzani’s argument does not explain why it is not possible
to have situations where the inaccurate probability estimates flip the classification. Zhang
has proposed that it is not just the presence of dependencies between attributes that affects
performance, it is how they distribute between different classes that plays a crucial role in the
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performance of the NBC, arguing that the effect of dependencies can partially cancel between
classes and, further, that dependencies can potentially cancel between different subsets of
feature values. The question then is, if this is possible, under what conditions will it occur
and can we quantify it and therefore predict a priori when the NBA might be inadequate?

In this paper, we will investigate the relationship between attribute dependence and error
by analysing a set of model problems, providing tools to investigate the set of attribute depen-
dencies and showing how they affect both probability estimates and classification accuracy.
We will thereby provide statistical diagnostics that allow both insight and predictive capacity
to estimate when the NBAwill breakdown and how to improve it. As accounting for attribute
correlation is a question of model bias not model variance, as in Rish (2001), we will consider
first a set of “infinite sample” artificial probability distributions, chosen in order to be able
to tune the degree of correlation between different attributes while ignoring finite sampling
effects. Indeed, it is precisely the existence of sampling error in real world problems that
is associated with the superior performance of the NBA in spite of attribute dependencies
(Friedman 1997).

The second major question revolves around how to improve the NBA and NBC. There
have been many generalizations (Friedman et al. 1997; Keogh and Pazzani 1999; Kohavi
1996; Kononenko 1991; Langley 1993; Langley and Sage 1994; Pazzani 1996; Sahami 1996;
Singh and Provan 1996; Webb and Pazzani 1998; Webb 2001; Webb et al. 2005, 2012; Xie
et al. 2002; Zheng et al. 1999; Zheng and Webb 2000; Liangxiao et al. 2009) of the NBA.
Some, such as Lazy Bayesian Rules (Zheng and Webb 2000), Super Parent TAN (Keogh
and Pazzani 1999) and Hidden Naive Bayes (Liangxiao et al. 2009), have been shown to
have very good performance, with significant improvements over the NBA but at substantial
computational cost. A good overview of many of these algorithms can be found in Zheng
and Webb (2000), Liangxiao et al. (2009). As it is not the primary purpose of this paper to
introduce a new, competing algorithm, we will restrict ourselves to some general comments:
All these generalizations seek to discover sets of attribute values that have dependencies such
that they should either be combined together, or with the class variable. In general, they are
such that the improvement associated with combining a set of features is judged a posteriori
through the relative performance of the algorithm with or without that combination. As there
are a combinatorially large number of possible attribute value combinations that might be
considered however, the process of attribute selection can be intensive, so that, generally,
studies have been restricted to considering only pairs of attributes with an exhaustive search
of those combinations being performed.

The effectiveness of these generalizations of the NBA is generally judged by comparing
the performance of the proposed algorithm against the NBA, and, potentially, a chosen set
of other algorithms, on a set of canonical test problems, more often than not taken from the
UCI repository. The effectiveness of the new algorithm is then inferred globally across the
set of considered problem instances. We know from the No-free lunch theorems (Wolpert
1996; Wolpert and Macready 1997) that no algorithm is better than any other across all
problem instances. The question is: can we infer a priori which algorithm will perform better
on a given problem instance? This is especially important if performance enhancements are
dominated by only a small number of instances. It also requires detailed insight as to how
and why a given generalization outperforms the NBA on some data sets and not on others.
Also, as comparatively complicated, “black box” type algorithms there is no transparent
theoretical underpinning with which to understand their relative performance. A by product
of the development of generalizations of the NBA has been the construction of diagnostics to
determine the degree of attribute dependence and therefore detectwhich features to potentially
combine. The most used diagnostic has been that of conditional mutual information (Rish
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2001; Friedman et al. 1997; Zhang and Ling 2003). However, as Rish has pointed out, this
measure does not correlate well with NBA performance, arguing that a better predictor of
accuracy is the loss of information that features contain about the class when assuming the
NB model. What is required is a measure of attribute dependence that relates directly to the
appearance of a corresponding error in the NBA and, further, how these errors combine to
yield an overall error for a given feature set or classifier.

The structure of the paper is as follows: In Sect. 2 we will compare and contrast the NBA
with a particular class of generalizations—the semi-Naive Bayesian classifier (Kononenko
1991). We also introduce the metrics that we use for comparing the relative performance of
the different approximations. In Sect. 3, we construct our basic error diagnostics—δ(ξ |C),
the difference between the likelihood functions for a given class, C , and for a given feature
combination, ξ , relative to the NBA to the likelihood function. In Sect. 4 we introduce the
set of 12 two-feature probability distributions that we use to test our error diagnostics. In
Sect. 5 using our 12 distributions we show that our error metrics are natural measures of when
features should be combined, showing explicitly in the case of two features how the NBA
can be valid even in the presence of strong attribute dependence due to cancelations between
errors in the likelihoods of the different classes. In Sect. 6 we extend our analysis to three
features to show how the GBA is sensitive to the particular factorization of the likelihoods
and to the fact that different classes may have different factorizations. In Sect. 7 we show
how our error diagnostics can determine the most appropriate factorizations in this three
feature case and how they relate to and predict classifier performance. In Sect. 8 we extend
our analysis to four, six and eight features, generalizing the previous analysis and, crucially,
showing how errors can cancel between different sets of features for the same classifier. In
Sect. 9 we apply the formalism to a set of UCI data sets, showing how our diagnostics can
be used to determine which features to combine and constructing a simple generalization of
the NBC and comparing its performance to the NBC. Finally, in Sect. 10 we summarize and
draw our conclusions.

2 Comparing classifiers

2.1 Naive Bayes approximation

In trying to understand under what circumstances we might expect the NBA and the NBC to
break down we will start with Bayes’ theorem

P(C |X) = P(X|C)P(C)

P(X)
(2.1)

for a class C and a vector of N features X = (X1, X2, . . . , XN ), where P(C) is the prior
probability, P(X|C) the likelihood function and P(C |X) the posterior probability. Unfor-
tunately, when X is of high dimension, there are too many different probabilities, P̂(C |X),
to estimate. Related to this is the fact that NCX, the number of elements in X and C , is
generally so small that statistical estimates, P̂(C |X) of P(C |X) are unreliable due to large
sampling errors.1 Although P̂(X|C) suffers from the same problem, if there is statistical
independence of the Xi in the class C , then P(X|C) = ∏N

i=1 P(Xi |C), where P(Xi |C)

is the marginal conditional probability. Generally, this is not the case. However, one may

1 Indeed, for a sufficiently large set of discriminatory features so that every combination is unique we will
have NCX = 0, 1, with the vast majority of combinations being zero.
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make the assumption that it is approximately true, taking PNB(X|C) = ∏N
i=1 P(Xi |C) to

find

PNB(C |X) =
∏N

i=1 P(Xi |C)P(C)
(∏N

i=1 P(Xi |C)P(C) + P(X|C̄)P(C̄)
) (2.2)

where C̄ is the complement of C . Of course, if we were to calculate P(C |X) using (2.2)
we would have to also estimate P(X|C̄), which would present the same problems as
estimating P(X|C). The same naive approximation can be used in this case too, writing
P(X|C̄) = ∏N

i=1 P(Xi |C̄) to find

PNB(X) =
N∏

i=1

(P(Xi |C)P(C) + P(Xi |C̄)P(C̄)) (2.3)

Rather than constructing P(C |X) directly, from (2.1), usually a score function, S(X), that
is a monotonic function of P(C |X) itself, is constructed, by considering the odds ratio of the
class C and another class, usually its complement, C̄

S(X) = log
P(C |X)

P(C̄ |X)
= log

P(C)

P(C̄)
+ log

P(X|C)

P(X|C̄)

The NBA to this score function, SNB(X), is given by

SNB(X) = log
P(C)

P(C̄)
+

N∑

i=1

log
P(Xi |C)

P(Xi |C̄)
(2.4)

As a simple sum this form of the approximation is transparent. Another advantage of this
form is that it is not neccessary to have in hand P(X) as the idea of such a score function
is just to discriminate between the classes C and C̄ . This is a different task from estimating
the probability P(C |X) directly. As a classifier, (2.4) is such that if SNB(X) > 0 then the
instance defined by X is assigned to the class C and if SNB(X) < 0 to the complement C̄ .

2.2 Generalized Naive Bayes approximation

The NBA and NBC are based on a maximal factorization of the likelihood function P(X|C).
Generalizations of the NBA have been associated with introducing dependencies between
the features and seeking an alternative factorization of the likelihood functions. In order
to have a concrete theoretical framework in which to examine the validity of the NBA,
the framework of Bayesian networks (Friedman et al. 1997) is particularly appropriate.2

Some generalizations, such as Lazy Bayesian Rules (Zheng and Webb 2000) and Super
Parent TAN (Keogh and Pazzani 1999), consider factorizations of the form

∏N
i=1 P(Xi |C, ξ),

where ξ represents some subset of attribute values. In the case of TAN or SP-TAN, ξ is
restricted to be one other variable. Other generalizations, such as the semi-Naive Bayesian
classifier (Kononenko 1991), consider factorizations of the form

∏m
i=1 P(ξ |C). Both types

of generalization consider attribute dependencies. Here, we will focus on the semi-Naive
Bayesian classifier.

To define generalizations of the NBA and NBC associated with alternative factoriza-
tions we will first introduce a “schema” based notation for marginal probabilities familiar

2 Factorization of probability distributions and their graphical representations also occur in several other
related fields, such as Markov Random Fields (Kindermann and Snell 1980) where cliques represent groups
of related variables.
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from genetic algorithms (Holland 1975; Poli and Stephens 2014), where for any feature
vector, X = {X1, X2, . . . , XN }, a marginal probability P(Xi1Xi2 . . . Xim |C) can be writ-
ten P(∗i1−1Xi1 ∗i2−i1 Xi2 . . . Xim |C), where ∗n signifies ∗ repeated n times and an ∗ in
the i th position means that Xi has been marginalized. The order of the schema is just the
number of non-marginalized variables. The NBA uses only order-one schemata, i.e., order-
one marginals. We can then denote an arbitrary m-feature value combination by a schema
ξ = (ξi1 , ξi2 , . . . , ξim ), of order m < N .

With this notation we can define the GBA, and a Generalized Bayes Classifier (GBC),
via generalizations of Eqs. (2.2) and (2.4) that correspond to alternative factorizations of the
likelihood functions. Unlike the NBA the GBA is not unique. For N features there are BN

partitions, where BN is the Bell number. Worse, there is this number for every feature value
set and there areR = ∏n

i=1 a(i) feature value combinations, where a(i) is the cardinality of
the i th feature.

Of course, as estimates of probabilities or as classifiers the question is: out of all the pos-
sible factorizations which one is optimal and how do we define optimal? For instance, for
the case of three variables, out of the 4 possible factorizations, which gives the best approxi-
mation to P(X1X2X3|C)? Much of this paper will be concerned with the question of how to
determine better factorizations using diagnostics. We will denote the GBA associated with

a particular factorization by a set of Nξ schema ξ (i) = ∪Nξ

α=1ξ
α . Note that any factorization

must correspond to a partition of the set of N feature values. So, for any given feature vector,
X = (X1, X2, . . . , XN ), every Xi must be a member of one and only one schema ξα ∈ ξ (i).
Thus, we have the GBA for the likelihood functions

PGB(X|C) = P(ξ (i)|C) =
NC

ξ(i)
∏

α=1

P(ξα|C) (2.5)

where NC
ξ (i) is the number of independent marginals used in the GBA for the likelihood

function for the class C , and we take C to abstractly represent either the class C of interest
or its complement C̄ . In the NBA, NC

ξ (i) = NC̄
ξ ( j) = N . Note that at this level of generality

we make no a priori assumption that the optimal factorization of the likelihood function
of C is the same as that of C̄ , although it is usually assumed that the factorization of the
likelihood functions for C and C̄ are the same. We note again that our factorizations are
a particular subset of all possible factorizations in that we will not consider factorizations
where a particular attribute value may occur in more than one schema.

For the posterior probability we have

PGB(C |X) = P(C |ξ (i)) =
∏NC

ξ(i)

α=1 P(ξα|C)P(C)
(

∏NC
ξ(i)

α=1 P(ξα|C)P(C) + ∏NC̄
ξ( j)

α=1 P(ξα|C̄)P(C̄)

) (2.6)

and finally, for the score function

SGB(X) = ln
P(C)

P(C̄)
+

NC
ξ(i)

∑

α=1

SC (ξα) −
NC̄

ξ( j)
∑

α=1

SC̄ (ξα) (2.7)

where we define
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SC (ξ (i)) =
NC

ξ(i)
∑

α=1

ln P(ξα|C) SC̄ (ξ ( j)) =
NC̄

ξ( j)
∑

α=1

ln P(ξα|C̄) (2.8)

as the contributions to the overall score from the likelihood of C and C̄ respectively.
If we make the simplifying assumption that the optimal factorization of the likelihood

functions for C and C̄ are the same then (2.7) simplifies to

SGB(X) = ln
P(C)

P(C̄)
+

Nξ∑

α=1

S(ξα) = ln
P(C)

P(C̄)
+

Nξ∑

α=1

ln
P(ξα|C)

P(ξα|C̄)
(2.9)

which is a natural generalization of the score function in the NBA. The GBC is then such
that a feature vector X belongs to the class C if SGB(X) > 0 and to C̄ if SGB(X) < 0.
Thus, the NBA and GBA will lead to the same classification if and only if sign(SGB(X)) =
sign(SNB(X)),∀X.

2.3 The difference

Any difference between the NBA and the GBA is due to correlations between the features Xi

in the likelihoods for C and C̄ . In terms of model bias, the most appropriate factorization of
the likelihood functions should be that whichmost respects the existence of such correlations.
For a given factorization we can determine the differences between the GBA and the NBA
from Eqs. (2.5), (2.6) and (2.7). For the likelihoods we have

ΔPGB(X|C) = P(ξ (i)|C) − PNB(X|C) =
NC

ξ(i)
∏

α=1

P(ξα|C) −
N∏

i=1

P(Xi |C) (2.10)

where C = C or C̄ and for which we do not assume the same factorization. An important
property of the (2.10) is that they satisfy the equations

∑

X

ΔPGB(X|C) =
∑

X

ΔPGB(X|C̄) = 0 (2.11)

where the sum is over all feature vectors X = (X1, X2, . . . , XN ) = (ξ1, ξ2, . . . , ξNC
ξ(i)

),

the decompositions over individual features or over schemata simply corresponding to two
distinct partitions. The result (2.11) is a consequence of the conservation of probability as
ΔPGB is composed of the difference between two probabilities, each of which is normalized.
Thus, the differences between the GBA and NBA cannot all be of the same sign. As we will
see, this plays an important role in understanding under what circumstances the NBA is a
good one.

For the posterior probability we have

ΔPGB(C |X) =
∏NC

ξ(i)

α=1 P(ξα|C)P(C)
(

∏NC
ξ(i)

α=1 P(ξα|C)P(C) + ∏NC̄
ξ( j)

α=1 P(ξα|C̄)P(C̄)

)

−
∏N

i=1 P(Xi |C)P(C)
∏N

i=1(P(Xi |C)P(C) + P(Xi |C̄)P(C̄))
(2.12)
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and, finally, for the score function,

ΔSGB(C |X) =
NC

ξ(i)
∑

α=1

ln P(ξα|C) −
NC̄

ξ( j)
∑

α=1

ln P(ξα|C̄) −
N∑

i=1

ln
P(Xi |C)

P(Xi |C̄)

=
NC

ξ(i)
∑

α=1

ln
P(ξα|C)

PNB(ξα|C)
−

NC̄
ξ( j)

∑

α=1

ln
P(ξα|C̄)

PNB(ξα|C̄)
(2.13)

where PNB(ξα|C) = ∏m
i=1 P(ξα

i |C), m being the number of features, ξα
i , in the feature

schema ξα . In the case of identical factorizations for C and C̄

ΔSGB(C |X) =
Nξ∑

α=1

ln
P(ξα|C)

P(ξα|C̄)
−

N∑

i=1

ln
P(Xi |C)

P(Xi |C̄)
(2.14)

2.4 Performance metrics

In determining the relativemerits of theGBAversus theNBAwewill consider several perfor-
mance metrics by which to judge them. In this paper, as emphasized, the idea is to understand
the errors introduced by the intrinsic biases arising from the different approximations. Hence,
in determining the impact of correlations on the validity of the NBA, and the improvement
of the GBA, this can and, we would argue, should be considered first in an infinite sample
setting, where sampling errors can be ignored. Hence, we will first consider various definite
probability distributions in a setting with a small number of features. The advantage is that
we then have in hand the exact probability distributions and therefore can measure errors in
both the NBA and GBA relative to the exact distribution Pe(C |X). Explicitly, we will con-
sider distributions defined by the likelihood functions Pe(X|C) and Pe(X|C̄), where X is a
N -dimensional vector representing N binary features Xi = 0, 1. These likelihood functions
will be specified in order to model different degrees of correlation between the features to
better understand how the NBA and GBA perform as a function of these correlations.

As we have in hand the exact distributions, we will consider directly as a performance
measure the error in the posterior probability distribution Δi (C |X) = Pe(C |X) − Pi (C |X),
where i denotes the corresponding approximation—NBAorGBA.Secondly,wewill consider
the classification accuracy by considering the sensitivity Si of each classifer, Si (X), which
will correspond to the number, or fraction, of feature combinations classified correctly.

Thirdly, we will consider the relative ranking of the full set of feature combinations in
terms of the relevant score function {Si (1), Si (2), . . . , Si (2n)}, where Si (1) ≥ Si (2) ≥ . . . ≥
Si (2n). We will then consider the distance

Di j =
⎛

⎝
2n∑

m=1

(ri (m) − r j (m))2

⎞

⎠

1/2

(2.15)

where ri (m) is the relative rank of the feature combinationm of the classifier Si and similarly
r j (m) for the classifier S j (m). Here, if i = e, corresponding to the exact classifier, then
Eq. (2.15) measures how faithful the ranking of the classifier is relative to the exact one.
Finally, in the case of the real world data sets we will consider classification error and AUC
as relevant metrics.
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3 Coping with correlations

The differences between theNBA andGBA in Sect. 2.3 depend on the particular factorization
chosen and this factorization is composed of components—schemata. In determining the
relative merits of the NBA and GBA there are then two basic questions: Firstly, what criteria
should be used to determine those features that should be considered together rather than
independently? Secondly, once we have determined which features to combine, we must ask
how the NBA should then be modified. We will first consider how to identify feature sets
that should be considered together starting with the simple example of only two features.

3.1 Two features

Taking two features, X1 and X2, treating them as independent potentially leads to errors in
P(X|C), P(X|C̄) and P(X), and therefore in P(C |X) and S(X). Denoting these errors as
δ(X1X2|C), δ(X1X2|C̄) and δ(X1X2) we have

δ(X1X2|C) = P(X1X2|C) − PNB(X1X2|C) (3.1)

δ(X1X2) = P(X1X2) − PNB(X1X2) (3.2)

where C = C , or C̄ , that satisfy

∑

X1X2

δ(X1X2|C) =
∑

X1X2

δ(X1X2|C̄) =
∑

X1X2

δ(X1X2) = 0 (3.3)

which is a consequence of the conservation of probability, as
∑

X1X2
P(X1X2|C) =∑

X1X2
PNB(X1X2|C) = 1. For the simple case of binary features we have δ(X1X2|C) =

δ(X̄1 X̄2|C) = −δ(X1 X̄2|C) = −δ(X̄1X2|C), where X̄i is the bit complement of Xi , imply-
ing that there are only two independent errors and that they have the same magnitude and
opposite sign. We can also normalize any of these error terms, δ → δ′; e.g. by dividing by
the NBA.

These errors imply a corresponding error in the posterior probability

δ(C |X1X2) =
(
P(X1X2|C)P(C)

P(X1X2)
− PNB(X1X2|C)P(C)

PNB(X1X2)

)

= δ(X1X2|C)PNB(C̄ |X1X2)P(C) − δ(X1X2|C̄)PNB(C |X1X2)P(C̄)

P(X1X2)

(3.4)

where, in passing to Eq. (3.4), we have used the definitions of the errors (3.1) and (3.2) and
(2.3). The quantities δ(X1X2|C) and δ(X1X2|C̄) offer a complete description of the errors of
the NBA for the case of two variables. Interestingly, we can see that, as δ(C |X1X2) involves
the difference of the errors in the two likelihood functions, it is possible to have large errors
in these without this necessarily leading to a significant error in the posterior probability
itself. We can also see that, all else being equal, the error will be greater when the error in
the likelihoods for the class and its complement are of opposite sign. In other words, that the
variables are positively correlated in C/C̄ and negatively correlated in C̄/C .

With regard to the score function (2.4) there are two potential sources of error—in
P(X1X2|C) and in P(X1X2|C̄). The exact score is
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S(X1X2) = SC (X1X2) − SC̄ (X1X2)

= ln
P(C)

P(C̄)
+ ln

P(X1X2|C)

P(X1X2|C̄)
(3.5)

Given that in Sect. 2.2 we indicated that the optimal factorizations of the likelihood functions
for C and C̄ may be distinct, it is convenient to introduce separate measures for the errors in
the corresponding score functions

δs(X1X2|C) = ln

(

1 + δ(X1X2|C)

PNB(X1X2|C)

)

(3.6)

where, again, C = C or C̄ . A consequence of (3.3) is that δs(X1X2|C) cannot have the same
sign for all X1X2 thereby providing the basis by which deviations from the NBA can cancel
between different feature combinations.

Comparing with Eq. (2.4) the difference between the GBA and NBA that accrues from
correlation between X1 and X2 in C or C̄ is given by

δs(C |X1X2) = ln

⎛

⎝
1 + δ(X1X2|C)

PNB(X1X2|C)

1 + δ(X1X2|C̄)

PNB(X1X2|C̄)

⎞

⎠ = S(X1X2) − S(X1) − S(X2) (3.7)

3.2 General case: more than two features

For the case of two features there is only one possible factorization. For more than two
features, however, there are two related problems to be confronted: how many feature com-
binations (schemata) appear in a given factorization and which features appear in a given
feature combination (schema)?

In terms of the error between the NBA for a given feature combination—schema ξ—the
two-feature analysis generalizes quiet readily. Using our schema notation, errors (3.1) and
(3.2) have simple generalizations

δ(ξ |C) = P(ξ |C) − PNB(ξ |C) = P(ξ |C) −
m∏

i=1

P(ξi |C) (3.8)

δ(ξ) = P(ξ) − PNB(ξ) = δ(ξ |C)P(C) + δ(ξ |C̄)P(C̄) (3.9)

where m is the number of features in the schema ξ . As with Eq. (3.3) we have
∑

ξ

δ(ξ |C) =
∑

ξ

δ(ξ |C̄) =
∑

ξ

δ(ξ) = 0 (3.10)

For the error in the posterior probability the generalization is

δ(C |ξ) =
(
P(ξ |C)P(C)

P(ξ)
− PNB(ξ |C)P(C)

PNB(ξ)

)

(3.11)

Finally, for the score function, in distinction to the two feature case, where the factoriza-
tions of P(X1X2|C) and P(X1X2|C̄) are, by definition, the same, here it is appropriate to
consider separately the errors in the contributions to the score from the likelihood functions
for C and C̄ . From Eq. (2.8) we can then define

δs(ξ |C) = ln

(

1 + δ(ξ |C)

PNB(ξ |C)

)

(3.12)
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Assuming the same schema appears in the factorizations of P(X|C) the error is

δs(C |ξ) = δs(ξ |C) − δs(ξ |C̄) = S(ξ) −
m∑

i=1

S(ξi ) (3.13)

As with the two feature case, the constraints (3.10) imply that not all the errors δs(ξ |C) and
δs(ξ |C̄) can be of the same sign.

3.3 General case: more than two schemata

The preceding error functions are useful for determining the impact of attribute dependence
in a subset, ξ ⊂ X, of feature values. However, when there are multiple sets, it is not clear
how errors may combine to influence the total difference between the NBA and GBA as
illustrated by Eqs. (2.10), (2.12) and (2.13). As might have been anticipated, the difference
between the likelihood functions and the posterior probabilities for the GBA and NBA do
not seem to be simple functions of the errors δ(ξ |C). However, for the score function we
may write

ΔSGB(C |X) =
NC

ξ∑

α=1

ln P(ξα|C) −
NC̄

ξ∑

α=1

ln P(ξα|C̄) −
N∑

i=1

ln
P(Xi |C)

P(Xi |C̄)

=
NC

ξ∑

α=1

δs(ξ
α|C) −

NC̄
ξ∑

α=1

δs(ξ
α|C̄) (3.14)

In (3.14) we can see how the constraints (3.10) may play a role in error cancelation. In
the error associated with C , as for each schema, ξα , there is at least one particular feature
combination, ξα

i1i2...im
, with an error δs(ξ

α|C) that has a different sign to the others, then
some degree of error cancelation is inevitable between different schemata when considering
different feature combinations for those schemata.

When the factorizations are the same, Eq. (3.14) simplifies even further,

ΔSGB(C |X) =
Nξ∑

α=1

δs(C |ξα) (3.15)

Equations (3.14) and (2.13) hold an important lesson: Just as for a single schema one can have
cancelations in likelihood errors between C and C̄ , i.e., intra-schema cancelations, so, one
can have cancelations between different schemata, i.e., inter-schemata cancelations. What
is more, the likelihood errors for the components of the factorizations of C and C̄ are what
determine the overall error of the NBA.

4 What difference does it make?

The impact of correlations on the validity of the NBA should be understood from the point
of view of model bias. As argued, this should be considered first in an infinite sample setting.
In Appendix A we introduce a set of 12 different two-feature probability distributions with
binary feature values and also the parity function. The distributions are uniquely characterized
by specifying values for the likelihoods P(X1X2|C) and P(X1X2|C̄) for Xi = 0, 1 for each
distribution.
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These probability distributions have been constructed to exhibit a diversity of different
correlation structures that can occur. For instance, distributions 1-3 all use the same set of
probabilities for the likelihoods for C and C̄ and differ only in how the likelihoods for C̄ are
assigned to the different feature value combinations. All three distributions exhibit strong
correlations between the features. How these correlations affect the validity of theNBA, how-
ever, is quite distinct. Distribution 4 is chosen as it exhibits onlyweak correlations between the
features in both likelihoods. Distributions 5-7 show moderate correlations but with different
characteristics. For example, distributions 6 and 7 have correlations in the likelihoods that are
all of equalmagnitude, differing only in the sign betweenC and C̄ .Distribution 8 shows strong
correlations in the likelihood for C , but weak correlations for C̄ . Distribution 9 is the inverse
of distribution 7, with C and C̄ interchanged. Distribution 10 is the analog to distribution 9
as distribution 2 is to distribution 1, i.e., the likelihoods of C are the same but the likelihoods
for C̄ have been permuted. Finally, distributions 11 and 12 are two more that exhibit strong
correlations in all likelihood functions but differ in how the correlations are distributed among
the features. In all these cases the class probability was taken to be P(C) = 0.6. We add in
as distribution 0 the well known parity function, where P(C |X1X2) = 0, 1 according to if
X1 + X2 is even or odd. This serves as a test case where correlations are strongest.

We will consider the errors at two levels: Firstly, in estimating the P(C |X1X2); and,
secondly, as a classifier,whereweconsider the differencebetween the exact classifier Se(X) =
ln(P(C |X1X2)/P(C̄ |X1X2)) + ln(P(C)/P(C̄)) and the NBC, Eq. (2.4). We will consider
the percentage errors between the exact classifiers and posterior probability and their NBA
counterparts, as well as the distance function (2.15). In Table 9 we see the results of the
calculation for the exact posterior probability for the twelve probability distributions and the
parity function, the NBA to the posterior probability and the percentage difference to the
exact expression. There are four feature combinations, X1 = 0, 1, X2 = 0, 1 for each class
C = 1, C̄ = 0 and vice versa. Also in that table are the exact scores for each classifier and
its NBA and the percentage difference between them.

So what can we glean from these results? Clearly, the performance of the NBA is very
mixed over the different probability distributions, with mean absolute errors relative to the
exact posterior probabilities over a given distribution of between 10 and 100% and, in the case
of score differences, errors of between 10 and 5000%, and infinite in the case of the parity
function, where the NBA gives zero score. In the case of estimating posterior probabilities the
distributions where the NB error is greatest are 11, 3, 1, 8 and 10 and the least in 4, 7, 12, 9 and
2 and, of course, the parity function. What are distinguishing factors of better/worse perfor-
mance? In Table 9we also see the errors in the likelihood functions, (3.1), and the errors in the
score functions, (3.6). Note that errors in the likelihood functions themselves are not necessar-
ily good indicators of errors in the posterior probabilities or classification errors. Rather, what
is of most importance is the relative sign of the errors for C and C̄ . The distributions with the
largest errors in the posterior probabilities or score—0, 11, 3, 1, 8 and 10—all have sign differ-
ences between δ(X1X2|C) and δ(X1X2|C̄) for every value of X1 and X2. On the other hand,
four of the five distributionswith least error—2, 7, 9 and 12—do not have any sign differences
between δ(X1X2|C) and δ(X1X2|C̄) for any value of X1 and X2. The low error distribution,
4, has sign differences, but in this case the magnitude of the errors is very low ≈ 10−2.

5 Diagnostics for when the NBA is valid

When considering the validity of the NBA we have to ask: The NBA of what? and, also,
With respect to what benchmark? To answer the NBA of what—two important quantities
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to calculate are posterior probabilities and classifier scores. For benchmarking we cannot
benchmark to the exact answer in real world problems, so we must benchmark to another
algorithm. Here, the benchmarking will be to the GBA. Generically, the validation of an
algorithm, comes from a performance metric on a set of test problems, i.e., the choice of
algorithm is determined a posteriori, after testing the algorithm on the set of problems. As
emphasised, an important goal here is to infer a priori whether a GBA type algorithm will
be better than the NBA. We have seen that the differences between the two approximations
stem from two different factorisations of the likelihood functions for the class of interest
and its complement. We have also seen that we can infer potential errors at the level of the
individual factors—schemata—which are combinations of features. This provides a huge
simplification as it allows one to infer which approximation will be better on a given problem
before applying the full algorithm.

5.1 Diagnostics for when to combine features

So, what is a good diagnostic to determine the relative accuracy of the approximations? In the
case of two features we have deduced that significant errors in the likelihood functions are a
necessary, but not sufficient, condition in order to have significant errors in the estimation of
posterior probabilities or in classification performance. With this in mind, we propose (3.1),
or the associated functions, (3.6), as direct measures of when it is necessary to combine the
features X1X2 in the context of a given likelihood. Specifically, we introduce

ΔC(X1X2) = δ(X1X2|C)/PNB(X1X2|C) (5.1)

ΔC
s (X1X2) = δs(X1X2|C)/SCNB(X1X2) (5.2)

or their unnormalized equivalents, as measures of when to potentially combine variables
in the likelihoods of C and C̄ . We can then ask to what degree significant errors in these
functions lead to significant errors in the distinct performance measures. However, as the
difference between the GBA and NBA depends on the relative signs of the errors in the
likelihood functions we propose as further diagnostics

Δ(X1X2) =
(

δ(X1X2|C)

PNB(X1X2|C)
− δ(X1X2|C̄)

PNB(X1X2|C̄)

)

(5.3)

Δs(X1X2) =
(

δs(X1X2|C) − δs(X1X2|C̄)

SNB(X1X2|C)

)

(5.4)

Thus, if Δ(X1X2) or Δs(X1X2) is large, then the NBA will be expected to give relatively
poor performance for predicting, say, P(C |X1X2). In Fig. 1 we see a graph of the error in
P(C |X1X2) as a function of Δ(X1X2) for the twelve probability distributions introduced
in Sect. 4. We have differentiated in the graph the distinct distributions, wherein, from the
analysis of Sect. 4, we can distinguish the 5 distributions with greatest error, the 5 with
least error and the two intermediate—“neutral”—distributions. We see that significant errors
in the likelihood functions for C or C̄ separately are not sufficient to predict errors in the
corresponding posterior distributions. Of the five distributions with smallest errors—2, 4, 7,
9 and 12—only one, 4, has errors in the likelihoods which are small in magnitude. The others
are associated with distributions where the errors in the individual likelihoods are large, but
of the same sign for C and C̄ , thus leading to a partial cancelation between the two in their
contributions to the posterior distributions. In distinction, the distributions with the greatest
error in P(C |X1X2) have large likelihood errors, but of opposite sign between C and C̄ ,
thus leading to a reinforcement of the individual errors. As can be seen, the correlation is
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Fig. 1 Graph of % error in NBA of the posterior probability P(C |X1X2) as a function of Δ(X1X2) for each
feature combination of the 12 probability distributions of Appendix A

impressive—coefficient of correlation 0.90. The analogous coefficients of correlation forΔC

and ΔC̄ are 0.77 and −0.59 respectively. Thus, we see that error cancelation between the
different likelihoods makes Δ(X1X2) a better indicator of performance difference between
the NBA and GBA for calculating posterior probabilities than ΔC and ΔC̄ , though the latter
also show substantial correlation.

In the case of more than two variables we propose equations (3.8) as diagnostics for when
the error in the likelihood function is sufficient to warrant using the GNB approximation for
that schema. As with the case of two variables however, significant errors in the likelihood
functions are not a sufficient condition for significant errors in the posterior distribution or in
classification accuracy. Hence, one may be tempted to take analogs of (5.3) and (5.4), with
X1X2 replaced by an arbitrary schema ξ , as a natural diagnostic for when features should be
combined into a schema of more than two variables. Going beyond the case of two features
however, we must confront the possibility that the optimal factorization of the likelihoods
for C and C̄ may be different. In this case, we propose as diagnostics

ΔC(ξ) = δ(ξ |C)

PNB(ξ |C)
(5.5)

ΔC
s (ξ) = δs(ξ |C)

SCNB(ξ)
(5.6)

or their unnormalized equivalents. So, we have a conundrum: we can identify measures
for when the likelihood functions, or score contributions, for a given schema should not be
factorized, but this is not sufficient to guarantee significant errors in the posterior probabilities,
or in classification performance. On the other hand, we can identify measures, Eqs. (5.3),
(5.4) that directly speak to errors in these latter quantities, but that are associated with a
symmetric, not necessarily optimal, factorization of the likelihoods P(X|C) and P(X|C).

When the likelihood factorizations are not symmetric, the above discussion indicates
that the validity of the NBA is a “global” as opposed to a “local” question; i.e., for a non-
symmetric factorization, the validity should be adjudged after calculating the contribution and
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Fig. 2 Graph of average absolute error in P(C |X1X2) as a function of average value of D2 for the 12
probability distributions of Appendix A

corresponding errors of all factors together. On the other hand, for a symmetric factorization,
the evaluation of errors can be broken down into a set of separate components, and this is
how the generalizations of the NBA discussed in the introduction function. We will consider
these two cases in more depth in the next Section, beginning with the symmetric case.

First, however, rather than an analysis for every feature variable combination individually,
as in real world problems there may be many of them, we are likely to be more interested in
the validity of the NBA when averaged over them, and, as Δ(X1X2) can change sign from
one set of feature values to another, as a measure of the validity of the NBA over the whole
set of possible feature values we take

D2 =
∑

i, j

|Δ(Xi X j )| or D2s =
∑

i, j

|Δs(Xi X j )| (5.7)

In Fig. 2 we see a graph of the average absolute error in the posterior probability versus the
average value of D2 over the feature value combinations 00, 01, 10, 11, and the average
value of δ(X1X2|C)/PNB(X1X2|C) over those combinations for each of the 12 probability
distributions seen in Appendix A. We clearly see the high degree of correlation for Δ, with
correlation coefficient of 0.97 (the corresponding correlation coefficient using δ is 0.43), thus
demonstrating once again, at least at this simple level, its value as a predictor of when the
NBA will break down. This also indicates the importance of considering C̄ in understanding
the effect of the NBA on the calculation of posterior probabilities.

Besides the impact of the NBA on the calculation of posterior probabilities there is the
question of how it impacts classification accuracy. We could use Eq. (5.3) as a diagnostic.
However, we can also use (5.4), which shows a high degree of correlation with (5.3). In the
case of only two features, if we take the exact score as our target then Eq. (5.4) is somewhat
tautological. The correlation between a pure classification performance measure, such as
sensitivity, and a diagnostic such as (5.4) is weaker than for that of posterior probability.
Although the relation shows a clear tendency there is also a high degree of dispersion. The
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reason for the high variance is that a misclassification is not dependent on the difference in
magnitude between S(X1X2) and SNB(X1X2) for a given X1X2 but, rather, only on if there
is a difference in sign between them. To account for this, we can introduce the diagnostic

S(X1X2) = sign(S(X1X2)) − sign(SNB(X1X2)) (5.8)

If S(X1X2) = 0 then the GBC and NBC will place the instance X1X2 in the same class. If
S(X1X2) �= 0 on the other hand theGBC andNBCwill place the instance in different classes.
From this we can clearly intuit the robustness of the NBC given that it is only when the exact
classifier and the NBC are in disagreement that there can be differences between them. This
will preferentially occur near a score threshold, S∗, generically S∗ = 0, that marks the cutoff
between one class and another. In other words, S and SNB can be substantially different and
still have agreement over the assigned class. This is the logic of the argument of Domingos
and Pazzani (1996) about the robustness of the NBC.

A complementary diagnostic is the ratio of the variance in the exact score to the variance in
theNB score, the average value of this ratio being 429 for the 5 distributionswith highest error
and 29 for those with lowest error. This reflects the fact that there is much more dispersion in
the exact posterior probabilities than in their NB approximations and that this dispersion is
particularly associated with correlation between the features as opposed to the contributions
of the individual features themselves. For distribution 4 the NBA performs very well, and
we can clearly see why. The variance in the NB scores is 5.94, far larger than the other
distributions, and very similar to the exact variance. This variance is the raw material on
which the validity of the NBA rests. The larger this variance, and the more similar it is to the
exact variance, the less likely it is that sampling errors will lead to an erroneous ranking of
the NBC relative to the exact one.

6 Factorization dependence of the performance of the GBA versus the
NBA

We will now concentrate on the effect of the GNB and NB approximations in terms of the
corresponding classifiers SGNB(X) and SNB(X) rather than on the calculation of posterior
probabilities. The reason for this is two-fold, first of all the vast majority of work on the
NBA and the GBA is in terms of classification, and, secondly, the analysis of errors is much
simpler due to their purely additive nature in the score functions. Analyzing Eq. (3.14),
two fundamental observations are pertinent: Firstly, the error in the score function for a
given schema ξ may be small, even though the errors in the constituent likelihood functions
is large, due to a cancelation between the differences δs(C |ξ) and δs(C̄ |ξ). Secondly, the
overall difference in the GBC and the NBC may be small due to cancelations between the
differences δs(C |ξ) and/or δs(C̄ |ξ) with those, δs(C̄ |ξ ′) and δs(C̄ |ξ ′), of other schemata ξ ′.

To develop more intuition for this, we can turn to the philosophy of the two-variable
case, where we posited specific distributions for the likelihood functions. Now, however,
we are interested in more than two features. We will consider in this Section three-feature
distributions P(X1X2X3|C), before passing in later Sections to four-, six- and eight-feature
distributions, all with analogous expressions for the likelihoods for C̄ . Of course, one can
consider correlations in the exact likelihoods such that they do not possess any exact fac-
torization at all. However, any real world problem will, at the very least, have approximate
factorizations. What is more, in an algorithmic implementation of the GBA, where a vast
space of possible factorizations could be searched, it is natural to concentrate on correlations
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between pairs of features as these will tend to be the combinations that have the biggest sam-
ple size and therefore the most statistical significance. We will therefore use the probability
distributions of Appendix A, creating distributions for more than two features by concate-
nating the two-feature distributions we have constructed. In this way we will not consider
potential correlations between more than two features, although the following analysis gen-
eralizes very simply to more than two features. Moreover, all our qualitative observations
about the validity of the NBA are independent of the number of correlated features.

We will proceed by considering different possible scenarios: first, we may consider that
the correlations in the underlying probablility distributions of the likelihoods for C and C̄
may be symmetric, i.e., appear in the same feature combinations in the two likelihoods, or
asymmetric, i.e., that the correlated feature combinations in the likelihoods for C and C̄ are
distinct; secondly, in applying the GBAwe may choose a factorization of the likelihoods that
is symmetric, i.e., the same for both, or asymmetric, i.e., distinct for both. We will observe,
naturally, that the optimal factorization, in terms of our performance metrics, is that which
best respect the correlations in the underlying probability distributions.

6.1 Symmetric correlations, symmetric factorizations: three features

We will begin with the case where correlations in the likelihoods for C and C̄ are associated
with the same features and, moreover, the factorizations of the likelihoods of C and C̄ are
symmetric in that the combined features in the GBA are the same for both likelihoods. In
schema language, symmetric factorizations are such that the schema partitions, ξ (i), of both
likelihoods are the same. We will fix the exact probability distribution to be a product

Pe(X|C) = P(X1X2X3|C) = P(X1X2|C)P(X3|C) (6.1)

where each P(X1X2|C) can be chosen from an independent distribution; for example, from
our set of twelve distributions. In this case, the likelihoods are a product of one order-two
schema and one order-one schema. The exact score function/classifier is

Se(X1X2X3) = ln
P(X1X2X3|C)

P(X1X2X3|C̄)
= ln

P(X1X2|C)

P(X1X2|C̄)
+ ln

P(X3|C)

P(X3|C̄)
(6.2)

Unlike the NBA, for the GBA there are many possible distinct factorizations. For three
binary features, we denote the NBA by the schema partition ξ (0) = (ξ1 = X1, ξ2 = X2, ξ3 =
X3). The three possible two-schema partitions are: ξ (1) = (ξ1 = X1X2, ξ2 = X3), ξ (2) =
(ξ1 = X1X3, ξ2 = X2) and ξ (3) = (ξ1 = X2X3, ξ2 = X1). The only order-three schema
ξ (4) = (ξ1 = X1X2X3) corresponds to the exact probability distribution itself. As, by
construction, there are no dependencies between the schemata ξ1 = X1X2 and ξ2 = X3, the
GBA, if it is based on the two schemata ξ1 = X1X2 and ξ2 = X3, should be exact. In other
words,

Pe(X1X2X3|C) ≡ P(X1X2|C)P(X3|C)

= P(ξ (1)|C) ≡ Pe
GB(X1X2X3|C) (6.3)

where the superscript e on Pe
GB signifies that this particular factorization of the GBA is exact

as it respects the correlation structure of the exact probability distribution. The factorizations
of the GBA we will consider here are (ξ (0), ξ (0)), (ξ (1), ξ (1)), (ξ (2), ξ (2)) and (ξ (3), ξ (3))

which are all symmetric, in that the combined features are the same in the likelihoods of both
C and C̄ .

In Table 1 we see the performance of these different factorizations relative to the exact
classifier, and also to the NBA, (ξ (0), ξ (0)), for the cases where the correlations in the under-
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Table 1 Performance measures for symmetric GBA factorizations in three feature problem with symmetric
correlations in the likelihood functions

F SS WW WS SW S S′
S D S D S D S D S D

00 0.625 7.211 1.000 1.414 0.875 4.242 0.625 6.633 0.750 4.898

11 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

22 0.625 7.211 1.000 1.414 0.875 4.242 0.625 6.633 0.750 4.898

33 0.625 7.211 1.000 1.414 0.875 4.242 0.625 6.633 0.750 4.898

F is factorization, S is sensitivity and D is distance

lying probability distribution are strong, s, (we use distribution 1 of Appendix A) or weak,
w, (where we use distribution 4 of Appendix A). As performance measures we consider
the sensitivity of the different classifiers and the distance function, Eq. (2.15). We consider
the cases ss, ww, sw and ws for the strength of correlation in the likelihoods for C and C̄
respectively. Thus, ss refers to strong correlation in both likelihoods (distribution 1 for the
likelihoods of C and C̄), whereas ws corresponds to a weak correlation in the likelihood
for C (distribution 4) but a strong correlation in the likelihood for C̄ (distribution 1) and
vice versa for sw. Finally, we will consider the correlation strength distribution ss′, which
corresponds to distribution 2 for the likelihoods of both C and C̄ . The important distinction
between distributions 1 and 2 is that, although both are associated with strong correlations
in the likelihoods for C and C̄ , distribution 1 results in a reinforcement of errors between the
likelihoods ofC and C̄ , whereas distribution 2 is associatedwith an intra-schema cancelation.

For the case where there are strong correlations in either or both likelihood functions, we
see that theGBA is better or equal to theNBA in every case, independently of the factorization.
For the factorization ξ (1) for both C and C̄ it is strictly better. This is understandable, as in
this case the factorization captures precisely the correlation structure of the underlying exact
probability distributions. For the factorizations ξ (2) and ξ (3), the performance of the GBA is
equivalent to that of the NBA, because there are no correlations between the features in the
pairs X1X3 or X2X3. For example, for ξ (2), which considers P(ξ1|C) = P(X1X3|C), we
have P(X1X3|C) = P(X1|C)P(X3|C), which is equivalent to the NBA. Note also that the
performance of the NBA in the case of ss′ is substantially better than for the distribution ss,
showing how the quality of the NBA is improved when there is a cancelation effect among
large errors in the likelihoods.We can also conclude that there is no performance cost relative
to the NBA of choosing an inappropriate symmetric factorization, 22 or 33, but neither is
there an improvement.

6.2 Asymmetric correlations, all factorizations: three features

We now consider the case where the correlations in the two likelihoods are asymmetric with

Pe(X|C) = P(X1X2X3|C) = P(X1X2|C)P(X3|C) (6.4)

Pe(X|C̄) = P(X1X2X3|C̄) = P(X1X3|C̄)P(X2|C̄) (6.5)

with an exact score function/classifier
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Table 2 Performance measures for all GBA factorizations in three-feature problem with asymmetric corre-
lations in the likelihood functions, where F is factorization, S is sensitivity and D is distance and we added in
the NBA for easy comparison

F SS WW WS SW S S′
S D S D S D S D S D

00 0.625 8.367 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

01 0.625 8.367 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

02 0.500 6.782 1.000 0.000 1.000 0.000 0.500 6.928 0.625 6.164

03 0.625 8.367 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

10 1.000 3.464 1.000 0.000 0.875 4.899 1.000 0.000 0.875 3.162

11 1.000 3.464 1.000 0.000 0.875 4.899 1.000 0.000 0.875 3.62

12 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

13 1.000 3.464 1.000 0.000 0.875 4.899 1.000 0.000 0.875 3.262

20 0.625 8.366 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

21 0.625 8.366 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

22 0.500 6.782 1.000 0.000 1.000 0.000 0.500 6.928 0.625 6.164

23 0.625 8.366 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

30 0.625 8.366 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

31 0.625 8.366 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

32 0.500 6.782 1.000 0.000 1.000 0.000 0.500 6.928 0.625 6.164

33 0.625 8.366 1.000 0.000 0.875 4.899 0.500 6.928 0.750 7.348

Se(X1X2X3) = ln
P(X1X2X3|C)

P(X1X2X3|C̄)

= ln P(X1X2|C) + ln P(X3|C) − ln P(X1X3|C̄) − ln P(X2|C̄) (6.6)

Once again, there are three possible factorizations: ξ (1) = (ξ1 = X1X2, ξ2 = X3), ξ (2) =
(ξ1 = X1X3, ξ2 = X2) and ξ (3) = (ξ1 = X2X3, ξ2 = X1). However, distinct to the
symmetric case, here the optimal GBA factorization is different for the two likelihoods.
For P(X1X2X3|C), the factorization ξ (1) will be optimal, while for P(X1X2X3|C̄) the
factorization ξ (2). As in the previous Section, we consider the cases ss, ww, sw, ws and ss′
for the strength of correlation in the likelihoods forC and C̄ respectively. We use distribution
1 for s and distribution 4 for w. For ss′ we use distribution 2. The difference now is that s in
ss is associated with distribution 1 for P(X1X2|C) and P(X1X3|C̄), P(X1X2|C) for s in
sw and P(X1X3|C̄) for s in ws. Similarly, for w.

In Table 2 we see the performance of the different factorizations relative to the exact
classifier and the NBA (factorization 00) for the cases ss, ww, sw, ws and ss′. The first
immediate observation is that the factorization 12, corresponding to ξ (1) for P(X1X2X3|C)

and ξ (2) for P(X1X2X3|C̄), has optimal performance, with 100% classification accuracy and
perfect ranking. In general, we see that the GBA for most factorizations is better than or equal
to the NBA with respect to both metrics. For the distribution ss the GBA is strictly better
or equal to the NBA for all factorizations and both performance measures. Moreover, it is
strictly better in those cases, 1∗ and ∗2, where one of the combined feature pairs captures the
underlying correlations in the probability distributions; 1∗ capturing the strong correlation
in P(X1X2|C) and ∗2 the underlying strong correlation in P(X1X3|C). Interestingly, for
the case ww, the NBA is optimal with respect to both sensitivity and distance. This is in
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distinction to the case of symmetric correlations. In the mixed distributions, ws and sw, we
see the same pattern as for the case of symmetric correlations: i.e., the GBA is strictly better
for sw in the cases 10, 11 and 12 and 13, where the GBA captures the strong correlation
in the likelihood for C ; for the distribution ws it is strictly better in the cases 02, 12, 22
and 32, where the GBA accounts for the strong correlation in the likelihood for C̄ . For the
distribution ss′, interestingly, in no case is the GBA worse than the NBA in terms of the
distance metric. For the classification metric it is worse for 02, 22 and 32. These are precisely
the cases where features are combined in the strongly correlated likelihood for C̄ but not for
the strongly correlated likelihood for C .

7 Error analysis: choosing the right factorization

In the above we showed how the relative performance of the GBA when compared to the
NBA was sensitive to the factorization used for the GBA relative to the distribution of
correlations inherent in the underlying probability distributions. However, to determine the
relative efficacy of the GBA in the above we exhaustively considered every factorization.
This is not practicable for real world problems with many features, hence, the importance
of a priori diagnostics. We will consider the distribution of errors associated with all two-
feature combinations using the error diagnostics, ΔC (Xi X j ), ΔC̄ (Xi X j ) and Δ(Xi X j ), and
show how these indicate which features should be combined and, therefore, when and why
the GBA should be used. We will work first in the context of the three-feature problem,
considering first symmetric and then asymmetric correlations in the underlying probability
distributions.

For symmetric correlations, an analysis of the errors for every pair of feature values yields
several noteworthy observations. First, that ΔC (Xi X j ) = ΔC̄ (Xi X j ) = Δ(Xi X j ) = 0
for Xi X j = X1X3 or Xi X j = X2X3, for all five correlation strength distribution types.
In other words, our diagnostics can clearly identify combinations of features where there
are no correlations, that can then be well approximated by the NBA. The only non-zero
values are associated with the feature combination X1X2, where their values depend on
the degree of correlation in the underlying probability distributions. For the distribution ss,
both ΔC (X1X2) and ΔC̄ (X1X2) are large—ranging from 64 to 96% of the corresponding
probabilities in the NBA for the four different feature value combinations—while the error
in Δ(X1X2) is approximately double that, due to the reinforcement of the errors from C and
C̄ . For the distributionww, on the other hand, bothΔC (X1X2) andΔC̄ (X1X2) are relatively
small, only about 1–36% of the corresponding NBA probabilities. The errors in Δ(X1X2)

are only of the order of 10–39% in spite of the fact that there is no cancelation between the
likelihood errors for C and C̄ . For sw and ws, errors are dominated by the corresponding
strongly correlated distribution. Thus, for sw, the likelihood error in C is 83–95%, while
that of C̄ is only 1–17%. The resultant error Δ(X1X2) is thus dominated by the error of the
likelihood in C . A similar result holds for the distribution ws, where now the error in the
likelihood for C̄ dominates the overall error. For the distribution ss′, although the errors in
ΔC (X1X2) and ΔC̄ (X1X2) are large, 83–95% in C and 64–78% in C̄ , the error in Δ(X1X2)

is relatively small, 6–54%, due to the cancellation in errors between the two likelihoods.
In the case where the correlations in the underlying probability distributions for the like-

lihood functions are asymmetric, with a correlation between X1X2 for C and between X1X3

for C̄ , the most noteworthy difference to the symmetric case is that, as expected, the Δi j

in the case ss′ do not exhibit any cancelation, as the strong correlations are in likelihoods
associated with distinct feature sets.
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Fig. 3 Graph of average distance as a function of average error for symmetric GBA factorizations in three-
feature problem with symmetric correlations in the likelihood functions

7.1 Relating errors to the GBA: three features

We see then that our diagnostics clearly indicate which combination of features should
potentially be treated together rather than independently and therefore which factorization
of the GBA is the most appropriate. We also see that it may be necessary to combine features
in only one likelihood as opposed to both. In order to determine whether the features Xi X j

should be combined together and, further, whether they should be combined together for the
likelihoods of both C and C̄ or only one or none, implies setting a threshold for the errors
above which the features will be combined. In this infinite population setting the natural
threshold is zero as there are no sampling errors affecting the Δ, which are then a pure
measure of the error due to model bias. We will consider using ΔC to determine when to
combine features in the likelihood forC ,ΔC̄ for combining features in C̄ andΔ to determine
if we are likely to see error cancelation or error reinforcement. In this three-feature setting
we can consider classifier performance as a function ofΔ, where performance is measured in
terms of our distance function or classifier accuracy. In Fig. 3 we graph average error against
average distance for each correlation distribution ww, ws, sw ss′ and ss (a graph of average
error against classifier accuracy is very similar). We show results for both the average signed
normalized error and the average absolute error. The difference between the two errors is a
measure of the degree of cancelation in the errors between C and C̄ . For both performance
measures we see a clear correlation between the average error and performance, with, as
expected, the distribution ww showing the best performance and ss the worst. Note for the
distributionsws, sw and, particularly, the distribution ss′, the difference between the average
signed and absolute errors, once again indicating that large errors in the individual likelihoods
is not sufficient to predict performance but indicating that our diagnostics do correlate with
performance.

8 Cancelations between correlations in different feature combinations

By a systematic analysis of the case of two and three features, we may understand almost all
of the principle elements—correlation type (symmetric, asymmetric), correlation strength
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(weak, strong) and “correlation correlation” (reinforcing, canceling)—that explain the rela-
tive difference in performance between the GBA and the NBA. Moreover, we saw that our
diagnostics correlate very well with this difference allowing us to predict a priori when the
NBA might be expected to break down and what factorization of the GBA should be used.
Our error diagnostics allow us to identify which features should be combined and there-
fore which factorization of the GNB is better. Furthermore, the analysis also allows us to
understand why the NBA is such a robust and versatile performer in spite of its very strong
assumption of independence between features. Essentially, the only element missing when
passing to more than three features is that of error reinforcement or cancelation between
different feature combinations.

8.1 Cancelations for four features

The simplest illustration of the cancelation between different feature combination occurswith
two binary schemata, considering concatenations of two two-feature distributions taken from
Appendix A. Explicitly, we consider a probability distribution Pe(X|C) for four features, X1,
X2, X3, and X4, of the form

Pe(X|C) = P(X1X2X3X4|C) = P(X1X2|C)P(X3X4|C) (8.1)

where each P(Xi Xi+1|C) can be chosen from an independent distribution. Note that the
correlation structure is symmetric in the likelihoods for C and C̄ . We will restrict attention to
symmetric correlations as for the purpose of studying reinforcement or cancelation of errors
between feature sets there is nothing new in the asymmetric version. As, by construction,
there are no dependencies between the features Xi X j for i j = 13, 14, 23, 24 the schema
partition ξ (e) = (ξ1, ξ2) with ξ1 = X1X2 and ξ2 = X3X4, will be exact and, hence, the GBA
based on these two schemata should be an exact approximation. In other words,

P(X1X2X3X4|C) ≡ P(X1X2|C)P(X3X4|C)

= P(ξ (1)|C) = P(ξ1|C)P(ξ2|C) ≡ Pe
GB(X1X2X3X4|C) (8.2)

and analogously for P(X1X2X3X4|C̄). In contrast, the NBA gives for the likelihood function

P(X|C) = P(X1|C)P(X2|C)P(X3|C)P(X4|C) (8.3)

while the error in the score function relative to the optimal (exact) factorization is given by

ΔSGB(C |X1X2X3X4) = δs(ξ1|C) + δs(ξ2|C) − δs(ξ1|C̄) − δs(ξ2|C̄)

= δs(C |ξ1) + δs(C |ξ2)
≡ ln

(
P(X1X2|C)

P(X1|C)P(X2|C)

)

− ln

(
P(X1X2|C̄)

P(X1|C̄)P(X2|C̄)

)

+ ln

(
P(X3X4|C)

P(X3|C)P(X4|C)

)

− ln

(
P(X3X4|C̄)

P(X3|C̄)P(X4|C̄)

)

(8.4)

We will consider different concatenations of the probability distributions of Appendix A,
as discussed in 3.1. We saw there, that for distributions 1, 3, 8, 10 and 11 the NBA was
particularly bad, while for distributions 2, 4, 7, 9 and 12 the NBA was better. However, we
also saw that there were different reasons why the NBA might work well in the two-feature
examples. First, as in distribution 4, that the correlations were weak in both the likelihoods
for both C and C̄ ; and, alternatively, as in distribution 2, that the correlations were strong
in the likelihoods for both C and C̄ but that there were cancelations in the errors between
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Table 3 Table of errors for four-feature distribution SS

Features ΔSC (X1X2) ΔSC̄ (X1X2) ΔSC (X3X4) ΔSC̄ (X3X4)

1111 −3.15 0.49 −3.15 0.49

1110 −3.15 0.49 0.67 −1.50

1101 −3.15 0.49 0.61 −1.01

1100 −3.15 0.49 −1.80 0.58

1011 0.67 −1.50 −3.15 0.49

1010 0.67 −1.50 0.67 −1.50

1001 0.67 −1.50 0.61 −1.01

1000 0.67 −1.50 −1.80 0.58

0111 0.61 −1.01 −3.15 0.49

0110 0.61 −1.01 0.67 −1.50

0101 0.61 −1.01 0.61 −1.01

0100 0.61 −1.01 −1.80 0.58

0011 −1.80 0.58 −3.15 0.49

0010 −1.80 0.58 0.67 −1.50

0001 −1.80 0.58 0.61 −1.01

0000 −1.80 0.58 −1.80 0.58

them. Hence, as building blocks for the concatenations we will use distribution 4, denoted as
W , which has small errors in the NBA for both likelihoods; distribution 1, S, which exhibits
large errors in both likelihoods and of opposite sign; distribution 2, W ′, which has large
errors for both likelihoods, but with cancelations between them; and, finally, distribution 1,
but where C and C̄ have been interchanged, S′. This latter artifice has the effect of giving
errors for each specific feature combination of different sign to that of the corresponding
error of distribution 1. Hence,WW is a concatenation of distribution 4, SW of distributions 1
and 4; SS of distribution 1; WW′ of distributions 4 and 2; W ′W ′ of distribution 2 and SS′ of
distribution 1 with distribution 1 where C and C̄ are inverted.

With these in hand we can now examine how errors cancel both at the intra- and inter-
schemata level. In Table 3 we see the different errors in the likelihoods for C and C̄ for
each schema ξ1 = X1X2; ξ2 = X3X4 for the distribution SS. The most notable feature is
that, for any schema, the signs of the errors vary between the different feature combinations
11, 10, 01, 00. In fact, as previously stated, for binary features the errors in the likelihood
functions for X1X2 and X̄1 X̄2 must be the same and opposite to those of X̄1X2 and X1 X̄2.
Although for features with higher cardinality and for schemata of more than two features
the situation is more complicated, it is still true that the errors for different feature values
cannot all be of the same sign and therefore when different feature value combinations are
considered in different schemata it is inevitable that there will be cancelations.

This phenomenon can be seen clearly in Table 3: considering δs(C |ξ) = δs(C |X1X2) +
δs(C |X3X4), 8 configurations, X1X2X1X2 and X1X2 X̄1 X̄2 lead to an enhanced error while
another 8, X1X2X1 X̄2 and X1X2 X̄1X2, are associated with a cancelation in errors. The same
is true for δs(C̄ |ξ). For example, 1111, 1010 etc. are associatedwith error enhancement, while
1110, 1101 etc. are associated with error cancelation. This pattern of error enhancement and
error cancelation is equally valid for any four binary feature distributions. Hence, in order
to analyse the different possibilities for cancelations between the four different likelihood
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Table 4 Table of average error for different four-feature distributions

ΔS1 |ΔS1| ΔS2 |ΔS2| ΔSC |ΔSC | ΔSC̄ |ΔSC̄ | ΔST |ΔST | SGNB SNB |%|
WW 0.228 0.228 0.228 0.228 0.263 0.304 0.121 0.152 0.323 0.456 2.511 2.305 50

SW 2.453 2.453 0.228 0.228 1.558 1.709 0.896 0.972 2.453 2.681 2.757 2.091 121

SS 2.453 2.453 2.453 2.453 2.476 3.115 1.258 1.792 3.010 4.907 3.008 0.136 23,956

WW′ 0.228 0.228 0.662 2.453 1.558 1.709 0.896 0.972 0.754 2.681 2.288 2.091 37

SS′ 2.453 2.453 2.403 2.403 1.859 2.403 1.867 2.453 2.681 4.857 2.731 0.134 1667

W′W′ 0.662 2.453 0.662 2.403 2.476 3.115 1.258 1.792 1.218 4.907 1.216 0.136 6595

functions in this four-feature problemwe consider the following quantities:ΔSi , i = 1, 2 =
δs(C |ξi ) = δs(ξi |C)− δs(ξi |C̄) is the sum of the signed errors for each feature combination,
while |ΔSi | = |δs(ξi |C)|+|δs(ξi |C̄)| is the sum of the absolute errors in the two likelihoods.
Similarly, ΔSC = δs(ξ1|C) + δs(ξ2|C) is the sum of the signed errors for the likelihoods of
C summed across the two schemata ξ1 and ξ2. ΔSC̄ = δs(ξ1|C̄) + δs(ξ2|C̄) is the analogous
quantity for the likelihoods of C̄ . Finally,ΔStotal = δs(ξ1|C)−δs(ξ1|C̄)+δs(ξ2|C)−δs(ξ2|C̄)

is the signed error for the full feature set, while |ΔStotal | = |δs(ξ1|C)| + |δs(ξ1|C̄)| +
|δs(ξ2|C)| + |δs(ξ2|C̄)| is the sum of the absolute errors across all four likelihood functions.

Table 4 shows the absolute values of these different diagnostics averaged over the 16
different feature combinations 1111, 1110, . . . , 0000 for each concatenation. For the homo-
geneous distributions WW and SS, we see that ΔSi = |ΔSi |, i = 1, 2, indicating that there
are no cancelations between the errors in the likelihoods for C and C̄ in a given schema.
In other words, the errors in the likelihoods for C and C̄ reinforce one another rather than
cancel. On the other hand, in both cases, ΔSi < |ΔSi |, i = C, C̄ , which indicates that there
are cancelations between schemata, for both likelihood functions, as illustrated above for the
case SS. In the case of the distribution SW, once again there are no cancelations between the
errors for C and C̄ in a given schemata but there are between schemata. For the distributions
WW′, SS′ and WW′, all three contain distributions, S′ or W ′, where there is a cancelation of
errors between the likelihoods forC and C̄ within a given schemata, i.e., thatΔSi < |ΔSi | for
i = 2 forWW ′ and SS′, or both in the case ofW ′W ′. Additionally, there are also cancelations
between schemata for all three distributions. By comparingΔStotal with |ΔStotal |we can see
the extent of the overall error cancelation for the score function. By far the largest reductions
are associated with those distributions,WW′, SS′ and W ′W ′, where there are cancelations at
both the intra- and inter-schemata level. The least cancelation is for the distribution SW. This
is due to the fact that it is a concatenation of a distribution, S, with large errors, with another,
W , with small errors. However, although the greatest error cancelation is associated with
those distributions where there are both intra- and inter-schemata cancelations they do not
correspond necessarily to those distributions where the average absolute difference between
the NB score and the exact score is highest. Rather, the largest differences in score are asso-
ciated with those distributions where the NB scores are small. As mentioned previously, the
NBA has inadequate raw material with which to work.

8.2 Cancelations for more than four features

We can concatanate the two-feature distributions as many times as we like to see how things
change as a function of the number of features and as a function of themix of correlations. For
instance, for six and eight features we will take the probability distributions for the likelihood
functions to be
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Table 5 Table of average error for different six- and eight-feature distributions

ΔSC |ΔSC | ΔSC̄ |ΔSC̄ | ΔStotal |ΔStotal | Score NBG Score NB |%|
WWW 0.366 0.470 0.158 0.235 0.410 0.706 3.435 3.237 15.90

SWW 1.625 1.921 0.925 1.082 2.533 3.003 3.557 2.379 506.64

SSW 2.598 3.372 1.311 1.928 3.139 5.300 3.702 2.158 154.54

SSS 3.338 4.823 1.559 2.774 3.838 7.598 3.861 0.175 5708.10

WW′W 1.625 1.921 0.925 1.082 0.863 3.003 2.867 2.379 156.64

SS′S 2.772 4.140 2.177 3.457 3.799 7.598 3.799 0.175 4471.94

WWWW 0.436 0.607 0.179 0.304 0.464 0.912 3.691 3.377 114.07

SWWW 1.601 2.013 0.896 1.124 2.453 3.137 3.879 3.136 110.82

SSWW 2.558 3.419 1.282 1.944 3.076 5.363 4.084 2.306 942.91

SSSW 3.296 4.824 1.530 2.764 3.738 7.588 4.296 2.091 185.62

SSSS 4.021 6.230 1.888 3.584 4.514 9.814 4.511 0.195 8574.92

WW′WW′ 2.558 3.419 1.282 1.944 1.351 5.363 3.057 2.306 453.01

SS′SS′ 2.993 4.907 2.993 4.907 3.093 9.814 4.023 0.193 2281.02

Pe(X|C) = P(X1X2X3X4X5X6|C)

= P(X1X2|C)P(X3X4|C)P(X5X6|C) (8.5)

Pe(X|C) = P(X1X2X3X4X5X6X7X8|C)

= P(X1X2|C)P(X3X4|C)P(X5X6|C)P(X7X8|C) (8.6)

with analogous expressions for C̄ , so that the correlation structure is symmetric.
For the 6-feature case there are three order-two schemata, ξ1 = X1X2, ξ2 = X3X4,

ξ3 = X5X6, and for the 8-feature case four, ξ1 = X1X2, ξ2 = X3X4, ξ3 = X5X6 and ξ4 =
X7X8, with no dependencies in either case between features that are in different concatenated
two-feature blocks. The schema partitions ξ e = (ξ1, ξ2, ξ3) and ξ e = (ξ1, ξ2, ξ3, ξ4), with
ξ1 = X1X2, ξ2 = X3X4, ξ3 = X5X6, ξ4 = X7X8 will be exact as will be the GBA based
on this factorization. The corresponding errors in the score function can be calculated from
Eq. (3.14). In these examples, we have constructed all the dependencies between different
variables explicitly. By choosing as schemata ξ1 = X1X2 and ξ2 = X3X4, for four features,
ξ1 = X1X2, ξ2 = X3X4, ξ3 = X5X6 for 6 features and ξ1 = X1X2, ξ2 = X3X4, ξ3 = X5X6

and ξ4 = X7X8 for eight features we have chosen a GBA that matches the exact factorization
of the likelihood function and, hence, the GBA is exact. The implication of this is that the
error of the NBA is just the sum of the errors associated with the four order-two dependencies
arising from the four schemata ξ1, ξ2, ξ3 and ξ4.

We will consider concatenations of the distributions W , W ′, S and S′ of Sect. 8.1, for
six features considering the distributions WWW, SWW, SSW, SSS, WW′W and SS′S and for
eight features the distributionsWWWW, SWWW, SSWW, SSSW, SSSS,WW′WW′ and SS′SS′.
In Table 5, for each distribution we see our error measures—ΔSC , ΔSC̄ , ΔStotal , |ΔSC |,
|ΔSC̄ | and |ΔStotal |, as well as the GNB and NB scores. We see manifest the phenomenon
of error cancelation at both the intra- and inter-schemata level. Note that the examples with
the greatest degree of cancelation are those with feature pairs associated with the strongly
correlated distributions W ′ and S′ that exhibit important error cancelations between the
likelihoods for C and C̄ , leading to cancelations of up to 75% of the absolute error with the
main contribution coming from cancelations of the errors in ΔC and ΔC̄ . The symmetric
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Fig. 4 Graph of relative score cancelation versus correlation type

distributionsWWW, SSS,WWWW and SSSS illustrate very well the existence of cancelations
across different feature value combinations given that not all can have the same sign of error.
Moreover, this type of cancelation increases as the number of features increases. Indeed,
we see that, even if there are very strong correlations with errors that reinforce between the
likelihoods ofC and C̄ , i.e., without intra-schemata cancelation, the overall error cancelation
due to inter-schemata cancelation is more than 50% of the absolute error and this reduction
is about the same for the weakly correlated case WWWW .

These effects are summarized in Fig. 4: For a given correlation type—(WW, WWW,
WWWW), (SS, SSS, SSSS)—the relative degree of cancelation is an increasing function of the
number of features. This repeated concatenation of the same distribution shows and isolates
the effect of inter-schemata error cancelation between different feature values combinations
in different modules due to the fact that the error function cannot be of the same sign over
all feature value combinations. We also see the enhanced cancelation for distributions with
W ′ and S′ modules due to the addition of intra-schemata cancelation.

8.3 Performance as a function of number of features and degree of correlation

So, how do our error measures relate to performance in these multi-feature cases? In Figs. 5
and 6 we see the performance of the NBA as a function of our signed score error measures,
ΔStotal , averaged over all feature value combinations for the four- six- and eight-feature
distributions considered in the previous Sections (the results are very similar for the absolute
error measure |ΔStotal |). The most notable feature of the graphs is the good degree of corre-
lation between the error measure and the corresponding performance measure, with an R2 of
approximately 0.7, clearly showing that our error diagnostics do predict relative performance.
We can also note from these graphs that the correlations between points associated with a
fixed number of features are stronger than when considering the full set of distributions.

We have used two different performance metrics as they represent two different measures
of classifier performance. As emphasized byDomingos and Pazzani (1996), the all or nothing
nature of classification should explain some of the robustness of the NBA. Indeed, we can
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Fig. 5 Graph of classification error versus ΔStotal for different 4, 6 and 8 feature distributions

Fig. 6 Graph of distance versus ΔStotal for different 4, 6 and 8 feature distributions

confirm this very well using the present analysis. Indeed, there is a low degree of correlation
(R2 = 0.32) between the two measures for the 19 concatenated distributions we have con-
sidered. Why the low correlation? Well, the distance measure is a metric that determines the
similarity between the NBA ranking and the GBA (in this case, exact) ranking and is global
over the full set of predictions. On the other hand, classification performance is particularly
sensitive to the NB score in the vicinity of the score threshold, i.e., SNBA = 0. This means
that even large errors are relatively unimportant if the NB score is far from the threshold and,
on the contrary, the effect of small errors may be significantly amplified in the vicinity of the
threshold.
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Fig. 7 Graph showing relative score error against false positive rate for different four, six and eight feature
distributions

In Fig. 7 we see the relation between the relative score error, i.e., relative to the NB
score, versus classification error (false positive rate). The strong relationship between them
confirms the importance of the vicinity of the score threshold SNB = 0, where the relative
error would be expected to be the largest and hence the highest sensitivity tomisclassification.
On the contrary, the correlation between the relative score error and the distance metric is
weak showing that the two metrics are sensitive to quite different characteristics of the error
function.

9 Application to real world data

In this Section we will briefly show how the insights gleaned from our previous analysis can
be applied to real world problems.We have seen how local error measures for the likelihoods,
Equations (3.8); and for the scores, (3.12), can be used to determine which features should be
combined and therefore how to construct an appropriate factorization for the GNB. However,
these diagnostics are all associated with probabilities and, therefore, independent of sample
size. For example, for two features, if P(X1X2|C) = NCX1X2/NC = 0.3, P(X1|C) =
NCX1/NC = 0.4 and P(X2|C) = NCX2/NC = 0.4, we must consider the possibility that
the error δ(X1X2|C) = 0.14 is not statistically significant if NX1X2 , NC , NX1 or NX2 are
small. To determine the degree of statistical significance of the errors (3.8) we will use the
following binomial tests

ε(ξ |C) = NCδ(ξ |C)√
NCPNB(ξ |C)(1 − PNB(ξ |C))

(9.1)

where, as throughout the paper, C = C or C̄ . Given that δ(ξ |C) = (P(ξ |C) − PNB(ξ |C))

the test is taking as null hypothesis that there are no correlations between the attributes of ξ .
Thus, the test determines the degree to which the actual observation P(ξ |C) is inconsistent
with the null hypothesis. The likelihood error will be taken to be statistically significant if
ε exceeds some hypothesis testing threshold. For instance, in the case where the binomial
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distribution may be approximated by a normal distribution, ε = 1.96 would correspond to
the 95% confidence interval that that error value did not occur by chance relative to the Naive
Bayes null hypothesis. In the case where the distributions are not well approximated by a
normal distribution, hypothesis testing can use a more sophisticated approximation, using for
example the Wilson intervals. Another problem in the finite sample setting is the possibility
of having NCξ = 0. This implies that P(ξ |C) = 0 and will lead to infinite score contributions
from the corresponding schema. To avoid this a smoothing, such as the Laplace correction
or m-estimates, can be used.

We use as criteria that |ε(ξ |C)| > 2 and |ε(ξ |C̄)| > 2 in order to determine those
feature sets which should be combined together, and consider all possible combinations of
feature values. We consider two different combination algorithms: one where features are
combined independently in the two likelihoods—the asymmetric GNB (GNBa)—and one
where they are combined together—the symmetric GNB (GNBs). For instance, in the former,
if ε(X1X2|C) = 3.1 and ε(X1X2|C̄) = 0.9, then the features X1 and X2 would be combined
only in the likelihood for C and not C̄ . On the other hand, in the symmetric case they would
be combined in both likelihoods. It may occur that a given feature qualifies to be combined
as a member of more than one feature combination. For example, for three features, if
ε(X1X2|C) = 3.1, ε(X1X3|C) = 2.4 and ε(X2X3|C) = −0.2, then the feature X1 qualifies
to be combined with both X2 and X3. If ε(X1X2X3|C) = 1.8, or if we restrict to only binary
combinations, then X1 can only be combinedwith one other feature for a given feature vector.
In this case we choose the feature combination with the highest value of ε. In the present
example, this would mean that X1 is combined with X2, as ε(X1X2|C) > ε(X1X3|C). In
the case where different combinations resulted in the same value of ε, then the value of δs
for the combined features was used to break ties. For simplicity, we considered only binary
schemata, i.e., we combined only up to two features. Besides simplicity, another previously
discussed reason for this is that two-feature samples are inevitably larger than three-feature
samples and therefore, all else being equal, lead to higher values of ε.

We considered 20 data bases from the UCI repository, as seen in Table 6. We also con-
sidered three text mining data sets as this is one area where the NBA is still considered to be
competitive. These latter data sets are taken from the KEEL data set repository (http://sci2s.
ugr.es/keel/textClassification.php) and are also shown in Table 6. For simplicity we consid-
ered each problem as a two-class problem. In multi-class problems we took the smallest class
case and in the binary domains we took the class specified at the UCI repository. Numeric
attribute values were discretized by dividing into a fixed number of bins and choosing the
bin intervals so that each bin contained approximately the same number of elements. Ten
bins were chosen as the default. However, in the case of data bases with few elements we
considered a smaller number. For each data base we performed random subsampling with
a 70/30 training/holdout split repeated 20 times. Note that no tuning of the GBA was con-
sidered. For example, no feature selection algorithm was used. Features in the schema ξ

were combined when |ε(ξ)| > 2. As performance metrics we considered classifier error and
AUC. We compared our two GBA approximations—symmetric and asymmetric—against
the NBA implemented in WEKA, as well as three other state-of-the-art classifiers available
in WEKA: AODE,WAODE and HNB. Each classifier was implemented on exactly the same
set of training/holdout data for each of the 20 runs. The default Laplace smoothing inWEKA
was used, where (NCX/NC ) → (NCX + 1/2)/(NC + 1). The results can be seen in Tables 6
and 7 for classification error and AUC respectively.

We compared the errors and AUC of the different classifiers, where the error was averaged
over the 20 different runs.We then used a binomial test to determine the statistical significance
of the performance difference of our five enhanced classifiers, taking as null hypothesis
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the WEKA NBC. We judged the performance difference to be significant if it was at the
p < 0.05 level. The entries denotedwith a “+” are where there was a significant performance
improvement for the enhanced classifier relative to the NBC and ∗ for those cases where
the NBC was significantly better. Entries without a symbol correspond to no statistically
significant difference over the 20 runs considered. As multiple pair-wise comparisons can be
problematic we also used the Wilcoxon rank test (Demsar 2006), comparing each enhanced
classifier to the NBC. We show the corresponding z statistic defined as

z = T − 1
4N (N + 1)

√
1
24N (N + 1)(2N + 1)

(9.2)

where N is the number of data sets, T = min(R+, R−) and R+ is the sum of ranks for
the data sets on which the NBC outperforms the GBA and R− is the sum of ranks in the
contrary case. The null hypothesis that the two algorithms have equal performance can be
rejected at the 95% confidence level if z < −1.96. In terms of classifier error, we see that the
Wilcoxon rank test shows that all versions of the GNB are significantly better than the NBC.
On the other hand, in terms of AUC we see that, in terms of the Wilcoxon rank test, only the
AODE classifier shows a statistically significant enhanced performance relative to the NBC.
The strong performance of the NBC as a ranking algorithm has been amply demonstrated
previously (Zhang and Su 2004, 2008), where it has been shown that in terms of ranking the
NBA is better or equivalent to C4.4.

Wemay, of course, analyse these results from the perspective of “designing algorithms that
give better performance across a wide set of problem domains”, comparing our symmetric
and asymmetric GNB to the three established classifiers AODE, WAODE and HNB. As
emphasised, our goal here was not to design a new state of the art classifier. Neither was it
to show that knowledge of, and diagnostics for, the errors inherent in the NBA can be used
to identify which features should be combined and these combinations included into a better
performing classifier, although that is, indeed, an important result of this research. Rather,
our goal was to show that our diagnostics could predict a priori which classifier—NBC or
GBC—would work best on which problem.

That they do predict is manifest in the relatively high degree of correlation between
our chosen error metric and classifier performance. Explicitly, for the UCI and KEEL data
sets we consider the relation between the average of the absolute value of the signed error
ΔStotal , averaged over all feature vectors in the training set, versus the relative difference in
classifier error between the NBC and GBC, where to calculate ΔStotal for a given feature
vector we include only combinations with statistically significant errors. Large values of the
error correspond to those problem sets that exhibit significant correlations when averaged
over the full training set and therefore one would expect the NBA to be less effective. In
Table 8 we give a summary of these correlations for the 20 UCI data sets and the 19 arti-
ficial distributions considered in Sect. 8.2. For the UCI data sets, we take as performance
measure the relative difference in error between the GNB and the NBC, while for the arti-
ficial distributions we take error itself, as in this case the GNB is exact by construction. In
Table 8 we see that the Pearson correlation coefficients for our symmetric and asymmet-
ric GBC are smaller on the UCI data sets than was present in the artificial distributions.
However, all the correlations shown are statistically significant at the 95% confidence level
using a one-tailed t-test, thereby giving clear evidence that our chosen error measure is
predictive of performance of the GBC versus the NBC. Interestingly, our error measure is
also a good predictor of performance for the classifiers AODE, WAODE and HNB. Given
that our bespoke symmetric and asymmetric GBCs were designed to account for correlation
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Table 8 Pearson correlation coefficients between the average of the absolute error |ΔStotal |, averaged over
all feature vectors in the training set, versus the relative difference in classifier error between the NBC and
GBC for each classifier

Classifier Correlation coefficient Correlation coefficient (no ionosphere)

GNB_s UCI −0.45 −0.65

GNB_a UCI −0.47 −0.68

AODE UCI −0.61 −0.77

WAODE UCI −0.53 −0.59

HNB UCI −0.52 −0.62

Avg all −0.54 −0.68

NBC artificial 0.78 NA

All correlation coefficients are statistically significant at the 95% confidence level

Fig. 8 Relation between the percentage relative difference in error between theNBAandGBAand the average
absolute error for the 20 UCI and 3 KEEL data bases and averaged over the 5 GBA classifiers

errors by combining significantly correlated attributes in an alternative factorization of the
likelihoods, it is perhaps not surprising that the GNBs and GNBa classifiers’ performance
relative to the NBC is greater the greater the magnitude of the attribute correlations. How-
ever, it is gratifying to observe that the relative performance of the state of the art AODE,
WAODE and HNB classifiers is also highly correlated with our error diagnostics. This is
linked to the fact that all the classifiers we consider are trying to account for attribute depen-
dencies by relaxing the NB maximal factorization criterion. They just do it in different
ways.

In Fig. 8 we can see graphically the correlations between error and relative performance
improvement for the UCI and KEEL data sets averaged over all 5 enhanced GNB classifiers.
We can also notice the presence of a significant outlier—the ionosphere data set—where
there is a very high correlation error but only a small enhancement of the GBA over the
NBA. Indeed, if we consider the Pearson correlation coefficients for the UCI data sets in
Table 8 without the ionosphere outlier we can see a significant increase in the correlation
coefficients. Of course, we do not wish to data snoop in order to improve the results, but do
wish to use this case to point out that, although it is remarkable the degree of correlation
between our very simple error measure and relative performance of the GBC versus NBC,
one would certainly expect there to be other factors, potentially many, that affect the relation
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Fig. 9 Relation between the percentage relative difference in error between the NBA and GBAs and GBAa
classifiers and the average distance in ranking per case

between them. For instance, we may note that the ionosphere data set has a substantially
lower fraction of cases to attribute values than the other data sets. We may also point out
that the distribution of correlation errors potentially contains a great deal of information
which could be used to intuit classifier performance, much more than we have used here
where only one, single overall global measure has been used. In Fig. 9 we see a graph of
the average distance per case between the NBC and GBC rankings for the set of feature
vectors of the training set, versus the relative difference in classifier error between the NBC
and GBC. As we can see, there is a clear correlation, implying that the NBC is a better
performer in conditions where the average rank distance divided by the total number of
cases is larger. Given the enormous heterogeneity of the UCI and KEEL problems, it is very
gratifying to see that there are diagnostic metrics that can begin to differentiate between
those problems where the NBA would be adequate, versus those where a more sophisticated
algorithm is required. Indeed, these results strongly indicate the potential for developing
meta-prediction algorithms that could predict the performance of a given algorithm on a
given problem.

The efficacy of this idea can be tested relative to the possibility of performance “prediction”
via an internal cross-validation, or an internal separate hold-out set. In the latter, one considers
the performance of different prediction algorithms using an internal cross-validation on a
training set, then uses the ranked performance to predict how the different algorithms will
perform on a separate hold-out set. In the sense of our diagnostics, we do not consider this
to be a prediction but, rather, a validation, in that each and every algorithm has to be tried
and tested multiple times before predicting which one will perform best. In our formalism,
no algorithm is tested a priori on any data set. Rather, our statistical diagnostics are used to
predict which algorithm type will give better performance before even running the algorithm.
To test the two approaches we considered the combined set of UCI and KEEL data bases:
in the case of a performance prediction based on an internal cross-validation, we compared
the performance of each of our tested algorithms on each problem using a 15-fold internal
cross validation and then tested the algorithms on a hold out set using 5 independent runs.We
then determined the performance of the best algorithm on the internal cross-validation across
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the hold out set, determining for each problem if the best on the internal cross validation
turned out to be the best on the hold out set. As may be expected, given enough runs in
order to reduce sample error, the best performer on the internal cross validation was the best
performer on the hold out set with a classification accuracy of 100% and an AUC of 1. This,
as we emphasise however, is not an a priori prediction, but depends on running the algorithm
on each and every new problem. Such cross validation can also be used Pazzani (1996)
to determine, in an empirical fashion, which combinations of variables lead to improved
classifier performance. However, this must be done using a search algorithm to consider the
different possible combinations and then run the resulting algorithm on both a training set
and a cross validation set.

In contrast, our meta-algorithm approach considers only the relation between algo-
rithm performance and our a priori diagnostic on a set of problems, which can then be
used to predict the relative performance of the algorithms on a new, previously unseen
problem. To illustrate the explicit implementation of this approach, we constructed the
empirical relation between the percentage difference in error between the NBA and the
GBA and the average absolute error, as seen in Fig. 8, but keeping one problem as a
hold-out for which a prediction of whether the GBA or NBA would give better perfor-
mance is made. Thus, we construct a one-variable meta-prediction model which, based
on the relation between our diagnostic and algorithm performance on 22 known prob-
lems, determines which algorithm type will perform better on a new unknown problem.
Explicitly, we perform a linear regression on the 22 known problems which provides the
required relation between the relative performance of the GBA versus NBA and absolute
average error. This error is then determined for a new, unknown problem, which, using
the regression model, can then be related to relative performance improvement. Thus,
if this predicted performance improvement is positive/negative then we predict that the
NBA will give better/worse performance than the GBA. The performance of our meta-
algorithm is summarized by a 17% error rate and an AUC of 0.88. We believe that
this degree of predictability given the simple nature of our diagnostic is very encourag-
ing.

10 Conclusions

The NBA, and associated NBC, is widely used in a multitude of different contexts. It has
been shown to be both remarkably robust and effective across many problem domains in
spite of the strong assumption that all attributes are independent. There are instances where
it does not work particularly well however, and so it has been an active area of research to
both understand why it works and also to design improvements. In terms of understanding
why it is so robust, there have been distinct proposals. One hypothesis is that it is an artefact
of the nature of the performance measure of the majority of problems it has been applied
to—binary classification. A second line of thought has been that it is possible that attribute
dependence is not a sufficient condition to invalidate the NBA, rather, it is the distribution of
dependencies across classes, and among the attributes themselves, that governs its validity.
However, up to now, there has been no quantification of exactly how dependencies can
cancel, under what circumstances, and how to measure it. This latter point is fundamental
as, if it is possible to quantify deviations from the NBA, then it is possible to predict a
priori when, and under what circumstances, the NBA will be inadequate and thereby know
when to implement a more sophisticated, but more costly, alternative algorithm. Moreover,
by better understanding the relation between problem structure and algorithm structure,
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such insight should permit the design of bespoke classifiers that are better suited to a given
problem. Of course, a third attribute of the NBA, that offers a relative advantage, is that
it is based on a maximal factorization of the likelihoods, so each factor is associated with
a larger sample, and, therefore, smaller sampling errors, than any factor containing more
than one feature. This relates more to the relative advantage of the NBA in terms of model
variance.

We developed a framework that can be used to determine the presence of dependen-
cies among the attributes within an arbitrary feature combination (schema), ξ , and, more
importantly, determine when, how, and to what extent, they affect the estimation of different
performance metrics, such as estimating posterior probabilities and classification accuracies
using the NBA. Our analysis is based on the assumption, used in generalizations of the
NBA, that there exist better factorizations, for instance of the likelihood functions P(X|C)

and P(X|C̄), than the complete factorization associated with the NBA. The question then
is: what is the error associated with a given factorization, i.e., a given realization of the
GBA, relative to the NBA? In analyzing this error, we made no assumption that the opti-
mal factorization of P(X|C) was the same as that of P(X|C̄), presenting evidence that
there are problems (probability distributions) where they manifestly were not the same.
We showed that cancelations can and do occur at both the intra- and inter-schemata lev-
els, the former showing that cancelations could occur between the likelihoods for a class
and its complement, and the latter showing that cancelations could occur between the like-
lihoods for different feature combinations but for the same class. In fact, we showed that
it was inevitable that there were such inter-schemata cancelations given that the signs of
the errors for a given feature combination for different feature values could not all be the
same.

In order to quantify the degree of error cancelation or error reinforcement, we introduced a
set of diagnostics—δ(ξ |C), δ(ξ |C̄), δ(ξ), δs(ξ |C), δs(ξ |C̄), ΔC (ξ), ΔC̄ (ξ), Δ(ξ), Δs(ξ |C)

and Δ(ξ). δ(ξ |C), and its analog for C̄ , measure the degree of dependency between the
attributes within a given schema in the expression for the likelihood function for the class
C , or its complement, C̄ . We showed that strong dependencies, as exhibited by δ(ξ |C) and
δ(ξ |C̄), were not sufficient to lead to significant errors in estimating posterior probabilities
or in classification. Rather, we showed how, for a given schema, that the distribution of
dependencies across C and C̄ is what controlled the accuracy of the NBA. We showed that
the errors were maximized when the errors in the likelihoods for C and C̄ were of large
magnitude and, crucially, of opposite sign. As a corresponding diagnostic we introduced
Δ(ξ).

We showed that error analysis is simplest in terms of the score function, where indepen-
dent errors had an additive nature. We also saw that although errors could cancel/reinforce
“locally”, i.e., between the likelihoods forC and C̄ within the same schema, a full error anal-
ysis for a given feature set was a “global” question, where it was not possible to say whether
the total error for a given set was large or not until all contributions had been calculated. We
derived explicit formulas that related local errors, in potentially distinct feature subsets for
each likelihood, to global errors over the full feature set.

To relate the error analysis to model performance we considered distinct performance
metrics: i) classification accuracy; ii) estimation of posterior probabilities P(C |X); iii) the
distance between the relative rankings of the NBA and GBA; and iv) AUC. Of course,
the actual distribution and impact of attribute correlations on these performance metrics
depends on the precise properties of the underlying correlation structure of the probability
distributions we are trying to estimate. As real-world distributions are associated with finite,
and very often small, samples, sampling errors play an important distinguishing role between
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the NBA and GBA. As our interest here is in understanding the role of feature correlations as
the cause of model bias however, we chose to restrict attention initially to a set of artificial,
pre-specified probability distributions, where the degree and type of feature correlation could
be chosen and tuned to illustrate the effect and impact of feature correlations. Specifically,
we proposed a set of 12 probability distributions for two, binary features that illustrated
different qualitative characteristics, that we believe give substantial insight into the inner
workings of the NBA and its generalizations. Essentially, the distributions capture the notions
of strong versus weak correlations and correlations that reinforce or cancel between the
likelihoods.

We examined correlations in detail for all 12 test distributions, showing how significant
error in the NBA depended crucially on the relative signs of the errors in the likelihoods
for C and C̄ ; error reinforcement and error cancelation being associated with opposite and
equal signs in δ(ξ |C) and δ(ξ |C̄) respectively. We examined the impact of the different cor-
relation structures on model performance and showed that our diagnostics correlated well
with model performance. In other words, the larger the error according to our diagnostics
the worse the performance of the NBA. This validates the diagnostics as potential predictors
of performance of the NBA. In considering a class of generalizations of the NBA, where
the likelihoods are not maximally factorized, we saw the impact of choosing a factoriza-
tion that did, versus did not, respect any underlying correlation structure in the context of
a set of 3-feature probability distributions derived from our set of 12 two-feature distribu-
tions. We showed that a GBA factorization that captured the correlation structure of the
underlying problem inevitably led to better performance. We also saw the impact of cor-
relations that were not symmetrically distributed between the likelihoods of C and C̄ , i.e.,
that involved different feature combinations. Further, we showed that our error diagnostics
correlated well with the underlying problem structure, thereby indicating which factorization
was optimal.

At the level of two and three features, only intra-schemata error cancelations are visible.
To investigate the role of inter-schemata cancelations we extended our analysis to four-, six-,
and eight-feature distributions which were concatenations of our original two-feature distri-
butions. We studied a set of 19 distinct, concatenated distributions with different numbers
of features and correlation structures, showing how the full global error was an emergent
property, resulting from a set of cancelations and reinforcements of the local errors at both
the intra- and inter-schemata level. In particular, we saw the impact of the fact that the errors
of any given schema had varying signs across distinct feature values, thereby guaranteeing
the existence of inter-schemata error cancelations.We showed that maximal error cancelation
occurred in probability distributions that exhibited both intra- and inter-schemata cancela-
tions. We then showed that model performance was highly correlated with our global error
functions, thereby validating, once again, their value as predictive diagnostics for the rela-
tive performance of the NBA. We also saw that different performance metrics were more
sensitive to different characteristics of the error distribution, with classification error being
particularly sensitive to errors in the likelihoods close to the NB score threshold but insensi-
tive to those far from the threshold. On the contrary, our distance metric as a global ranking
measure was equally affected by likelihood errors independent of their distance from the
threshold.

We then applied our formalism to a representative set of 20 real world problems taken
from the UCI repository and a further three text mining data sets. Here we arrived at two
important conclusions: first that our error diagnostics allow for the identification of sets of
correlated features that should be combined; and, secondly, that the combined features can be
used to construct a GBC and GBA in the framework of the Semi-naive Bayes approximation.
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We showed that the performance of the resulting GBC gave significant improvements over
the NBC in terms of classifier error but that the differences in ranking performance, as
measured by the AUC, were not statistically significant. This is in line with previous results.
Importantly, we saw that our diagnostics also served to indicate a priori which problems were
more likely to result in an enhanced performance using a GBC as opposed to the NBC. It
should be emphasised that ourGBCandGBA is not “optimized” in thatwe have not attempted
to maximise the performance of the GBC by tuning any associated parameters. There are
several areas where improvements could potentially be made: one is in the threshold used
for ε for combining features.

In summary: we have proposed and tested a set of error diagnostics for detecting and
quantifying the effect of feature correlations at both the local (subsets of features—schemata)
and global (the full feature set) level. By interpolating between the local and global levels
they allow for a full understanding of how errors cancel across different feature combina-
tions. Thus, one can not only predict the potential performance of the NBA but can also
determine which feature subsets should be combined in a generalization of the NBA. The
optimal factorization for an instance of the GBA should be that which best respects the
underlying correlation structure of the problem at hand. Our diagnostics are an aid in the
search for that correlation structure. Obviously, in a real world problem that structure must
be inferred from finite samples and therefore is subject to sampling error. Our emphasis
here was on the model bias associated with the NBA versus the GBA or the exact cor-
relation structure. However, we showed the potential for this approach by showing how a
GBC could be simply generated by using statistical hypothesis testing on our error measures
to determine which feature sets to combine and that the resulting classifier led to signifi-
cant performance improvements on a substantive set of UCI data sets. We believe that our
results are also a first step in the direction of designing prediction meta-algorithms that can
provide an a priori prediction of the performance of a given algorithm on a given prob-
lem.
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Appendix A

Below, in Table 9, we show the two-feature probability distributions for the likelihoods
P(X1X2|C) and P(X1X2|C̄). The first column, Dis., denotes the distribution, 0-12, with
0 denoting the parity function, second, Conf., the class and feature configuration CX1X2,
with C = 1, C̄ = 0 and Xi = 0, 1); the third, Lik., the corresponding likelihood for the
class/feature combination, the fourth and fifth, (ΔC + 1) and (ΔC̄ + 1), the corresponding
error functions for the likelihoods, where ΔC is given by Eq. (5.1); the sixth column is the
error function, Δ (5.3); the seventh column, Post., is the exact posterior probability and the
eighth the NBA to the posterior probability, with column 9 being the percentage difference
between them; column 10, SNB, is the score in the NBA and column 11, SGNB, the score
in the GBA (the exact score in this case), and, finally, column 12 is the percentage difference
between them. Also shown at the end of each distribution is the mean absolute error for the
NBA estimates of the posterior probability and the score function.
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