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Abstract Multi-label learning has become a significant learning paradigm in the past few
years due to its broad application scenarios and the ever-increasing number of techniques
developed by researchers in this area. Among existing state-of-the-art works, generative sta-
tistical models are characterized by their good generalization ability and robustness on large
number of labels through learning a low-dimensional label embedding. However, one issue of
this branch of models is that the number of dimensions needs to be fixed in advance, which is
difficult and inappropriate in many real-world settings. In this paper, we propose a Bayesian
nonparametric model to resolve this issue. More specifically, we extend a Gamma-negative
binomial process to three levels in order to capture the label-instance-feature structure. Fur-
thermore, a mixing strategy for Gamma processes is designed to account for the multiple
labels of an instance. The mixed process also leads to a difficulty in model inference, so
an efficient Gibbs sampling inference algorithm is then developed to resolve this difficulty.
Experiments on several real-world datasets show the performance of the proposed model on
multi-label learning tasks, comparing with three state-of-the-art models from the literature.
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1 Introduction

Multi-label learning (Gibaja and Ventura 2015; Zhang and Zhou 2014; Gao and Zhou 2013)
is a significant learning paradigm in which each instance may be assigned more than one
label. It has attracted a lot of attentions of not only scholars from research communities but
also practitioners from industries in the past few years due to its broad application scenarios
(Madjarov et al. 2012). For instance, each academic paper may have more than one author,
and learning from this data could help to identify the academic interests of authors and
recommend potential collaborators according to their interests (Rosen-Zvi et al. 2004; Xuan
et al. 2015b); a patent may be associated with several categories, and automatically assigning
large amount of new patents to correct categories could save the costs in human resources
and time (Cong and Tong 2008); each gene may be associated with not one but a set of
functional classes, and detecting functional classes of new genes could benefit the medicine
design (Elisseeff and Weston 2001).

The existing algorithms and models for multi-label learning could be roughly categorized
into two types: discriminative ones and generative ones. The generative models learn a
joint distribution of data and the latent variables, while discriminative models only learn a
conditional distribution of latent variables given data. Comparingwith discriminativemodels,
generative ones are characterized by the capability of handling the following situations: (1)
the number of labels is large (Rubin et al. 2012); (2) the number of training data is small.
Current generativemodels formulti-label learning aremainly based on topicmodels (Rai et al.
2015; Rubin et al. 2012), which learn a low-dimensional label embedding (Rai et al. 2015).
It means that the labels and instances could be represented by a relatively low-dimensional
vector and each dimension of vectors is seen as a topic.

One problem of existing generative models for multi-label learning is that the hidden
topic number needs to be fixed in advance. This number is normally chosen with domain
knowledge. After fixing the number of topics, Dirichlet, Multinomial, and other distributions
could be adopted as the building blocks for generative models. However, discovering an
appropriate number is very difficult and sometimes unrealistic for many real-world appli-
cations. This may also lead to overfitting when there are too many topics so that topics are
relatively specific and do not generalise well to unseen observations; underfitting is the oppo-
site case when there are too few topics so unrelated observations are assigned together to
the same topic (Dai and Storkey 2015). A number of methods can be used to choose the
number of topics, such as cross-validation techniques (Griffiths and Steyvers 2004), but it is
slow because the algorithm has to be restarted a number of times and then choosing the best
one (Griffiths and Steyvers 2004; Dai and Storkey 2015). Bayesian nonparametric learning
(Hjort et al. 2010; Gershman and Blei 2012) has emerged as an elegant way to handle this
problem.

In this paper, we propose a Bayesian nonparametricmodel formulti-label learningwithout
the requirement of fixing the topic number in advance. Instead of using fixed-dimensional
distributions, stochastic processes are used: to be specific, Gamma-negative binomial process
(Zhou and Carin 2015) is extended to three levels for capturing the hierarchical structure:
label-instance-feature. In this model, each instance is assigned with a Gamma process (Fer-
guson 1973) to express the mapping relation between this instance with the hidden topics
instead of a vector with a fixed dimension. This Gamma process can be simply consid-
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ered as an infinite discrete distribution, and is parameterized by a base measure (another
Gamma process) that denotes the mapping relation between labels with hidden topics.
However, an instance normally has multiple labels in multi-label learning paradigm, so
we assign an instance a mixed Gamma process that is from all the Gamma processes of
the labels of this instance. Furthermore, introducing mixed Gamma process will lead to
intricacies in terms of model inference. Therefore, an efficient Gibbs sampler with closed-
form conditional distributions is developed for the proposed model. Experiments on the
three multi-label learning tasks with public datasets show the performance of our model
comparing existing comparative algorithms or models from the state-of-the-art research lit-
eratures.

The main contributions of this paper are:

– a new Bayesian nonparametric model for multi-label learning without the requirement
of fixing topic number in advance that is needed by the traditional generative models for
multi-label learning;

– theoretical and empirical expectation analysis of the topic number from the proposed
mixed Gamma-negative binomial process for understanding the behavior and sensitivity
of the process under different parameters;

– an efficient Gibbs sampling inference algorithm for getting the solution of the proposed
model which overcomes the inference difficulty brought by the mixing operation in the
proposed model.

The rest of this paper is organized as follows. Section 2 briefly reviews related work. Sec-
tion 3 describes some preliminary knowledge. The mixed Gamma-negative binomial process
model is proposed in Sect. 4 with its Gibbs sampling inference algorithm and expectation
analysis. Section 5 presents experimental results on three multi-label learning tasks using
real-world datasets. Finally, Sect. 6 concludes this study with a discussion on future work.

2 Related work

This section reviews the related work of this study, which is composed of two parts: The first
part is about the multi-label learning based on the generative models; and the second part is
about Bayesian nonparametric learning.

2.1 Generative models for multi-label learning

It is commonly believed that the mixture model proposed in Mccallum (1999) is the first
generative model for multi-label learning, which assigns each label a word distribution and
a multi-label document is assumed to be generated according to the word distributions of
its labels. This idea is similar with the subsequent topic models (Blei et al. 2003; Xuan
et al. 2015a) that are Bayesian models with fixed-dimensional probability distributions. They
are originally designed for unsupervised text mining task which aims to discover hidden
topics (i.e., word distributions) in the text corpus. Due to their powerful representation and
good extendibility, they have been successfully applied to many research areas, including
multi-label learning.

One category of using topic model idea for multi-label learning is to directly replace
topics in Latent Dirichlet Allocation (LDA) (Blei et al. 2003) by labels, such as Labeled
LDA (Ramage et al. 2009) and Flat-LDA (Rubin et al. 2012). Prior-LDA (Rubin et al. 2012)
is further proposed to account for the label frequency differences within a corpus through
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introducing a label sampling step by multinomial distribution. However, the dependency
between the labels is not considered, which is resolved by the Dependency-LDA (Rubin
et al. 2012) later. Parametric Mixture Models (Ueda and Saito 2002) are also proposed to
capture the pairwise label correlation. More intrinsic correlations among multiple labels are
exploited by amodel: Labelled Four-level PachinkoAllocationModel (Ma et al. 2012), which
is verified with better performance than Labeled LDA (Ramage et al. 2009).

Another category is to assign each label a topic distribution instead of a word distribution,
such as Author topic Model (Steyvers et al. 2004; Rosen-Zvi et al. 2010) and Emotion Topic
Model (Bao et al. 2012). Each label is first associated with a topic distribution, and each topic
is further associated with a word distribution. The generation of a document is split into two
stages: (1) generating a topic according to its labels; (2) generating a word according to the
drawn topic. CoL model (Wang et al. 2008) also extends this idea with additional label and
word correlation learning ability.

To summarize, in spite of the verified success in the multi-label learning of the above
models, they all have an issue that the number of topics needs to be fixed in advance. In this
paper, we propose a Bayesian nonparametric model to address this issue.

2.2 Bayesian nonparametric learning

Bayesian nonparametric learning (Nguyen and Wu 2015; Nguyen et al. 2013) is a key
approach for learning the number of mixtures in a mixture model (also known as model
selection problem). Without predefining the number of mixtures, this number is supposed
to be inferred from the data, i.e., let the data speak. The idea of Bayesian nonparametric
learning is to use stochastic processes to replace traditional fixed-dimensional probability
distributions, such as Multinomial, Poisson, and Dirichlet distributions. In order to avoid
the limitation associated with fixed dimensions, Multinomial Process (MP), Poisson Process
(PP) (Iwata et al. 2013) and Dirichlet Process (DP) (Ferguson 1973) are used to replace
former distributions because of their infinite property. The merit of these stochastic pro-
cesses is that they let the data determine the number of factors (topics, in text mining). DP
is a good alternative for the models with Dirichlet distribution as the prior. Many proba-
bilistic models with fixed dimensions have been extended to the infinite ones by the help
of stochastic processes: Gaussian Mixture Model (GMM) is extended to Infinite Gaussian
Mixture Model (IGMM) (Rasmussen 1999; Ma et al. 2014) using DP; Hidden Markov
Model is extended with infinite number of hidden states using Hierarchial Dirichlet Pro-
cess (HDP) (Teh et al. 2006; Wulsin et al. 2014). Through the posterior inference (i.e.,
Markov chain Monte Carlo (MCMC) (Neal 2000)), the number of the mixtures can be
inferred. Although HDP can model the data with three or more levels, it cannot be directly
adopted for the multi-label learning task. The reason is that there is a mixing relationship
between authors and documents which cannot be modeled by HDP. Similarly, Partially
Labeled Topic Models (PLTM) (Ramage et al. 2011) also cannot be adopted for our prob-
lem. Other popular processes including beta process (Hjort 1990), Gamma process, Poisson
process, multinomial process, negative binomial process (NBP) (Zhou and Carin 2015; Brod-
erick et al. 2015) have also been successfully used in the machine learning communities
recently.

To summarize, Bayesian nonparametric learning (Buntine and Mishra 2014) has been
successfully used to extend many finite models and applied to many real-world applications.
However, to the best of our knowledge, existing state-of-the-art works cannot be used for
multi-label learning. This paper addresses this shortcoming by proposing a mixed Gamma
negative binomial process.
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3 Preliminary knowledge

This section briefly introduces related concepts which will be used as the building blocks
for our proposed model in the following section. To help understanding these concepts, we
take the author-document-word as an example of multi-label learning throughout this paper
where authors are seen as labels; documents are seen as instances;words are seen as features.
Several important notations used throughout this paper are summarized in Table 1.

3.1 Gamma process

AGamma processGaP(c, H) (Ferguson 1973; Roychowdhury andKulis 2014) is a stochas-
tic process parameterized by a base (shape) measure H and concentration (scale) parameter

Table 1 Notations used in this paper

Notation Description

Θ A measurable space

R+ The set of positive real number

Z+ The set of positive integer number

D Number of documents

A Number of authors

V Number of different words

K Number of topics

AD Author-document mapping matrix

DN Document-word mapping matrix

Ad Number of authors of document d

Nd Number of words of document d

θk Topic k

Γ0 A global random measure from a Gamma process

r0,k The global weight of topic k

Γd A random measure from a Gamma process for document d

rd,k The weight of topic k in document d (the interest of d on k)

Γa A random measure from a Gamma process for author a

ra,k The weight of topic k in author a (the interest of a on k)

Γ d
a The mixed measure of measures of all authors who write d

rda,k The average weight of topic k in all author a who write document d

X A random measure from a Negative binomial process

nk Number of words assigned to topic k

Xd A random measure for document d from a negative binomial process

nd,k Number of words assigned to topic k in document d

na,k Number of words assigned to topic k and author a

nad,k Number of words assigned to topic k and author a in document d

zd,n The topic index assigned to word n in document d

id,n The author index assigned to word n in document d

� d
a The weight of author a in document d
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c. Let Γ = {(rk, θk)}∞k=1 be a random realization of a Gamma process in the product space
R+ × Θ . Then, we have

Γ ∼ GaP(c, H)

=
∞∑

k=1

rkδθk

(1)

where δθk is a Dirac measure parameterized by θk (i.e., δθk (θ̂) = 1 if θ̂ = θk ; 0, otherwise);
rk satisfies an improper Gamma distributionGamma(0, c); and θk ∼ H . Γ also corresponds
to a complete random measure (Kingman 1992; Zhou and Carin 2015). When Γ is assigned
to a document, we can understand θk as a topic (i.e., V -dimensional normalized vector) and
rk is the (unnormalized) weight of this topic in this document although the summation of
{rk}∞k may not be equal to one.

3.2 Negative binomial process

A negative binomial process NBP(p, Γ0) (Zhou and Carin 2015) is also a stochastic process
parameterized by a base measure Γ0 and p. Similar with the Gamma process, a realization of
negative binomial process X = {(nk, θk)}∞k=1 is also a set of points in product space Z

+ ×Θ .
Then, we have

X ∼ NBP(p, Γ0)

=
∞∑

k=1

nkδθk

(2)

where {nk} are integers so negative binomial process is normally used as the likelihood of
countingmodels (Broderick et al. 2015); and θk ∼ Γ0. Note that ifΓ0 is a continuousmeasure,
the probability that two θk are equal is zero; if Γ0 is a discrete measure, say Γ0 =∑∞

k=1 δθ̃k
,

θk can only take the value from {θ̃k}∞k=1. Compared with Poisson process which is another
alternative for the counting model, negative binomial process has a better variance-to-mean
ratio (VMR) and the overdispersion level (Simon 1960; Zhou and Carin 2015). When X is
assigned to a document, θk can be understood as a topic and nk can be understand as the
number of words in this document assigned to topic θk .

3.3 Gamma-negative binomial process

Normally, negative binomial process is used as the likelihood part of a Bayesian nonpara-
metric model. Analogous to a negative binomial distribution x ∼ NB(r, p) which has
two parameters: r > 0 and p ∈ [0, 1], there are two kinds of priors for the parame-
ters of a negative binomial process: one is Gamma process for Γ0 as shown in Eq. (1)
(Zhou and Carin 2015) ; the other is the Beta process for p (Broderick et al. 2015). In
this paper, we use the Gamma process prior. A Gamma-negative binomial process model
is proposed in (Zhou and Carin 2015) as shown in Fig. 1 and it can be represented
as,

Γ0 ∼ GaP(c0, H)

Xd ∼ NBP(pd , Γ0)
(3)

where pd is a real-valued parameter within [0, 1] and the base measure of the negative bino-
mial process Γ0 is a random measure from a Gamma process. Xd is for a document, and this
hierarchial form makes the documents share a same base measure Γ0. This Gamma-negative
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Fig. 1 Gamma-negative
binomial process model. The left
subfigure is related to Eq. (3) and
the right hand part is related to
Eq. (4)
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Γ

Γd

Xd

α

pd

D
D

binomial process can be (in distribution) equivalently augmented asGamma-Gamma-Poisson
process,

Γ0 ∼ GaP(c0, H)

Γd ∼ GaP

(
1 − pd
pd

, Γ0

)

Xd ∼ PP(Γd)

(4)

where PP(Γd) is a Poisson process with parameter Γd . This augmentation is useful for the
closed-form model inference algorithm design.

4 Mixed gamma-negative binomial processes

In this section, we first propose a mixed Gamma-negative binomial processes model
(MGNBP) while author-document-word is still taken as an example to explain why this
model could be used for multi-label learning in Sect. 4.1; We then introduce a Gibbs sampler
to inference the proposed model in Sect. 4.2; A significant property, i.e., expectation of topic
number, is theoretically and empirically analyzed in Sect. 4.3.

4.1 Model description

Consider the Gamma-negative binomial process model in Eqs. (3) and (4) again: despite its
success, this model however is fundamentally the same as the basic topic models, which are
used for modeling the data of two level hierarchy: instance-feature (i.e., document-word).
Multi-label learning requires to model the data with a three-level hierarchy: label-instance-
feature (i.e., author-document-word). So an intuitive idea is to add another Gamma process
level to capture the additional label (i.e, author) level based on the Gamma-negative binomial
process model in Eq. (4) analogues to the hierarchical mechanism of Hierarchical Dirichlet
Process (Teh et al. 2006),
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Fig. 2 Gamma-Gamma-
Negative Binomial Process
Model (left one) and Mixed
Gamma-Negative Binomial
Process Model (right one)
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Γ0 ∼ GaP(c0, H)

Γa ∼ GaP(ca, Γ0)

Γd ∼ GaP((1 − pd)/pd , Γ
d
a )

Xd ∼ PP(Γd)

(5)

where Γa is the new added level for the label (i.e, author). We call this model three-level
Gamma-negative binomial process model (3GNBP), which is graphically shown in the left
subfigure of Fig. 2.

More specifically, the global measure in the 3GNBP model is

Γ0 =
∞∑

k=1

r0,kδθk (6)

where r0,k is the global weight of topic θk . This global measure defines a set of global topics
{θk}∞k=1 shared by all documents, and {r0,k}∞k=1 indicates the overall “interests” of documents
on topics. The number of topics can be potentially infinite and therefore justifies the infinity
in the summation. However, since the data is limited, the learned topics will be also limited.
Each author a is then assigned a realization of Gamma process parameterized by Γ0,

Γa =
∞∑

k=1

ra,kδθk (7)

where ra,k is the weight of k-th topic θk which is inherited from the global measure Γ0.
{ra,k}∞k=1 can be viewed as the “interest” of author a on the topics {θk}∞k=1. Similarly to the
author, each document is also assigned a realization of Gamma process parameterized by Γa ,
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Γd =
∞∑

k=1

rd,kδθk (8)

where {rd,k}∞k=1 is the weight of “interests” of document d on the topics inherited from the
global measure Γ0 again. In the 3GNBPmodel, the base measure Γa for Γd is from its author.
It can be seen as the ‘interest inheritance’. Finally, the likelihood is a realization of Poisson
process,

Xd =
∞∑

k=1

nd,kδθk (9)

where nd,k is the number of words in document d assigned to topic k.
When applying 3GNBP to multi-label learning, there is a significant issue that each Γd

could only have one parent Γa as its base measure which means that each instance is with
one and only one label (i.e., a document could only have one author). Therefore, the intuitive
idea of 3GNBP cannot be used for the multi-label learning. In order to resolve this issue, our
innovative idea is to combine all the Gamma processes of all authors of a document together
by

Γ d
a = � d

a1Γa1 + � d
a2Γa2 + · · · + � d

aAd
ΓaAd (10)

where Ad is the number of labels of an instance (i.e., authors of document d); � d
a1 is the

weight of label a1 on instance d and
∑

a � d
a = 1 (i.e., the contribution of author a1 to

document d) which is given a Dirichlet prior Dir(η); and Γ d
a is the mixed prior for Γd . Note

that the plus here is element-wise because each Γa is with a countably infinite number of
components. This element-wise plus action is reasonable because the components of each
Γa are countable and they are all with same discrete base measure Γ0. We can see the mixed
Gamma process Γ d

a as the “mixed interest” of all the authors of a document. This document
has “inherited” the interests on the topics from the “mixed interest” not from the interest of an
author. Through this way, the multiple labels of an instance could bemodeled. To summarize,
our proposed Mixed Gamma-Negative Binomial Processes Model (MGNBP) is as follows

Γ0 ∼ GaP(c0, H)

Γa ∼ GaP(ca, Γ0)

Γ d
a = � d

a1Γa1 + � d
a2Γa2 + · · · + � d

aAd
ΓaAd

Γd ∼ GaP((1 − pd)/pd , Γ
d
a )

Xd ∼ PP(Γd)

and its graphical representation is shown in the right subfigure of Fig. 2.

4.2 Model inference

It is difficult to perform posterior inference under infinite mixtures, and a commonly work-
around solution in Bayesian nonparametric learning is to use a truncation method (Fox et al.
2011; Blei et al. 2010). Truncation method is widely accepted, which uses a relatively big
K † as the (potential) maximum number of topics. Under the truncation, the model can be
expressed below as a good approximation to the infinite model,
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θ1:K † ∼ 1

γ0
H

γ0 ∼ Gamma(e0, 1/ f0)

r0,k |γ0, c0 ∼ Gamma(γ0/K
†, 1/c0)

ra,k |r0, ca ∼ Gamma(r0,k, 1/ca)

pd ∼ Beta(a0, b0)

rda,k = � d
a1ra1,k + � d

a2ra2,k + · · · � d
aAd

raAd ,K †

rd,k |ra, pd ∼ Gamma(rda,k, pd/(1 − pd))

nd,k ∼ Pois(rd,k)

Nd =
K †∑

k=1

nd,k

and nd,k could also be equivalently (in distribution) generated as follow

zd,n ∼ Multi(rd,1/
∑

rd , . . . , rd,K †/
∑

rd)

wd,n ∼ θzd,n

nd,k =
∑

n

δ(zd,n==k)

where Pois() denotes a Poisson distribution; Multi() denotes a multinomial distribution;
γ0 = ∫

dH is the total mass of measure H ; and the parameters are given the appropriate
priors. Here, H is a V -dimensional Dirichlet distribution, and each θ is a topic that is a
V -dimensional vector.

The difficult part of the inference for this model is the mixed part Γ d
a or rda . Since r

d
a is the

mixed value, it is hard to infer the posterior of ra through its likelihood. In order to resolve
this issue, we firstly introduce the Additive Property of the negative binomial distribution: If
Xi follows a negative binomial distribution with parameters ri and p and if the various Xi

are independent, then
∑

Xi follows a negative binomial distribution with parameters
∑

ri
and p.

In MGNBP model, we have

rd,k |{ra}, pd ∼ Gamma(rda,k, pd/(1 − pd))

nd,k ∼ Pois(rd,k)
(11)

which are (in distribution) equal to

nd,k ∼ NB(rda,k, pd) (12)

and according to Additive Property of negative binomial distribution, it is further (in distri-
bution) equal to

nad,k ∼ NB
(
� d

a · ra,k, pd
)

nd,k =
∑

a

nad,k
(13)

where NB() denotes a negative binomial distribution and {nad,k} are independent with each
others.
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We have split nd,k the number of words assigned to topic k in document d into a number
Ad of independent variables {nad,k}. Here, nad,k denotes the number of words assigned to
topic k from author a in document d . From Eq. (13), we can see that we have obtained the
likelihood part of the ra , so we can update/inference the ra using nad . Introducing the auxiliary
variables {nad,k} helps us resolve the difficult inference problem brought by themixedGamma
process. Note that the independence between the elements of {nad,k} is very important, which
facilitates us to update each nad,k independently.

According to the relationship between the negative binomial distribution and the Gamma-
Poisson distribution, for each nad,k , we have:

nad,k ∼ NB(� d
a · ra,k, pd)

�⇒rad,k ∼ Gamma(� d
a · ra,k, pd/(1 − pd)), nad,k ∼ Pois(rad,k)

(14)

We want to highlight that rad,k is different from rda,k : r
d
a,k is the mixed Gamma process of

multiple author Gamma processes Γa of Gamma process Γd of document d and rad,k is the
interest of document d on topic k inherited from author a.

Due to the non-conjugacy of Gamma distribution and negative binomial distribution,
it is difficult to update ra with a Gamma prior. In order to make the inference with only
close-formed conditional distributions, we use the following result on the negative binomial
process,

Theorem 1 (Zhou and Carin 2015) If X follows a negative binomial distribution X ∼
NB(r, p) with parameters r and p, then X can also be generated from a compound Poisson
distribution as

X =
l∑

t=1

ut , ut
i.i.d∼ Log(p), l ∼ poiss (−rln(1 − p)) (15)

where Log() is a Logarithmic distribution. Furthermore, this Poisson-logarithmic bivariate
count distribution, p(X, l), can be expressed as

X ∼ NB(r, p), l ∼ CRT (X, r) (16)

whereCRT ()denotes aChineseRestaurantTable distribution, and its definition and sampling
can be found in (Zhou and Carin 2015).

With Theorem 1, the Eq. (14) is also equal to

nad,k ∼ NB(� d
a · ra,k, pd) �⇒ nad,k ∼

lad,k∑

1

log(pd), l
a
d,k ∼ Pois(−� d

a ra,kln(1 − pd))

�⇒ lad,k ∼ CRT(nad,k,�
d
a ra,k), n

a
d,k ∼ NB(� d

a ra,k, pd)
(17)

Finally, we can update all nad,k by,

(na1d,k1
, . . . , naAd,K |Nd) ∼ Mult

(
Nd ,

� d
a1r

a1
d,k1

rd
, . . . ,

� d
aAd

raAd,K

rd

)

rd =
∑

a

∑

k

� d
a · rad,k

(18)
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and for each word n in a document d , we can assign it to a topic k and author a by

p(zd,n = k, id,n = a) ∝ � d
a r

a
d,k

rd

nd,k =
∑

n

δ(zd,n = k)

na,k =
∑

d

∑

n

δ(zd,n = k & id,n = a)

(19)

where zd,n is the topic index assigned to word n in document d .
With these changes of variables, the original model is re-formulated as,

γ0 ∼ Gamma(e0, 1/ f0)

r0,k |γ0, c0 ∼ Gamma(γ0/K
†, 1/c0)

pd ∼ beta(ad,0, bd,0)

ra,k |r0, ca ∼ Gamma(r0,k, 1/ca)

rda,k = � d
a1ra1,k + � d

a2ra2,k + · · · � d
aAd

raAd ,K †

rd,k |ra, pd ∼ Gamma(rda,k, pd/(1 − pd))

rad,k ∼ Gamma(� d
a ra,k, pd/(1 − pd)), a ∈ Ad

zad,n ∼ Category

(
� d

a r
a
d,k

rd
, · · ·

)

nd,k =
∑

n

δ(zd,n = k)

na,k =
∑

d

∑

n

δ(zd,n = k & id,n = a)

nad,k =
∑

n

δ(zd,n = k & id,n = a)

Nd =
∑

n

∑

a

zad,n (20)

where Category() denotes a Category distribution; Ad is the set of associated authors of
document d; and |Ad | = Ad is the cardinality of Ad .

In the following, a Gibbs sampling algorithm (Andrieu et al. 2003) is designed for the
posterior inference and all the conditional distributions are listed in the Appendix. We can
see from these conditional distributions that all of them are closed-form which is very easy to
update and implement. The whole procedure is summarized in Algorithm 1. Note that after
we obtain all the samples of the posterior p(θ, ra, rd , r0, zad,n, pd , γ0, n

a
d,k | · · · ) of latent

variables and remove the burn-in stage, we firstly identify the topic number with largest
frequency as the Kreal , and then find the sample with largest likelihood and K = Kreal

from these samples. The output of Gibbs sampler are the latent variables θ , ra and rd in this
sample.

4.3 Model analysis

A distinguishing characteristic of Bayesian nonparametric model is that the number of the
factors/topics to be learned is not specified in advance. Roughly speaking, Bayesian non-
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Algorithm 1: Gibbs Sampler for MGNBP
Input: D, A, N , AD, DN
Output: Kreal , {θ}, {ra}, {rd}
initialization;
while i ter ≤ maxiter do

for d = 1; d ≤ D do
for n = 1; n ≤ Nd do

Update zd,n and id,n by Eq. (32);

for a = 1; a ≤ Ad do
Update rad,k by Eq. (33);

Update lad,k by Eq. (34);

Update rd,k and pd by Eq. (35);

for a = 1; a ≤ A do
Update ra,k by Eq. (36);
Update la,k by Eq. (37);

Update r0,k by Eq. (38);
Update l ′k by Eq. (40);
Update γ0 by Eq. (41);
Update θ by Eq. (43);
i ter + +;

Identify Kreal ;
Select the sample with largest likelihood and K = Kreal ;
return {θ}, {ra}, {rd};

parametric model could be simply seen as a prior for the this number. Conditioned on the
observed data, we could determine how many factors/topics are needed. It would be interest-
ing to investigate the prior expectation of the factors/topics number under our defined model.
We give the following result,

Theorem 2 Given D instances, A labels, and theirmapping AD, the expected factor number
from the MGNBP is
∫

r0

(
1 −

∏

a

[
ca

ca −∑d:AD[a,d]>0 � d
a ln(1 − pd)

]r0)
· γ0 · exp(−c0 · r0)

r0
· dr0 (21)

and when a truncation level K † is applied, the expected factor number is

K †

⎛

⎝1 −
[

c0
c0 −∑a log

ca
ca−∑d:AD[a,d]>0 � d

a ln(1−pd )

] γ0
K†

⎞

⎠ (22)

where γ0, c0, ca and pd are four parameters of the MGNBP.

Proof We first introduce the following theorem of a completely random measure,

Theorem 3 (Kingman 1992) Campbell’s Theorem Let Π be a Poisson process on Θ with
mean measure μ, and let f : Θ → R be measurable. Then the sum

∑
=
∑

Y∈Π

f (Y ) (23)

is absolutely convergent with probability if and only if
∫

Θ

min(| f (y)|, 1)μ(dy) < ∞ (24)
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If this condition holds, the expectation

E

[∑]
=
∫

Θ

f (y)μ(dy) (25)

exists if and only if the integral converges.

Since the proposed MGNBP is a completely random measure, we can utilize the above
theorem to compute the expectation of sum of its variables. We define a random variable,

Xk = 1

⎛

⎝
D∑

d=1

∑

AD[a,d]=1

Ca
d,k > 0

⎞

⎠ (26)

which equals to 1 if the factor k is used; 0, otherwise. So the expected factor number is
E[∑k Xk]. Then, according to the Theorem 3,

E

[
∑

k

Xk

]
= E

[
E

[
∑

k

Xk |r0,k
]]

= E

[
E

[
E

[
∑

k

Xk |{ra,k}
]

|r0,k
]]

= E

[
E

[
∑

k

E
[
Xk |{ra,k}

] |r0,k
]]

= E

⎡

⎣E

⎡

⎣
∑

k

⎛

⎝1 −
D∏

d=1

∏

a:AD[a,d]>0

(1 − pb)
� d

a ra,k

⎞

⎠ |r0,k
⎤

⎦

⎤

⎦

= E

⎡

⎣
∑

k

E

⎡

⎣

⎛

⎝1 −
D∏

d=1

∏

a:AD[a,d]>0

(1 − pd)
� d

a ra,k

⎞

⎠ |r0,k
⎤

⎦

⎤

⎦

= E

⎡

⎣
∑

k

∫

r1,k
· · ·
∫

rA,k

⎛

⎝1 −
D∏

d=1

∏

a:AD[a,d]>0

(1 − pd)
� d

a ra,k

⎞

⎠

·
{

A∏

a=1

car0,k

Γ (r0,k)
ra,k

r0,k−1 exp(−ca · ra,k)

}
dr1,k · · · drA,k

]

= E

[
∑

k

(
1 −

∏

a

[
ca

ca −∑d:AD[a,d]>0 � d
a ln(1 − pd)

]r0,k)]

=
∫

r0

(
1 −

∏

a

[
ca

ca −∑d:AD[a,d]>0 � d
a ln(1 − pd)

]r0)
· νGaP (r0) · dr0

=
∫

r0

(
1 −

∏

a

[
ca

ca −∑d:AD[a,d]>0 � d
a ln(1 − pd)

]r0)

· γ0 · exp(−c0 · r0)
r0

· dr0
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Fig. 3 The comparisons between expected and empirical factor numbers of MGNBP under different param-
eters: γ0, c0, ca and pd . Note that the x-axes of c0 and ca are in negative (base-10) log space, a parameter γ0,
b parameter c0, c parameter ca , d parameter pd

This integral cannot be easily solved. An approximate method for this integral computation
is Monte Carlo. If we apply a truncation level K †, the expectation is

E

⎡

⎣
K †∑

k

Xk

⎤

⎦ =
∫

r0,1···r0,K†

K †∑

k

(
1 −

∏

a

[
ca

ca −∑d:AD[a,d]>0 � d
a ln(1 − pd)

]r0,k)

·
K †∏

k=1

c0γ0/K †

Γ (γ0/K †)
r0,k

γ0/K †−1 exp(−c0r0,k)dr0,1 · · · dr0,K †
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=
∑

k

⎧
⎨

⎩1 −
[

c0
c0 −∑a log

ca
ca−∑d:AD[a,d]>0 � d

a ln(1−pd )

] γ0
K†

⎫
⎬

⎭

=K †

⎛

⎝1 −
[

c0
c0 −∑a log

ca
ca−∑d:AD[a,d]>0 � d

a ln(1−pd )

] γ0
K†

⎞

⎠

The theorem is proved. ��
Our above theoretical result is also supported by simulation results, summarized in Fig. 3.

At first, we set A = 10, D = 20, and the mapping relations between labels and instances are
randomly generated. We simulate the model with the above setting and different values of
parameters, and then compare the empirical factor number and the theoretical factor number
from Theorem 2. The default values of them are: γ0 = 1, c0 = 1, ca = 1, pd = 0.5, and
� d

a of instances are equal for all labels. When investigating one parameter, the other three
will be fixed as the default values. Four subfigures in Fig. 3 denote the changing of factor
number as the changing of four parameters of the model, respectively. In each subfigure,
Expectation-MC denotes the Monte Carlo approximation of the expectation of the factor
number from Eq. (21); Expectation-trun denotes the truncation-based approximation of the
expectation of the factor number from Eq. (22) (Note that the implementation of theMGNBP
is based on the truncation K † = 1000); the x-axes of c0 and ca are in negative (base-10)
log space. From these results, we can see that the theoretical factor number is very close to
the empirical factor number, so this verified our results on the expected factor number of the
MGNBP. The trends of the empirical and expected factor number with parameters γ0 and
pd are very close with each others. For the parameter ca , the trends are also close; for the
parameter c0, Expectation-MC is a little away from the others as the increasing of the value
of c0. These subfigures do not only verify the above theoretical result, they also show the
sensitivity of the model to the parameters.

5 Experiments

In this section, we evaluate the performance of the proposed Mixed Gamma-Negative Bino-
mial Processes Model (MGNBP) on three multi-label learning tasks: author topic modeling,
and clinical free text labeling, and protein classification, and the proposed model is also
compared with six state-of-the-art models or algorithms using the public datasets of these
tasks.

5.1 Datasets

The datasets used in the experiments are:

– NIPS papers1 This dataset contains papers from the NIPS conferences between 1987
and 1999. This dataset is a structure: author-paper-word. It contains 1740 papers with
2037 authors, a total of 2,301,375 word tokens and a vocabulary size of 13,649 unique
words. More descriptions can be found in Steyvers et al. (2004);

1 http://www.datalab.uci.edu/author-topic/NIPs.htm.
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Table 2 Statistics of datasets

Datasets Label number Instance number Feature number

NIPS 2037 1740 13,649

DBLP 28,702 28,569 11,771

Clinical 45 978 1449

Protein 27 662 1185

– DBLPpapers2 The abstracts and authors of papers are extracted throughDBLP interface
from four areas: database, data mining, information retrieval and artificial intelligence.
More descriptions can be found in Deng et al. (2011);

– Clinical free texts3 This dataset is a structure: label-text-feature. There are 45 labels
(like ICD-9-CM codes) and 645 (training) / 333 (testing) data with 1,449 features. More
descriptions can be found in Pestian et al. (2007).

– Proteins (see footnote 3) This dataset is a structure: class-protein-feature. There are 27
categories for these protein sequences, e.g., PDOC50007 (a class of hydrolases), and
463 (training) / 199 (testing) data with 1,185 features, i.e., Prosite access numbers. More
descriptions can be found in Diplaris et al. (2005).

The statistics of datasets are shown in Table 2.

5.2 Author-topic modeling task

Since the proposed model is motivated to resolve the multi-label learning problem in Intro-
duction, the author-paper data as a kind of multi-label data is appropriate to evaluation of
the efficiency of the proposed model on multi-label learning. We use an author’s distribution
over topics to characterize this author (i.e., the author research interest), and the dimension of
this distribution is not fixed in advance but learned from the data owing to the Bayesian non-
parametric learning technique. Based on the distribution over topics of each author, there are
a number of practical applications, for example, 1) Collaborator Recommendation. People
with similar research interest may have the potential to be collaborators. We can recommend
researcher A to researcher B by simply evaluating the similarity of their interest vectors. 2)
Author Disambiguation. Some researchers may have exactly same name on their scientific
papers, so it is hard to distinguish them through name. Based on the learned interests of
researchers with the same name, we can identify the real author of a paper through compar-
ing/differencing the content of this paper with the two authors’ research interests. Since these
practical applications are both based on the output of the proposed model: author interests,
we only evaluate the proposed model on the author interest learning in the manuscript. If
the author interests are more accurately learned, the performance of the model on the above
practical applications will apparently be better as well.

5.2.1 Experiment setting

For the first two datasets, we randomly select some documents as training data and test data.
The number of selected training documents is around 1000, and the number of test documents

2 http://www.cs.uiuc.edu/~hbdeng/data/kdd2011.htm.
3 http://mulan.sourceforge.net/datasets-mlc.html.
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is about 30 percent of the number of training documents. The requirement of selections is: the
training and test documentsmust share some authors andwords. This requirementmakes sure
the learned topics and authors’ interests can be used to predict the test documents.We compare
the proposed model with Author-Topic Model (ATM)(Steyvers et al. 2004)4 which could
be seen as a generative model for multi-label learning using fixed dimensional distributions.
Another comparative model is Disjoint Author-Document Topic model (DADT)(Seroussi
et al. 2014) which models documents and authors using two separate sets of topics.

The first evaluation metric is Perplexity which is widely used in language modeling to
assess the predictive power of amodel (Steyvers et al. 2004; Blei et al. 2003). The perplexity is
a measure of how surprising the words in the test documents are from the model’s perspective
and can be calculated by

Perplexity = exp

(
−
∑

d

∑

k

p(wd |θk)p(θk |ad)
)

(27)

where ad is the authors of test document d . The smaller the value of perplexity is, the better the
predictive ability of a model has. Since we use the same test documents for different models,
the normalization is not considered because it does not influence the model comparisons.

The second evaluation metric is logLikelihood of training data,

logLikelihood =
∑

d

log p(wd |θ, ra, rd) (28)

This is ameasure of the probability of the trainingdocuments under the learned latent variables
θ , ra and rd . It can be understood as ‘how the model fits the training data’. The larger the
value of likelihood is, the better a model fits the training data. Likelihood in Eq. (28) is to
show the ability to model the training data and Perplexity in Eq. (27) is to show the ability
to predict the test data. We think these two commonly-adopted and complementary metrics
are sufficient for the model comparison.

Another evaluation metric AuthorP is designed for evaluating the author prediction based
on learned topics.

AuthorP = 1

Nt
d

Nt
d∑

d

< wa,d , wd >, wa,d =
Ad∑

a

� a
d raθ (29)

where Nt
d is the number of test documents, wd is the word-vector of document d , wa,d is the

average word-vector of all authors of document d , and raθ is the word-vector of author a.
The word-vector of an author, in fact, indicates the probability of this author writing different
words, so we use the similarity between average word-vector of all authors of a document
and the word-vector of this document to evaluate the possibility of these authors writing this
document. It appears that the larger AuthorP is, the better the model is. Note that Perplexity is
designed for evaluating the document prediction based on learned topics, so they are different.

5.2.2 Result analysis

For the DBLP dataset, the comparative results between MGNBP and ATM are shown in
Fig. 4. Each row of the Fig. 4 denotes a group of DBLP dataset. The left subfigures show
the comparison on the data log-likelihood. Here, we adjust different active topic numbers

4 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm.
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Fig. 4 Results from MGNBP and ATM with different (predefined) topic numbers on five groups of DBLP
dataset. Each row denotes a group. In each row, the left subfigure shows the Log-likelihoods comparison; The
middle subfigure shows the change of active topic number of MGNBP during the iteration; the right subfigure
shows the perplexity comparison
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for the ATM, including K = 100, K = 200, K = 300, K = 400 and K = 500. From
these subfigures, the proposed MGNBP model (The hyper-parameters are set as following
by experiences for the rest of this section: a0 = 1, b0 = 1, e0 = 1, f0 = 1, c0 = 1 and
ca = 1) outperforms the ATM on different preset topic numbers. It means that MGNBP fits
the training documents better than theATM, and,more importantly,MGNBPdoes not depend
on the domain knowledge to predefine the active topic number, making the method widely
applicable. The middle subfigures in Fig. 4 indicate the changing of active topics during
the iteration of the MGNBP (The number of active topics is set as the number of training
documents at the initialization step of the model). These curves show that the number of
active topics dramatically drops down at the burn-in stage of the sampling, and begins to
stabilize after about 200 iterations. Since the documents are different in content but similar in
numbers amongst the groups, the learned topic number differs slightly amongst each others.
These numbers are: group 1: K = 519; group 2: K = 332; group 3: K = 493; group 4:
K = 465; group 5: K = 504. We also compare the performances of two models (MGNBP
and ATM) on the test documents prediction using perplexity in Eq. (27). Since the training
and test documents share some authors, we can compute the perplexity of the test documents
according to the learned topics and authors’ interests on them. At each step of iterations, the
perplexity of test documents is computed using the latent variables, i.e., {θ}, {ra} and {rd}, at
this iteration. The results are shown in right subfigures of Fig. 4. In each subfigure, the first bar
denotes the mean of perplexities of all iterations except the burn-in stage (1 ∼ 200 iterations)
of the proposed model MGNBP and the others denote ATMwith different (predefined) topic
numbers. The standard deviations are also shown in the subfigures. The proposed model gets
the best performance (smallest perplexity). The standard deviation of MGNBP is relatively
bigger than ATM. The reason is because the number of active topics will change during
the iteration but it will not change in ATM, so in theory, the random-walk space of Gibbs
sampler of MGNBP should be larger than that of ATM. Even with this relatively larger
standard deviation, the mean of perplexity of MGNBP is smaller than ATM.

For the NIPS dataset, the comparative results between MGNBP and ATM are shown in
Fig. 5. Same with the DBLP dataset, the log likelihoods of MGNBP and ATM with different
predefined active topic numbers are shown in the left side of the Fig. 5. Unsurprisingly, the
subfigures in the middle column show the convergence of MGNBP (group 1: 367; group 2:
529; group 3: 354). Specially, we found that the log-likelihoods of ATM increases when topic
number decreases. Therefore, we have compared with ATM with only two (the minimum
number) topics as shown in the left subfigures in Fig. 5. It can be seen that the proposed
MGNBP model also gets larger log likelihood and smaller perplexity when compared with
ATM except the case where ATM is set to have 10 topics in group 2. Even so, the ATM in
group 2 with 10 topics has almost same performance with MGNBP on the Log-likelihood of
training documents. Moreover, we can see that it takes 800 iterations to reach this stability
for the ATM with 10 topics, but MGNBP only takes fewer than 50 iterations to reach the
same stability. It is worth mentioning that ATM achieves its best Perplexity when only two
topics are involved. The reason is that the Perplexity in Eq. (27) inherently prefers smaller
K due to its definition/equation in this paper. This is not only unique to our work which uses
Gamma-Nonnegative Binomial Processes to obtain an optimal K . The comparisons made in
the previous topic model which uses fixed K also have this phenomenon.

We also compare the proposed model with DADT and ATM on the author prediction
using NIPS dataset. Since DADT and ATM are fixed-dimensional probabilistic models, we
feed them the following dimensionality candidates:< 10, 20, 30, . . . , 100 >. The results are
listed in Table 3. It can be seen from the table that the author prediction results from DADT
and ATM will fluctuate with the change of dimensionality but the result from MGNBP does
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Fig. 5 Results from MGNBP and ATM with different (predefined) topic numbers on three groups of NIPS
dataset. Each row denotes a group. In each row, the left subfigure shows the Log-likelihoods comparison; The
middle subfigure shows the change of active topic number of MGNBP during the iteration of Gibbs sampler;
the right subfigure shows the perplexity comparison

Table 3 Comparisons on Author
prediction with NIPS dataset

Models DADT ATM MGNBP

Dimensionality K=10 0.8436 0.5749 0.8431

K=20 0.8434 0.5704

K=30 0.8430 0.5733

K=40 0.8430 0.5694

K=50 0.8430 0.5688

K=60 0.8430 0.5713

K=70 0.8413 0.5709

K=80 0.8413 0.5685

K=90 0.8359 0.5741

K=100 0.8352 0.5685Terms are highlighted in italics to
link the dataset

123



1808 Mach Learn (2017) 106:1787–1815

not. We can draw the conclusion that MGNBP could achieve better performance than ATM
and comparative performance with DADT but MGNBP is not with additional prerequisite.

5.3 Clinical free text labeling task

Clinical free texts are primary data about patients. Manually labeling these clinical free texts
is a challenge due to the expensive cost of labor. For example, the cost of adding labels like
ICD-9-CM to clinical free texts and repairing associated errors is approximately 25 billion
per year in the US (Pestian et al. 2007). Since each text may be associated with more than
one code, multi-label learning could be adopted to accomplish this task, i.e, automatically
label clinical free texts at an very low cost.

5.3.1 Experiment setting

The comparative models for this task are LEAD (Zhang and Zhang 2010) and LIFT (Zhang
andWu2015),5 which are both deterministicmodels based on SupportVectorMachine. Com-
paring with LEAD and LIFT, the proposed model is a generative model, class models which
normally have better generalizing ability on the unseen data compared with deterministic
models, especially with small datasets.

In multi-label learning area, it is commonly accepted that ranking labels for the test data
is as valuable as predicting labels, so many multi-label classification models or algorithms
return a probability vector for a test datapoint (with each dimension representing a label)
rather than predicting the labels for a test datapoint (Zhang and Zhou 2014). In order to
evaluate the returned label probability vector, ranking-based evaluation metrics have been
proposed in the literature, includingOneerror, Coverage, Rankingloss, Avgprecision (Gibaja
and Ventura 2015). For Avgprecision, the larger the value, the better the performance; For
Oneerror, Coverage and Rankingloss, the smaller the value, the better the performance. The
core of these metrics is to compute the probability of a test datapoint xi with a specific label
l, i.e., R(l, xi ). Next, we will introduce how to compute this probability using the trained
proposed model.

From the proposedmodel, we could obtain new representations for all labels and (training)
instances, i.e., ra and rd , which are both K -dimensional vectors. Given a test document, we
can obtain its interest ri as the expectation of its posterior distribution,

p(ri | · · · ) ∝
∫

pd

∫

� d

⎛

⎝
∏

n

∑

zi,n

σi,v p(wi,n |{θ}, zi,n)p(zi,n |ri )
⎞

⎠

p(ri |{ra}, pd ,� d , · · · )p(pd)p(� d |η)d(pd)d(� d)

(30)

where σi,v ∈ [0, 1] is the weight of a test datapoint xi on feature v and V is the total number
of features of test datapoint xi . With the interest of labels (i.e., {ra}) and a test datapoint (i.e.,
ri ), their similarity is computed as the probability of xi with l by

R(l, xi ) =<
−→rl ,

−→ri > (31)

where <,> denotes the cosine similarity function. This metric is reasonable because the
datapoint is with a label when they have similar interest on the hidden topics, which is
consistent with the assumption of the proposed model.

5 Implementations are both from: http://cse.seu.edu.cn/people/zhangml/Resources.htm.
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Fig. 6 The comparisons between LIFT, LEAD, and MGNBP on Clinical free text labeling task on Oneerror
(The smaller the value, the better the performance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX model with
Linear kernel function, Polynomial kernel function and Radial basis function (RBF) kernel function
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Fig. 7 The comparisons between LIFT, LEAD, andMGNBP on Clinical free text labeling task on Coverage
(The smaller the value, the better the performance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX model with
Linear kernel function, Polynomial kernel function and Radial basis function (RBF) kernel function

5.3.2 Results analysis

Since the LEAD and LIFT are SVM-based models, we have compared their different imple-
mentations using different kernel functions. ‘LIFT-L’ denotes LIFT with Linear kernel
function; ‘LIFT-P’ denotes LIFT with Polynomial kernel function (the degree is set as 3);
‘LIFT-R’ denotes LIFT with radial basis function (RBF) kernel function. The results have
been shown in Figs. 6, 7, 8, and 9, which show the results on four evaluation metrics respec-
tively. From these Figures, we can see thatMGNBP achieves good performances onOneerror
and Rankingloss, and it also obtains the comparative performance on Avgprecision. For the
Coverage, LEAD achieves the best performances, and MGNBP is only better than the worst
LIFT-R. Four metrics have their own preferences on the classification evaluation. Among the
four metrics, Oneerror and Coverage are like ‘variance’, and Rankingloss and Avgprecision
are like ‘mean’. So the proposed model has better performance on the ‘mean’ (on average),
and at the same time the ‘variance’ is not very larger than LIFT and LEAD. The reason
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Fig. 8 The comparisons between LIFT, LEAD, and MGNBP on Clinical free text labeling task on
Rankingloss (The smaller the value, the better the performance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes
XX model with Linear kernel function, Polynomial kernel function and Radial basis function (RBF) kernel
function
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Fig. 9 The comparisons between LIFT, LEAD, and MGNBP on Clinical free text labeling task on
Avgprecision (The larger the value, the better the performance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX
modelwith Linear kernel function, Polynomial kernel function andRadial basis function (RBF) kernel function

may be that the proposed model is based on MCMC, so each run is a sample from the real
model distribution and there will be variance during the sampling although the variance has
already been decreased by the incorporating of the data. To summarize, MGNBP has better
performance than LIFT and LEAD on the labeling task, especially considering the generative
model nature of MGNBP.

5.4 Protein classification task

The number of proteins stored in protein databases keeps growing all over the world. These
Proteins could be grouped into several families according to their functions from structures,
which is valuable for a number of biology applications, e.g., new medicine design. However,
not all the proteins have been correctly classified by the researchers because the laboratory
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Table 4 Protein classification results by three models

Models Evaluation metrics

Avgprecision Coverage Oneerror Rankingloss

BCS 0.5255 ± 0.4941 10.7774 ± 10.9242 0.0015 ± 0.0024 0.5015 ± 0.5254

BMLPL 0.4668 ± 0.3693 9.2055 ± 10.2758 0.6920 ± 0.3437 0.0188 ± 0.0191

MGNBP 0.9045 1.3719 0.1206 0.0225

experiments are often expensive. Fortunately, the multi-label learning model could be trained
to predict the categories of the unlabeled proteins at a low cost.

5.4.1 Experiment setting

The comparative state-of-the-art models for this task are Bayesian Compressed Sens-
ing (BCS) (Kapoor et al. 2012) and Bayesian Multi-label Learning via Positive Labels
(BMLPL) (Rai et al. 2015). Different from LEAD and LIFT in Sect. 5.3, BCS and BMLPL
are both based on Bayesian framework so they belong to generative models same with the
proposed MGNBP. Unfortunately, two models are both with a low-dimensional embedding,
so it needs to predefine the dimensionality for them. In contrast, the proposed model, i.e.,
MGNBP, does not have this prerequisite. The evaluation metrics, i.e., Oneerror, Coverage,
Rankingloss, and Avgprecision, used in Sect. 5.3.1 are still adopted in this experiment.

5.4.2 Results analysis

The classification results onProtein dataset of threemodels, i.e., BCS, BMLPL, andMGNBP,
are listed in Table 4. This table records the predictions results from threemodels on four evalu-
ationmetrics.As stated before,BCSandBMLPLare twofixed-dimensionalBayesianmodels,
so there will be fluctuations in their results according to different prefixed dimensionality.
In this experiment, we run the two models with dimensionality: {10, 20, 30, . . . , 90, 100}.
Each cell in Table 4 from BCS and BMLPL is composed of two numbers: mean and standard
deviation of the results on 10 different dimensionality. In contrast, MGNBP does not need
the dimensionality as input, so the cell in Table 4 fromMGNBP only contains one number. It
appears that avoiding the result fluctuation is one advantage ofMGNBPcompared toBCS and
BMLPL. We can see from the numbers in the table that the fluctuations of BCS and BMLPL
on four metrics are all significant. It means that the dimensionality setting can significantly
affect the classification results of BCS and BMLPL. When facing new data without any
prior knowledge, selecting an appropriate dimensionality would be very difficult. MGNBP
achieves the best performance on Avgprecision and Coverage. On Oneerror, BCS is the best
one, and MGNBP is much better than BMLPL. On Rankingloss, MGNBP achieves a little
worse but comparable performance with BMLPL, and it is much better than BCS. To sum
up, we conclude that without the prerequisite of setting dimensionality, MGNBP can still
achieve good performance on this task.

6 Conclusions and further study

We have developed a Bayesian nonparametric model for multi-label learning that can auto-
matically learn a latent factor/topic embedding for both labels and instances without the need
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of fixing factor/topic number that is a common issue for most existing generative models for
multi-label learning. In the proposed model, we have extended Gamma-negative binomial
process into three layers with additional Gamma process layer to capture the three-layer hier-
archy: label-instance-feature. Furthermore, a mixing strategy has been designed to combine
the information of different labels for an instance which accounts for the multi-label setting.
The expected topic number has been theoretically and empirically analyzed. The comparative
experiments with three state-of-the-art algorithms and models in literature on two real-world
multi-label learning tasks have demonstrated the effectiveness of the proposed model.

Another further study is to design a variational inference algorithm for the proposedmodel
because current Gibbs sampling-based inference cannot scale well to the big data.

Acknowledgements Research work reported in this paper was partly supported by the Australian Research
Council (ARC) under discovery Grants DP140101366 and DP150101645.

Appendix: Conditional distributions for MCMC

Sampling z
p(zd,n = k, id,n = a| · · · ) ∝ θk,n · � d

a r
a
d,k (32)

Sampling rad
p(rad,k | · · · ) ∝ Gamma(� d

a ra,k + nad,k, pd) (33)

Sampling lad
p(lad,k | · · · ) ∝ CRT

(
nad,k,�

d
a ra,k

)
(34)

Sampling pd

rda,k = � d
a1ra1,k + � d

a2ra2,k + · · ·

p(pd | · · · ) ∝ Beta

(
a0 +

∑

k

nd,k, b0 +
∑

k

rda,k

)

p(rd,k | · · · ) ∝ Gamma(rda,k + nd,k, pd)

(35)

Sampling ra

p(ra,k | · · · ) ∝ Gamma

(
r0,k +

∑

d with a

lad,k,
1

ca −∑d with a � d
a · ln(1 − pd)

)
(36)

Sampling la

p(la,k | · · · ) ∝ CRT

(
∑

d with a

lad,k, r0,k

)

(37)

Sampling r0,k

p(r0,k | · · · ) ∝ Gamma

(
γ0/K

† +
∑

a

la,k,
1

c0 −∑a ln(1 − pa)

)
(38)

where

pa = −∑d with a � d
a ln(1 − pd)

ca −∑d with a � d
a ln(1 − pd)

(39)
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Sampling l ′k

p(l ′k | · · · ) ∝ CRT

(
∑

a

la,k, γ0/K
†

)
(40)

Sampling γ0

p(γ0| · · · ) ∝ Gamma

(
e0 +

∑

k

l ′k,
1

f0 − ln(1 − p′)

)

(41)

where

p′ = −∑a ln(1 − pa)

c0 −∑a ln(1 − pa)
(42)

Sampling θk

p(θk | · · · ) ∝ H(θk)
∏

d

θzd,n=k,n (43)

Sampling � d

p(� d | · · · ) ∝ Dir(� d ; η)

K∏

k=1

Gamma(rd,k |ra, pd , {ra},� d) (44)

The weights � d in each document, which could be seen as additional output of the model,
could be learned fromdata.Note that the parameterηwill be also updatedduring the inference,
which represents the overall weight of each label in documents. For a test document, we set
it as the expectation of its conditional posterior distribution:

p(� d | · · · ) ∝Dir(� d ; η)

∫

rd

∏

n

∑

zd,n

Category(wd,n |{θ}, zd,n)Multi(zd,n |rd)
∫

pd

∏

k

Gamma(rd,k |{ra}, pd ,� d)Beta(pd)d(pd)d(rd)

where wd,n is the nth word of a test document d , {θ} are the learned topics, and {ra} are
learned authors’ interests on topics.
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