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Aljaž Osojnik1,2 · Panče Panov1 · Sašo Džeroski1,2,3

Received: 26 April 2016 / Accepted: 18 November 2016 / Published online: 30 December 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Multi-label classification (MLC) tasks are encountered more and more frequently
in machine learning applications. While MLC methods exist for the classical batch set-
ting, only a few methods are available for streaming setting. In this paper, we propose a
new methodology for MLC via multi-target regression in a streaming setting. Moreover, we
develop a streaming multi-target regressor iSOUP-Tree that uses this approach. We experi-
mentally compare two variants of the iSOUP-Tree method (building regression and model
trees), as well as ensembles of iSOUP-Trees with state-of-the-art tree and ensemble methods
for MLC on data streams. We evaluate these methods on a variety of measures of predictive
performance (appropriate for theMLC task). The ensembles of iSOUP-Trees perform signif-
icantly better on some of these measures, especially the ones based on label ranking, and are
not significantly worse than the competitors on any of the remaining measures. We identify
the thresholding problem for the task of MLC on data streams as a key issue that needs to be
addressed in order to obtain even better results in terms of predictive performance.
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1 Introduction

The task of multi-label classification (MLC) has recently become very prominent in the
machine learning research community (Gibaja and Ventura 2015). It can be seen as a gen-
eralization of the ubiquitous multi-class classification task, where instead of a single label,
each example is associated with multiple labels. This is one of the reasons why multi-label
classification is the go-to approach when it comes to automatic annotation of media, such as
images, texts or videos, with tags or genres. Most research into multi-label classification has
been performed in the batch learning context. However, some effort has also been made to
explore multi-label classification in the streaming setting (Qu et al. 2009; Read et al. 2012;
Bifet et al. 2009), following the popularity of big data in the research community, as well as in
industry. With an appropriate method, working in the streaming context allows for real-time
analysis of large amounts of data, e.g., emails, blogs, RSS feeds, social networks, etc.

Due to the nature of the streaming setting, there are several constraints that need to be
considered. A data stream is a potentially infinite sequence of examples, which needs to be
analyzed with finite resources, in particular, in finite time and memory. The largest point of
divergence from the batch setting is the fact that the underlying concept (that we are trying
to learn) can change at any point in time. Therefore, algorithm design is often divided into
two parts: (1) learning a stationary concept, and (2) detecting and adapting to its changes. In
this paper, we propose a method for multi-label classification in the streaming context that
focuses on learning the stationary concept (or more precisely, a set of concepts).

Many algorithms in the literature take the problem transformation approach to multi-label
classification, both in the batch and the streaming setting (Read et al. 2008, 2011; Tsoumakas
and Vlahavas 2007; Fürnkranz et al. 2008). They transform the multi-label classification
problem into several problems that can be solved with the off-the-shelf methods, e.g., a
transformation into an array of binary classification problems. With this transformation,
the label inter-correlations can be lost, and, consequently, the predictive performance can
decrease.

In this paper, we take a different perspective and transform the multi-label classification
problem into a multi-target regression problem. Multi-target regression is a generalization of
single-target regression, used simultaneously predict multiple continuous variables (Struyf
and Džeroski 2006; Appice and Džeroski 2007). Many facets of multi-label classification
are also present in multi-target regression, e.g., correlation between labels/variables, which
motivated us to approach multi-label classification by using multi-target regression methods.

To address the multi-label classification task, we have developed a straightforward multi-
label classification via multi-target regression methodology, and used it in combination with
a streaming multi-target regressor (iSOUP-Tree). The generality is a strong point of this
approach, as it allows us to address multiple types of structured output prediction problems,
such as multi-label classification and hierarchical multi-label classification, in the streaming
setting.

In our initial work on this topic (Osojnik et al. 2015), we performed a set of preliminary
experiments with the aim to show that multi-label classification via multi-target regression
is a viable approach. We compared our algorithms with basic MLC methods (that give as
output a single classifier). We used a very limited number of evaluation measures.

In this paper, we introduce several novel aspects. First, we introduce an adaptive percep-
tron in the leaves of the iSOUP-Tree, instead of the simple perceptron used in the initial
work. Furthermore, we introduce an ensemble method (bagging) that uses iSOUP-Trees as
base level learners and compare it with the state-of-the-art ensemble method for MLC in
a streaming setting. Finally, we significantly extend the experimental methodology and the
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experimental questions. In particular, we include a wide range of evaluation measures in the
comparison of the different methods and assess whether the overall differences in perfor-
mance across all employed methods are statistically significant (by employing appropriate
statistical tests).

The structure of the paper is as follows. First, we present the background and related work
(Sect. 2). Next, we present the approach of multi-label classification via multi-target regres-
sion on data streams (Sect. 3) and our iSOUP-Treemethod forMTR on data streams (Sect. 4).
Furthermore, we present the research questions and the experimental design (Sect. 5). We
then present and discuss the results (Sect. 6). Finally, we outline our conclusions and some
directions for further work (Sect. 7).

2 Background and related work

In this section, we review the state-of-the art inmulti-label classification, both in the batch and
the streaming context. In addition, we present the background of the multi-target regression
task, which we use as a foundation for defining the multi-label classification via multi target
regression approach.

2.1 Multi-label classification

Generalizing multi-class classification, where only one of the possible labels needs to be
predicted,multi-label classification requires a model to predict a combination (subset) of the
possible labels. Formally, this means that for each data instance x from an input space X a
model needs to provide a prediction ŷ from an output space Y , which is a powerset of the
labelset L, i.e., Y = 2L. This is in contrast to the multi-class classification task, where the
output space is simply the labelset Y = L. We denote the real labels of an instance x by y,
and a prediction made by a model for x by ŷ(x) (or simply ŷ).

In the batch setting, the problem transformation approach is commonly used to tackle the
task of multi-label classification. Problem transformation methods are usually used as basic
methods to compare to, and are used in a combination with off-the-shelf base algorithms.
The most common approach, called binary relevance (BR), transforms a multi-label task
into several binary classification tasks, one for each of the possible labels (Read et al. 2011).
Binary relevance models have been often overlooked due to their inability to account for
label correlations, though some BR methods are capable of modeling label correlations
during classification.

Another common problem transformation approach is the label combination or label
powerset (LC) method, where each subset of the labelset is considered as an atomic label
for a multi-class classification problem (Read et al. 2008; Tsoumakas and Vlahavas 2007).
If we start with a multi-label classification task with a labelset of L, we transform this into a
multi-class classification with a lableset L′ = 2L.

The thirdmost commonproblem transformation approach ispairwise classification, where
we have a binary model for each possible pair of labels (Fürnkranz et al. 2008). This method
performs well in some contexts. For larger problems the method becomes intractable because
of model complexity.

In addition to problem transformation methods, there are also adaptations of the well
known algorithms that handle the task of multi-label classification directly. Examples of
such algorithms are the adaptation of the decision tree learning algorithm for MLC (Vens
et al. 2008), support-vector machines for MLC (Gonçalves et al. 2013), k-nearest neighbours
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for MLC (Zhang and Zhou 2005), instance based learning for MLC (Cheng and Hüllermeier
2009), and others.

2.2 Multi-label classification on data streams

Many of the problem transformation methods for multi-label classification have also been
used in the streaming context. Unlike the batch context, where a fixed and complete dataset is
given as input to a learning algorithm, the streaming context presents several limitations that
the stream learning algorithm must take into account. Bifet and Gavaldà (2009) define the
most relevant ones as follows: (1) the examples arrive sequentially; (2) there can potentially
be infinitely many examples; (3) the distribution of examples need not be stationary; and
(4) after an example is processed it is discarded or archived. The fact that the distribution
of examples is not presumed to be stationary means that algorithms should be able to detect
and adapt to changes in the distribution (concept drift).

The first approach to MLC in data streams was a batch-incremental method that trains
stacked BR classifiers (Qu et al. 2009). Some methods for multi-class classification, such as
Hoeffding Trees (HT) (Domingos andHulten 2000), have also been adapted to themulti-label
classification task (Read et al. 2012). Hoeffding trees are incremental anytime decision trees
for learning from data streams that use the notion that a small sample is usually sufficient for
choosing an optimal splitting attribute, i.e., the use of the Hoeffding bound. Read et al. (2012)
proposed the use of multi-label Hoeffding trees with pruned sets (PS) at the leaves (HTPS),
as well as using them in combination with the ADWIN bagging (Bifet et al. 2009) ensemble
method, which implicitly addresses the problems of change detection and adaptation. Bifet
et al. (2010) introduced the Java-based Massive Online Analysis (MOA)1 framework, which
also allows for the analysis of concept drift (Bifet and Gavaldà 2009) and has become one
of the main software frameworks for data stream mining.

Recently, Spyromitros-Xioufis (2011) introduced a parameterized windowing technique
for dealing with concept drift in multi-label data in a data stream context. Next, Shi et al.
(2014a) proposed an efficient and effective method to detect concept drift based on label
grouping and entropy for multi-label data, where the labels are grouped by using clustering
and association rules. This allowed for an effective detection of concept drift which takes into
account label dependence. Finally, Shi et al. (2014b) proposed an efficient class incremental
learning algorithm, which dynamically recognizes some new frequent label combinations.

2.3 Multi-target regression

In the same way as multi-label classification generalizes regular (single target) classification,
multi-target regression task is an extension of single-target regression.Multi-target regression
(MTR) is the task of predicting multiple numeric variables simultaneously. Formally, the task
is to make a prediction ŷ from R

n , where n is the number of targets for a given instance x
from an input space X .

As in multi-label classification, there is a common problem transformation method that
transforms the multi-target regression problem into multiple single-target regression prob-
lems. In this case, we consider each numeric target separately and train a single-target
regressor for each of them. However, this local approach suffers from similar problems as
the problem transformation approaches to multi-label classification: The single target mod-
els do not consider the inter-correlations of the target variables. The task of simultaneous
prediction of all target variables at the same time (the global approach) has been considered

1 URL: http://moa.cms.waikato.ac.nz/, accessed on 2016/04/23.
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in the batch setting by Struyf and Džeroski (2006). In addition, Appice and Džeroski (2007)
proposed an algorithm for stepwise induction of multi-target model trees. Finally, Xioufis
et al. (2016) introduced two new methods for multi-target regression (called Stacked Single-
Target and Ensemble of Regressor Chains) by adapting multi-label classification methods.
The methods treat the other prediction targets as additional input variables and exploit the
target dependencies in order to improve the accuracy of their predictions.

In the streaming context, some work has been done on multi-target regression.
Ikonomovska et al. (2011b) introduced an instance-incremental streaming tree-based single-
target regressor (FIMT-DD) that utilized the Hoeffding bound. This work was later extended
to the multi-target regression setting (Ikonomovska et al. 2011a) (FIMT-MT). There has been
a theoretical debate on whether the use of the Hoeffding bound is appropriate (Rutkowski
et al. 2013), but, a recent study by Ikonomovska et al. (2015) has shown that, in practice,
the use of the Hoeffding bound produces good results. However, the drawback of these
algorithms is that they ignore nominal input attributes. Recently, Duarte and Gama (2015)
implemented a rule-based learning approach for multi-target regression (AMRules), while
Shaker and Hüllermeier (2012) introduced an instance-based system for classification and
regression (IBLStreams), which can be used for multi-target regression.

3 Multi-label classification via multi-target regression

The problem transformation methods (see Sect. 2.1) generally transform a multi-lablel clas-
sification task into one, or several, binary or multi-class classification tasks. In this paper,
we take a different approach and transform a classification task into a regression task. The
simplest example of a transformation of this type is to transform a binary classification task
into a regression task. For example, if we have a binary target with labels yes and no, we
would consider a numeric target to which we would assign a numeric value of 0 if the binary
label is no and 1 if the binary label is yes.

In the same way, we can approach the multi-class classification task. Specifically, if the
multi-class target variable is ordinal, i.e., the class labels have a meaningful ordering, we can
assign the numeric values from 0 to n − 1 to each of the corresponding n labels. This makes
sense, since if the labels are ordered, a misclassification of a label into a “nearby” label is
better than a misclassification into a “distant” label. However, if the variable is not ordinal
this makes less sense, as any given label is not in a strict relationship with other labels.

In that case, an approach similar to that introduced by Frank et al. (1998) to address
multi-class classification using regression can be used. In their case, they produced several
versions of the observed data, one version per class in the multi-class classification task.
For each class, its version of the data featured a derived binary classification target, which
corresponded to the presence of the class. Consequently, for each class a model tree regressor
was learned. For a given example, the prediction of each of the trees was calculated, after
which the example was classified into the class with the highest corresponding (numeric)
tree prediction. This approach produces one regressor per class, however, with the use of
methods for multi-target regression, this can be reduced to one (multi-target) regressor for
all of the classes.

To address themulti-label classification task using regression, we transform it into amulti-
target regression task (see Fig. 1). This procedure is performed in two steps: first, we take the
viewpoint that themulti-label classification target is composed of several binary classification
variables, just as in the BR method. However, instead of training one classifier for each of
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RTMCLM

Target space y ⊆ L{λ1, . . . , λn} transformation−−−−−−−−−−→ y ∈ R
n

Instance y = {λ1, λ3, λ4} transformation−−−−−−−−−−→ y = (1, 0, 1, 1, . . . )

Fig. 1 Transformation of a MLC problem to a MTR problem. Only the target space is transformed. Applied
before learning a multi-target regressor

CLMRTM

Target space ŷ ∈ R
n thresholding−−−−−−−−→ ŷ ⊆ L

Instance ŷ = (0.98, 0.21, 0.59, 0.88, . . . )
thresholding−−−−−−−−→ ŷ = {λ1, λ3, λ4}

Fig. 2 FromMTR toMLC. Transforming a multi-target regression prediction into a multi-label classification
one

the binary variables, we further transform the values of the binary variable into numbers. A
numeric target corresponding to a given label has a value 1 if the label is present in a given
instance, and a value 0 if the label is not present.

For example, if we have a multi-label classification task with target labels L =
{red, blue, green}, we transform it into a multi-target regression task with three numeric
target variables yred , yblue, ygreen ∈ R. If an instance is labeled with red and green, but not
blue, the corresponding numeric targets will have values yred = 1, yblue = 0, and ygreen = 1.

Since we are using a regressor, it is possible that a prediction for a given instance will not
result in a value of exactly 0 or 1 for each of the targets. For this purpose, we use thresholding
to transform back a multi-target regression prediction into a multi-label one (see Fig.2).
Namely, we construct the multi-label prediction in such a way that it contains labels with
numeric values over a certain threshold, i.e., in our case, the labels selected are those with a
numeric value over the threshold of τ = 0.5. It is clear, however, that a different choice of
threshold leads to different predictions.

In the batch setting, thresholding can be performed in the pre- and postprocessing phases.
However, in the streaming setting it needs to be done in real time. Specifically, the process
of thresholding occurs at two times. The first thresholding occurs when the multi-target
regressor has produced a multi-target prediction, which must then be converted into a multi-
label prediction. The second thresholding occurs when we are updating the regressor, i.e.,
when the regressor is learning.Most streaming regressors are heavily dependent on the values
of the target variables in the learning process, so the instances must be converted into the
numeric representation that the multi-target regressor can utilize.

The problem of thresholding is not only problematic in the MLC via MTR setting, but
also when considering the MLC task with other approaches. In general, MLC models pro-
duce results which are interpreted as probability estimations for each of the labels, thus the
threhsolding problem is a fundamental part of multi-label classification.

4 The iSOUP-Tree method

To utilize the MLC via MTR approach, we have reimplemented the FIMT and FIMT-MT
algorithms (Ikonomovska et al. 2011a) in the MOA framework to facilitate usability and
visibility, as the original implementation was a standalone extension of the C-based VFML
library (Hulten and Domingos 2003) and was not available as part of a larger data stream
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mining framework. We have also significantly extended the algorithm to consider nominal
attributes in the input space when considering splitting decisions. This allows us to use the
algorithm on a wider selection of datasets, some of which are considered herein.

In this paper, we combined the multi-label classification via multi-target regression
methodology, proposed in the previous section, with the extended version of FIMT-MT, reim-
plemented in MOA. We named this method the incremental Structured OUtput Prediction
Tree (iSOUP-Tree), since it is capable of addressing multiple structured output prediction
tasks, i.e., multi-label classification and multi-target regression.

Ikonomovska et al. (2011b) have considered the performance of FIMT-DDwhen a simple
predictive model is placed in each of the leaves, i.e., in this case a single linear unit (a
perceptron). Model trees produce the predictions as a linear combination of input attribute
values, i.e., ŷ(x) = ∑m

i=1 xiwi + b, where m is the number of input attributes and wi , b
are the perceptron weights, respectively. In contrast, in regression trees the prediction in
a given leaf for an instance x is made for each of the targets as the average value of the
recorded target values, ŷ(x) = 1

|S|
∑

y∈S y, where S is the set of observed examples in a
given leaf. It was shown that using model trees yields better performance. However, this
was only experimentally confirmed for regression tasks. In regression the targets generally
exhibit larger variation than in classification tasks.

Our initial research showed that the use of a simple perceptron in the leaves provides very
bad experimental results in the MLC via MTR setting (Osojnik et al. 2015). To correct this,
we have replaced the perceptron with an adaptive perceptron, as done by Duarte and Gama
(2014). This adaptive perceptron combines the predictions of the perceptron and the mean
target predictor.

4.1 Adaptive perceptron

In the original implementation of FIMT by Ikonomovska et al. (2011b), the perceptron was
always used to make the prediction. However, the adaptive model in a given tree leaf records
the errors of the perceptron and compares them to the errors of the mean target predictor,
which predicts the value of the target by computing the average value of the target over the
examples observed in the leaf. In essence, each leaf has two predictors, the perceptron and
the target mean predictor. The prediction of the predictor with the lower error (at a given
point in time) is then used as the output prediction.

To monitor the errors, we use the faded mean absolute error which is calculated as

fMAEpredictor(m) =
∑m

i=10.95
m−i |ŷi − yi |

∑m
i=10.95

m−i
,

where m is the number of observed examples in a leaf, ŷi and yi are the predicted and real
value for the i th example, respectively, and predictor ∈ {perceptron, targetMean}. The faded
error is, in essence, weighted towards more recent examples. Intuitively, the numerator of
the above fraction is the faded sum of absolute errors, while the denominator is the faded
count of examples. For example, the most recent (mth) example contributes with a weight of
1, the previous example with weight 0.95, and the first example with weight 0.95m−1. This
places a large emphasis on more recent examples and generally benefits the perceptron, as
we expect its errors to decrease as it learns the weight vector.

However, we have to be careful when considering a classification task through the lens of
regression. In classification, the actual target variables can only take values of 0 and 1. If we
use a linearmodel such as a perceptron (or the adaptive perceptron described above) to predict
one of the targets, we have no guarantee that the predicted valuewill land in the [0, 1] interval.
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A regression tree’s prediction will produce a prediction which is calculated as an average
of zeroes and ones, which will always land in this interval. Additionally, the perceptrons
in the leaves are trained in real-time according to the Widrow-Hoff rule, which consumes a
non-negligible amount of time, which can be a constraint in the data stream mining setting.
Hence, we are motivated to consider the use of both multi-target regression trees as well
as multi-target model trees when addressing the task of multi-label classification via multi-
target regression. We denote the regression tree variation of iSOUP-Tree as iSOUP-RT and
the model tree variant as iSOUP-MT.

4.2 Ensembles

In addition to observing and evaluating a single regression or model tree, we also consider
ensembles of iSOUP-Trees. We use the online bagging approach introduced by Oza (2005),
which naturally extends the approach for bagging from the batch setting. In essence, each of
the incoming examples is assigned to each of themembers of the ensemble a different number
of times, i.e., for each example-ensemble member pair we sample the Poisson distribution
with parameter λ = 1 to determine the number of repetitions of the given example to the
given ensemble member. The theoretical motivation behind this methodology is concisely
explained in the original paper. We denote the bagging of iSOUP regression trees EB RT 2

and the bagging of model trees as EBMT .
Ensembles can also be used to address the problem of drift detection and adaptation.

ADWIN bagging (Bifet et al. 2009) is an extension of the above ensemble methodology,
which monitors the performance of the ensemble members and discards under-performing
models, and replaces them with new empty models, which are learned anew. However, we
specifically avoid the use of ADWIN bagging, as we wish to address the problem of change
detection and adaptation even in the single-tree scenario.

5 Experimental design

In this section, we first present the experimental questions that we want to answer. Next, we
describe the datasets and algorithms used in the experiments. Furthermore, we discuss the
evaluation measures used in the experiments. Finally, we conclude with a description of the
employed experimental methodology.

5.1 Experimental questions

Our experimental design is constructed in such a way to address several lines of inquiry. First,
we investigate whether if the use ofmodel treeswith the adaptive perceptron improves predic-
tive performance over regression trees. Namely, we have shown a previous study that using
model trees with regular preceptrons produces considerably worse results than regression
trees (Osojnik et al. 2015).

Second, we comparatively evaluate the performance of the introduced single tree methods
to the Hoeffding tree with pruned sets (HTPS) (Read et al. 2012). The latter is a direct (single)
tree-based competitor, which does not utilize the MLC via MTR methodology. This allows
further investigates the viability of the proposed methodology for MLC.

2 E denotes that the method learns an ensemble, while the B determines that bagging is used to achieve
variation among the base models.
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Table 1 Datasets used in the
experiments

Dataset N Attribs. Q φLC

20NG 19, 300 1001 binary 20 1.1

Enron 1, 702 1001 binary 53 3.4

IMDB 120, 919 1001 binary 28 2.0

Ohsumed 13,929 1002 binary 23 1.7

Slashdot 3782 1079 binary 22 1.2

TMC 28,596 500 binary 22 2.2

N number of instances, Q
number of labels, φLC average
number of labels per instance

Furthermore, we compare all of the methods, including ensemble-based approaches, to
determine how the methods rank both in terms of performance and efficiency, as well as to
observe the effect of using ensembles of the base learners.

Finally, we observe the methods’ efficiency to determine what, if any, trade-offs in terms
of performance versus resource use are made when using the different methods.

5.2 Datasets

In our experiments, we use a subset of the datasets listed in Read et al. (2012, Tab.3) (see
Table1). Here, we briefly describe the dataset domains:

– The 20 newsgroups is a dataset comprised of a collection of articles from 20 newsgroups.
– The Enron dataset (Read 2008) is a collection of labelled emails, which, though small

by data stream standards, exhibits some data stream properties, such as time-order and
evolution over time.

– The IMDB dataset is constructed from text summaries of movie plots from the Internet
Movie Database and is labelled with the relevant genres.

– TheOhsumed datasetwas constructed from a collection of peer-reviewedmedical articles
and labelled with the appropriate disease categories.

– The dataset Slashdot was collected from the http://slashdot.org web page and consists of
article blurbs labelled with subject categories.

– The TMC dataset was used in the SIAM 2007 Text Mining Competition and consists of
human generated aviation safety reports, labelled with the problems being described (we
are using the version of the dataset specified in Tsoumakas and Vlahavas (2007)).

With the exception of the TMC dataset, all datasets are available at the MEKA project page.3

The TMC dataset is available at the Mulan data repository.4

5.3 Algorithms

To address our experimental questions,we performed experiments using our implementations
of the algorithms for learning multi-target model trees (iSOUP-MT or MT for brevity) and
multi-target regression trees (iSOUP-RT or RT). In addition, we also use ensemble methods,
specifically, online bagging for iSOUP-RT (EBRT) and iSOUP-MT (EBMT). The testing for
splits occurs at intervals of 200 observed examples, with the Hoeffding bound confidence
level (the δ parameter) set to 0.0000001.

3 https://sourceforge.net/projects/meka/files/Datasets/, accessed on 2016/03/11.
4 http://mulan.sourceforge.net/datasets-mlc.html, accessed on 2015/05/25.
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The MLC setting has not received as much attention in the streaming setting as it has in
the batch setting, therefore, there aren’t as many competing algorithms as there would be in
the batch setting. We chose the updated implementation5 of Read et al. (2012), which learns
Hoeffding trees with pruned sets (HTPS), as well as ADWIN bagging for Hoeffding trees
with pruned sets (EAHTPS).6 The parameters of these methods were set as suggested by the
authors.

5.4 Evaluation measures

In the evaluation, we use a set of measures used in recent surveys and experimental compar-
isons of different multi-label algorithms in the batch setting (Madjarov et al. 2012; Gibaja
and Ventura 2015). The evaluation measures are grouped into four segments: example-based
measures (accuracy, F1, Hamming score), label-based measures (macro precision, macro
recall, macro F1, micro precision, micro recall, micro F1), ranking-based measures (average
precision, ranking loss, logarithmic loss), and efficiency measures (memory consumption
and time). This yields a total of 12 measures of predictive performance and 2 measures of
efficiency.

From the above, it is clear that in the MLC setting performance along a wide variety of
measures can be investigated. Example-based measures evaluate the quality of classification
on a per-example basis, i.e., how good is the classification over different examples, while
label-based measures evaluate the quality of the classification on a per-label basis, i.e., how
good is the classification over different labels. Ranking-based measures evaluate the classi-
fication based on the ordering of the labels according to their presence, e.g., a classification
is evaluated more positively if the present labels are ranked higher, often without regard for
the thresholding procedure.

In particular, example-based and label-based measures are calculated based on the com-
parison of the predicted labels with the ground truth labels. On one hand, example-based
measures depend on the average difference of the actual and predicted sets of labels over
the complete set of data examples from the evaluation set. On the other hand, label-based
measures assess the performance for each label separately and than average the performance
over all labels. The models produced by algorithms used in this study give as prediction
numerical values for each of the labels. The label is predicted as present if the numerical
value exceeds a predefined threshold τ (in our case we set the value to 0.5). This means that
both example-based and label-based measures are directly dependent on the choice of the
parameter τ . Ranking-based evaluation measures, however, compare the predicted ranking
of the labels with the ground truth ranking and do not necessarily depend on the choice
of the threshold parameter. The full definitions of the observed measures can be found in
“Appendix”.

Tomeasure the efficiency of the observedmethodswe consider the running time,measured
in seconds, with a resolution of one hundredth of a second, and the total amount of memory
consumed in MB. The time measurements exclusively measure the learning time and the
time used to make predictions, excluding other processes such as loading of examples from
the file system and the calculation of evaluation measures. In the case of time and memory
usage, we desire low values.

5 The methods are implemented as part of the MEKA and MOA frameworks.
6 As before, E denotes the use of an ensemble, while the A stands for ADWIN bagging.
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Each evaluationmeasure presents and choosingwhich to optimize in a real-world scenario
is dependent on the desired outcomes. The performance of competing methods is, therefore,
evaluated separately using each measure. However, note that ranking-based measures are of
special importance, as they do not require threhsholding, while precision and recall can be
traded off by selecting a different threshold.

5.5 Experimental setup

For all of our experiments we are using the predictive sequential (prequential) evaluation
methodology for data streams (Gama 2010). This means that for each example, first a pre-
diction is made and collected, and second, the example is used to update the model. Once
predictions for each of the examples are collected, the evaluation measures are calculated
on all of the predictions. Using prequential evaluation ensures that the model has as much
information as possible to make the prediction for each example. However, the prequential
evaluation methodology is more optimistic than the other commonly used holdout evaluation
approach, where a window of examples is constructed and the entire window is first used to
make predictions and then to update the model.

Unlike the holdoutmethodology, the prequential evaluationmethodology allows themodel
to use all of the information available at a given point to make a prediction, as all of the
preceding examples are used to update the model prior to making a prediction. While in
real-world applications either evaluation methodology could be the correct choice, in this
paper, we chose to observe the performance of the methods in the most optimistic scenario.

More specifically, we constructed the following experimental setup to answer the proposed
experimental questions. This experimental setup is designed to be a streaming analog of the
commonly used batchMLCexperimental setup, e.g., used byMadjarov et al. (2012) andRead
et al. (2009), and is very similar to the setup used byRead et al. (2012) in the streaming setting.

For each of the datasets, we used the prequential methodology to calculate the predictions
of all of themodels on all of the instances in the dataset. The predictions are then thresholded to
calculate the label-based and example-basedmeasures on the entire dataset, while the ranking
measures are calculated using the unthresholded predictions. The recordedmeasurements are
therefore calculated using the obtained predictions over the entire dataset. Additionally, we
measured the time and memory used to learn and make predictions.

To assess whether the overall differences in performance across all employed methods are
statistically significant for a given evaluation measure, we employed the corrected Friedman
test (Friedman 1940) and the post-hoc Nemenyi test (Nemenyi 1963) as recommended by
Demšar (2006). The results of the statistical test are represented in the form of average rank
diagrams for each evaluationmeasure. These form the basis on which we build the answers to
our experimental questions and form our conclusions. When comparing only two methods,
i.e., in the case of the comparison of regression and model trees as well as the comparison
of different single-tree methods, we also refer to the results on the individual datasets.

6 Results and discussion

The results of the evaluation are grouped by the type of evaluation measure for ease of
discussion. Within each group of evaluation measures, we discuss their relevance to our
experimental questions. Afterwards, we wrap up with a discussion of the implication of the
complete set of results to the experimental questions.
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Table 2 Predictive performance results: example-based measures

MT RT EBRT EBMT HTPS EAHTPS

(a) Accuracy

20NG 0.1142 (4) 0.1174 (3) 0.0682 (5) 0.0648 (6) 0.3182 (1) 0.2773 (2)

Enron 0.2438 (1) 0.1797 (4) 0.1887 (3) 0.2379 (2) 0.0022 (5) 0.0010 (6)

IMDB 0.0187 (3) 0.0026 (5) 0.0007 (6) 0.0031 (4) 0.0435 (2) 0.1955 (1)

Ohsumed 0.1563 (4) 0.1611 (3) 0.1143 (5) 0.1035 (6) 0.3178 (1) 0.2980 (2)

Slashdot 0.0049 (3) 0.0003 (4) 0.0000 (6) 0.0003 (4) 0.1393 (2) 0.1452 (1)

TMC 0.3448 (2) 0.3479 (1) 0.3439 (3) 0.3317 (4) 0.0112 (5) 0.0094 (6)

Avg. rank 2.83 3.33 4.67 4.33 2.67 3.00

(b) F1ex
20NG 0.1146 (4) 0.1177 (3) 0.0683 (5) 0.0649 (6) 0.3205 (1) 0.2804 (2)

Enron 0.3296 (1) 0.2411 (4) 0.2530 (3) 0.3221 (2) 0.0039 (5) 0.0015 (6)

IMDB 0.0227 (3) 0.0031 (5) 0.0008 (6) 0.0037 (4) 0.0597 (2) 0.2469 (1)

Ohsumed 0.1767 (4) 0.1829 (3) 0.1280 (5) 0.1156 (6) 0.3612 (1) 0.3382 (2)

Slashdot 0.0049 (3) 0.0003 (4) 0.0000 (6) 0.0003 (4) 0.1455 (2) 0.1493 (1)

TMC 0.4303 (3) 0.4335 (1) 0.4307 (2) 0.4175 (4) 0.0163 (5) 0.0138 (6)

Avg. rank 3.00 3.33 4.50 4.33 2.67 3.00

(c) Hamming score

20NG 0.9523 (1) 0.9522 (2) 0.9512 (3) 0.9511 (4) 0.9311 (6) 0.9432 (5)

Enron 0.9416 (2) 0.9375 (4) 0.9381 (3) 0.9419 (1) 0.9250 (6) 0.9350 (5)

IMDB 0.9282 (4) 0.9284 (3) 0.9286 (2) 0.9286 (1) 0.8886 (6) 0.9151 (5)

Ohsumed 0.9344 (1) 0.9341 (2) 0.9330 (3) 0.9326 (4) 0.9224 (6) 0.9249 (5)

Slashdot 0.9461 (4) 0.9461 (3) 0.9463 (1) 0.9463 (1) 0.9154 (6) 0.9233 (5)

TMC 0.9154 (1) 0.9146 (4) 0.9151 (2) 0.9149 (3) 0.8483 (6) 0.8503 (5)

Avg. rank 2.17 3.00 2.33 2.33 6.00 5.00

Each table contains the values of the measure (and the rank) of each method on each dataset

6.1 Results on the example-based measures

The values and rankings on the example-based measures (accuracy, F1ex and Hamming score)
are presented in Table2. The results of the Friedman-Nemenyi significance tests are presented
in Fig. 3 in the form of average rank diagrams.

With regards to the comparison of iSOUP model and regression trees, the average rank of
model trees is higher than the average rank of regression trees in all example-basedmeasures,
even though the difference is not statistically significant. The results on individual datasets
in terms of the Hamming score are nearly identical, while model trees are slightly better on
the accuracy and F1ex measures. Even when regression trees beat model trees on a particular
dataset, the difference in performance is much smaller than when model trees perform better.

The results of the comparison between the single-tree methods on the example-based
evaluation measures are not entirely clear-cut. For both accuracy and F1ex , the average rank
of the HTPS method is higher than the average ranks of model and regression trees, but
the difference is not statistically significant. The HTPS method has poorer performance on
the Enron and TMC datasets, where regression and model trees both outperform HTPS.
However, the results on the Hamming score show that the average rank of both iSOUPmodel
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Fig. 3 Average rank diagrams for the example-based measures. a Accuracy, b F1ex , c Hamming score

and regression trees are much higher than the rank of the HTPS method. The difference in
performance betweenmodel trees and theHTPS method is in this case statistically significant.

When examining the performance of the learning methods in terms of the accuracy and
F1ex in detail (per dataset), we again observe very mixed results. It is noticeable that, on some
datasets, a group of methods has orders of magnitude better results than the other methods,
i.e., HTPS and EAHTPS on the Slashdot dataset, MT , RT , EBMT and EBRT on the Enron
dataset, and EAHTPS on the IMDB dataset. We found no statistically significant differences
in performance for both the accuracy measure (Fig. 3a) as well as the F1ex measure (Fig. 3b).
On the other hand, the results in terms of the Hamming score are much clearer. MT , RT ,
EBMT and EBRT have higher average rank than HTPS and EAHTPS. However, according to
the Friedman-Nemenyi post-hoc test, only HTPS is significantly worse than MT , EBRT and
EBMT (Fig. 3c).

6.2 Results on the label-based measures

The performance measure values and rankings for the label-based measures (Precisionmacro,
Recallmacro, F1macro, Precisionmicro, Recallmicro and F1micro) are presented in Tables 3 and 4.
The results of the Friedman-Nemenyi post-hoc significance tests are presented in Fig. 4.

On all macro label-based evaluation measures, model trees get results better than or about
equal to the results of regression trees. While regression trees do outperform model trees on
some datasets, e.g., for all of the macro measures on the Ohsumed dataset, the differences in
these cases are relatively small, while when the model trees outperform regression trees, e.g.,
for all macro measures on the IMDB dataset, the differences are considerably larger. For all
three measures, the difference in average ranks of the methods is not statistically significant.

The results on the micro measures are similar. Model trees have higher average rank than
regression trees in terms of Precisionmicro, though the differences are not statistically signifi-
cant. The results on Recallmicro and F1micro are more scattered, with model still mostly having
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Table 3 Predictive performance results: label-based measures (macro)

MT RT EBRT EBMT HTPS EAHTPS

(a) Precisionmacro measure

20NG 0.5527 (1) 0.3873 (4) 0.3351 (5) 0.4279 (3) 0.1944 (6) 0.4427 (2)

Enron 0.0679 (1) 0.0341 (6) 0.0427 (5) 0.0588 (3) 0.0643 (2) 0.0474 (4)

IMDB 0.2306 (2) 0.1452 (3) 0.0576 (5) 0.2824 (1) 0.0392 (6) 0.1157 (4)

Ohsumed 0.2872 (2) 0.2946 (1) 0.2788 (3) 0.2612 (4) 0.1653 (6) 0.1907 (5)

Slashdot 0.1347 (2) 0.0152 (5) 0.0000 (6) 0.0227 (4) 0.1311 (3) 0.1842 (1)

TMC 0.3321 (1) 0.3135 (3) 0.3185 (2) 0.2380 (4) 0.0081 (6) 0.0083 (5)

Avg. rank 1.50 3.67 4.33 3.17 4.83 3.50

(b) Recallmacro measure

20NG 0.1127 (4) 0.1156 (3) 0.0667 (5) 0.0635 (6) 0.3156 (1) 0.2787 (2)

Enron 0.0319 (1) 0.0193 (4) 0.0205 (3) 0.0299 (2) 0.0096 (5) 0.0019 (6)

IMDB 0.0060 (3) 0.0012 (4) 0.0002 (6) 0.0010 (5) 0.0411 (2) 0.0557 (1)

Ohsumed 0.0840 (4) 0.0884 (3) 0.0495 (5) 0.0406 (6) 0.1623 (1) 0.1433 (2)

Slashdot 0.0021 (3) 0.0001 (4) 0.0000 (6) 0.0001 (4) 0.0861 (1) 0.0586 (2)

TMC 0.1237 (2) 0.1332 (1) 0.1070 (3) 0.0981 (4) 0.0413 (5) 0.0388 (6)

Avg. rank 2.83 3.17 4.67 4.50 2.50 3.17

(c) F1macro measure

20NG 0.1619 (4) 0.1630 (3) 0.1047 (5) 0.0999 (6) 0.2287 (2) 0.2717 (1)

Enron 0.0364 (1) 0.0199 (4) 0.0217 (3) 0.0340 (2) 0.0127 (5) 0.0032 (6)

IMDB 0.0113 (3) 0.0023 (4) 0.0004 (6) 0.0019 (5) 0.0239 (2) 0.0540 (1)

Ohsumed 0.1210 (4) 0.1269 (3) 0.0745 (5) 0.0617 (6) 0.1586 (1) 0.1523 (2)

Slashdot 0.0041 (3) 0.0002 (5) 0.0000 (6) 0.0002 (4) 0.0627 (1) 0.0487 (2)

TMC 0.1503 (2) 0.1605 (1) 0.1228 (3) 0.1110 (4) 0.0064 (5) 0.0041 (6)

Avg. rank 2.83 3.33 4.67 4.50 2.67 3.00

Each table contains the values of the measure (and the rank) of each method on each dataset

Table 4 Predictive performance results: label-based measures (micro)

MT RT EBRT EBMT HTPS EAHTPS

(a) Precisionmicro measure

20NG 0.7408 (3) 0.7189 (4) 0.8227 (2) 0.8270 (1) 0.3253 (6) 0.4218 (5)

Enron 0.6108 (2) 0.5363 (4) 0.5539 (3) 0.6249 (1) 0.0664 (6) 0.0863 (5)

IMDB 0.4411 (3) 0.3746 (4) 0.5242 (2) 0.5864 (1) 0.0844 (6) 0.3461 (5)

Ohsumed 0.7561 (3) 0.7216 (4) 0.8086 (2) 0.8189 (1) 0.4453 (6) 0.4677 (5)

Slashdot 0.3220 (1) 0.0556 (5) 0.0000 (6) 0.2500 (2) 0.1587 (4) 0.1923 (3)

TMC 0.6427 (2) 0.6263 (4) 0.6394 (3) 0.6481 (1) 0.0280 (5) 0.0248 (6)

Avg. rank 2.33 4.17 3.00 1.17 5.50 4.83

(b) Recallmicro measure

20NG 0.1123 (4) 0.1151 (3) 0.0666 (5) 0.0633 (6) 0.3161 (1) 0.2786 (2)

Enron 0.2330 (1) 0.1424 (4) 0.1520 (3) 0.2214 (2) 0.0136 (5) 0.0021 (6)

IMDB 0.0182 (3) 0.0029 (4) 0.0006 (6) 0.0028 (5) 0.0568 (2) 0.2123 (1)
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Table 4 continued

MT RT EBRT EBMT HTPS EAHTPS

Ohsumed 0.1374 (4) 0.1439 (3) 0.0965 (5) 0.0865 (6) 0.2957 (1) 0.2762 (2)

Slashdot 0.0043 (3) 0.0002 (4) 0.0000 (6) 0.0002 (4) 0.1341 (1) 0.1341 (1)

TMC 0.3644 (2) 0.3803 (1) 0.3643 (3) 0.3428 (4) 0.0149 (5) 0.0126 (6)

Avg. rank 2.83 3.17 4.67 4.50 2.50 3.00

(c) F1micro measure

20NG 0.1950 (4) 0.1985 (3) 0.1232 (5) 0.1176 (6) 0.3207 (2) 0.3356 (1)

Enron 0.3374 (1) 0.2251 (4) 0.2385 (3) 0.3270 (2) 0.0225 (5) 0.0041 (6)

IMDB 0.0350 (3) 0.0057 (4) 0.0012 (6) 0.0056 (5) 0.0679 (2) 0.2632 (1)

Ohsumed 0.2325 (4) 0.2399 (3) 0.1724 (5) 0.1564 (6) 0.3554 (1) 0.3473 (2)

Slashdot 0.0084 (3) 0.0004 (5) 0.0000 (6) 0.0004 (4) 0.1454 (2) 0.1580 (1)

TMC 0.4651 (2) 0.4732 (1) 0.4642 (3) 0.4484 (4) 0.0195 (5) 0.0167 (6)

Avg. rank 2.83 3.33 4.67 4.50 2.83 2.83

Each table contains the values of the measure (and the rank) of each method on each dataset

higher average rank than regression trees. Again, however, the differences in performance
when model trees win are considerably larger than when regression trees outperform them.

When comparing the single tree methods, we find that the results on two of the datasets,
Enron and TMC, deviate from the rest. Noticeably, on the remaining datasets HTPS outper-
forms model and regression trees on all measures, with the exception of Precisionmacro and
Precisionmicro, while on the Enron and TMC datasets regression and model trees outperform
HTPS on all label-based evaluation measures. Additionally, the results for Precisionmacro and
Precisionmicro show that iSOUP single tree methods also outperform HTPS on the remaining
datasets.

The comparison of all of the methods in terms of each of the label-based evaluation mea-
sures is not straightforward. Ordinary bagging methods (not including EAHTPS), perform
relatively badly according to Recallmacro, Recallmicro, F1macro and F

1
micro, as can be seen from

the average rank diagrams in Fig. 4. While on these measures the differences in rank are not
statistically significant, their significance might yield in either direction if experiments are
conducted onmore datasets. Interestingly, bagging ofmodel trees performs verywell in terms
of Precisionmicro, where it statistically significantly outperforms both HTPS and EAHTPS.
Additionally, model trees also significantly outperform HTPS. On the other hand, we only
have enough evidence to conclude that HTPS significantly outperforms model trees in terms
of Precisionmacro. We found no other statistically significant differences in method ranks on
any of the remaining label-based measures.

6.3 Results on the ranking-based measures

The performance values and rankings on the ranking-based measures (ranking loss, logarith-
mic loss and average precision) are presented inTable5. The results of the Friedman-Nemenyi
significance tests are presented in Fig. 5. We note that the calculation of logarithmic loss
expects the predicted values to lay in the [0, 1] interval and that we have no guarantee that
the predictions of model trees will fall on this interval. We further discuss the implications
of this fact in the discussion section.
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Fig. 4 Average ranking diagrams for the label-based measures. a Precisionmacro, b Precisionmicro,
c Recallmacro, d Recallmicro, e F1macro, f F1micro

The differences between the results of model and regression trees on the ranking-based
evaluation measures are very small. There is variation in which type of tree outperforms
the other over the different measures. The average rank of regression trees is slightly higher
than that of model trees for ranking loss, while the opposite is true for logarithmic loss and
average precision. The differences should be further studied by using pairwise statistical
tests. Both iSOUP regression and model trees outperform HTPS in terms of ranking loss and
logarithmic loss (and the difference in performance is statistically significant). In terms of
average precision, their results are very close with each of the methods performing best on
some of the datasets.

Finally, the ranking diagram for the algorithms in terms of ranking loss shows that bagging
with model trees generally performs best on all of the datasets, followed by bagging of
regression trees, regression and model trees, and finally EAHTPS and HTPS. In terms of
statistical significance, bagging of model trees is better thanHTPS and EAHTPS, and bagging
of regression trees is better than HTPS (Fig. 5a). The results in terms of logarithmic loss are
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Table 5 Predictive performance results: ranking-based measures

MT RT EBRT EBMT HTPS EAHTPS

(a) Ranking loss

20NG 0.2672 (4) 0.2768 (5) 0.2272 (2) 0.2271 (1) 0.3852 (6) 0.2545 (3)

Enron 0.1208 (4) 0.1181 (2) 0.1183 (3) 0.1165 (1) 0.3474 (6) 0.3430 (5)

IMDB 0.1878 (4) 0.1737 (3) 0.1708 (2) 0.1705 (1) 0.5912 (6) 0.2615 (5)

Ohsumed 0.2254 (4) 0.2163 (3) 0.2024 (1) 0.2110 (2) 0.3752 (6) 0.3102 (5)

Slashdot 0.2202 (2) 0.2216 (4) 0.2206 (3) 0.2185 (1) 0.4801 (6) 0.3760 (5)

TMC 0.1220 (4) 0.1158 (3) 0.1012 (1) 0.1132 (2) 0.4688 (5) 0.4820 (6)

Avg. rank 3.67 3.33 2.00 1.33 5.83 4.83

(b) Logarithmic loss

20NG 0.1771 (3) 0.1785 (4) 0.1648 (1) 0.1671 (2) 0.6799 (6) 0.2923 (5)

Enron 0.1565 (1) 0.1697 (4) 0.1693 (3) 0.1574 (2) 0.5582 (6) 0.4736 (5)

IMDB 0.2089 (1) 0.2147 (4) 0.2104 (3) 0.2101 (2) 1.3033 (6) 0.4726 (5)

Ohsumed 0.2293 (4) 0.2279 (3) 0.2103 (1) 0.2148 (2) 0.7401 (6) 0.4860 (5)

Slashdot 0.1824 (1) 0.1857 (4) 0.1839 (3) 0.1834 (2) 0.6972 (6) 0.4575 (5)

TMC 0.2328 (4) 0.2290 (3) 0.2128 (1) 0.2212 (2) 1.5564 (6) 1.3226 (5)

Avg. rank 2.33 3.67 2.00 2.00 6.00 5.00

(c) Average precision

20NG 0.1793 (5) 0.1755 (6) 0.1900 (2) 0.1928 (1) 0.1831 (3) 0.1816 (4)

Enron 0.1131 (1) 0.1023 (4) 0.1024 (3) 0.1125 (2) 0.0739 (6) 0.0750 (5)

IMDB 0.1986 (2) 0.1901 (5) 0.1907 (4) 0.1972 (3) 0.2385 (1) 0.1758 (6)

Ohsumed 0.1846 (2) 0.1806 (4) 0.1836 (3) 0.1848 (1) 0.1674 (6) 0.1748 (5)

Slashdot 0.1586 (3) 0.1529 (6) 0.1585 (4) 0.1565 (5) 0.1871 (2) 0.1951 (1)

TMC 0.1992 (4) 0.2001 (3) 0.2121 (1) 0.2016 (2) 0.1698 (6) 0.1708 (5)

Avg. rank 2.83 4.67 2.83 2.33 4.00 4.33

Each table contains the values of the measure (and the rank) of each method on each dataset

very similar. Here, bagging of model trees, bagging of regression trees, as well as single
model trees, statistically significantly outperform HTPS (Fig. 5b). The results for average
precision are mixed, with different methods taking first and last rank on different datasets
(Fig. 5c). Hence, no statistically significant differences were observed.

6.4 Results on the efficiency measures

The values and rankings on the efficiency measures (memory and time use) are presented in
Table6. The results of the Friedman-Nemenyi significance tests are presented in Fig. 6.

The expected result of model trees using both more memory and time is evident from
Table6. While the difference in memory use is relatively small, the time use is increased by
about 10–20% when using model trees.

HTPS uses considerably less memory when compared to model and regression trees. In
terms of time use, it performs better than iSOUP single trees on some datasets, while it uses
considerably more time on others. The differences in time are most likely due to the pruned
sets procedure, as the base tree learning steps are similar between the methods.
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Fig. 5 Average rank diagrams for the ranking-based measures. a Ranking loss, b logarithmic loss, c average
precision

Overall, regression trees appear to be the quickest method, while HTPS appears to be the
least memory intensive. We observe several statistically significant differences and (even-
though some can be inferred by common sense) report all of them. Specifically, HTPS uses
less memory than bagging of regression trees and bagging of model trees, regression trees
and EAHTPS use less memory than bagging of model trees, regression trees are quicker than
bagging of model trees and EAHTPS , and both MT and HTPS are quicker than EAHTPS
(Fig. 6).

6.5 Discussion

We start with a few general remarks, then proceed to address each of the experimental
questions in turn.

First, recall that both example-based and label-based measures depend on the selected
threshold. While threshold selection is far from a trivial task in the multi-label classification
scenario and its difficulty is further compounded in the setting of the data streammining, it is
expected that a better selection of threshold would increase the performance of any classifier.
Whether the selection is best done on a method-by-method basis, dataset-by-dataset basis or
even for each method-dataset pair requires substantial further investigation. Due to this, we
place a stronger emphasis on the threshold-independent ranking-based evaluation measures.

We also observe that logarithmic loss is perhaps not the best measure to evaluate model
trees and their ensembles in the MLC via MTR setting. The fact that a model tree can predict
a value higher than 1 or lower than 0, means that it can be rewarded for predictions for
which it is “very sure”, if we look at the predicted value as a probability. However, this cuts
both ways, as a prediction of a negative value for a label that is present will also result in a
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Table 6 Efficiency results: memory and time usage

MT RT EBRT EBMT HTPS EAHTPS

(a) Memory (MB)

20NG 101.61 (4) 101.44 (3) 970.35 (5) 972.03 (6) 3.43 (1) 22.46 (2)

Enron 10.20 (3) 9.77 (2) 99.92 (5) 104.20 (6) 6.56 (1) 56.82 (4)

IMDB 382.33 (4) 382.08 (3) 3575.54 (5) 3578.03 (6) 22.53 (1) 39.31 (2)

Ohsumed 191.29 (4) 191.09 (3) 1368.17 (5) 1370.13 (6) 3.63 (1) 32.89 (2)

Slashdot 15.45 (3) 15.26 (2) 140.02 (5) 141.94 (6) 3.72 (1) 26.03 (4)

TMC 36.75 (4) 36.65 (3) 304.34 (5) 305.31 (6) 2.30 (1) 18.62 (2)

Avg. rank 3.67 2.67 5.00 6.00 1.00 2.67

(b) Time (s)

20NG 32.95 (2) 28.59 (1) 196.17 (4) 230.09 (5) 51.90 (3) 723.22 (6)

Enron 7.71 (3) 6.56 (2) 40.97 (5) 48.62 (6) 1.93 (1) 13.11 (4)

IMDB 277.06 (2) 250.86 (1) 2434.20 (4) 2971.10 (5) 344.45 (3) 4723.53 (6)

Ohsumed 27.85 (2) 25.31 (1) 168.74 (4) 195.32 (5) 39.73 (3) 632.72 (6)

Slashdot 7.13 (2) 5.82 (1) 41.51 (4) 48.59 (5) 9.03 (3) 78.27 (6)

TMC 26.13 (3) 22.35 (2) 150.52 (4) 188.41 (5) 14.49 (1) 259.11 (6)

Avg. rank 2.33 1.33 4.17 5.17 2.33 5.67

Each table contains the values of the efficiency measure (and the rank) of each method on each dataset
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Fig. 6 Average rank diagrams for the efficiency measures. a Memory consumption, b time consumption

more severe penalty in terms of the logarithmic loss. Due to the learning procedure, we do,
however, expect that the former will occur more often than the latter.

Regarding the first experimental question, whether model trees with the adaptive per-
ceptron outperform regression trees, we can conclude based on the above results that some
improvement can be gained by using model trees. However, we also note that using model
trees increases the use of resources, which can be a limiting factor when choosing a method
for a real-life application. While the increase in memory use is relatively small, model tree
construction consumes about 10–20% more time as compared to regression trees.

Continuing to the second question of how iSOUP single model and regression trees
compare to Hoeffding trees with pruned sets, we observe that, on the example-based and
label-based evaluation measures, all of the trees have similar performance. The only excep-
tion is the Hamming score. However, based on the observations made on the ranking-based
methods, we conclude that both model and regression iSOUP trees either perform as well as
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or outperform the Hoeffding trees with pruned sets, though these findings should be further
confirmed by a rigorous statistical testing.

Looking at the results of the comparisons of both single tree and ensemble methods along
the various evaluation measures, we find that different methods achieve the best results for
different evaluation measures. This is to be expected, as the different learning procedures
inevitably optimize different quantities. This in turn influences the performance evaluation
for a given evaluation measure, depending on the similarity of the optimized quantity and
the evaluation measure.

We did find some statistically significant differences, most notably for the ranking-based
ranking loss and logarithmic loss measures. The bagging ensemble of iSOUP model trees
outperformed both single tree and ensembles of Hoeffding trees with pruned sets for the first
measure and only single Hoeffding trees with pruned sets for the second. These significant
differences are very important, as they ranking-based measures in question are threshold
independent, while measures like precision and recall can be traded off by setting different
thresholds.

Finally, we make conclusions with regard to resource consumption. The results show that,
in general, the additional use of resources by the more complex methods, like model trees or
ensembles of models, does contribute to better performance. This justifies the use of more
complex models. However, we must be aware that there are associated costs that need to
be considered. This is especially relevant for real-world applications, where such methods
might be made to operate on low-memory or computationally slow devices. To this end,
we can recommend the use of memory conservation techniques, such as those proposed by
Ikonomovska et al. (2010).

7 Conclusion and future work

In this paper, we have introduced the multi-label classification via multi-target regression
methodology for learning from data streams. We have also introduced the iSOUP-Tree algo-
rithm that utilizes this methodology to address the multi-label classification task by using
multi-target regression and model trees. We have performed experiments on several multi-
label datasets, to address a number of experimental questions concerning the proposedmethod
and its competitors.

First, we have shown that iSOUP model trees is perform better than iSOUP regression
trees for a large set of evaluation measures for multi-label classification. For two measures
they perform worse. In both cases, the difference is not statistically significant. Th better
performance of model trees might be due to the use of the adaptive perceptron. In contrast,
in our earlier work the use of regular perceptrons decreased the performance of model trees
as compared to the performance of regression trees (Osojnik et al. 2015).

Next, we compared our method in a single tree (non-ensemble) setup to Hoeffding trees
with pruned sets (Read et al. 2012). The thresholding aspect of MLCmade clear conclusions
for some of the observed measures elusive. Still, we can observe that the performance of
iSOUPmodel and regression trees is better than that of Hoeffding trees with pruned sets with
respect to two ranking-based measures (ranking loss and logarithmic loss), even though the
difference in performance is not statistically significant.

We continued with a wider comparison with some additional methods. Specifically, we
included bagging of iSOUP model trees and regression trees, as well as ADWIN bagging
of Hoeffding trees with pruned sets. Bagging of iSOUP model trees method performed the
best in terms of threshold-independent ranking-based evaluation measures (ranking loss,
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logarithmic loss and average precision), with some of the differences in performance being
significant. However, further experiments on a larger collection of datasets would be needed
to yield stronger statistical confirmation of our findings.

For our experimental comparison, we considered a variety of evaluation measures
commonly used in the MLC setting. We obtained the clearest conclusions when using
ranking-based measures, which we consider most relevant for MLC, in addition to being
threshold-free. However, in real-world applications, any of the considered measures could
be a criterion which determines success. The measures we considered are widely used in the
MLC community, and showcase the strengths and weaknesses of the observed algorithms.

Wehave shown that the use ofmore complexmethods yields better predictive performance.
However, this comes at the cost of greater use of resources. This should be considered when
designing real-world applications, where resources may be limited and a simpler method
might be more suitable.

We encountered several interesting avenues of further work. The inescapable problem in
multi-label classification is the problem of thresholding. While thresholding is a key piece of
the MLC via MTR methodology, it is also present in many methods which directly address
the MLC task. Exploring whether a single threshold is appropriate for all of the labels, or
whether multiple thresholds, one per label, should be used, is a promising line of future
work. Specifically, examining the thresholding strategies of Tsoumakas and Katakis (2007)
and Largeron et al. (2012) as well as the work of Triguero and Vens (2016) and determining
if and how their results can be applied in the streaming setting will be our first step along this
avenue.

Additionally, wewish to address the task of change detection and adaptation in the iSOUP-
Tree method directly, without relying on the use of ensemble methods such as ADWIN
bagging. As we have shown, the use of ensembles can incur considerably higher use of
resources, which might not be suitable for all applications. We plan to explore both mecha-
nisms that deal with targets/labels on a one by one basis, as well as those that consider all of
the targets together. The adaptation of approaches for change detection and adaptation from
the single-target scenario to the multi-target scenario, e.g., from the work of Ikonomovska
et al. (2011b), would be a good first step.

Finally, we plan to extend ourMLC viaMTRmethodology and the iSOUP-Treemethod to
also address the task of hierarchical multi-label classification (HMC), which is increasingly
common in the batch learning scenario. In HMC, the labels are ordered in a hierarchy and
adhere to the hierarchy constraint, i.e., if an example is labeled with a label it also has to be
labelled with the label’s ancestors. One way to achieve this would be to extend iSOUP-Tree
to deal with the task of hierarchical multi-target regression.
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Appendix: Evaluation measures for multi-label classification

In the following definitions, N is the number of examples in the evaluation sample, L is the
set of all labels and Q = |L| is the number of labels in the provided MLC setting. ŷi and
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yi always stand for the predicted scores and actual labelset of the i th example, respectively,
though the latter is used interchangeably with it’s indicator vector, i.e., a vector representation
of the labelset, where the present labels have a value of 1 while the rest have a value of 0. ŷ
and y refer to a prediction made by a method on some specific (non-indexed) example and its
actual labelset, respectively, and are used to define loss functions. ŷ j

i refers to the predicted
score for the j th label, while ŷλ

i similarly refers to the predicted score for the label λ.
For all example-based and label-based measures, ŷi is assumed to already be thresholded,

i.e.,

ŷ j
i =

{
1; if ŷ j

i ≥ τ holds for the predicted score ŷ j
i

0; otherwise
,

while the ranking-based measures are computed without thresholding.

Example based measures

Accuracy The accuracy for an example with a prediction ŷ and a real labelset y is defined
as the Jaccard similarity coefficient between them, i.e., |ŷ∩y|

|ŷ∪y| . The accuracy over a sample is
the averaged accuracy over all examples:

Accuracy = 1

N

N∑

i=1

|ŷi ∩ yi |
|ŷi ∪ yi | .

The higher the accuracy of a model the better its predictive performance.
F1measure. The F1measure for MLC is the natural extension of F1used in regular classifica-
tion, however, we can approach it from either the example-based or label-based perspective.
The general formula for calculating F1is the usual harmonic mean of the precision and recall

F1 = 2 Precision · Recall
Precision + Recall

.

If we want to calculate F1from the example-based perspective, we define precision and recall
as follows:

Precisionex = 1

N

N∑

i=1

|ŷi ∩ yi |
|yi | Recallex = 1

N

N∑

i=1

|ŷi ∩ yi |
|ŷi | ,

resulting in the final definition for example-based F1measure

F1ex = 2 Precisionex · Recallex
Precisionex + Recallex

.

The definitions of the label-based F1measures are found in the following section.

Hamming loss The Hamming loss measures how many times an example-label pair is mis-
classified. Specifically, each label that is either predicted but not real, or vice versa, carries a
penalty to the score. The Hamming loss of a single example is the number of such misclas-
sified labels divided by the number of all labels, i.e., 1

Q |ŷ � y| where ŷ � y is the symmetric
difference of the sets ŷ and y. The Hamming loss of a sample is the averaged Hamming loss
over all examples:

HammingLoss = 1

N

N∑

i=1

1

Q
|ŷi � yi |.
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The Hamming loss of a perfect model, which makes completely correct predictions, is 0
and the lower the Hamming loss the better the predictive performance of a model. Note that
the Hamming loss will generally be reported as the Hamming score, i.e., HammingScore =
1 − HammingLoss.

Label-based measures

To define many of the label-based measures, we expand the definitions of several quantities
from regular classification, i.e., the true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) rates are each defined on a per-label basis as follows:

TP j = ∣
∣
{
ŷi |l j ∈ yi ∧ l j ∈ ŷi , 1 ≤ i ≤ N

}∣
∣

FP j = ∣
∣
{
ŷi |l j /∈ yi ∧ l j ∈ ŷi , 1 ≤ i ≤ N

}∣
∣

T N j = ∣
∣
{
ŷi |l j /∈ yi ∧ l j /∈ ŷi , 1 ≤ i ≤ N

}∣
∣

FN j = ∣
∣
{
ŷi |l j ∈ yi ∧ l j /∈ ŷi , 1 ≤ i ≤ N

}∣
∣ ,

where 1 ≤ j ≤ Q indexes the labels. This further allows us to extend the definitions of
precision, recall and F1in a label-based manner. However, we have two choices how to
combine the contributions of each label, macro- and micro-averaging. In macro-averaging,
we compute eachmeasure per label and then average themeasures over all of the labels, while
in micro-averaging, we first sum up TP, FP, TN and FN values and use those to calculate the
measures.

Macro-averaged measures The macro-averaged measures are defined as follows:

Precisionmacro = 1

Q

Q∑

j=1

TP j

TP j + FP j

Recallmacro = 1

Q

Q∑

j=1

TP j

TP j + FN j

To define the macro-averaged F1measure, we further extend the definition by substituting the
precision and recall formulas with their forms in terms of TP j , FP j , T N j and FN j , resulting
in the formula

F1macro = 1

Q

Q∑

j=1

2
TP j

TP j+FP j

TP j
TP j+FN j

TP j
TP j+FP j

+ TP j
TP j+FN j

= 1

Q

Q∑

j=1

2

2TP j + FP j + FN j
.

Micro-averaged measures The following micro-averaged equations are all obtained using
the procedure outlined above:

Precisionmicro =
∑Q

j=1 TP j
∑Q

j=1 TP j + ∑Q
j=1 FP j

Recallmicro =
∑Q

j=1 TP j
∑Q

j=1 TP j + ∑Q
j=1 FN j

F1micro = 2 Precisionmicro · Recallmicro
Precisionmicro + Recallmicro
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Ranking-based measures

Since thresholding has a significant impact on performance measures and determining the
optimal threshold is non-trivial, we usemeasures that are independent of the chosen threshold.
These include ranking loss, logarithmic loss and average precision.

Ranking loss The ranking loss (RankLoss) measure is defined as

RankLoss = 1

N

N∑

i=1

|Di |
|yi ||yi |

,

where yi = L\ yi is the complement of yi inL, Di = {(λk, λl) | ŷki ≤ ŷli , (λk, λl) ∈ yi × yi }.
Note that these values are now considered without applying thresholding. Essentially, it
measures how well the labels are ordered by score, i.e., the loss is low when the labels
that aren’t present have lower scores than the present labels. Consequently, lower values of
ranking loss indicate better performance.

Logarithmic loss Another ranking-based measure is the logarithmic loss (LogLoss) (Read
et al. 2011). When calculating LogLoss, each labelling error is graded according to the
confidence of the prediction, i.e., low confidence errors result in logarithmically smaller
penalties than high confidence errors. Specifically, LogLoss is calculated as

LogLoss = 1

NQ

N∑

i=1

Q∑

j=1

min
(
−log-loss(ŷ j

i , y j
i ), log N

)
,

where log-loss(ŷ, y) is defined as

log-loss(ŷ, y) = y log ŷ + (1 − y) log(1 − ŷ).

Here, ŷ j
i are assumed to be on the [0, 1] interval and can essentially be interpreted as poste-

rior probabilities of each label j . To prevent a small poorly predicted labelset from greatly
distorting the overall error, the minimum of the calculated log-loss and log N is taken. This
in essence caps the maximal penalty any label-example pair can contribute. The LogLoss of
a perfect classifier is 0 and lower values are desired.

Average precision Let us define rank(ŷ, λ) as the ranking of the label λ according to the
prediction ŷ, i.e.,

rank(ŷ, λ) = 1 +
∣
∣
∣
{
λ′

∣
∣
∣yλ′

> yλ, λ′ ∈ L
}∣
∣
∣ .

This means that if a given label λ has the highest predicted value in ŷi of all the labels,
it’s rank will be 1, as no other label has a higher predicted value. The average precision
(AvgPrecision) measure considers the average fraction of labels ranked above an actually
present label λ ∈ yi in a given example. More specifically, average precision is defined as
follows:

AvgPrecision = 1

N

N∑

i=1

1

|yi |
∑

λ∈yi

|Lλ
i |

rank(xi , λ)
,

where Lλ
i = {l ′|rank(ŷi , λ′) ≤ rank(ŷi , λ), λ′ ∈ L}, i.e., the set of all labels ranked lower

than λ in ŷi . The perfect average precision value is 1 and higher values are desired.
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