
Mach Learn (2017) 106:493–522
DOI 10.1007/s10994-016-5605-5

Geometry-aware principal component analysis
for symmetric positive definite matrices

Inbal Horev1 · Florian Yger2 · Masashi Sugiyama1

Received: 15 February 2016 / Accepted: 24 October 2016 / Published online: 18 November 2016
© The Author(s) 2016

Abstract Symmetric positive definite (SPD) matrices in the form of covariance matrices,
for example, are ubiquitous in machine learning applications. However, because their size
grows quadratically with respect to the number of variables, high-dimensionality can pose
a difficulty when working with them. So, it may be advantageous to apply to them dimen-
sionality reduction techniques. Principal component analysis (PCA) is a canonical tool for
dimensionality reduction, which for vector data maximizes the preserved variance. Yet, the
commonly used, naive extensions of PCA tomatrices result in sub-optimal variance retention.
Moreover, when applied to SPD matrices, they ignore the geometric structure of the space of
SPDmatrices, further degrading the performance. In this paperwe develop a newRiemannian
geometry based formulation of PCA for SPD matrices that (1) preserves more data variance
by appropriately extending PCA to matrix data, and (2) extends the standard definition from
the Euclidean to the Riemannian geometries. We experimentally demonstrate the usefulness
of our approach as pre-processing for EEG signals and for texture image classification.

Keywords Dimensionality reduction · PCA · Riemannian geometry · SPD manifold ·
Grassmann manifold

Editors: Geoff Holmes, Tie-Yan Liu, Hang Li, Irwin King and Zhi-Hua Zhou.

B Inbal Horev
inbal@ms.k.u-tokyo.ac.jp

Florian Yger
florian.yger@dauphine.fr

Masashi Sugiyama
sugi@k.u-tokyo.ac.jp

1 Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha,
Kashiwa-shi, Chiba 277-8561, Japan

2 LAMSADE Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny,
75775 Paris Cedex 16, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5605-5&domain=pdf
http://orcid.org/0000-0001-8957-6257


494 Mach Learn (2017) 106:493–522

1 Introduction

Covariance matrices are used in a variety of machine learning applications. Three prominent
examples are computer vision applications (Tuzel et al. 2006, 2008), brain imaging (Pennec
et al. 2006; Arsigny et al. 2006; Dryden et al. 2009) and brain computer interface (BCI)
(Barachant et al. 2010, 2013) data analysis. In computer vision, covariance matrices in the
form of region covariances are used in tasks such as texture classification. For brain imaging,
the covariance matrices are diffusion tensors extracted from a physical model of the studied
phenomenon. Finally, in the BCI community correlation matrices between different sensor
channels are used as discriminating features for classification.

As discussed in Fletcher et al. (2004) and Harandi et al. (2014a), dimensionality can pose
difficulties when working with covariance matrices because their size grows quadratically
w.r.t. the number of variables. To deal with this issue, it is useful to apply to them dimen-
sionality reduction techniques. A simple, commonly used technique is principal component
analysis (PCA) (Jolliffe 2002). However, as we later show in Sect. 2, while vector PCA is
optimal in terms of preserving data variance, the commonly used naive extensions of vector
PCA to the matrix case (Yang et al. 2004; Lu et al. 2006) are sub-optimal for SPD matrices.
Furthermore, when applied to SPD matrices, we argue that the standard Euclidean formula-
tion of PCA disregards the inherent geometric structure of this space. We provide an in-depth
review and discussion of the geometry of Sn+ and its advantages in Sect. 3. For the moment
consider a brief motivation for the use of Riemannian geometry for dimensionality reduction
of SPD matrices.

1.1 A case for the use of Riemannian geometry

The set Sn+ of symmetric positive definite (SPD) matrices of size n × n, when equipped
with the Frobenius inner product 〈A, B〉F = tr(A� B), belongs to a Euclidean space. A
straightforward approach for measuring similarity between SPD matrices could be to use
the Euclidean distance derived from the Euclidean norm. This is readily seen for 2× 2 SPD
matrices. A matrix A ∈ S2+ can be written as A = [ a c

c b

]
with ab − c2 > 0, a > 0 and b > 0.

Then matrices in S2+ can be represented as points in R
3 and the constraints can be plotted

as an open convex cone whose interior is populated by SPD matrices (see Fig. 1). In this
representation, the Euclidean geometry of symmetric matrices then implies that distances are
computed along straight lines, shown as blue dashed lines in the figure.

In practice, however, the Euclidean geometry is often inadequate to describe SPDmatrices
extracted from real-life applications, e.g., covariance matrices. This observation has been
discussed in Sommer et al. (2010). We observe similar behavior, as illustrated in Fig. 2. In
this figure, we computed the vertical and horizontal gradients at every pixel of the image on
the left. We then computed 2× 2 covariance matrices between the two gradients for patches
of pixels in the image. On the right, visualizing the same convex cone as in Fig. 1, every
point represents a covariance matrix extracted from an image patch. The interior of the cone
is not uniformly populated by the matrices, suggesting that they exhibit some structure that
is not captured by the use of the straight geodesics of Euclidean geometry.

More generally, the use of Euclidean geometry for SPD matrices is known to generate
several artifacts that may make it unsuitable for handling these matrices (Fletcher et al. 2004;
Arsigny et al. 2007; Sommer et al. 2010). For example, for the simple task of averaging
two matrices it may occur that the determinant of the average is larger than any of the two
matrices. This effect is a consequence of the Euclidean geometry and is referred to as the
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Fig. 1 Comparison between Euclidean (blue straight dashed lines) and Riemannian (red curved solid lines)
distances measured between points of the space S2+ (Color figure online)

Fig. 2 Original image (left) and 2 × 2 covariance matrices between the image gradients, extracted from
random patches of the image (right). In the right plot, the mesh represents the border of the cone of positive
semi-definite matrices. The image on the left is courtesy of Bernard-Brunel and Dumont

swelling effect by Arsigny et al. (2007). It is particularly harmful for data analysis as it adds
spurious variation to the data.

As a related example, take the computation of the maximum likelihood estimator of a
covariance matrix, the sample covariance matrix (SCM). It is well known that with the SCM,
the largest eigenvalues are overestimated while the smallest eigenvalues are underestimated
(Mestre 2008). Since the SCM is an average of rank 1 symmetric positive semi-definite
matrices, this may be seen as another consequence of the swelling effect.

Another drawback, illustrated in Fig. 1 and documented by Fletcher et al. (2004), is
the fact that this geometry forms a non-complete space. This means that the extension of
Euclidean geodesics is not guaranteed to stay within the manifold. Hence, interpolation
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between SPDmatrices is possible, but extrapolationmay produce indefinite matrices, leading
to uninterpretable solutions.

Contrarily, geodesics computed using the affine invariant Riemannian metric (AIRM)
(Bhatia 2009) discussed thoroughly in Sect. 3.1, are shown in Fig. 1 as curved red lines.
Their extension asymptotically approaches the boundary of the cone, but remains within the
manifold.

Given the potentially erroneous results obtained by the Euclidean geometry, it would be
disadvantageous to use this geometry to retain the principal modes of variation. A natural
approach to cope with this issue is then to consider a Riemannian formulation of PCA.
And, in fact, the development of geometric methods for applications involving SPDmatrices
has been a growing trend in recent years. In light of the rich geometric structure of Sn+, the
disadvantages of the Euclidean geometry and the advances inmanifold optimization, recently
tools such as kernels (Barachant et al. 2013; Yger 2013; Jayasumana et al. 2013; Harandi
et al. 2012) and divergences (Sra 2011; Cherian et al. 2011; Harandi et al. 2014b; Cichocki
et al. 2014), as well as methods such as dictionary learning (Ho et al. 2013; Cherian and Sra
2014; Harandi and Salzmann 2015), metric learning (Yger and Sugiyama 2015), clustering
(Goh and Vidal 2008; Kusner et al. 2014) and dimensionality reduction (Fletcher et al.
2004; Harandi et al. 2014a) have all been extended for SPD matrices using the Riemannian
geometry.

1.2 Dimensionality reduction on manifolds

In statistics, such an extension of the PCA to a Riemannian setting has been studied for other
manifolds. For example, it has been shown in Huckemann et al. (2010) for shape spaces
that a Riemannian PCA was able to extract relevant principal components, especially in the
regions of high curvature of the space where Euclidean approximation failed to appropriately
explain data variation.

For the space of SPD matrices, a Riemannian extension of the PCA, namely the principal
geodesic analysis (PGA), has been proposed in Fletcher et al. (2004). This algorithm essen-
tially flattens the manifold at the center of mass of the data by projecting every element from
the manifold to the tangent space at the Riemannian mean. In this Euclidean space a classical
PCA is then applied. Although this approach is generic to anymanifold it does not fully make
use of the structure of the manifold, as a tangent space is only a local approximation of the
manifold.

In this paper, we propose new formulations of PCA for SPD matrices. Our contribution
is twofold: First and foremost, we adapt the basic formulation of PCA to make it suitable to
matrix data and as a result capture more of the data variance. We tackle this problem in Sect.
2. Secondly, we extend PCA to Riemannian geometries to derive a truly Riemannian PCA
which takes into account the curvature of the space and preserves the global properties of the
manifold. This topic is covered inSect. 3.More specifically, using amatrix transformationfirst
used in Harandi et al. (2014a), we derive an unsupervised dimensionality reduction method
maximizing a generalized variance of the data on the manifold. Section 4 is dedicated to a
discussion of why our optimization problem is actually an approximation of an exact variance
maximization objective, but we will show that it is sufficient for our purposes. Through
experiments on synthetic data and real life applications, we demonstrate the efficacy of our
proposed dimensionality reduction method. The experimental results are brought in Sect. 5.
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2 Variance maximizing PCA for SPD matrices

In the introduction we discussed the need for dimensionality reduction methods for SPD
matrices as well as the shortcomings of the commonly used PCA for this task. Essentially,
although PCA is a dimensionality reduction method that for vectors optimally preserves the
data variance, we show that its naive extensions to matrices do not do so optimally for SPD
matrices.

In this section we tackle the problem of defining a PCA suitable for matrices. We begin
by stating a formal definition of our problem. Next we show how to properly extend PCA
from vectors to matrices so that we retain more of the data variance.

2.1 Problem setup

Let Sn+ = {A ∈ R
n×n| ∀x �= 0, x ∈ R

n, x� Ax > 0, A = A�} be the set of all n × n SPD
matrices, and let X = {Xi ∈ Sn+}N

i=1 be a set of N instances in Sn+. We assume that these
matrices have some underlying structure, whereby their informative part can be described
by a more compact, lower dimensional representation. Our goal is to compress the matrices,
mapping them to a lower dimensional manifold S p

+ where p < n. In the process, we wish to
keep only the relevant part while discarding the extra dimensions due to noise.

The task of dimensionality reduction can be formulated in two ways: First, as a problem
of minimizing the residual between the original matrix and its representation in the target
space. Second, it can be stated in terms of variance maximization, where the aim is to find an
approximation to the data that accounts for as much of its variance as possible. In a Euclidean
setting these two views are equivalent (Bishop 2007, Chap. 12). However, in the case of SPD
matrices, S p

+ is not a sub-manifold of Sn+ and elements of the input space cannot be directly
compared to elements of the target space. Thus, focusing on the second view, we search for
a mapping Sn+ �→ S p

+ that best preserves the Fréchet variance σ 2
δ of X, defined below.

Following the work of Fréchet (1948) we define σ 2
δ via the Fréchet mean, which is unique

in our case.

Definition 1 (Fréchet Mean) The (sample) Fréchet mean of the set X w.r.t. the metric δ is

X̄δ = argmin
X∈Sn+

1

N

N∑

i=1

δ2 (Xi , X) .

Then, the Fréchet variance is:

Definition 2 (Fréchet Variance) The (sample) Fréchet variance of the set X w.r.t. the metric
δ is given by

σ 2
δ = 1

N

N∑

i=1

δ2
(
Xi , X̄δ

)
.

As in Harandi et al. (2014a), we consider for any matrix X ∈ Sn+ a mapping to S p
+ (with

p < n) parameterized by a matrix W ∈ R
n×p which satisfies the orthogonality constraint

W �W = Ip , where Ip is the p × p identity matrix. The mapping then takes the form of
X↓ = W � X W .

2.2 Variance maximization with gaPCA and PCA

Having framed the optimization of thematrix W in terms ofmaximization of the data variance
our proposed formulation, explicitly written in terms the Fréchet variance, is:
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Definition 3 (Geometry-aware PCA (gaPCA)) gaPCA is defined as

W = argmax
W∈G(n,p)

∑

i

δ2
(

W � Xi W, W � X̄δW
)

, (1)

where G (n, p) is the Grassmann manifold, the set of all p-dimensional linear subspaces of
R

n .

In reality, the formulation above does not exactly express the Fréchet variance of the
compressed set X↓, but expresses it only approximately. For now we simply state this fact
without further explanation and continue with the exposition and analysis. We dedicate Sect.
4 to a detailed investigation of this issue.

As described inEdelman et al. (1998) andAbsil et al. (2009), an optimization problem such
as the one in Definition 3 can be formulated and solved on either the Stiefel or the Grassmann
manifold. The use of the Stiefel manifold, the set of p-rank matrices inRn×p with orthogonal
columns, would impose the necessary orthogonality constraint on the transformation matrix
W . However, note that for our problem the individual components are of little importance to
us. Our interest is in reducing the size of the input matrices.1 As such, each single component
yields a 1 × 1 matrix which is not very informative in it of itself. Rather, we are interested
in the principal components as an ensemble, i.e., the p-dimensional linear space that they
span. Rotation within the p-dimensional space will not affect our solution. Thus, it suffices
to consider a mapping X↓ = W � X W with W ∈ G(n, p).

We compare our variance-based definition to PCA, the canonical method for dimension-
ality reduction which itself aims to preserve maximal data variance. For vector data, PCA is
formulated as

W = argmax
W�W=Ip

∑

i

‖(xi − x̄) W‖22

= argmax
W�W=Ip

tr

(

W �
(
∑

i

(xi − x̄)� (xi − x̄)

)

W

)

, (2)

where x̄ is the Euclidean mean of the data.
Translating the operations in the right-most formulation of Eq. (2) from the vector case

to the matrix case gives

W = argmax
W�W=Ip

tr

(

W �
(
∑

i

(
Xi − X̄e

)� (
Xi − X̄e

)
)

W

)

, (3)

where X̄e is the Euclidean mean of the data.
For symmetric matrices, this formulation is equivalent to the one proposed in Yang et al.

(2004) and Lu et al. (2006). Note, however, that the matrix W in Eq. (3) acts on the data only
by right-hand multiplication. Effectively, it is as if we are performing PCA only on the row
space of the data matrices X.2

Indeed, the key difference between our proposed method and ordinary PCA is that in our
cost function the matrix W acts on X on both sides. It is only by applying W to both sides
of a matrix that we obtain a valid element in S p

+. So, it is only natural that W should also act
on both its sides during optimization.

1 And not in a low rank approximation of the same size.
2 In our case the matrices are symmetric so PCA on the row space and on the column space are identical.
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Although our method can accommodate multiple geometries via various choices of the
metric δ, the difference between Eqs. (3) and (1) becomes apparent when we work, as the
standard PCA does, in the Euclidean geometry. In the Euclidean case, the cost function
optimization in Definition 3 becomes

W = argmax
W∈G(n,p)

∑

i

∥
∥
∥W � (Xi − X̄e

)
W
∥
∥
∥
2

F

= argmax
W∈G(n,p)

∑

i

tr
(

W � (Xi − X̄e
)�

W W � (Xi − X̄e
)

W
)

. (4)

Note the additional term W W � �= In as compared to Eq. (3).
In general, the two expressions are not equivalent. Moreover, our proposed formulation

consistently retains more of the data variance than the standard PCA method, as will be
shown in Sect. 5. It is worth noting, however, that the two methods are equivalent when the
matrices {Xi } share the same eigenbasis. In this case, the problem can be written in terms of
the common basis and the extra term W W � does not contribute to the cost function. Both
methods then yield identical results.

3 Geometry-aware PCA

Equipped with a PCA formulation adequate for matrix data, we now turn to the issue of
geometry awareness. We have already discussed that the use of a Euclidean geometry may
potentially lead to erroneous or distorted results when applied to SPD matrices, especially
when the distance between matrices is large on the manifold.3 Other methods for dimen-
sionality reduction of SPD matrices, while utilizing the structure of the SPD manifold, are
nonetheless flawed. First, they use only a local approximation of the manifold, causing a
degradation in performance when distances between matrices are large. Second, and more
importantly, these methods apply the same faulty formulation of matrix PCA.

In the previous section we presented a general definition of gaPCA in Definition 3. In
order to highlight the difference between PCA and gaPCA we studied its instantiation with
the Euclidean geometry. However, this formulation can incorporate any metric defined on
Sn+. In this section we explore these other metrics.

Wefirst describe the geometry of theSPDmatrixmanifold.Wewill highlight the benefits of
our geometry-awaremethod through a discussion of someof the relevant invariance properties
of the various metrics defined on the manifold. These properties will allow for efficient
optimization of the transformationmatrixW . Finally, we present some useful implementation
details.

3.1 The geometry of Sn+

The shortcomings of the Euclidean geometry described in the introduction stem from the
fact that it does not enforce the positive-definiteness constraint. That is, using the Eucliden
metric we are essentially treating the matrices as if they were elements of the (flat) space
R

n×n . Nonetheless, the positive-definiteness constraint induces a Riemannian manifold of
negative curvature. As noted in Fletcher et al. (2004) and Sommer et al. (2010), it is then

3 Errors also occur because the sample eigenvectors, i.e., the principal components, are sensitive even to
small perturbations and are, as a result, rarely correctly estimated (Anderson 1963). However, this is also the
case for other geometries.
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more natural to use a Riemannian geometry as it ensures that the solutions will respect the
constraint encoded by the manifold.

A standard choice ofmetric, due to its favorable geometric properties, is the affine invariant
Riemannian metric (AIRM) (Bhatia 2009). In this paper we denote it as δr . Equipped with
this metric, the SPDmanifold becomes a completemanifold of negative curvature. It prevents
the occurrence of the swelling effect and allows for matrix extrapolation without obtaining
non-definite matrices. Other beneficial properties that are specifically related to our problem
are presented later in this section.

Definition 4 (Affine invariant Riemannian metric (AIRM)) Let X, Y ∈ Sn+ be two SPD
matrices. Then, the AIRM is given as

δ2r (X, Y ) = ∥∥log (X−1/2Y X−1/2)∥∥2F = ∥∥log (X−1Y
)∥∥2F ,

where log (·) is the matrix logarithm function, which for SPD matrices is log (X) =
U log (Λ) U� for the eigendecompostion X = UΛU�.

Another noteworthy metric, closely related to the AIRM, is the log-determinant (a.k.a
symmetric Stein) metric (Sra 2011) which we denote by δs.

Definition 5 (Log-determinant (symmetric Stein) metric) Let X, Y ∈ Sn+ be two SPDmatri-
ces. Then, the log-determinant (symmetric Stein) metric is given as

δ2s (X, Y ) = log (det ((X + Y )/2)) − log (det(XY )) /2.

Thismetric is dubbed ‘symmetric’ because it is a symmetrizedBregmanmatrix divergence
(Cherian et al. 2011; Sra 2012). These in turn have been shown to be useful for various learning
applications (Cherian et al. 2011; Harandi et al. 2014b). While not a Riemannian metric,
the log-determinant metric closely approximates the AIRM and shares many of its useful
properties. Furthermore, in Sra (2011) it has been suggested that the log-determinant metric
is a more computationally efficient alternative to the AIRM. The advantageous properties of
this metric relevant to our problem are shared by both δs and δr and described later in this
section.

Even though Sn+ is a curved space, flat subspaces (briefly, flats) (Bridson and Haefliger
2011) are a powerful tool with which to study its structure and that of other symmetric spaces.
Formally, a subspace F ⊂ Sn+ is called a flat of dimension k (a k-flat) if it is isometric to E

k ,
the Euclidean space of dimension k. If F is not contained in any flat of bigger dimension,
then F is called a maximal flat. Next we give a functional definition of flats of Sn+.

Definition 6 (Flats of Sn+) Let A ∈ S(n), where S(n) is the space of symmetric matrices.
Then, consider elements f ∈ Sn+ that share the eigenvectors Q with eA, thematrix exponential
of A. These elements all commute with each other and with eA. We call this space the n-flat
F .

Since the elements of F commute with each other, i.e., U V = V U for U, V ∈ F , we
have log(U V ) = log(U ) + log(V ) and the matrix log log (·). So, the distance between them
is

δ(U, V ) =
√

(tr(log(U−1V )2)) =
√

(tr((log(V ) − log(U ))2)). (5)

Since
√

(tr(·)2) is a Euclidean norm, we have that F is isomorphic to R
n with a Euclidean

metric under log(·).
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Fig. 3 Riemannian geodesics plotted in cylindrical coordinates (left). Flats inS2+ shownas panes of a revolving
door (right)

Note that δ(U, V ) = √
(tr((log(V ) − log(U ))2)) is precisely the log-Euclidean metric

(Arsigny et al. 2007).

Definition 7 (Log-Euclidean metric) Let X, Y ∈ Sn+ be two SPD matrices. Then, the log-
Euclidean metric is given as

δ2le(X, Y ) = ‖log (X) − log (Y )‖2F .

As illustrated inYger and Sugiyama (2015), thismetric uses the logarithmicmap to project
the matrices to TISn+, the tangent space at the identity, where the standard Euclidean norm is
then used to measure distances between matrices. So, the use of this metric in effect flattens
the manifold, deforming the distance between matrices when they do not lie in the same
n-flat.

In the context of this work, flats provide a valuable intuitive understanding of our pro-
posed method. This is because the goal of our geometry aware PCA method is to find an
optimal transformation matrix Q, which is a p-flat. Viewing Sn+ in terms of flats is especially
instructive for S2+ where the eigenvectors create a 2-dimensional rotation matrix that can be
summed up by the rotation angle θ . Then, the matrices in S2+ can be plotted in cylindrical
coordinates: θ is the rotation angle, ρ is ratio of eigenvalues and z = log det X as seen in
Fig. 3a. In this figure geodesics between matrices, computed using the AIRM, are shown
in red. With this construction, flats of S2+ can be imagined as panes of a revolving door,
intersecting at the line formed by multiples of the identity αI, for α > 0 (see Fig. 3b). In
Sect. 5 we will use flats to measure the quality of the eigenspace estimation as compared to
the true maximal variance eigenspace.

3.2 Invariance properties

As discussed in Bhatia (2009), δr is invariant under the congruence transformation X �→
P� X P for P ∈ GLn (R), the group of n × n real valued invertible matrices. So, we have
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δr(X, Y ) = δr(P� X P, P�Y P)

for X, Y ∈ Sn+ and P ∈ GLn (R). This property is called affine invariance and is also shared
by δs (Sra 2012). For brevity we will state the subsequent analysis in terms of the AIRM, but
the same will hold true for the log-determinant metric.

The affine invariance property has practical consequences for covariance matrices
extracted from EEG signals (Barachant and Congedo 2014). Indeed, such a class of trans-
formations includes re-scaling and normalization of the signals, electrode permutations and,
if there is no dimensionality reduction, it also includes whitening, spatial filtering or source
separation. For covariance matrices extracted from images this property has similar implica-
tions, with this class of transformations including changes of illumination when using RGB
values (Harandi et al. 2014a).

Contrarily, the log-Euclidean metric and the distance derived from it are not affine-
invariant. This fact has been used to derive a metric learning algorithm (Yger and Sugiyama
2015). Nevertheless, it is invariant under the action of the orthogonal group. This comes from
the fact that for any SPD matrix X and invertible matrix P , we have log(P X P−1) = P
log(X)P−1 (Bhatia 2009, p. 219). Then, using the fact that for any matrix O ∈ Op ,
O� = O−1, it follows that δle(O� X O, O�Y O) = δle(X, Y ).

3.3 Optimization on manifolds

Our approach may be summed up as finding a lower-dimensional manifold S p
+ by optimizing

a transformation (parameterized by W ) that maximizes the (approximate) Fréchet variance
w.r.t. a metric δ. As the parameter W lies in the Grassmann manifold G(n, p), we solve the
optimization problem on this manifold (Absil et al. 2009; Edelman et al. 1998).

Optimization on matrix manifolds is a mature field and by now most of the classical
optimization algorithms have been extended to theRiemannian setting. In this setting, descent
directions are not straight lines but rather curves on the manifold. For a function f , applying
a Riemannian gradient descent can be expressed by the following steps, illustrated in Fig. 4:

Fig. 4 Function optimization on manifolds. The Euclidean gradient of the function f̄ is projected onto the
tangent space at the point X0, then onto the manifold using the exponential map or a retraction
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1. At any iteration, at the point W , transform a Euclidean gradient DW f into a Riemannian
gradient∇W f . In our case, i.e., for theGrassmannmanifold, the transformation is∇W f =
DW f − W W � DW f (Absil et al. 2009).

2. Performa line search alonggeodesics atW in the direction H = ∇W f . For theGrassmann
manifold, on the geodesic going from a point W in direction H (with a scalar step-size
t ∈ R), a new iterate is obtained as W (t) = W V cos(Σ t)V � + U sin(Σ t)V �, where
UΣV � is the compact singular value decomposition of H and the matrix sine and cosine

functions are defined by cos (A) =∑∞
k=0 (−1)k A2k

2k! and sin (A) =∑∞
k=0 (−1)k A2k+1

(2k+1)!
.

In practice, we employ a Riemannian trust-region method described in Absil et al. (2009)
and efficiently implemented in Boumal et al. (2014).

3.4 Cost function gradients

In order to make this article self-contained, we provide the Euclidean gradient of our cost
function w.r.t. W for each of the four metrics described above. For the Euclidean metric δe
this is:

DW δ2e (W � Xi W, W � X̄eW ) = 4
(
Xi − X̄e

)
W W � (Xi − X̄e

)
W.

Its derivation is detailed in “Appendix 1”.
Then, for the AIRM δr we have, following Harandi et al. (2014a).

DW δ2r

(
W � Xi W, W � X̄rW

)

= 4

(
Xi W

(
W � X W

)−1 − X̄rW
(

W � X̄rW
)−1
)
log

(
W � Xi W

(
W � X̄rW

)−1
)

.

It should be noted that using directional derivatives (Bhatia 1997; Absil et al. 2009) we
obtain a different (but numerically equivalent) formulation of this gradient. For completeness,
we report this formula and its derivation in “Appendix 2” of the supplementary material. In
our experiments, as it was computationally more efficient, we use the equation above for the
gradient.

Next, the gradient w.r.t. W of the log-determinant metric δs is given in Harandi et al.
(2014a) by:

DW δ2s

(
W � Xi W, W � X̄rW

)
= (

Xi + X̄r
)

W

(
W � Xi + X̄r

2
W

)−1

−Xi W
(

W � Xi W
)−1 − X̄rW

(
W � X̄rW

)−1
.

Finally, For the log-Euclidean metric:

DW δ2le(W � Xi W, W � X̄ leW )

= 4
(

Xi W D log
(

W � Xi W
) [

log
(

W � Xi W
)

− log
(

W � X̄ leW
)]

+ X̄ leW D log
(

W � X̄ leW
) [

log
(

W � X̄ leW
)

− log
(

W � Xi W
)])

,

where D f (W )[H ] = lim
h→0

f (W+h H)− f (W )
h is the Fréchet derivative (Absil et al. 2009) and X̄ le

denoted the mean w.r.t. the log-Euclidean metric. Note that there is no closed-form solution
for D log(W )[H ] but it can be numerically computed efficiently (Boumal 2010; Boumal and
Absil 2011; Al-Mohy and Higham 2009). This derivation is given in “Appendix 3”.
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4 Exact variance maximization

Briefly stated in Sect. 2, we now explain why Eq. (1) constitutes only an approximation to
the Fréchet variance maximization. In general, the operations of computing the mean and
projecting onto the lower dimensional manifold are not interchangeable. That is, let X̄↓ be
the mean of the compressed set X↓ = {W � Xi W

}
and let W � X̄ W be the compressed mean

of the original set X. The two matrices are not equal in general for metrics other than the
Euclidean metric. This is because for the δr , δs and δle the Fréchet mean of the set X is not a
linear function of the matrices. Since we do not know in advance the mean of the compressed
set, the cost function defined in Eq. (1) does not exactly express the Fréchet variance of X↓.
Rather, it serves as an approximation to it.

In the following we bring two strategies to address this issue. First, we propose to whiten
the input matrices before optimizing the transformation matrix W . Pre-whitening ensures
that the Riemannian mean of the set X is known and equal to the identity X̄r = I . Second,
we consider a constrained formulation of the cost function, where the constraint ensures that
we are using the mean of the compressed set X↓. The constrained formulation is brought
here for the AIRM, but a similar technique can also be applied to the other metrics.

Ultimately, we find that the relaxed optimization problem in Definition 3 is sufficient for
our purposes. Although feasible, our experiments will show that there is no practical benefit
in solving the exact variancemaximization problem. Nonetheless, the twomethods discussed
below highlight interesting aspects of the problem that can be applied to other optimization
problems based on the distance between SPD matrices.

4.1 Pre-whitening the data

Our first potential strategy is to pre-whiten the data before optimizing over W . Using the
Riemannian geometry, each point is mapped to Xi �→ X̃i = X̄−1/2

r Xi X̄−1/2
r . Subsequently,

the Riemannian mean of X̃ is the identity In . Using the whitened data, the resulting cost
function is

W = argmax
W∈G(n,p)

∑

i

δ2r

(
W � X̃i W, Ip

)
. (6)

Due to the affine invariance property of the AIRM and the log-determinant metric, we

have that δ
(

X̃i , I
)

= δ
(
X, X̄

)
. That is, for these two metrics the whitened data is simply

a translated and rotated copy of the original input data with the distances between matrices
preserved. Thus, up to rotation and scaling, we should expect the solution of this problem to
be equivalent to that of the original formulation in Definition 3 in terms of retained variance.

4.2 A constrained optimization problem

To obtain an exact variance maximization problem we may use the following fact that the
Riemannian mean X̄r of a set X = {Xi ∈ Sn+}N

i=1 can be shown to satisfy the following
equation (Bhatia 2013):

C
(
W, X̄r

) =
n∑

j=1

log

((
W � X j W

)−1/2
X̄r

(
W � X j W

)−1/2
)

= 0p×p. (7)

This is a direct consequence of the fact that the Riemannian mean uniquely minimizes the
Fréchet variance

∑n
j=1 δ2r

(
W � X j W, X̄r

)
. While this equation does not have a closed form
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solution, we may use the implicit constraint C
(
W, X̄r

) = 0p×p to formulate a cost func-
tion which exactly embodies the Fréchet variance of the data. By incorporating the relation
between W and X̄r through the constraint, we ensure that at each step of the optimization we
use the exact mean of X↓, and not an approximation of it.

Consider the following constrained optimization problem, given by

f̂ (W ) = f (W,Λ) =
n∑

j=1

δ2r

(
W � X j W,Λ

)
s.t. C (W,Λ) = 0p×p, (8)

where for brevity we leave out the dependence of f and C on X. Through the use of the
implicit function theorem (Krantz and Parks 2012), we are guaranteed the existence of a
differentiable function (W ) : S (n, p) → S p

+ defined by C (W,Λ) = 0p×p . Then, the
derivative ∇W can be used to express the gradient of the cost w.r.t. W :

∇ f̂ (W ) = ∇W (W ) ∇Λ f (W,Λ) + ∇W f (W,Λ) . (9)

Since in this cost function the transformation matrix W is applied only to one argument
of the distance function, our problem is no longer invariant to the action of the orthogonal
group Op . So, we must optimize this cost over the Stiefel manifold.

Practically, for optimization of the constrained cost function, at each step we:

1. Given the current value of W , compute the Riemannian mean of the set X↓.
2. Compute ∇ f̂ (W ) using Eq. (9) for use in our line search.

This method will be denoted as δc (for constrained). Details of the computation of the
cost function gradient are brought in “Appendix 4”.

5 Experimental results

To understand the performance of our proposed methods, we test them on both synthetic
and real data. First, for synthetically generated data, we examine their ability to compress
the data while retaining its variance. We also show that our methods are superior in terms of
eigenspace estimation. Next, we apply them to image data in the form of region covariance
matrices as well as to brain computer interface (BCI) data in the form of covariance matrices.
To assess the quality of the dimensionality reduction, we use the compressed matrices for
classification and examine the accuracy rates. Finally, we briefly compare the constrained
cost formulation δc discussed in Sect. 4.2, which optimizes the exact Fréchet variance, to
δrPCA, which uses only an approximate expression of the variance.

5.1 Synthetic data

Our first goal is to substantiate the claim that our methods outperform the standard matrix
PCA in terms of variance maximization. As shown in Chapter 6 of Jolliffe (2002), it is useful
to study the fraction of variance retained by the method as the dimension grows. To this end
we randomly generate a set X = {

Xi ∈ Sn+
}
of 50 SPD matrices of size n = 17 using the

following scheme.
For each Xi , we first generate an n × n matrix A whose entries are i.i.d. standard normal

random variables. Next, we compute the QR decomposition of this matrix A = Q R, where
Q is an orthonormal matrix and R is an upper triangular matrix.We use Q as the eigenvectors
of Xi . Finally, we uniformly draw its eigenvalues λ = (λ1, . . . , λn) from the range [0.5, 4.5].
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Fig. 5 Fraction of Fréchet variance retained by the various compression methods w.r.t. a the Riemannian and
b the Euclidean distances. Metrics which obtained identical results to δr have been omitted from the figure for
clarity. The error bars indicate the standard deviation

The resulting matrices are then Xi = Qidiag (λi ) Q�
i , where each Xi has a unique matrix

Qi and spectrum λi .
Each matrix was compressed to size p × p for p = 2, . . . , 9 using gaPCA with various

metrics, 2DPCA (Yang et al. 2004) and PGA (Fletcher et al. 2004). PGA first maps the
matricesX via thematrix logarithm to TX̄r

Sn+, the tangent space at the point X̄r . Then standard
linear PCA is performed in the (Euclidean) tangent space. The matrix W was initialized by
the same random guess drawn from G (n, p) for each of the metrics of gaPCA. We recorded
the fraction of the Fréchet variance contained in the compressed dataset for the various values
of p,

αδ (p) = σ 2
δ

(
X↓(p)

)

σ 2
δ (X)

,

for the Euclidean and Riemannian metrics. This process was repeated 25 times for different
instances of the dataset X.

The averaged results of the experiment, along with standard deviations, are presented in
Fig. 5. For clarity, when the curves of various methods coincide, only one is kept, while
the others are omitted. The methods δsPCA and δlePCA obtained nearly identical results to
δrPCA. The same is true for the constrained optimization problem δcPCA. The subspace
spanned by the columns of the transformation matrix W obtained by δcPCA is not identical
to that of δrPCA, but the difference in the retained variance is negligible. This implies that
W � X̄rW is a good approximation for the Riemannian mean of the compressed set X↓. The
curves of δrPCAand δgPCAcoincide for theRiemannian variance since theAIRM is invariant
to the process of data whitening.

We see that our proposedmethods retain the greatest fraction of data variance.As expected,
each gaPCAmethod is best at retaining the variance w.r.t. its ownmetric. That is, for the vari-
ancew.r.t. theAIRM, δrPCA outperforms δePCA, and for the Euclideanmetric the opposite is
true. The only exception is δgPCA, which performs poorly w.r.t. the Euclidean variance. This
is due to the data centering performed before the dimensionality reduction. Recall that the
data centering is done using the Riemannian geometry, i.e., X̃i = X̄−1/2

r Xi X̄−1/2
r . While this

transformation preserves the Riemannian distance between matrices, it does not preserve the
Euclidean distance. Thus, we obtain poor results for the Euclidean metric using this method.
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Table 1 Average distance
between the estimated p
dimensional subspace and the
true subspace F

Best results are marked in
boldface

p 5 7 8 10 11 13

2DPCA 2.53 2.69 2.65 2.445 2.46 1.9

PGA 2.39 2.48 2.48 2.44 2.24 1.84

δrPCA 3.12 2.87 2.72 2.06 1.9 1.43

δePCA 3.22 3.04 2.61 2 1.93 1.55

δsPCA 3.12 2.87 2.65 2.0577 1.9 1.43

δlePCA 3.12 2.87 2.72 2.06 1.9 1.43

δcPCA 3.12 2.87 2.72 2.06 1.9 1.43

δgPCA 3.13 2.93 2.67 2.1 1.9 1.43

Fig. 6 Samples from the normalized Brodatz texture dataset

Next, we examine the quality of the eigenspace estimation. To this end, we generate data
using the following scheme: We begin with a basis for Rn . The first p vectors of this basis
are denoted by F , and the remaining n − p vectors are denoted by G. For each matrix Xi we
randomly generate a p × p rotation matrix Oi and an n × n rotation matrix Ri . The input
matrices are then given by Xi = Qidiag (λi ) Q�

i where for ε � 1, Qi = [F Oi G] (I + εRi )

and λi is a set of n eigenvalues uniformly drawn from the range [0.5, 1.5]. By rotating F
via the matrix Oi we have that each F Oi spans the same n × p space but lies in a different
p-flat.4 The matrix Ri acts as a small perturbation, slightly rotating the entire eigenbasis.
Without the perturbation Ri , projecting onto the n × p space spanned by F would, in general,
ensure maximal variance.5

We ran the experiment for a range of subspaces F of sizes p = 5, 7, 8, 10, 11, 13 and
for a constant number of 15 eigenvectors in G. For each value of p computed the distance
between the transformation matrix W obtained by eachmethod and the space F . We repeated
the experiment 25 times.

The results are brought in Table 1. We see that as p grows, our gaPCA methods manage
to more accurately estimate the true eigenspace F as compared to the other methods.

5.2 Texture image data

Following the promising results on the synthetic data, we next test our methods on real data.
In computer vision applications, region covariance (RC) matrices (Tuzel et al. 2006, 2008)
are useful image descriptors, computed using the covariance between feature vectors taken
from image patches. In this set of experiments we performed a texture classification task on
the normalized Brodatz (1966) dataset, a set of 112 grayscale texture images (see Fig. 6).

4 See Sect. 3.1 for a discussion of flats of Sn+.
5 The maximal variance also depends on the values of the eigenvalues λ.
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In each experiment we randomly selected two texture images. For each image the left
side was used to create the training set and the right side was used for the test set. The RC
matrices were created by extracting 128 × 128 patches from randomly selected locations
in the image. Then, at every pixel the feature vectors were composed of 28 Gabor filter
responses (Gabor 1946) for four scales and seven angles, as well as pixel intensity and first
and second gradients, for a total of 34 feature dimensions. The RCs were compressed to
size 8× 8 using the standard PCA, PGA and our proposed gaPCA, then classified using two
different classifiers—a nearest neighbormethod and aminimumdistance to themean (MDM)
(Barachant et al. 2012) scheme as follows: We first apply our methods in an unsupervised
manner. Next, using the labels of the training set, we compute the mean for each of the two
classes. Then, we classify the covariance matrices in the test set according to their distance
to the class means; each test covariance matrix is assigned the class to which it is closer. This
classifier is restricted here to a two-classes problem with various distances.

The results are brought in Tables 2 and 3. The nearest neighbor classifier works quite well
for classification of this data set, making it somewhat difficult to see big differences in the
performance of the different methods. Nonetheless, for this classifier the geometric methods
dominate, with the log-Euclidean metric achieving the highest overall accuracy rate. Using
the MDM classifier the classification rates are generally lower and it is more readily seen
that gaPCA using the log-Euclidean metric has a clear advantage for this task.

5.3 Brain-computer interface

The use of covariance matrices is prevalent in the brain computer interface (BCI) community
(Barachant et al. 2010; Lotte and Guan 2011). EEG signals involve highly complex and non-
linear phenomenon (Blankertz et al. 2008) which cannot be modeled efficiently using simple
Gaussian assumptions. In this context, for some specific applications, covariance matrices
(using their natural Riemannian geometry) have been successfully used (Barachant et al.
2010, 2012, 2013; Yger 2013). As emphasized in Blankertz et al. (2008) and Lotte and
Guan (2011), dimensionality reduction and spatial filtering are crucial steps for building an
efficient BCI system. Hence, an unsupervised dimensionality reduction method utilizing the
Riemannian geometry of covariance matrices is of great interest for BCI applications.

In this set of experiments, we apply our methods to BCI data from the BCI competition III
datasets IIIa and IV (Schlögl et al. 2005). These datasets contain motor imagery (MI) EEG
signals and was collected in a multi-class setting, with the subjects performing more than 2
different MI tasks. As was done in Lotte and Guan (2011), we evaluate our algorithms on
two-class problems by selecting only signals of left- and right-hand MI trials.

Dataset IIIa comprises EEG signals recorded from 60 electrodes from three subjects who
performed left-hand, right-hand, foot and tongueMI. A training set and a test set are available
for each subject. Both sets contain 45 trials per class for Subject 1, and 30 trials per class
for Subjects 2 and 3. Dataset IV, comprises EEG signals recorded from 118 electrodes from
five subjects who performed left-hand, right-hand, foot and tongue MI. Here 280 trials were
available for each subject, among which 168, 224, 84, 56 and 28 composed the training sets
for the respective subjects. The remaining trials composed their test sets.

We apply the same pre-processing as described in Lotte and Guan (2011). EEG signals
were band-pass filtered in 8-30 Hz, using a 5th order Butterworth filter. For each trial, we
extracted features from the time segment located from 0.5 to 2.5 s after the cue instructing
the subject to perform MI.

For both datasets we reduce the matrices from their original size to 6×6 as it corresponds
to the number of sources recommended in Blankertz et al. (2008) for common spatial pattern

123



Mach Learn (2017) 106:493–522 509

Ta
bl
e
2

A
cc
ur
ac
y
ra
te
s
fo
r
th
e
va
ri
ou
s
PC

A
m
et
ho
ds

us
in
g
a
m
in
im

um
di
st
an
ce

to
th
e
m
ea
n
(M

D
M
)
cl
as
si
fie
r

Te
xt
ur
es

58
v
11

1
5
v
72

62
v
11

1
25

v
91

92
v
10

1
44

v
89

13
v
19

85
v
10

3
av
g

N
o
co
m
pr
es
si
on

81
69

82
88

78
41

52
82

71
.6
25

2D
PC

A
81

69
82

88
78

41
52

82
71

.6
25

PG
A

93
67

84
94

84
65

53
79

77
.3
75

δ r
PC

A
89

74
10

0
99

75
68

62
83

81
.2
5

δ e
PC

A
81

69
82

88
78

41
52

82
71

.6
25

δ s
PC

A
89

68
10

0
92

83
68

53
81

79
.2
5

δ l
eP

C
A

97
79

91
10

0
71

63
66

85
81

.5

In
ea
ch

co
lu
m
n
th
e
be
st
m
et
ho

d
is
hi
gh

lig
ht
ed

by
bo

ld
fa
ce

123



510 Mach Learn (2017) 106:493–522

Ta
bl
e
3

A
cc
ur
ac
y
ra
te
s
fo
r
th
e
va
ri
ou
s
PC

A
m
et
ho
ds

us
in
g
a
ne
ar
es
tn

ei
gh
bo
r
cl
as
si
fie
r

Te
xt
ur
es

58
v
11

1
5
v
72

62
v
11

1
25

v
91

92
v
10

1
44

v
89

13
v
19

85
v
10

3
av
g

N
o
co
m
pr
es
si
on

99
79

99
99

96
44

72
73

82
.6
25

2D
PC

A
99

79
99

99
96

44
72

73
82

.6
25

PG
A

92
72

72
10

0
90

84
67

81
82

.2
5

δ r
PC

A
96

81
10

0
99

91
66

78
74

85
.6
25

δ e
PC

A
99

79
99

99
96

44
72

73
82

.6
25

δ s
PC

A
96

81
10

0
95

92
63

78
74

84
.8
75

δ l
eP

C
A

10
0

96
10

0
10

0
93

68
75

82
89

.2
5

In
ea
ch

co
lu
m
n
th
e
be
st
m
et
ho

d
is
hi
gh

lig
ht
ed

by
bo

ld
fa
ce

123



Mach Learn (2017) 106:493–522 511

Table 4 Accuracy rates for the various PCA methods using the Riemannian metric

Subject Data set IIIa Data set IV

1 2 3 Avg 1 2 3 4 5 Avg

No compression 95.56 60 98.33 84.63 53.57 76.79 53.06 49.11 69.05 60.32

2DPCA 84.44 60 73.33 72.59 54.46 71.43 53.57 66.07 58.33 60.77

δrPCA 95.56 68.33 85 82.96 55.36 94.64 52.04 50.89 68.65 64.32

δcPCA 95.56 68.33 85 82.96 55.36 94.64 52.04 50.89 68.65 64.32

δePCA 84.44 60 73.33 72.59 55.36 73.21 53.57 65.62 58.33 61.22

δsPCA 95.56 61.67 85 80.74 55.36 64.29 52.04 54.02 53.97 55.94

δlePCA 86.67 61.67 85 77.78 53.57 76.79 50.51 52.23 51.19 56.86

δgPCA 62.22 50 50 54.07 46.43 50 50 50.89 48.41 49.15

PGA 76.67 50 78.33 68.33 54.46 75 59.69 64.29 69.84 64.66

CSP + LDA 95.56 61.67 93.33 83.52 66.07 96.43 47.45 71.88 49.6 66.29

The best method (excluding CSP+LDA) is highlighted by boldface

(CSP). Since our problem is non-convex, we restarted the optimization 5 times with different
initial values and used the matrix W which produced the lowest value of the cost function.
As for the image data, the performance measure for the dimensionality reduction was the
classification accuracy with MDM classification. We used both the Riemannian and the
Euclidean metrics to compute the class means and distances for the test samples. However,
we report the results only for the Riemannian metric, as they were better for all subjects. The
results using the Euclidean metric can be found in “Appendix 5”.

The accuracy rates of the classification are presented in Table 4. As a reference on these
datasets, we also report the results of a classical method of the literature. This method (Lotte
and Guan 2011) consists of supervised dimensionality reduction, namely a CSP, followed
by a linear discriminant analysis on the log-variance of the sources extracted by the CSP.

While the results of Lotte and Guan (2011) cannot be compared to those of our unsu-
pervised techniques in a straightforward manner, they nonetheless serve as a motivation.6

Since we intend to extend our approach to the supervised learning setting in our future work,
it is instructive to quantitatively assess the performance gap even at this stage of research.
Encouragingly, our comparatively naive methods work well, obtaining the same classifica-
tion rates as Lotte and Guan (2011) for some test subjects, and for others even achieving
higher rates.

Once again, our δcPCA method yields the same classification accuracy as δr , albeit for
slightly different transformation matrices. Once again this implies that our approximation
for the Riemannian mean of the compressed set X↓ is adequate.

5.4 Approximate versus exact costs

Our experiments indicate that the use of the exact method δc is effectively equivalent to
using the approximate method δr . So, to determine which method is preferable, we compare
the time complexity of each optimization step. When initialized identically, the number
of steps needed to reach convergence is roughly the same for both methods. In terms of

6 For the same reason we cannot directly compare our results to the work of Harandi et al. (2014a) or Harandi
and Salzmann (2015).
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Fig. 7 Comparison between run
time of δr and δc formulations
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matrix inversions and decompositions, it can be seen from the expressions for the gradients
that both methods require roughly the same amount of operations. However, the gradient
computation for δc requires the multiplication of larger matrices, as well as the computation
of the Riemannian mean of the set X↓ for each optimization step. Note that this is the mean
in the smaller compressed space, and so this does not significantly increase the run time.

Figure 7 shows the average time elapsed until completion of the iterate, in seconds, for
both methods. We see that the approximate δr runs faster than the exact δc. Since the gain
in performance is negligible, we conclude that the use of the formulation optimizing the
approximate Fréchet variance is favorable.

5.5 Choosing a metric

Our experiments have shown that our geometric method gaPCA in general performs better
than other existing PCA methods. In terms of choosing which metric to use, each offers a
different appeal: The Euclidean geometry, while simple and efficient, is usually too simplistic
to capture the curvature of the space. The AIRM and the closely related log-determinant
metrics are the most natural and offer the most invariance properties. The log-Euclidean
metric also exhibits many invariance properties and can be seen as a compromise between
the simplicity of the Euclidean metric and the complexity of the AIRM. Thus, an adequate
metric must be suited to the data at hand.

6 Conclusion

In this paper,we introduced a novelway to performunsupervised dimensionality reduction for
SPD matrices. We provided a rectified formulation of matrix PCA based on the optimization
of a generalized notion of variance for SPD matrices. Extending this formulation to other
geometries, we used tools from the field of optimization on manifolds. We showed that it
suffices to use a simple approximation for the Fréchet variance and that it is not necessary to
use a more complex formulation in order to optimize it precisely. We applied our method to
synthetic and real-world data and demonstrated its usefulness.

In future work we consider several promising extensions to our methods. First, we may
cast our δPCA to a stochastic optimization setting on manifolds (Bonnabel 2013). Such an
approach may be useful for the massive datasets common in applications such as computer
vision. In addition, it would be interesting to use our approachwith criteria in the spirit ofYger
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and Sugiyama (2015). This would lead to supervised dimensionality reduction, bridging the
gap between the supervised log-Euclidean metric learning proposed in Yger and Sugiyama
(2015) and the dimensionality reduction proposed in Harandi et al. (2014a).
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Appendices

In this appendix, we assume X and Y to be two SPD matrices of size n × n and W a n × p
matrix in a low-rank manifold.

Appendix 1: Cost function derivative for δe

In our matrix Euclidean PCA, the cost is much simpler to derive. In this method, we want
to learn a full column rank matrix W by minimizing a cost function based on f (W ) =
δ2e (W � X W, W �Y W ) where δe is defined as

δ2le(X, Y ) = ‖X − Y‖2F .

As for the logEuclidean case, we reformulate the cost:

f (W ) =
∥∥∥W � X W − W �Y W

∥∥∥
2

F
=
〈
W � X W − W �Y W, W � X W − W �Y W

〉

=
〈
W � X W, W � X W

〉
− 2

〈
W � X W, W �Y W

〉
+
〈
W �Y W, W �Y W

〉
.

Then, reusing Eq. (21) for the directional derivative for the quadratic term W � X W and
making use of the composition and product rules (defined in the previous section), we have:

D f (W )[H ] = 2
〈
H� X W + W � X H, W � X W

〉
+ 2

〈
H�Y W + W �Y H, W �Y W

〉
(10)

− 2
〈
H� X W + W � X H, W �Y W

〉
− 2

〈
H�Y W + W �Y H, W � X W

〉

= 2
〈
H� X W + W � X H, W � (X − Y ) W

〉

+ 2
〈
H�Y W + W �Y H, W � (Y − X) W

〉

= 4
〈
H� X W, W � (X − Y ) W

〉
− 4

〈
H�Y W, W � (X − Y ) W

〉

= 4
〈
H� (X − Y ) W, W � (X − Y ) W

〉

D f (W )[H ] =
〈
4 (X − Y ) W W � (X − Y ) W, H

〉
(11)

Hence, we have:

∇ f (W ) = 4 (X − Y ) W W � (X − Y ) W (12)
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Appendix 2: Cost function derivative for δr

InHarandi et al. (2014a), a cost function similar to Eq.(1) and corresponding gradient function
are derived. Since that gradient formulation is more computationally efficient than ours, we
used it in our implementation. However, for the sake of completeness we include below an
alternative gradient formulation.

While the definition of our objective function is quite intuitive, computing its derivative
w.r.t. W for the purpose of optimization is not straight forward. First, for ease of notation,
we define f (W ) = δ2r (W � X W, W �Y W ). We compute the gradient based on D f (W )[H ],
the directional derivative of f at W in the direction H .

As the directional derivative of the function X �→ X−1/2 is not obvious to obtain, let us
reformulate f (W ):

f (W )

= tr

(
log

((
W � X W

)−1/2
W �Y W

(
W � X W

)−1/2
)

× log

((
W � X W

)−1/2
W �Y W

(
W � X W

)−1/2
))

= tr

⎛

⎜⎜
⎝log

⎛

⎜⎜
⎝
(

W � X W
)−1

W �Y W
︸ ︷︷ ︸

gXY (W )

⎞

⎟⎟
⎠ log

((
W � X W

)−1
W �Y W

)
⎞

⎟⎟
⎠

= 〈log (gXY (W )) , log (gXY (W ))〉
Next, owing to the product rule and the chain rule of the Fréchet derivative (Absil et al.

2009), we express DgXY (W )[H ] as
DgXY (W )[H ] = D

(
X �→ X−1)

(
W � X W

)
[W � X H

+H� X W ]W �Y W +
(

W � X W
)−1 (

W �Y H + H�Y W
)

= −
(

W � X W
)−1 (

W � X H + H� X W
) (

W � X W
)−1

W �Y W

+
(

W � X W
)−1 (

W �Y H + H�Y W
)

= −X̃−1
(

W � X H + H� X W
)

X̃−1Ỹ + X̃−1
(

W �Y H + H�Y W
)

,

where for simplicity we have introduced the notation X̃ = W � X W and similarly Ỹ =
W �Y W . The function gXY (W ) can then be written as gXY (W ) = X̃−1Ỹ .

Note that the matrix X̃−1Ỹ , while in general is not a symmetric matrix, has real, positive
eigenvalues and is diagonizable (Boumal 2010, Prop. (5.3.2)) as X̃−1Ỹ = V �V −1.

In order to compute D f (W )[H ], let us introduce H̃ = V −1 (DgXY (W )[H ]) V and F̃ ,
a matrix of the first divided differences (Bhatia 1997, pp. 60, 164) of the log function for
λi = �i i . The symbol � denotes the Hadamard product of two matrices. Then we have

D f (W )[H ] = 2 〈D log ◦gXY (W ) [H ], log ◦gXY (W )〉 (13)

= 2
〈
D log (gXY (W )) [DgXY (W )[H ]], log

(
X̃−1Ỹ

)〉
(14)

= 2
〈
H̃ � F̃, V � log

(
X̃−1Ỹ

)
V −�〉 (15)

123



Mach Learn (2017) 106:493–522 515

= 2

〈
(

V � log
(

X̃−1Ỹ
)

V −�)� F̃
︸ ︷︷ ︸

A

, H̃�
〉

(16)

= 2
〈
V AV −1, DgXY (W )[H ]�

〉
(17)

= 2

〈

V AV −1 X̃−1
︸ ︷︷ ︸

B

, W �Y H + H�Y W

〉

(18)

−2

〈

X̃−1Ỹ V AV −1 X̃−1
︸ ︷︷ ︸

C

, W � X H + H� X W

〉

=
〈

2Y W
(

B + B�)− 2X W
(

C + C�)

︸ ︷︷ ︸
∇ f (W )

, H

〉

, (19)

where the transition between Eqs. (15) and (16) is due to the identity 〈A � B, C〉 =〈
A � C�, B�〉 (Boumal and Absil 2011, Eq. (5.5)).
Since the directional derivative D f (W )[H ] is related to its gradient by D f (W )[H ] =

〈∇ f (W ), H〉, we have obtained the desired gradient:

∇ f (W ) = 2Y W
(

B + B�)− 2X W
(

C + C�) . (20)

Appendix 3: Cost function derivative for δl

In our logEuclidean PCA, we want to learn a full column-rank matrix W by minimizing a
cost function based on f (W ) = δ2le(W � X W, W �Y W ) where δle is defined as

δ2le(X, Y ) = ‖log (X) − log (Y )‖2F .

Let us reformulate the directional derivative of f :

f (W ) =
∥∥∥log

(
W � X W

)
− log

(
W �Y W

)∥∥∥
2

F
=
〈
log
(

W � X W
)

− log
(

W �Y W
)

, log
(

W � X W
)

− log
(

W �Y W
)〉

=
〈
log
(

W � X W
)

, log
(

W � X W
)〉

− 2
〈
log
(

W � X W
)

, log
(

W �Y W
)〉

+
〈
log
(

W �Y W
)

, log
(

W �Y W
)〉

.

In order to obtain ∇ f , the (Euclidean) gradient of f , we first express D f (W )[H ] the
directional derivative of f (at W in the direction H ). This is due to the fact that D f (W )[H ] =
〈∇ f (W ), H〉.

We recall that the directional derivative is defined as

D f (X)[H ] = lim
h→0

f (X + h H) − f (X)

h
.
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As summarized in Boumal (2010, p. 53), the directional derivative is equipped with various
useful identities such as:

D ( f ◦ g) (X) [H ] = D f (g (X)) [Dg (X) [H ]] (composition rule)

D (X �→ 〈 f (X) , g (X)〉) (X) [H ] = 〈D f (X) [H ] , g (X)〉
+ 〈 f (X) , Dg (X) [H ]〉 (product rule).

Moreover, from the definition of the directional derivative, we can show that for a sym-
metric matrix A:

D
(

X �→ X� AX
)

(X) [H ] = H� AX + X� AH (21)

Now, using these identities we find the derivative of f :

D f (W )[H ] = 2
〈
D log

(
W � X W

)
[H� X W + W � X H ], log

(
W � X W

)〉
(22)

+ 2
〈
D log

(
W �Y W

)
[H�Y W + W �Y H ], log

(
W �Y W

)〉

− 2
〈
D log

(
W � X W

)
[H� X W + W � X H ], log

(
W �Y W

)〉

− 2
〈
D log

(
W �Y W

)
[H�Y W + W �Y H ], log

(
W � X W

)〉

= 2
〈
D log

(
W � X W

)
[H� X W + W � X H ], log

(
W � X W

)
− log

(
W �Y W

)〉

(23)

+ 2
〈
D log

(
W �Y W

)
[H�Y W + W �Y H ], log

(
W �Y W

)
− log

(
W � X W

)〉

= 2
〈
D log

(
W � X W

) [
log
(

W � X W
)

− log
(

W �Y W
)]

, H� X W + W � X H
〉

(24)

+ 2
〈
D log

(
W �Y W

) [
log
(

W �Y W
)

− log
(

W � X W
)]

, H�Y W + W �Y H
〉

D f (W )[H ] =
〈
4X W D log

(
W � X W

) [
log
(

W � X W
)

− log
(

W �Y W
)]

, H
〉

+
〈
4Y W D log

(
W �Y W

) [
log
(

W �Y W
)

− log
(

W � X W
)]

, H
〉

(25)

From the expression of the function f , we first apply the product rule and the chain rule
in order to obtain Eq. 22. Then, from Eqs. 23 and 24, we use the property that Dlog(X)[.] is
an auto-adjoint operator7 for symmetric definite positive matrices, as stated in Boumal and
Absil (2011) and demonstrated in Boumal (2010, Chap. 5 p. 52).

Note that the directional derivative of the matrix logarithm can be computed numerically
thanks to the algorithm provided in Boumal (2010) and Boumal and Absil (2011).

Hence, we have:

∇ f (W ) = 4X W D log
(

W � X W
) [

log
(

W � X W
)

− log
(

W �Y W
)]

+ 4Y W D log
(

W �Y W
) [

log
(

W �Y W
)

− log
(

W � X W
)]

(26)

7 This means that for all symmetric matrices H1 and H2, we have 〈D log (X) [H1] , H2〉 =
〈H1, D log (X) [H2]〉.
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Appendix 4: Cost function derivative of the constrained cost function

We derive the Euclidean gradient of the following cost function:

f̂ (W ) = f (W,�) =
n∑

j=1

δ2r

(
W � X j W,�

)
s.t.

C (W,�) =
n∑

j=1

log

((
W � X j W

)−1/2
�
(

W � X j W
)−1/2

)
= 0p×p (27)

where W ∈ S(n, p), the set of all rank-p matrices of size n× p,
{

X j
} ⊂ Sn+ and δ2r (A, B) =

tr
(
log2

(
A−1/2B A−1/2

))
is the AIRM. For brevity we leave out the dependence of f and C

on the set
{

X j
}
.

For a given matrix W , � ∈ S p
+ is the Riemannian mean of the set of compressed matri-

ces
{
W � X j W

}
. This is embodied by the constraint, which stems from the fact that the

Riemannian mean uniquely minimizes the Fréchet variance
∑n

j=1 δ2r
(
W � X j W,�

)
.

To simplify the computation we use an equivalent expression for the AIRM, δ2r (A, B) =
tr
(
log2

(
A−1B

))
. The constraint then becomes

C (W,�) =
n∑

j=1

log

((
W � X j W

)−1
�

)
= 0p×p. (28)

The gradient computation will be done using a vectorized form of Eq. (27), namely

f̂
( �W
)

= f
( �W , ��

)
s.t. C

( �W , ��
)

= 0p2 , (29)

where �(·) is shorthand for vec (·), the column-wisematrix vectorization operator. The function
C (W,�), originally a function mapping R

n×p ×R
p×p → R

p×p , becomes in its vectorized
form a mapping R

np × R
p2 → R

p2 .
To compute the gradient we use the implicit function theorem. In order to invoke the

theorem, the following conditions must hold (Krantz and Parks 2012):

– For all �W ∈ R
np there exists a unique �� ∈ R

p2 such that C
( �W , ��

)
= 0.

– There exists an open set D ⊂ R
np ×R

p2 with
{( �W , ��

)
: �W ∈ R

p2 , C
( �W , ��

)
= 0
}

⊂
D such that f and C are twice differentiable on D.

– The inverseC ��
( �W , ��

)−1
exists for all

( �W , ��
)
∈
{( �W , ��

)
: �W ∈R

p2 , C
( �W , ��

)
=0
}
.

Under these assumptions, the implicit function theorem guarantees the existence of a differ-

entiable function �� : W → R
p2 which is defined by C

( �W , ��
)

= 0 and whose derivative

is obtained by differentiating C
( �W , ��

)
= 0. This gives

�� �W
( �W
)

= −C ��
( �W , ��

)−1
C �W

( �W , ��
)

. (30)

Using the results above, the gradient of f̂
( �W
)
is

∇ f̂
( �W
)

= �� �W
( �W
)� ∇�� f

( �W , ��
)

+ ∇ �W f
( �W , ��

)
. (31)
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The partial derivatives ∇� f (W,�) and ∇W f (W,�) have been previously computed
and are given by

∇� f (W,�) = 2�−1 log

((
W � X j W

)−1
�

)
(32)

∇W f (W,�) = 4X j W
(

W � X j W
)−1

log
((

W � X j W
)

�−1
)

. (33)

Note that it is the fact that the matrix log is squared in the AIRM allows us to use log
(

A−1B
)

or log
(
B−1A

)
as convenient.

We are left with the task of computing C ��
( �W , ��

)
and C �W

( �W , ��
)
. For these we will

need an expression for d vec (log (X)):

First, we use the Mercator series log (I + X) = −∑∞
k=1

(−1)k

k Xk . Then,

d
[
log (I + X)

] = −
∞∑

k=1

(−1)k

k

(
dXk

)

= −
∞∑

m=0

(−1)m+1

m + 1

m∑

j=0

(
X j (dX) Xm− j

)
(34)

Vectorizing, we get

d
[
vec (log (I + X))

] = −
∞∑

m=0

(−1)m+1

m + 1

m∑

j=0

vec
(

X j (dX) Xm− j
)

= −
∞∑

m=0

(−1)m+1

m + 1

m∑

j=0

(
Xm− j ⊗ X j

)
vec (dX) , (35)

where we have used the identity vec (AX B) = (B� ⊗ A
)
vec (X).

Next, we use the eigenvalue decomposition X = U DU� where U is a unitary matrix
UU� = U�U = I and D is a diagonal matrix containing the (strictly positive) eigenvalues
λi of the SPD matrix X .

Using the identity AC ⊗ B D = (A ⊗ B) (C ⊗ D), we get

Xm− j⊗X j =
(

U Dm− j U�)⊗
(

U D j U�) = (U ⊗ U )
(

Dm− j ⊗ D j
) (

U� ⊗ U�) (36)

We compute the expression −∑∞
m=0

(−1)m+1

m+1

∑m
j=0

(
Dm− j ⊗ D j

)
. For the series to con-

verge, we assume without loss of generality that λi < 1. For λi = λ j = λ we have

−
∞∑

m=0

(−1)m+1

m + 1

m∑

j=0

λm− jλ j = −
∞∑

m=0

(−1)m+1

m + 1

m∑

j=0

λm = −
∞∑

m=0

(−1)m+1 λm = 1

1 + λ

(37)
For λi �= λ j we have

−
∞∑

m=0

(−1)m+1

m + 1

m∑

k=0

λm−k
i λk

j = −
∞∑

m=0

(−1)m+1

m + 1

m∑

k=0

λm
i

(
λ j

λi

)k

= −
∞∑

m=0

(−1)m+1

m + 1
λm

i

⎛

⎜
⎝
1 −

(
λ j
λi

)m+1

1 − λ j
λi

⎞

⎟
⎠
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= −
∞∑

m=0

(−1)m+1

m + 1

(
λm+1

i − λm+1
j

λi − λ j

)

= log (1 + λi ) − log
(
1 + λ j

)

(1 + λi ) − (1 + λ j
) (38)

Putting this all together yields

d
[
vec (log (X))

] = (U ⊗ U ) D̃
(

U� ⊗ U�) , (39)

where D̃ is a diagonal matrix of size p2 × p2 whose elements are given by:

Dkk = φ
(
λi , λ j

) =
{ 1

λi
λi = λ j

log(λi )−log(λ j )
(λi )−(λ j)

λi �= λ j
(40)

and i = �k/p� and j = mod (k, p).
In addition, we will need the following expressions:

d vec
(

A−1) = − (A−1 ⊗ A−1) d vec (A) (41)

d vec (AB) =
(

B� ⊗ I
)
d vec (A) (42)

and

d vec
(

A� B A
)

= vec
[
d
(

A�) B A + A� Bd (A)
]

=
(

A� B ⊗ Ip

)
d vec

(
A�)+

(
Ip ⊗ A� B

)
d vec (A)

= (Ip2 + K
) (

Ip ⊗ A� B
)
d vec (A) , (43)

where K is the commutator matrix (Abadir and Magnus 2005) that allows us to go from
d vec

(
A�) to d vec (A) and to change the order of the arguments of the Kronecker product.

Equipped with the above and using the chain rule, our partial derivatives are:

C ��
( �W , ��

)
=

n∑

j=1

d �� vec

(
log

((
W � X j W

)−1
�

))

=
n∑

j=1

d

[
vec

(
log

((
W � X j W

)−1
�

))]((
W � X j W

)−1 ⊗ Ip

)
(44)

and

C �W
( �W , ��

)
=

n∑

j=1

d �W vec

(
log

((
W � X j W

)−1
�

))

= −
n∑

j=1

d

[
vec

(
log

((
W � X j W

)−1
�

))] (
� ⊗ Ip

)

((
W � X j W

)−1 ⊗
(

W � X j W
)−1
) (

Ip2 + K
) (

Ip ⊗ W � X j

)
(45)
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Appendix 5: BCI classification results using Euclidean metric

Table 5 contains the results of BCI data classification using the MDM classifier with the
Euclidean metric.

Table 5 Accuracy rates for the various PCA methods using the Euclidean metric

Subject Data set IIIa Data set IV

1 2 3 Avg 1 2 3 4 5 Avg

No compression 63.33 48.33 55 55.55 47.32 69.64 54.59 62.05 41.27 54.97

2DPCA 61.11 48.33 55 54.81 47.32 66.07 54.59 62.5 41.27 54.35

δrPCA 86.67 61.67 73.33 73.89 50 83.93 52.04 56.25 76.59 63.76

δcPCA 86.67 61.67 73.33 73.89 50 83.93 52.04 56.25 76.59 63.76

δePCA 61.11 48.33 55 54.81 47.32 64.29 54.59 62.5 41.67 54.07

δsPCA 86.67 60 71.67 72.78 50.89 64.29 48.47 55.36 52.38 54.28

δlePCA 81.11 56.67 80 72.59 52.68 78.57 50.51 52.68 50.4 56.97

δgPCA 61.11 50 65 58.7 46.43 50 50.51 50.89 51.98 49.96

PGA 66.67 48.33 56.67 57.22 47.32 58.93 50 62.5 50.4 53.83

CSP + LDA 95.56 61.67 93.33 83.52 66.07 96.43 47.45 71.88 49.6 66.29

Best results are marked in boldface
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