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Abstract Many important real-world applications of machine learning, statistical physics,
constraint programming and information theory can be formulated using graphical models
that involve determinism and cycles. Accurate and efficient inference and training of such
graphical models remains a key challenge. Markov logic networks (MLNs) have recently
emerged as a popular framework for expressing a number of problems which exhibit these
properties. While loopy belief propagation (LBP) can be an effective solution in some cases;
unfortunately, when both determinism and cycles are present, LBP frequently fails to con-
verge or converges to inaccurate results. As such, sampling based algorithms have been
found to be more effective and are more popular for general inference tasks in MLNs. In
this paper, we introduce Generalized arc-consistency Expectation Maximization Message-
Passing (GEM-MP), a novel message-passing approach to inference in an extended factor
graph that combines constraint programming techniques with variational methods. We focus
our experiments on Markov logic and Ising models but the method is applicable to graphical
models in general. In contrast to LBP, GEM-MP formulates the message-passing structure
as steps of variational expectation maximization. Moreover, in the algorithm we leverage the
local structures in the factor graph by using generalized arc consistency when performing
a variational mean-field approximation. Thus each such update increases a lower bound on
the model evidence. Our experiments on Ising grids, entity resolution and link prediction
problems demonstrate the accuracy and convergence of GEM-MP over existing state-of-the-
art inference algorithms such as MC-SAT, LBP, and Gibbs sampling, as well as convergent
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message passing algorithms such as the concave—convex procedure, residual BP, and the
L2-convex method.

Keywords Markov logic - Message passing - Constraint propagation - Statistical relational
learning - Expectation maximization

1 Introduction

Graphical models that involve cycles and determinism are applicable to a growing
number of applications in different research communities, including machine learning,
statistical physics, constraint programming, information theory, bioinformatics, and other
sub-disciplines of artificial intelligence. Accurate and efficient inference within such graph-
ical models is thus an important issue that impacts a wide number of communities. Inspired
by the substantial impact of statistical relational learning (SRL) (Getoor and Taskar 2007),
Markov logic (Richardson and Domingos 2006; Singla 2012) is a powerful formalism for
graphical models that has made significant progress towards the goal of combining the pow-
ers of both first-order logic (Flach 2010) and probability. However, probabilistic inference
represents a major bottleneck and can be problematic for learning when using it as a subrou-
tine.

Loopy belief propagation (LBP) is a commonly used message-passing algorithm for per-
forming approximate inference in graphical models in general, including models instantiated
by an underlying Markov Logic. However, LBP often exhibits erratic behavior in practice.
In particular, it is still not well understood when LBP will provide good approximations in
the presence of cycles and when models possess both probabilistic and deterministic depen-
dencies. Therefore, the development of more accurate and stable message passing based
inference methods is of great theoretical and practical interest. Perhaps surprisingly, belief
propagation achieves good results for coding theory problems with loopy graphs (Mceliece
et al. 1998; Frey and MacKay 1998). In other applications, however, LBP often leads to
convergence problems. In general LBP therefore has the following limitation:

Limitation 1 In the presence of cycles, LBP is not guaranteed to converge.

It is known that the local optima of the Bethe free energy correspond to local minima of
LBP, and it has been proven that violating the uniqueness condition for the Bethe free energy
generates several local minima (i.e., fixed points) in the space of LBP’s marginal distributions
(Heskes 2004; Yedidia et al. 2005). From a variational perspective, it is known that if a factor
graph has more than one cycle, then the convexity of the Bethe free energy is violated.
A graph involving a single cycle has a unique local minimum and usually guarantees the
convergence of LBP (Heskes 2004). From the viewpoint of a local search, LBP performs a
gradient-descent/ascent search over the marginal space, endeavoring to converge to a local
optimum (Heskes 2002). Heskes viewpoint is that the problem of non-convergence is related
to the fact that LBP updates the unnormalized marginal of each variable by computing a
coarse geometric average of the incoming messages received from its neighboring factors
(Heskes 2002). Under Heskes’ line of analysis, LBP can make large moves in the space of
the marginals and therefore it becomes more likely to overshoot the nearest local optimum.
This produces an orbiting effect and increases the possibility of non-convergence. Other
lines of analysis are based on the fact that messages in LBP may circulate around the cycles,
which can lead to local evidence being counted multiple times (Pearl 1988). This, in turn,
can aggravate the possibility of non-convergence. In practice, non-convergence occasionally
appears as oscillatory behavior when updating the marginals (Koller and Friedman 2009).
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Determinism plays a substantial role in reducing the effectiveness of LBP (Heskes 2004).
For example, hard clauses in a Markov logic lead to deterministic dependencies in the corre-
sponding factor graphs for groundings and therefore are particularly challenging for inference
with LBP. It has been observed empirically that carrying out LBP on cyclic graphical models
with determinism is more likely to result in a two-fold problem of non-convergence or incor-
rectness of the results (Mooij and Kappen 2005; Koller and Friedman 2009; Potetz 2007;
Yedidia et al. 2005; Roosta et al. 2008). A second limitation of LBP could thus be formulated
as:

Limitation 2 In the presence of determinism (a.k.a. hard clauses), LBP may deteriorate to
inaccurate results.

In its basic form LBP also does not leverage the local structures of factors, handling them
as black boxes. Using Markov logic as a concrete example, LBP often does not take into
consideration the logical structures of the underlying clauses that define factors (Gogate and
Domingos 2011). Thus, if some of these clauses are deterministic (e.g., hard clauses) or have
extreme skewed probabilities, then LBP will be unable to reconcile the clauses. This, in turn,
impedes the smoothing out of differences between the messages. The problem is particularly
acute for those messages that pass through hard clauses which fall inside dense cycles. This
can drastically elevate oscillations, making it difficult to converge to accurate results, and
leading to the instability of the algorithm with respect to finding a local minimum (see pages
413-429 of Koller and Friedman 2009, for more details). On the flip side of this issue Koller
and Friedman point out that one can prove that if the factors in a graph are less extreme—such
that the skew of the network is sufficiently bounded—it can give rise to a contraction property
that guarantees convergence (Koller and Friedman 2009). In our work here we are interested
in taking advantage of determinism when it exists in the factors of an underlying graph in a
way that does not increase the threat of non-convergence.

The literature available on LBP—which is perhaps the most widely used form of message-
passing based inference—is heavily influenced by ideas from machine learning (ML) and
constraint satisfaction (CS) among others. Although LBP has been scrutinized both theoreti-
cally and practically in various ways, most of the existing research either avoids the limitation
of determinism when handling cycles, or does not take into consideration the limitation of
cycles when handling determinism.

Itis well known that techniques such as the junction tree algorithm (Lauritzen and Spiegel-
halter 1988) are able to transform a graphical model into larger clusters of variables such that
the clusters satisfy the running intersection property and that such a structure can then be
used to obtain exact inference results. Such results also hold when the underlying graphical
models possess deterministic dependencies. For many problems however, the tree width of
the resulting junction tree may be so large that inference becomes intractable. More recent
work has explored the interesting question of how to construct thin junction trees (Bach and
Jordan 2001). However, many graphical models derived from a Markov logic or problems
with complex constraints quickly lead to trees with large tree widths.

In this paper, one of our key objectives is to bring probabilistic Artificial Intelligence,
Machine Learning and Constraint Programming techniques closer together through the lens
of variational message-passing inference. That is, to address the limitations of LBP discussed
above, we introduce Generalized arc-consistency Expectation-Maximization Message-
Passing (GEM-MP), a novel approach to inference for graphical models based on variational
message-passing and arc-consistency within extended factor graphs. In this work we have
focused on Markov logic and Ising models, but our GEM-MP framework is applicable to
other representations, including standard graphical models defined in terms of factor graphs.
We achieve this by first re-parameterizing the factor graph in such a way that the inference task
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of computing the probability of unobserved variables given observed variables can be for-
mulated as a variational message passing procedure using auxiliary variables in the extended
and re-parameterized factor graph. We then take advantage of the fact that procedures such as
variational inference and EM can be viewed in terms of free energy minimization equations.
We formulate our Message-Passing approach as the E and M steps of a variational message
passing technique reminiscent of classical variational EM procedures (Beal and Ghahra-
mani 2003; Neal and Hinton 1999). This variational formulation leads to the synthesis of
new rules that update an approximation to the joint conditional distribution, minimizing the
Kullback-Leibler (KL) divergence in a way that also maximizes a lower bound on the true
model evidence. Since the procedure monotonically decreases the KL divergence it allevi-
ates Limitation 1 and leads to convergence of the lower bound and KL divergence to a fixed
quantity. Furthermore, we exploit the logical structures within factors by applying a gener-
alized arc-consistency concept (Rossi et al. 2006), and to use that to perform a variational
mean-field approximation when updating the marginals. Since the procedure is cast within a
variational framework, variational bounds apply which can ensure the algorithm converges
to a local minimum in terms of the KL divergence.

We have organized the rest of the paper in the following manner. In Sect. 2, we review some
key basic concepts in further detail including: Markov Logic, LBP, constraint propagation
techniques, Variational Bounds, Expectation maximization (EM) and KL Divergences. In
Sect. 3, we demonstrate the framework of GEM-MP variational inference. In Sect. 4 we then
derive GEM-MP’s general update rule for Markov logic. In sect. 5, we generalize GEM-MP’s
update rules to be applicable for MRFs. In Sect. 6, we conduct a thorough experimental study.
This is followed by a discussion in Sect. 7. In Sect. 8 we examine related work. Finally, in
Sect. 9, we present our conclusions and discuss directions for future research. The “Appendix”
contains the proofs of all propositions used in the paper.

2 Preliminaries

To set the stage for our work here in this section we provide a more detailed discussion of:
Markov logic; belief propagation; constraint satisfaction problems, constraint propagation
and generalized arch consistency; and variational methods. We begin by reviewing Markov
logic using a concrete explanatory example presented in Table 1. This example is an excerpt
of the knowledge base for the Cora dataset. That is, suppose that we are given a citation
database in which each citation has author, title, and venue fields. We need to know which
pairs of citations refer to the same citation and the same authors (i.e. both the SameBib
and Same Author relations are unknown). For simplicity, our objective will be to predict the
SameBib ground atoms’ marginals. At this point, let us first express our basic notation.

Table 1 An excerpt of Markov logic for the Cora dataset. The atoms SameBib and SameAuthor are unknown.
Ar() is an abbreviation for atom Author(), SAr() for SameAuthor(), and SBib() for SameBib(). ay, ap define
authors and rq, rp, r3 define citations

Rule First-order logic Clausal form W

Regularity Vay,ap,Vry, rp, Ar(ry, ap) A Ar(rp, ap) A —Ar(ry,ay) vV —Ar(r, ar) vV 1.1
SAr(ay, ap) = SBib(ry, ) —SAr(ay, az) v SBib(ry, rp)

Transitivity Vry, rp, r3 SBib(r1, r2) A SBib(rm, r3) = —SBib(ry, ) V =SBib(rp, r3) vV oo
SBib(ry, r3) SBib(ry, r3)
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Notation A first-order knowledge base (KB) is a set of formulas in first-order logic. Tradi-
tionally, as shown in Table 1, it is convenient to convert formulas to clausal form (CNF). After
propositional grounding, we get a formula F, which is a conjunction of m ground clauses.
Weuse f € F todenote a ground clause which is a disjunction of literals built from X', where
X = {X1, X2, ..., X»} is a set of n Boolean random variables representing ground atoms.
The set X'y corresponds to the variables appearing in the scope of a ground clause f. Both
“+” and “—” will be used to denote the positive (true) and negative (false) appearance of the
ground atoms. We use Y; as a subset of satisfying (or valid) entries of ground clause f;, and
vk € Yi, k € {1, ..,|Y;|} denotes each valid entry in Y;, where the local entry of a factor is
valid if it has non-zero probability. We use f;* (resp. fih) to indicate that the clause f; is soft
(resp. hard); the soft and the hard clauses are included in the two sets F* and F" respectively.
The sets Fx;+ and Fx;— include the clauses that contain positive and negative literals for
ground atom X ;, respectively. Thus F. x; =Fx;+UTFx;- denotes the whole of X ;s clauses,

and its cardinality as |.7-" X; | For each ground atom X ;, we use ﬂxj = [,8;('!,, ﬂ;j] to denote

its positive and negative marginal probabilities, respectively.
Markov logic (Richardson and Domingos 2006) is a set of first-order logic formulas (or
CNF clauses), each of which is associated with a numerical weight w. Larger weights w
reflect stronger dependencies, and thereby deterministic dependencies have the largest weight
(w — 00), in the sense that they must be satisfied. We say that a clause has deterministic
dependency if at least one of its entries has zero probability.

The power of Markov logic appears in its ability to bridge the gap between logic and
probability theory. Thus it has become one of the preferred probabilistic graphical models for
representing both probabilistic and deterministic knowledge, with deterministic dependencies
(for short we say determinism) represented as hard clauses, and probabilistic ones represented
as soft clauses.

To understand the semantics of Markov logic, recall the explanatory example in Table 1. In
this example, Markov logic enables us to model the KB by using rules such as the following:
1. Regularity rules of the type that say “if the authors are the same, then their records are
the same.” This rule is helpful but innately uncertain (i.e., it is not true in all cases). Markov
logic considers this rule as soft and attaches it to a weight (say, 1.1); 2. Transitivity rules
that state “If one citation is identical to two other citations, then these two other citations are
identical too.” These types of rules are important for handling non-unique names of citations.
Therefore, we suppose that Markov logic considers these rules as hard and assigns them an
infinite weight.!

Subsequently, we will represent Markov logic as a factor graph after grounding it
using a small set of typed constants (say, for example, a1, a» € {Gilles(G), Chris(C)},
and ry,rm,r3 € ({Citationl(Cy), Citation2(C»)}). The output is a factor graph that is
shown in Fig. 1, which is a bipartite graph (X ,F= {fh, _7-"‘}) that has a variable node
(oval) for each ground atom X; € X (here & includes the ground atoms: SBib(Cy, Cy),
SBib(C3, Cy), SBib(C3, C2), SBib(Cq, C2), Ar(C1, G), Ar(Ca, G), Ar(Cq, C), Ar(Ca, C),
SAr(C, C), SAr(C, G), SAr(G, C), and SA1(G, G)). If the truth value of the ground atom
is known from the evidence database, we mark it as evidence (dark ovals). It also involves
a factor node for each hard ground clause fih € F" (bold red square) and each soft ground
clause f € F° (non-bold blue square), with an edge linking node X; to factor f;, if f;
involves X ;. This factor graph compactly represents the joint distribution over X’ as:

U'n practice, the transitivity rules are assigned very high weights, which complicates the inference.
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Ar(C1,0)

Fig.1 Grounded (factor graph) obtained by applying clauses in Table 1 to the constants: {Gilles(G), Chris(C)}
foraj and ap; {Citation1(C1) and Citation2(C3)} forry, ro, and r3. The factor graph involves: 12 ground atoms
in which 4 are evidence (dark ovals) and 8 are non-evidence (non-dark ovals); 24 ground clauses wherein 8
are hard (Fh ={f1,..., fg}) and 16 are soft (F* = {f9, ..., f24})

|7

h
P(Xi,...,X,) = ilﬁ il (Xfih) 117 (,yfl_x), (1)
i=1 i=1

where 1 is the normalizing constant, f;* and fih are soft and hard ground clauses respectively,
and | 7"| and | 7*| are the number of hard and soft ground clauses, respectively. Note that, typ-
ically, the hard clauses are assigned the same weight (w — 00). But, without loss of accuracy,
we can recast them as factors that allow {0, 1} probabilities without recourse to infinity.
Loopy belief propagation The object of the inference task is to compute the marginal probabil-
ity of the non-evidence atoms (e.g., SameBib) given some others as evidence (e.g., Author).
One widely used approximate inference technique is loopy belief propagation (LBP) (Yedidia
et al. 2005), which provides exact marginals of query atoms conditional on evidence ones
when the factor graph is a tree or a forest, and approximate marginals if the factor graph has
cycles. LBP proceeds by alternating the passing of messages between variable (ground atom)
nodes and their neighboring factor (ground clause) nodes. The message from a variable X ;
to a factor f; is:

X f = H Hfi—X; 2)

JeeFx\ i)

The message from a factor f; to variable X ; is:

/,Lﬁ_)Xj=Z..ZZ..Z f,'(Xl,..,Xj,..,X[) H 15 )
X

Xji-1 Xjm1 X XkEX_f[\{Xj}
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The messages are frequently initialized to 1, and the unnormalized marginal of a single
variable X ; can be approximated by computing a coarse geometrical average of its incoming

messagesz:

Bx; o< [ msiex;- )

fieFx;

While there are different schedules for passing messages in graphs with loops, one of the
most commonly used is synchronous scheduling, wherein all messages are simultaneously
updated by using the messages from the previous iteration.

Now consider the atoms that we are interested in as a query [SBib(Cy, C1), SBib(C3, C1),

SBib(Cy, C3), and SBib(C3, C»)] on the factor graph represented in Fig. 1. Remarkably,
these query atoms are involved in many cycles. This emphasizes, at least theoretically, the
existence of more than one fixed point (or local optimum) which raises the threat of non-
convergence (Limitation 1). In addition, six of these cycles (i.e., those represented with
dashed orange lines) such as SBib(Cy, C)— fs—SBib(C>, C1)— fs— SBib(Cy, C>) have
no evidences (i.e., all the atoms in the cycles are queries). Therefore, the double counting
problem is expected to happen (Limitation 1). Moreover the six cycles contain only hard
clauses, which hinders the process of smoothing out the messages to converge to accurate
results (Limitation 2).
Constraint propagation A Constraint Satisfaction Problem (Rossi et al. 2006) is a triple
(X, D, C) where X' is an n-tuple of variables X = (Xl, R X,,), D is a corresponding n-
tuple of domains D = (Dy, ..., D,) such that X; € D;, and C is a m-tuple of constraints
C = (c1....,cm). A constraint ¢; is a pair (RXC,- , X¢;) where R, is a relation on the
variables A, = scope(c;). A solution to the CSP is a complete assignment (or a possible
world) s = (vl, cey vn) where v; € D; and each ¢; € C is satisfied in that RXL-,- holds on
the projection of s onto the scope X,. S denotes the set of solutions to the CSP. Constraint
propagation (Rossi et al. 2006) is the process of removing inconsistent values in the domains
that violate some constraint in C. One form of constraint propagation is to apply generalized
arc consistency for each constraint ¢ € C until a fixed point is reached.

Definition 1 (Generalized arc consistency (GAC)) Given a constraint ¢ € C which is defined
over the subset of variables X, it is generalized arc consistent (GAC) iff for each variable
X; € X, and for each value d € Dx i in its domain, there exists a value dy € Dy, for each
variable X; € A;\ { X j} that constitutes at least one valid tuple (or valid local entry) that
satisfies c.

We can extend this CSP formalism to Weighted CSPs (Rossi et al. 2006) to include
soft constraints. This too requires extending GAC to soft generalized arc consistency (soft
GACQ) to tackle the soft constraints (van Hoeve et al. 2006). At a high level, one can view
GAC (or soft GAC) as a function that takes any variable X; € X' and returns all other
consistent variables’ values that support the values of X; with respect to the constraints
¢ € C. For instance, in our example of Cora in Fig. 1, applying GAC to the hard constraint
(or clause) fg : =SBib(Cy, C1) Vv —=SBib(Cy, C2) with respect to ground atom assignment
SBib(Cy, C1) = true implies maintaining only the truth value “false” in the domain of
SBib(C1, C7). This is because the only valid local entry of fg that supports SBib(C1, Cy) =
trueis {(true, false)}.

We can also apply GAC in a probabilistic form. For instance, probabilistic arc consistency
(pAC) (Horsch and Havens 2000) performs BP in the form of arc consistency to compute the

2 Note that a geometrical average of values {a; }l’.‘:] ,is computed as {/[[; a;. Without /7, itbecomes a coarse
geometric average because the result would be an extreme value.
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relative frequency of a variable taking on a particular value in all solutions for binary CSPs
(Horsch and Havens 2000, for more details). pAC can be summarized as follows. We start
by initializing all variables to have uniform distributions. At each step, each variable stores
its previous solution probability distribution, then incoming messages from neighbouring
variables are processed, and the results are maintained locally so that there is no need to send
messages to all neighbours when no changes are made in the distribution. The new distribution
is approximated by multiplying all information maintained from the recent message received
from all neighbours. If the variable’s solution distribution has changed then a new message
is sent to all neighbours.

Variational bounds, EM and KL divergences To derive a method with enhanced algorithmic
behavior and theoretical semantics for BP, we shall be interested in a variational bound that
is widely known in the context of variational expectation maximization algorithms (Beal
and Ghahramani 2003; Neal and Hinton 1999). Suppose that we have a model My with
parameters 6, observed data O = {0y, ..., O,} and hidden variables H = {Hj, ..., H,}.
By introducing an approximation to our distribution over hidden variables given by g (H),
we can leverage Jensen’s inequality to obtain a lower bound F4, on the log marginal
likelihood of the form log P (O|My) as follows:

log P(O|Mg) =1log >_ P(O, H| M) (5a)
H
qr(H)
=1 PO, HIM Sb
og; (©.HiMo) o (5b)
P(O, H|Myp)

H) log ——M——= 5
z;qm )log——o0 (5¢)
= Eq,, 00| log P(O, HIMp)] + H(q7(H)) (5d)
= Fm,(gr(H)). (5e)

This lower bound Faq, in Eq. (Se) is called the free-energy. In Eq. (5d), Eg;, (31) is
the expected log marginal likelihood and H is the shannon entropy term. Its role in varia-
tional EM (Beal and Ghahramani 2003) is that it justifies an iterative optimization algorithm
for the lower bound whereby one performs the following steps: (the E-step) in which one
makes the bound tighter by computing and updating g7/ (H), and (the M-step) which uses
the approximation to update the parameters of the model, which typically will increase the
log marginal likelihood. If the exact posterior is used, or if the approximation to the pos-
terior is exact, then the inequality is met with equality and the original EM algorithm is
obtained. Both LBP and variational EM approaches share a similar objective which is to
minimize a corresponding energy equation (Yedidia et al. 2005), the Gibbs free energy and
variational free energy, respectively. Variational inference over hidden or unobserved vari-
ables in the E-step of traditional variational EM has an advantage in that it corresponds to
minimizing the KL divergence of an approximation and our quantity of interest as we discuss
below.

With a little more analysis it is possible to also determine that the free-energy is smaller
than the log-marginal likelihood by an amount equal to the Kullback-Leibler (KL) divergence
between g1 (H) and the posterior distribution of the hidden variables P (H|O, My):

P(H|O, Mg)P(O|My)
F H =§ H) 1 6
Mo (qr(H)) - qr(H) log T (M) (6a)
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_ _ qn(H)
=log P(O|My) %qu(m log 5o FiM) (6b)
= log P(O|Mg) — KL[gn(H) || P(H|O, Mg)]. (6¢)

That is, since the marginal likelihood of the observed data is a fixed quantity, maximizing
the lower bound (or the variational free energy) through variational inference over hidden
variables is equivalent to minimizing the KL divergence between our approximation and the
true distribution over hidden variables. Thus in the E-step of a variational EM algorithm one
can perform iterative updates for ¢3¢ (H) in a class of distributions Q in a way that minimizes
the KL divergence between the posterior P(H|O, Mjy) with the goal of obtaining

g (M) = argrréin KL[gn(H) || P(H|O, Mo)]. @)
qe

In our work here we will perform variational inference reminiscent of this approach.

3 GEM-MP framework

At a conceptual level our overall GEM-MP approach consists of the following three key ele-
ments. First, we extend the factor graph used to represent a given problem using mega-node
random variables which behave identically to groups of variables participating in a factor.
Second, we perform variational inference to update an approximation over the original vari-
ables and the mega-nodes. Third, we use a probabilistic form of generalized arc consistency to
more efficiently make inferences about hard constraints. Unlike inference operations formu-
lated using LBP, since we formulate inference using variational updates we directly minimize
the KL divergence between our approximation for the joint conditional distribution and the
true distribution of interest.

Before presenting the inference components of GEM-MP in detail, we will first examine a
small concrete example, then present our more general approach for extending factor graphs.
Let us consider a simple example factor graph G (Fig. 2 (left)), which is a fragment of the
Cora example in Fig. 1, that involves factors 7 = { f1, f2, f3, f4} and three random variables
{X1, X2, X3} denoting query ground atoms {SBib(C», C3), SBib(C3, C1), SBib(Cy, C3)}
respectively.

In our GEM-MP framework the first thing we do is to modify the factor graph. Specifically,
we need to re-parameterize the factor graph in such a way that carrying out a learning task
on the new parameterization is equivalent to running an inference task on the original factor
graph. Thatis, we modify the original factor graph G (depicted in Fig. 2 (left)) by transforming
it into an extended factor graph G (depicted in Fig. 2 (right)) as follows:

— We attach an auxiliary mega-node Y; (dashed oval) to each factor node f; € F. Each
of these mega-nodes Y; captures the local entries of its corresponding factor f;. Thus, it
has a domain size that equals (at the most) the number of local entries in the factor f;
(i.e., the states of each mega-node correspond to a subset of the Cartesian product of the
domains of the variables that are the arguments to the factor f;). ¥ = {¥;}/L, is the set
of mega-nodes in the extended factor graph, where m = 4 in the example factor graph.

— In addition, we connect an auxiliary activation node, O; (dashed circle), to each factor
fi. The auxiliary activation node O; enforces an indicator constraint 1y,, 7 for ensuring
that the particular configuration of the variables that are the argument to the original
factor f; is identical to the state of the mega-node Y;:
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10 Mach Learn (2017) 106:1-54

Fig. 2 An example factor graph G (left) which is a fragment of the Cora example in Fig. 1, that involves
factors F = {f1, f2, f3, f4} and three random variables {X, X», X3} representing query ground atoms
{SBib(C3, C»), SBib(C3, C1), SBib(Cq, C>)}. The extended factor graph Q (right) which is a transformation
of the original factor graph after adding auxiliary mega-node variables ) = {y1, y2, ¥3, y4}, and auxiliary

activation-node variables O = {01, O3, O3, O4}, which yields extended factors F= { f], fg, f3, f4}

1 If the state of Y; is identical to local entry of f;.

. ()
0  Otherwise

Ly, 1)

— Now, since we expand the arguments of each factor f; by including both auxiliary mega-
node and auxiliary activation node variables, then we get an extended factor f;. F =

{ fi } is the set of extended factors in the extended factor graph.

— Whent the activation node O; equals one, then it activates the indicator constramt inEq. (8).
If this indicator constraint is satisfied, then the extended factor graph f, preserves the
same value of f; for the configuration that is defined over the original input variables
defining the factor f;. Thus, clearly, the following condition holds for each extended
factor f‘, when a configuration, (x1, ..., x,), of f; equals to state, y;, of mega-node, Y;:

fi(Xi=x1,..., Xo =x0, Yi = i, O;) ‘0__1:ﬁ(X1 =x1,...Xp=x). ()
But if the indicator constraint in Eq. (8) is not satisfied then the extended factor graph
fi assigns a value 0. Thus, this condition also holds for each extended factor f; when a
configuration (x, ..., x,) of f; is not equal to state y; of mega-node, Y;:

f‘,'(X1=X1,...,Xn =xn,Yi=yi,él')‘d_l=0. (10)

— Setting O; = 0 effectively removes the impact of f; from the model. That is, when

the activation node O; is not equal to one, then it deactivates the indicator constraint

in Eq. (8). Here, the extended factor fi assigns a value 1 when the possible state of Y;

matches the configuration of variables that are the arguments to the factor f;. Otherwise

it assigns a value 0. Note that by assigning the Values in this way, all factors f; € F

will have identical values in their corresponding f, € F when O; = 0. This implies that

the deactivation of their indicator constraint has no impact on the distribution from the
inclusion of the factors f; € F.
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Table 2 Factor f] in the original
factor graph (top)
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<
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fi(X1, X2, Y1, 0)
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TF
TF
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FF

Its corresponding extended factor
fl in the extended factor graph
(bottom). When the activation
node O = 1, the bold values are
cases in which the extended
factor f| preserves the same
value of f7. Otherwise it assigns
a value 0. When the activation
node O # 1, the matches
between Y] and (X1, X) are
cases in which f assigns a value
1. Otherwise it assigns a value 0
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S ©O o o =

Table 2 visualizes the e;xpansion of factor fi, in the original factor graph, to its corre-
sponding extended factor fi in the extended factor graph.

Proposition 1 In the extended factor graph G, reducing each extended factor f, by evidenc-

ing its activation node with one, O; = 1, and then eliminating its auxiliary mega-node Y; by
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marginalization yields its corresponding original factor f; in the original factor graph G.

S i (Xis e X Y, 01) '0_._12 fi (X1 Xa), Vi € F. (in
Yi .

Proof see “Appendix”. O

Proposition 2 Any arbitrary factor graph G is equivalent, i.e., defines an identical joint
probability over variables X, to its extended G iff the activation nodes in G are evidenced
with one:

G=Giff0;=1,vV0;, € Oin§
Proof see “Appendix”. O

Given this extended factor graph formulation we can now examine the task of performing
inference over unobserved quantities given observed quantities through the lens of variational
analysis and inference.

Let O = {O;}] be the observed variables, represented as a binary vector (of 1°s), indi-
cating the observation of the activation node variables O; = 1, VO; € O. Let H = {X, Y}
be the hidden variables, where X = {X | }j: 1 is a set of variables (i.e., ground atoms) whose
marginals we want to compute, and ) = {Y; };":1 is the set of mega-nodes. Let g (X', ))) be an
auxiliary distribution over the set of hidden variables H, satisfying that >_ . 5, (X, Y) = 1.
Now using the distribution ¢ (&X', )), we can leverage Jensen’s inequality to obtain a lower
bound on the log-marginal likelihood of the form log P(O|M) as follows:?

log P(O|M) =log D" P(O, X, Y| M) (12a)
Xy

q(X,y)

=1 PO, X, YIM) ——— 12b

og%( M TS (12b)
PO, X, YIM)

X, ) log 27 12

z%q( V) log 2% (12¢)

= Eqx.y)[log P(O, X, YIM)] + H(q(X, D)) (12d)

=Fmlg(X, D)) (12e)

where Fq in Eq. (12e) is the negative of a quantity that represents the variational free
energy functional of the free distribution ¢ (&X', V). As in Eq. (12d), it is a summation of two
terms: E,(x,y) which is the expected log marginal-likelihood with respect to the distribu-
tions, g (X, )), and the second term, H (q (X, y)), is the negative entropy of the distribution
q(X,Y) (Neal and Hinton 1999, for more details).

We can also easily see that similarly to other traditional settings the free-energy Fa is
smaller than the log-marginal likelihood by an amount equal to the Kullback—Leibler (KL)
divergence between ¢ (X', ))) and the distribution over the hidden variables P (X, Y|O, M):

PX, Y0, M)P(O|M)

F X, = X, 1 13
MG (X, V) %q( ) log 2. (13a)

3 Note that “log” is a concave function and it can play an important role in maintaining convergences via
Jensen’s inequality, as will be explained further on.
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q(X,Y)

= log P(O|M) — %q(»«, Mg g S 7n (130
= log P(O|M) — KL[q(X, V) || P(X, Y|O, M)] (13c)

Since the KL[q X, || P(Xx, YO, M)] > 01in Eq. (13c) and the log marginal probabil-
ity under the model is a fixed quantity, then minimizing the KL divergence term is equivalent
to maximizing the variational free energy F 4. That is, one could equivalently select either
to maximize the lower bound (the variational free energy), or to minimize the KL divergence.
Based on that, we now want to infer the distribution ¢ (X', )) in a class of distributions Q
that maximize the variational free energy:*

g (X)) = argmgax Fm(q(X, ) (14)
qe

One problem is that the target of the maximization of the variational free energy Faq
is unwieldy for direct optimization. The variational free energy requires an explicit sum-
mation over all possible instantiations of X and all valid local entries of the factors (i.e.,
ground clauses) involved in the model for ), which is an operation that is infeasible in prac-
tice.” Instead we constrain the auxiliary ¢ (X, )) distribution to be a factorized (separable)
approximation as:

q(X,Y) =q(X; Bx)q(V; Ty) (15)

where ¢(X; Bx) is an approximation of the true distribution P(X|O, M) over hidden
variables, X'. This distribution is characterized by a set of variational parameters, By =
{ﬂ X f}::l' Since we use a fully factored distribution, these approximations are somewhat
similar to the approximate marginal probabilities of variables X; € X', which one might
obtain using standard loopy message-passing inference (e.g., LBP); however, unlike the situ-
ation with LBP, here we can subject these approximations to a variational analysis leading to
an understanding of message-passing inference in terms of KL divergence minimization. The
distribution ¢ (); 7y) is an approximation to the true distribution P(Y|O, M) over hidden
mega-nodes, ), which is characterized by a set of variational parameters, 7y = {Otyi }:.”:1,
for adapting the weights associated with the particular states of mega-nodes ¥; € V. As a
particular formulation of how the ¢ (); 7y) distribution is parametrized, these variational
parameters ay, (f;) can be defined as:

vy if the state of ¥; satisfies f;,

ay; (fi) :{ (16)

vy otherwise.

where v (and v,) are the values obtained from f; when a particular state of Y; satisfies
(or unsatisfies) the factor f; respectively. Note that vy and v, can be adapted using the
distributions of the factor f;’s argument variables and the weight associated with f; (as will
be explained in Sects. 4.1 and 4.2 for hard and soft factors respectively). Now, using Eq. (15),
we can simply represent the lower bound as follows:

Fm(q(X, ) = Fam(q(X: Bx) q(V; Ty)) (17a)

4 This is equivalent to finding the ¢ (X, Y)) that minimizes the KL between the true distribution and its
approximation : ¢* (X, ))) = argmin KL[q (X, V)| P(X, VO, ./\/l)].
q

5 An additional source of intractability arises in many models (e.g., SRL models) in which the number of
hidden variables is very large. For instance, a model with N binary hidden variables generally requires a
distribution over all 2V possible states of those variables. So even for moderately large N this results in
computational intractability.
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P(O, X, Y|M)
- X:B L Ty) 1 17b
%q( M4V Ty) log -2l S (17b)
= Eq(x:Bx)q(v: Ty [ 10g P(O, X, VIM)] + H(q(X; Bx)g(V: Ty))
(17¢)

where E;(x:Bx)q(y:Ty) 18 the expected log marginal-likelihood with respect to the distribu-
tions, g (X'; Bx) and g (); 7y), and the negative of the second term,— H (q (X; Bx)g (Vs ’Ty)) N
is the entropy. Hence, we can now set up our goal to find the distributions g (X’; Bx) and
q(Y; Ty) that maximize the lower bound F 4.

Now the role of the GEM-MP algorithm is to iteratively maximize the lower bound Fq
(or minimize the negative free energy —F 1) with respect to the distributions ¢ (X'; Bx) and
q(Y; Ty) by applying two steps. In the first step, g(X’; Bx) is used to maximize F 4 with
respect to ¢ (); Ty ). Then in the second step, ¢ (V; 7y) is used to maximize F 4 with respect
to ¢(X; Bx). That is, GEM-MP maximizes F 4 by performing two iterative updates

T3 ocargmax Eq(v..)1(73) [log P(O, X, YIM)| + H(q(X; Bx)q(V: Ty)) (18a)
y

~B oxargmax E, [log P(O, X, YIM)] + H(q(X; Bx)q(V; Ty)) (18b)
Bx

9(x:Bx)9(v;1y)
Note that the entropy term can be re-written as:

H(q(X; Bx)q(YV; Ty)) = H(q(X,Y)) = H(q(X; Bx))+ H(q(YV; Ty)) (19)

Now if we substitute the entropy H (q(X; Bx)q(Y; Ty)) from Eq. (19) into Eq. (18a)
and (18b), then we will have that ¢(X; By) does not depend on the entropy H (q(); 7y)))
when maximizing F a4 with respect to the variational parameters 7y, and ¢ (); 7y)) does not
depend on H (g (&X’; Bx)) when maximizing Faq with respect to the variational parameters
Bx.° We thus have

- T aargTr;lax Eqxnigry) [log P(O, X, VIM)] + H(q(V; Ty)) (20a)

[log P(O, X, YIM)] + H(q(X; Bx)). (20b)

— B% oargmax E,
X gBX Q(X;BX)Q(y:Ty)

Therefore, the goal of GEM-MP can be expressed as that of maximizing a lower bound
on the log marginal-likelihood by performing two steps, using superscript (¢) to denote the
iteration number:

— GEM-MP “M,y)-step”: (for maximizing mega-nodes’ parameters distributions)

Max. w.r.t q()i:Ty)

(t+1)
t+
Ty
E-step
= argmax E ® [log P(O, X, YIM)|+H (q(V; Ty)) 2n

7y By

6 Note that when the optimization is over the parameters 7y, that affects the function H(q(Y; 7y)) and not
H(q(X; By)).i.e., only H(q(X; By)) is dropped.
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— GEM-MP “M,(x)-step”: (for maximizing variable-nodes’ parameter distributions)

Max. w.r.t 9(x:B )

——
BE{’H)
E-step
=argmax E ¢ (1) [log PO, X, y|M)] +H(CI (X, BX)) (22)

By  lxBx)l(vi1y)

where here the arguments to Egs. (21) and (22) are the E (x)-step and E(y)-step correspond-
ing to M y)-step and M, x)-step, respectively. In Eq. (21), the current value of g (X'; Bx)
and g (Y; Ty) are used to optimize the mega-nodes’ variational parameters 7y. This could
result in maximizing the lower bound with respect to g ()V; 7y ). Next, in Eq. (22), the new
value of g (); 7y ) and the current value of g (X'; Bx) are used to optimize the nodes’ vari-
ational parameters 3. This could result in maximizing the lower bound once again but this
time with respect to ¢ (X’; Bx). Note that the difficulties in dealing with the expectation in
Egs. (21) and (22) depends on the properties of the distributions g (); 7y) and g (X; Bx).
That is if the inference is easy in these two distributions, then evaluating the expectation
should be relatively easily. For the entropy terms, the choice of how to approximate the dis-
tributions ¢ (; 7y) and g (X'; Bx) determines whether we can evaluate the entropy terms. As
will be shown hereafter, using the variational mean-field for approximating the distributions
q (V; Ty) and q (X; Bx) makes evaluating the entropy terms tractable.

Now, using a fully factored variational mean field approximation for ¢ (Y; 7y) implies that
we create our approximation from independent distributions over the hidden (mega-node)

variables as follows:
qV:Ty) =[] q¥iar) (23)
Y,'Ey

where q(Y;; ay,) is our complete approximation to the true probability distribution
P(Y;|O, X, M) of arandomly chosen valid local entry of mega-node Y;. Also, the variational
mean-field approximation to g (X; Bx) is similarly defined as a factorization of independent
distributions over the hidden variables in X', and can be expressed as follows:

q(X:;Bx)= [] a(X;:Bx,) (24)
X j eX
where g (X ;; Bx ) is an approximate distribution for the true marginal probability distribution
P(X;]O, M) of variable X ;.

From Eqgs. (23) and (24), we can write the expected log marginal-likelihood in Egs. (21)
and (22), as follows:

Efl(X:BXw(y;:ry)[lOg PO, X, YIM)]
:ZHQ(YM(XY,)[Z H q(Xj,ﬂX])logP(O’X7y|M)i| (25)

)/ Y,-e)i X X]'EX

‘We now proceed to optimize the lower bound, through the use of Eqs. (21) and (22), using
our variational mean-field approximations for both g(Y; 7y) and ¢ (X; Bx).

We use Egs. (25), (24) and (23) in Eq. (21). Hence, we have a maximization of the lower
bound on the log marginal-likelihood as
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T)(}”l) = argmax Z H q (Yi; ay[) [Z H q (Xj; ﬂXj) log P (O, X,)/IM)]

v 'y vey X XjeXx

+Z Yz»aY, )

Yiey

(26)

One can then separate out the terms related to the updates of the variational parameters
for each mega-node Y; in Eq. (26). In addition, updating the parameter distribution of mega-
node ¥; requires considering the distributions {g(X; fx;)} of only the variables in X" that

are arguments to the extended factor f, (ie,X;eXx f-)' where Y; is attached to f, That is
oD = argmax > ¢ (Vs ay, [Z [T a(x:x)tog i (0n 5. v |M)]
;i Y; X; XjeX;
+H (g (Yi; ar,))

where f,(Ol, X 7o Y;|M) is the partof P(O, X, Y| M) in the model with the factor associated
with the mega-node Y;. This in fact allows optimizing the variational parameters of the
distributions of each mega-node Y; as

©2))

E(x)-step
1
q (Yisay,) = ZCXP( (g (XjiBx )| Xj€X} ) [10gfz(01, Y |M)]) (28)
where Zy, = E{q<f)(Xk Bxo) | XitX ). X e X; }[logf,(O,, Y |M)] is the normalization

factor, and the expectation part can be wrltten as

E o (i, ) 13,62, [log /i (0i. X}, Y; | M)]
=> 1 « Xj;ﬂXj)logfi(Oivaiin|M) @9

X/}i X_,'GX[:i

This update is similar in form to the simpler case of fully factored mean field updates in a
model without the additional mega-nodes. See Winn (2004) for more details on the traditional
mean field updates. Note that here by using Eqs. (29) and (28) in Eq. (27), we also have that

(Hl) = argmax Zq Yiiay,) log g (Vi ay) + H(q (Yi; ay,) — log Zy, (30a)

ay;

yl
= argmax — KL[q(Y;; ay,) [|q(Yi; )] 4 const. (30b)
O{yl.
= argmax — KL[q(Y;; ay) |1q(Yi; o3)], (30¢)
O{yl.

where KL[q(Yi; ay;) |1q(Y;; a’;l_)] is the Kullback-Leibler divergence. The constant, in
Eq. (30b), is simply the logarithm of the normalization factor representing the variables’
{g(X;; Bx /)}, that are independent of g(Y;; ay,). Note that, from Eq. (30c), we maximize
on the lower bound with respect to g(Y;; ay,) by minimizing the Kullback-Leibler diver-
gence. This means that the lower bound can be maximized by setting ¢ (Y;; ay,) = g (¥;; (x;l_ ).

Now, likewise, when updating the distribution of each variable X ; we only consider the
updated distributions {g(Y;; ay;)} of mega-nodes attached to the extended factors on which
X appears (i.e., f, € ﬁX.i)' That is
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Fig. 3 Illustrating message-passing process of GEM-MP. (left) E,(x)-step messages from variables-to-
factors; (right) Eg(y)-step messages from factors-to-variables

q(X;; /33}_,-)
E,y)-step
1 -
g €xp (E g+ (Yay,), g0 (Xi:Bx,) | f',-ef‘xj}[lOg F(O, X, ylM)] ) (31)
j

where 1:"(0, X, Y|M)isthe partof P(O, X, Y| M) in the model with the factors associated
with the node X ;. This part involves only the mega-nodes’ ¢s in the Markov boundary of
each X ;, and the gs from the old iteration for the other variables X; # X ; that are arguments
to factors in which X ; appears.

At this point, we have paved the way for GEM-MP message-passing inference by trans-
forming the inference task into an instance of an EM style approach often associated with
learning tasks. The GEM-MP inference proceeds by iteratively sending two types of mes-
sages on the extended factor graph so as to compute the updated g distributions needed for the
M-steps above. The E, and M, steps are alternated until converging to a local maximum’ of
Fmq(Y; Ty), q(X; By)). These messages are different from simply running the standard
LBP algorithm, and they are formulated in the form of E (i.e., Eq(x), E4)) and M (i.e.,
My, My(x)) steps outlined in Egs. (21), (28), (22), and (31), where the E-steps can be
computed through message passing procedures as outlined below:

— E,(x)-step messages, {1 X =4 (X;; B Xj)}, that are sent from variables X to factors

F (as depicted in Fig. 3 (left)). The aim of sending these messages is to perform the GEM-
MP’s M (y)-stepin Eq. (21). That s, the setting of the distributions, {g (X ;; ﬂXj ) }vxj cx,
are used for estimating the distributions, {q(Y;; ay,)}vy,cy, that maximizes the lower
bound on the log marginal-likelihood of Eq. (21). To do so, each variable X ; € X sendsits
current marginal probability Bx; asan Egx)-step message, Ky, »f =4 (Xj; Bx;), toits

neighboring extended factors. Then, at the factors level, each extended factor f‘, € Fuses
the relevant marginals from those received incoming messages of its argument variables,
ie., {g(X;; Bx; )}vx X} to perform the computations of the E,(x)-step of Eq. (21).

This implies updating the distribution g (¥;; ary,) of its mega-node ¥; by computing what

7 This is equivalent to converging to a local minimum of the negative free energy functional —F z, which is
a stable local minimumwith respect to an inference task on the original factor graph.
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we call the probabilistic generalized arc consistency (pGAC) (we will discuss pGAC in
more detail in Sect. 4).

— E,y)-step messages, {[,Lﬁ_*)Xj = ZY,-:Vyk(Xj) q(Y;; ay,)}, that are sent from factors
to variables (as depicted in Fig. 3 (right)). Sending these messages corresponds to
the GEM-MP’s M, (x)-step in Eq. (22). Here, the approximation of the distributions,
{q(Yi; ay,)}vy,cy, obtained from the GEM-MP’s M, y)-step will be used to update
the marginals, ie., {g(X;; Bx j)}VX_/G x, that maximizes the lower bound on the log

marginal-likelihood in Eq. (22). Characteristically, each extended factor f; € F sends
a corresponding refinement of the pGAC distribution - that approximates the g (Y;; ay;)
of its mega-node - as an E(y)-step message, Wjx; = Zy My (X)) q(Y;; ay,), to each
of its argument variables, X; € X';. Now, at the variables level, each X; € X uses
the relevant refinement of pGAC distributions from those received i incoming messages
- which are the outgoing messages coming from its extended factors f, € Fx, ;- to
perform the computations of the E(y)-step of Eq. (22). This implies updating its distri-
bution g (X;; Bx;) by summing these messages (as it will be discussed in more detail in
Sect. 4).

Other work has empirically observed that asynchronous belief propagation scheduling
often yields faster convergence than synchronous schemes (Elidan et al. 2006). In variational
message passing schemes, the mathematical derivations lead to updates that are asynchronous
in nature. In Sect. 4 we will derive a general update-rule for GEM-MP based on variational
principles in more detail and we shall see it leads to an asynchronous scheduling of messages.
However, messages can be passed in a structured form whereby variables X are able to send
their E,(x)-step messages simultaneously to their factors (or mega-node variables V). At
the level of factors, the marginals are updated one at a time, then the factors send back
E 4 (y)-step messages simultaneously to their variables. Moreover, it should be noted that we
do the asynchronous updating schedule between variables X and mega-nodes ) in a form
that allows updates to potentially be computed in parallel. Thus the version of GEM-MP
that we present here involves sending messages in parallel from mega-nodes to variables and
variables to mega-nodes. Updates to the g (X';)s approximations for variables X ; € X could
be computed in parallel, and updates to the g());)s approximations for mega-nodes ¥; € Y
could also be performed in parallel.

Theorem 1 (GEM-MP guarantees convergence) At each iteration of updating the marginals
(i.e., variational parameters By ), GEM-MP increases monotonically the lower bound on the
model evidence such that it never overshoots the global optimum or until converging naturally
to some local optima.

Proof Using Eq. (15) into Eq. (13c) implies that the maximization of the lower bound
Fmg(X; Bx), g(YV; Ty)) is equivalent to the minimization of the Kullback—Leibler (KL)
divergence between ¢ (X'; By) and g(); 7y) and the true distribution, P (X, Y|O, M), over
hidden variables:

q(X; Bx)q(Y; Ty)

log D" P(O, X, VIM) — Fapr = D q(X; Bx)q(V; Ty) log TERNT

Xy X,y

= KL[q(X; Bx)q(Y: Ty) || P(X, V|0, M)} (32b)

(32a)

Now assume that before and after a given iteration (¢), we have q((i\).’-BX) and q&igx)

that denote the settings of 5 respectively. Likewise for q((S;,Ty) and q((;f%i) with respect
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Model Evidence
—— 108 yP (0, X, Y | M)

1l0g Xy p(0, X, Y| M) '[1082x,y17(0.x"y [»M)
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Fig. 4 Illustrating how each step of the GEM-MP algorithm is guaranteed to increase the lower bound on
the log marginal-likelihood. Inits “M ()-step”, the variational distribution over hidden mega-node variables
is maximized according to Eq. (21). Then, in its “Mx)-step”, the variational distribution over hidden X’
variables is maximized according to Eq. (22)

to 7y, where one iteration is a run of GEM-MP “M,y-step” followed by “Mx)-
(r+1)

step”. By construction, in the Mq(y)—step, 4. 7y) is chosen such that it maximizes
+ .
Fm (‘1(2( Bx)’ q(y Ty)) given q(X B ) Then, in the My x)-step, q(X B) ) is set by maxi-

1 1
mizing F (q(ﬁ\jB)X) q((;r?)y)) given q(y;Ty)’ and we have (as shown in Fig. 4):

) (1)
KL|:‘1(X Bx)12:73) [l P(X, YO, M)]

1
> KL[q((;i By Aty I P(X, VIO, M)} (33)

and similarly:
) (t+1)
KL[Q(X Bx) 4; Ty) [| P(X, V|0, M)]

= k1ol 0l 1 P Y100 (34

This implies that GEM-MP increases the lower bound monotonically.

Now since the exact log marginal-likelihood, log > Xy PO, X, Y|M), is a fixed quantity
and the Kullback—Leibler divergence, KL > 0, is a non-negative quantity then this implies
that GEM-MP never overshoots the global optimum of the variational free energy.

Since GEM-MP applies a variational mean-field approximation for ¢();7y) and
q(X; By) distributions [refer to Eqgs. (24) and (23)] over both mega-nodes and variables
nodes respectively, it inherits the guarantees of mean field to converge to a local minimum
of the negative variational free energy free energy or KL divergence. O

Note that the convergence behaviour of GEM-MP for inference task resembles the behav-

iour of the variational Bayesian expectation maximization approach proposed by Beal and
Ghahramani (2003) for the Bayesian learning task. Both of them can be seen as a variational
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technique (forming a factorial approximation) that minimizes a free-energy-based function
for estimating the marginal likelihood of the probabilistic models with hidden variables.

Itis worth noting that when reaching the GEM-MP “M,; (3))-step”, one could select between
alocal or global approximation to distribution g (; 7y). However, in this paper, we restricted
ourselves to local approximations.® Furthermore, although GEM-MP represents a general
template framework for applying variational inference to probabilistic graphical models, we
concentrate on Markov logic models, where the variables will be ground atoms and the factors
will be both hard and soft ground clauses (as will be explained in Sect. 4) and Ising models
(as will be explained in Sect. 5).

4 GEM-MP general update rule for Markov logic

By substituting the local approximation for g (); 7y) from My y)-step into the M (x)-step,
we can synthesize update rules that tell us how to set the new marginal in terms of the old one.
So, in practice the My (y)-step and the E;(y)-step messages of GEM-MP can be expressed in
the form of one set of messages (from atoms-to-atoms through clauses). This set of messages
synthesizes a general update rule for GEM-MP, applicable to Markov logic. However, since
the underlying factor graph often contains hard and soft clauses, then within the GEM-MP
framework we will intentionally distinguish hard and soft clauses by using two variants of
the general update rule (denoted as Hard-update-rule and Soft-update-rule) for tackling hard
and soft clauses, respectively.

4.1 Hard update rule

For notational convenience, we explain the derivation of the hard update rule by considering
untyped atoms; but extending it to the more general case is straightforward. Also, for clarity,
we begin the derivation with the M, x)-step rather than with the usual M y)-step. So we
assume that we have already constructed ¢ (); 73)). We also assume that all clauses are hard.

1. M, x)-step: Recalling Sect. 3, our basic goal in this step is to use g (); 7y) to estimate
the marginals (i.e., parameters) B that maximize the expected log-likelihood such that each
Bx; € Bx is a proper probability distribution. Thus we have an optimization problem of the

form:’

max Eq(x: 5.9 73| log P(O, YIX, M)]
X

.. (ﬁ;j +;3;j) =1, VBy, € By (35)
To perform this optimization, we first express it as the Lagrangian function A(Bx):

ABx) = Eqx:84)qv: 1) [ log P(O, V| X, M)] — T (Bx) (36)

where T (By) is a constraint that ensures the marginals, 5y, are sound probability distribu-
tions. This constraint can be simply represented as follows:

8 Note that the local approximation means that we handle mega-nodes individually. This appears in the
factorization of g (; 75 y) into independent distributions [refer to Eq. (23)].

? Note that: Eg (x: B )¢ (v:T3) [ 102 P(O, X, VIM)] o Eq(x: 8,19 (v:T3) [ 1og PO, VIX, M)].
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TG = Y, (1- 8%, - Bx,) (37)

XjGX

where Ax; are Lagrange multipliers that allow a penalty if the marginal distribution Bx ; does
not marginalize to exactly one.
Now, let us turn to the derivation of the expected log-likelihood. We have that:

Eq(x:zsx)wy;fy)[log P(O,YIX, M)]
= > q(Yiiay) > q(X;: Bx;)log P (O, Y| X, M) (38)

Yiey XjEX

Based on the (hidden) variables X ; € X’ and mega-nodes ¥; € ), we can then decouple the
distribution, log P(O, Y|X, M), into individual distributions corresponding to hard ground
clauses, and we have:!0

Eyx:52)0(v:) [10€ P(O, V12, M)] o > q (X3 Bx;) q (Yis v,
X;.Yi

x log [ [] Pz, M)] (39)

fih cFh

where P (Y;|X, M) is the probability of randomly choosing a valid local entry in the mega-
node Y; given the marginal probabilities of the ground atoms, By. Now, we can proceed by
decomposing P (Y;|X, M) into individual marginals of ground atoms that possess consistent
truth values in the valid local entries of Y;. That is:

log[ I1 P(Y,-w,M)]%log[ [T II ﬁx,-(Yi(Xj))] (40)

fih eFh fih cFh XjEXf.h
1

where Bx; (Y; (X)) is the marginal probability of ground atom X at its consistent values
with Y;.

It is important to note that the decomposition in Eq. (40) is a mean field approximation for
P(Y;|X, M). It implies that the probability of valid local entries of Y; for the ground clause
fi can be computed using individual marginals of the variables in the scope of f; at their
instantiations over such local entries. For instance, suppose that f; (X1, X2, X3) is defined
over three Boolean variables { X1, X», X3} with marginal probabilities {Bx,, Bx,, Bx;}. Now
let (0,0, 1) be a valid local entry in the mega-node Y; of f;. To compute the probability
P(0,0, 1|Bx,, Bx,, Bx;, M), we can simply multiply the marginals of the three variables at
their instantiations over this valid local entry as:

P (0,0, 1Bx,. Bx,» Bxs» M) = By, x Bx, X Bx,

Where ﬂ;l s ,3;2 and /3;(”3 are the marginal probabilities of X, X5, and X3 at values 0, 0, and
1 respectively.

We apply Eq. (40) in Eq. (39), convert logarithms of products into sums of logarithms,
exchange summations, and handle each hard ground clause fih € F" separately in a sum.

10 Note that since we marginalize extended factors over their mega-nodes then it is sufficient to work directly
with original factors in the original factor graph, which here are the hard ground clauses. In addition, we can
eliminate the observed variable O = 1 from log P(O, Y|X, M) by explicitly considering only the valid local
entries of the hard ground clauses.
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Subsequently we take the partial derivative of the Lagrangian function in Eq. (36) with
respect to an individual ground atom positive marginal ﬂ;(rj and equate it to zero:'!

(E4(y)-step message) Wfi—>X;

ad 1
aﬁT[A(Bm]:o;»ﬂ;jzg > > qWiay) (41)

X J f/’efﬁ. YV (X j)="+"
J

Weight; )
J

where >y v, (X j)="+" q(Y;; ay,) is the E,(y)-step message that X ; will receive from each
hard ground clause ( fih € }'ﬁ’(j) conveying what it believes about X ;’s positive marginal.
Each E;y)-step message is computed by adding a term for those valid local entries (Y; :
Vyk(X ;) = “+”) which instantiate the current hard ground clause using the positive value
“4” for ground atom X ;.

Thus the sum of the E,y)-step messages that ground atom X; will receive from its
neighboring hard ground clauses represents a weight (i.e., Weight;gj) used to update its
positive marginal.

Furthermore an analogous expression can be applied for a negative marginal ﬂ;j :

(E4(y)-step message) I f; () =X

9 1
= B =0= By = > > qWiiay) (42)

5=
Px; T\ fhery, Yivn ="~

Weighty
J
Finally we now move to solving Ax; as follows:

_ FromEgs. (41) and (42)
Bx, + B ;(rj =1 =

[(Weighz}j + Weight;j) Jax, = 1] =, = (Weight;j + Weight}j_) 43)

which shows that Ay ; serves as a normalizing constant that converts such weights (i.e.,
Weighf”j, and Weight}j) into a sound marginal probability (i.e. Bx; = [,B;j, 5;{}_]).

Now to obtain the completed hard update rule, what remains is the M (y)-step, through
which we need to substitute the distribution g (Y;; ay;) in Egs. (41) and (42).

2. M, (y)-step: The goal here is to produce the distribution g (Y;; ay,) by using the current
setting of marginals By . However the summation Y Yi ¥y (X ) =—" involves enumerating all
the valid local entries for each Y;, which is inefficient. Instead we approximate the distribution
ZYi:VYk(Xj)=“—” q(Y;; ay;) for each hard ground clause fl.h € F" by using a probability
1-&(X;, fih), which we call the probabilistic generalized arc consistency (pGAC). At this
point, let us pause to elaborate more on pGAC in the next subsection.

I This implies taking the derivative of both expected log-likelihoods, which we obtain after substituting the
value of Eq. (40) for Eq. (39), and the penalty term in Eq. (37).

@ Springer



Mach Learn (2017) 106:1-54 23

4.1.1 Note on the connection between pGAC and variational inference

According to the concept of generalized arc consistency, a necessary (but not sufficient)
condition for a ground atom X ; to be assigned a value d € {+, —}, is for every other ground
atom appearing in the ground clause f; to be individually consistent in the support of this
assignment, i.e., X; = d. Without loss of generality, suppose that X ; appears positively in
fi: there is a probability that X ; = d is not generalized arc consistent with respect to f; when
those other ground atoms appearing in f; are individually inconsistent with this assignment
since X ; = d can belong to an invalid local entry of f;. This means that there is a probability
that X; = d is unsatisfiable with respect to f; when all other ground atoms appearing in f;
are set unsatisfyingly. We use £(X;, f;) to denote this probability, we assume Independence
and approximate it as:

s o= 1 (-65) II  (8%) (44)

XkEXj»[+\{Xj} XkGXfi—\{Xj}

As indicated in Eq. (44), (X, f;) is computed by iterating through all the other ground
atoms in clause f; and consulting their marginals toward the opposite truth value of their
appearance in f;. In other words, the £(X ;, f;) forms a product representing the probability
that, except X, all other ground atoms X' \{X;} in f; taking on particular values that
constitute invalid local entries to f;. Such invalid local entries support X ; unsatisfying f;
and can be approximated based on the marginal distributions of those ground atoms (i.e.,
X7 \{X}) atthese particular values. It should be noted that f; has those marginal distributions
from the incoming E4(x)-step messages that are sent from its argument ground atoms X'f,
during the GEM-MP’s M, (y))-step.

Hence, if £(X;, f;) is the probability of X; = d unsatisfying f; then 1 — &(X, f;) is
directly the probability of X; = d satisfying the ground clause f;. It also represents the
probability that X ; = d is GAC with respect to f; because the event of X; = d satisfying
fi implies that it must be GAC to f;. This interpretation entails a form of generalized arc
consistency, adapted to CNF, in a probabilistic sense; we call it a Probabilistic Generalized
Arc Consistency.

Definition 2 (Probabilistic generalized arc consistency (pGAC))

Given a ground clause f; € F defined over ground atoms X'y, and for every X; € X,
let Dy; = {+, —} be the domain of X ;. A ground atom X ; assigned a truth value d € Dy,
is said to be probabilistically generalized arc consistent (pGAC) to ground clause f; if the
probability of X; = d belonging to a valid local entry of f; is non-zero. That is to say, if
there is a non-zero probability that X ; = d is GAC to f;. The pGAC probability of X ; = d
can be approximated as:

0<1—&X;, f) <1 (45)

The definition of the traditional GAC in Sect. 2 corresponds to the particular case of pGAC
where (X, fi) = 0, meaning that the probability of X; = d being GAC to f; definitely
occurs, and £(X;, fi) = 1 when it is never GAC to f;. Based on that, if f; contains X;
positively then the pPGAC probability of X ; = + equals 1 because it is always GAC to f;. In
an analogous way, the pGAC probability is 1 for X; = — when f; contains X ; negatively.

From a probabilistic perspective, the pPGAC probability of X ; = d represents the probabil-
ity that X ; = d is involved in a valid local entry of f;. This is similar to the computation of the
solution probability of X; = d by using the probabilistic arc consistency (pAC) (presented
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by Horsch and Havens 2000, and summarized in Sect. 2). However, it should be noted that
our pGAC applies mean-field approximation. This is because when computing § (X ;, fi), as
defined in Eq. (44), for each ground atom X; € X'y, we use the marginal probabilities of
other ground atoms X; € X, \{X ;} set unsatisfying in f;. Thus the main difference between
our pGAC and pAC (Horsch and Havens 2000) appears in the usage of mean-field and BP
for computing the probability that X; = d belongs to valid local entry of f; in pGAC and
pAC, respectively. Furthermore, it should be noted that pAC is restricted to binary constraints
whilst pGAC is additionally applicable to non-binary ones.

From the point of view of computational complexity, (X ;, f;) requires only linear com-
putational time in the arity of the ground clause (as will be shown in Proposition 3). Thus,
PGAC is an efficient form of GAC compared to pAC. In addition, pGAC guarantees the
convergence of mean-field whereas pAC inherits the possibility of non-convergence from
BP.

From a statistical perspective, the pPGAC probability of X ; = + is a closed form approx-
imation for a sample from the valid local entries of f; that involve X; = +. Thus we have

that:
(1= )y x>0 a(iar) (46)
ViV (X )="+"

And similarly the pGAC probability for X ; = —:

[L—eXp ], > > a(¥iay) “7)

Yii¥yi (X )="="

Based on Eqgs. (46) and (47), we can use pGAC for computing the two components of
E,y)-step message, in Egs. (41)and (42), that f; sends to X ; as follows:

- [1,1 =&(X;, fi)]if f; contains X ; positively.
- [1 —&(Xj, fi), 1]if f; contains X ; negatively.

Note that computing the components of f;’s Ey)-step message in this way above requires
having in hand the marginals of all other ground atoms, X € X'z \{X ;}. Thus, one of the best
choices is to simultaneously passing the E;x)-step messages — which convey the marginals
— from ground atoms X'y, to ground clause f;. Additionally at f;’s level we can sequentially
update the marginals as: obtain the marginal of the first ground atom then use its new marginal
in the updating process of the second atom’s marginal, then use the first and second atoms’
new marginals in the updating process of the third atom’s marginal, and so on. This sequential
updating allows GEM-MP to use the latest available information of the marginals through
the updating process. In addition, doing so enables a single update rule that performs both
the E- and M- steps at the same time, by directly representing the My -step within the rule
we derived for the M, x)-step.

4.1.2 Using pGAC in the derivation of the hard update rule

We now continue the derivation of the hard update rule by using pGAC to address the task
of producing ZYi V(X)) q(Y;; ay;) in Egs. (41) and (42) as follows:

Weighty = > > q(Yisay) (48a)

Vs e]—';’(f YiVye (X )="+"
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:[ > > q(Yi;ay[):|+|: > > q(n;an)]

f;_h e]—';?(# YiVy (X j)="+" fi’1 e]—'f‘(j YV (X j)="+"

(48b)
~ 3 m+ > (1-5(}(,,];”)) (48¢)
f[he]-‘;’(j 4 fhefh
- S ()
f,”efﬁ“(j,

where in Eq. (48b) we first separate the summation into X ;’s positive and negative hard
ground clauses to consider the two distinct situations of whether X ; appears as a positive
ground atom versus the other situation where it appears as a negative ground atom. Further in
Eq. (48c¢) in the first positive summation, we replaced the inner summation with the constant
1 (because all other atoms will be generalized arc consistent with X; = “+” for the hard
clauses that have a positive appearance of X ; - as explained in Sect. 4.1.1).

The end result, as in Eq. (48d), is the Weight;j of ground atom X; computed as the
summation of all hard ground clauses that include X ; minus the summation of pGAC of hard
ground clauses that involve X ; as a negative atom.

The interpretation of Weigh@j can be understood as reducing the positive probability of
X according to the expectation of the probability that X ; is needed by its negative hard
ground clauses. Such reductions are taken from a constant that represents the overall number

of hard ground clauses that involve X ; (i.e. ’f;}/ ’). Similarly we can obtain:

weighty = |Fh | = > & (X, 1) (49)

b h
i E-7:)(/-+

where Weight;(j has an analogous interpretation of Weightz, for the negative probability of
X;.

4.2 Soft update rule

To derive the update rule for soft ground clauses, what we need to do is to soften some restric-
tions on the weight parts (i.e. WezghtX , Weight X; ) of the hard update rule. This encompasses
modifying the distributions, g (Y;; cy, ) of hard ground clauses for soft ground clauses by
applying two consecutive steps: softening and embedding.

For clarity, let us recall the example of the extended factor graph shown in Fig. 2 (right). In
the softening step, we define the variational parameters «;, of the distributions g (¥;; vy, ), that
are appended to the soft clauses to be different from those appended to hard clauses in a way
that renders them suitable to the semantics of soft ground clauses. That is, we discriminate
variational parameters of distributions g (¥;; ay; ) for hard and soft ground clauses respectively
as follows:

(f-h) _ 1 if the state of Y; satisfies f[h,
! 0  Otherwise.

(50)

(f‘v) _ exp(wfis) if the state of ¥; satisfies f,
R Otherwise.
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where w g5 is the numeric weight associated with soft ground clause f;’. Now, the use of

variational parameters ay; ( ff) (instead of ay, ( fih)) for the hard update rule in Eq. (48d)
implies taking the exponential transformation as follows:

oftenin, 1
B DY exp[ 2 Q(Yi;ayf(ﬂh))} 5D

I Yoy ==+ flerh
J

My o0 (aiian (1)
Note that exp [Zf'-heff’( q(Yi; ay, (fih))] is converted simply to:
NS

[T exp(q(ien(5)

feFy,
J
where

exp (¢ (Yi; ay, (f1) = q (Vi ay, (f9).

Accordingly in the embedding step we embed the support of invalid local entries. This is
because at the dissatisfaction of soft ground clauses we get 1 instead of 0 at the dissatisfaction
of hard ground clauses. Thus, we discard the summation over valid local entries (i.e., remove
ZYf:Vyk( Xj)=4" in Eq. (51)) and instead we consider the support of both valid local entries
(weighted by exp(w s+)) and invalid local entries (weighted by 1), ending up with:

1

Ax

Embedding ,
= ﬁxj =

[T 7 Wiiar () (52)

J fise}-)s(j

¥
v
Xj

Likewise adhering to the derivation of the hard update rule, we can obtain the local
approximation of Weight;j part for the soft update rule as:

Weighty = ] ¢ (Yiiay (1)) (53a)

5,

=[ [T a(iay, (ff))]x[ [T ooy, (ff))] (53b)
Ty freFy, -

%|: H exp(wfix)[l]]

ﬁe}-f(j+

x[ [1 [(1—5(Xj7fis))eXP(wﬁ)+5(vafis)'1” (530)
f,-sefsj,
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= | eXp Z wfl_s

=
—| T exo(wp) > [ [T &5 5 (exp (wy) - 1)] (53d)
eRy, freR,

Note that comparing Eq. (53c) to its corresponding Eq. (48c) for the update rules of the
hard factors, we have an additional term “£(X;, fl.s ) - 1” in the second summation. This is
because computing the second part of Eq. (53b) implies computing two terms as appeared in
the second part of Eq. (53c): the firstis (1 — &£(X, f}’)) representing the probability that X ;
being positive satisfies the factor f;’ that include X ; as negative ground atom, and therefore
it is multiplied by exp(w fs) since at the satisfaction of soft ground clause f we obtain
exp(w s). The second termis §(X ;, f7) representing the probability that X ; being positive
dissatisfies the factor f;, and therefore it is multiplied by 1 since at the dlssatlsfactlon of f}
we obtain 1. This is the “£(X;, f;’) - 1" term that has disappeared from the update rules of
the hard factors in Eq. (48c) because £(X ;, f;*) is multiplied by 0, since at the dissatisfaction
of hard ground clauses we get 0 instead of 1 for the dissatisfaction of soft ground clauses.

Similarly, we can obtain the negative weight part Weight;(i for the soft update rule as:

Weight;(j = | exp Z w g

R,
| TI e (wf’_:) x [ [T &7 (exp (wf;) - 1)] (54)
frery, 1PeFy.

Note that the weight parts [in Eqs. (53d) and (54)] used for the soft update rule, are soft
versions of previously derived weight parts [in Eqs. (48d) and (49)] used for the hard update
rule. Therefore at a high level they have similar interpretations.

At this point, we take the Weight}j and Weight;(j from Eqgs. (48d), (49), (53d), and (54)

and substitute these for the Weight;j and Wei ght}j in Egs. (41) and (42) to obtain our ultimate
set of GEM-MP’s rules in order to update the marginals of query ground atoms. This is in
Table 3. The main advantage of these update rules is that they capture relationships between
ground atoms with each other. Thus, we do not need to pass explicitly the messages from
atoms-to-clauses or vice versa.

Note that, on one hand, using a single update rule for updating the marginals is beneficial
for the simplicity of implementation. However, on the other hand, using other scheduling than
the one used here for the GEM-MP framework requires re-deriving GEM-MP’s equations to
obtain other single update rules that are adopted with the new scheduling, or do not use single
update rules and pass explicitly the M, y)-step and E,(y)-step messages from variables-to-
factors and factors-to-variables, respectively.

4.3 GEM-MP versus LBP

One might contrast GEM-MP and LBP inference. Recall the basic quantities used by GEM-
MP in Egs. (41) and (42) versus LBP in Egs. (3) and (4) for updating the marginal of a
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Table 3 General update rules of GEM-MP inference for Markov logic. These rules capture relationships
between ground atoms with each other, and therefore it does not require explicitly passing messages between
atoms and clauses

=— "0 B =—— "L ay. = Weightl, + Weighty,
ﬂxj ix; /ij ix; X 8hix; 8hix;

Weight; . Weight'y

Hard-update-rule
Weighty < ‘]_—;l(j‘ - Zfihefgf 5 S
Weighty . < ‘]_—;’(j‘ - zﬂhef§f+ X, 1
Soft-update-rule .
Weight;j “«~ [exp (ZﬂS€F§j wfl_s)]
_[H_&Seﬁﬁ exp(w ss) X [H_,-l_xeff(r EXj, S exp(w ps) — 1)]}
Weight}j «~ [exp (Zfi.ve}-}s(j wfi.v)]

_[Hfisefgfj* exp(wfis) X [Hffeﬂ}ﬁ E(Xj, fis)(exp(wfis) - 1)]:|

single variable X ;. Although the marginal update rules of both algorithms look similar, they
are constructed by very different routes, having important differences. The first significant
difference is that due to the expectations involved in variational message passing, in GEM-
MP we take a summation (i.e. Y fieFx, ) over the incoming messages to a given node, which

are the outgoing messages coming from the factors. This is in contrast to the multiplication
(e ] fieFx ) associated with standard LBP. In other words GEM-MP handles the incoming
17X

message (or, as named, £ (y)-step message) from each factor as a separate term in a sum. This
means that when moving toward the local maximum of energy functional F 4 in Eq. (17¢),
GEM-MP computes a moderate arithmetic average of the incoming E,(y)-step messages to
yield the marginal update steps for X ;. Due to the variational underpinnings of GEM-MP
these steps update a quantity that is a lower bound on the log marginal likelihood. This
is attributable to the use of Jensen’s inequality in Eq. (12c) that allows lower bounding
the model evidence, and at each update step we minimize the Kullback-Leibler divergence
distance. We therefore cannot ‘overstep’ in our approximation of the true model evidence
(refer to Theorem 1). In contrast, LBP computes a (coarse) geometric average of the incoming
messages in a setting where there is no such bound.

The second important difference between these algorithms is how they compute their
“outgoing messages” from factors to variables based on the previous iteration’s incoming
messages from variables to factors. In LBP the outgoing message is a partial sum over
the product of the factor’s probability distribution by its incoming messages from other
neighboring variables which naturally arises from the original exact computations which
easily fall out of the computations for correctly marginalizing a tree-structured graphical
model. However the operations of simply multiplying then taking partial sums do nothing to
exploit any local structure of the underlying factor. In contrast GEM-MP leverages the fact
that factors (e.g., in Markov logic and Ising models) are represented as logical clauses, and
therefore we can take advantage of generalized arc consistency to cleverly convey the local
structures’ semantics into their outgoing messages. Strictly speaking GEM-MP’s outgoing
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E,(y)-step message is an approximate marginal distribution ¢ (Y;; ay;) over the valid local
entries Y; : Vyr(X;) in which the X; (that will receive the message) is GAC with other
variables in the factor; we approximate this distribution by computing the pGAC of X ; using
the marginals of other variables in the factor that are GAC with X ; (refer to Sect. 4.1.1).
This means that the outgoing E(y)-step message that will be received by X ; ensures that
its marginal should be consistent with the marginals of other variables according to the local
structure’s semantic of the factor. This improves the process of convincing the variables to
converge correctly. Hence exploiting the logical structures by pGAC when computing the
outgoing messages of factors is what we believe helps GEM-MP alleviate the problems
associated with determinism.

Algorithm 1 The GEM-MP inference algorithm for Markov logic.

Input: Clauses F, Ground queries X', Maximum number of iterations Zmax.
Output: Marginals 5y .
// Initialization
1: for each Xje X do
By, < U0, 11
3: end for
// discriminate query atoms.
4: X <« X.i e X;// involved in hard ground clauses Fh e F.
Xy « X € X;// involved in soft ground clauses F* e F.
// inferring marginals
: repeat
for each X ; € &), do
ﬂXj < Hard-Update-Rule; // as in Table 3
9: end for
10:  for each X; € X do
11: Bx, < Soft-Update-Rule; // as in Table 3
12:  end for
13: until convergence or termination of Zyax
14: Return B y';

W

@D

4.4 GEM-MP algorithm

Algorithm 1 gives a pseudo-code for the GEM-MP inference algorithm. The algorithm starts
by uniformly initializing (i.e., /) the marginals of all ground atoms that exist in the query
set X (lines 1-3). Then, it distinguishes two subsets of query ground atoms. The first is
Aj, that involves query ground atoms involved in hard ground clauses (line 4). The second
subset is X for the ones involved in soft ground clauses (line 5). Note that if the query
atom is involved in both soft and hard ground clauses, then it will be included in the two
subsets. At each step, the algorithm proceeds by updating the marginals for the first subset
of query atoms by using the hard update rule (lines 7-9). Then it updates the marginals
for query atoms of the second subset by applying the soft update rule (lines 10-12). The
algorithm keeps alternating between carrying out the two update-rules until convergence
(ie.,VX; € &, |5X,- @) — Bx; (T — 1)‘ < €, where € is a specified precision) or reaching
the maximum number of iterations (line 13). Although the marginals of the query atoms
involved by soft and hard ground clauses (i.e., exist in the two subsets A}, and X;) may
be affected by swapping from hard to soft update rules, or vice versa, such query atoms’
marginals play the role of propagating the information about hard ground clauses to query
atoms in Xy when it is used by the soft update rule, and propagating the information about
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soft ground clauses to query atoms in A}, when it is used by the hard update rule. It should
be noted that the checks performed by each update-rule are extremely cheap (a fraction of a
second, on average) and the subset of ground clauses at each particular step is unlikely to be
in the hard critical region.

Proposition 3 (Computational Complexity) Given an MLN'’s ground network with n ground
atoms, m ground clauses, and a maximum arity of the ground clauses of r, one iteration of
computing the marginals of query atoms takes time in O (nmr) in the worst case.

Proof see “Appendix”. O

Note that even though GEM-MP is built on a propositional basis, its computational complexity
is quite efficient since the size of the grounded network is proportional to O(d"), where d
is the number of objects (constants) in the domain. Also, in practice, we can improve this
computational time by preconditioning some terms. For instance, we do not compute the

constant terms (such as ’f;'(j’ in the hard update rule) at each iteration, but instead we
compute them once and then recall their values.

5 GEM-MP update rules for Ising MRFs

In this section we demonstrate how to easily adapt the GEM-MP algorithm to handle inference
in the presence of determinism over other typical probabilistic graphical models, rather
than over Markov logic networks. For simplicity, let us here consider Ising models with
arbitrary topology which are a specific subset of the canonical (pairwise) Markov random
fields (MRFs)—undirected graphical models that compactly represent a joint distribution over
X by assuming that it is obtained as a product of potentials defined on subsets of variables
(Koller and Friedman 2009). Although pairwise Markov random fields are commonly used
as a benchmark for inference because they have a simple and compact representation, they
often pose a challenge for inference. Now assume that X = {X, ..., X} is a set of binary
random variables that are Bernoulli distributed. In an Ising model Z = ((X, £); ) we have
an undirected graph consisting of the set of all variables X', a set of edges between variables
£, and a set of parameters 6 = {0;, 6;;}. The model can be then given as

energy function

p(X =x)= Zg_l g[Z(Xerj)eS Gij-Xin+ZXi€x G’I'Xi] (55a)
#ij (Xi, X ) #i (Xi)
r——— ——
= Z;l[ H eeij']l(xi*xj) :| X |: H Egi-Xi :| (55b)
(Xi,X))eE XieXx

where {6;} and {6;;} are the parameters of uni-variate potentials {¢;(X;)} and pairwise
potentials {¢;; (X;, X ;)}, respectively. Typically it is convenient to represent Ising models
in Eq. (55b) as factor graphs, where variables X; € X represented as variable nodes and
potentials {¢; (X;)} and {¢;;(X;, X;)} represented as factor nodes. Traditionally, the para-
meters {¢;} are drawn uniformly from U[—d, dy] where dy € R. For pairwise potentials,
the parameters {6;;} are chosen as 7 - C where we sample 7 in the range [—d, dr] having
some nodes to agree and disagree with each other. C is also a chosen constant. Higher values
of C impose stronger constraints, leading to a harder inference task.
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Hence each univariate potential ¢; (X;) can be represented as a unit clause involving only
one variable X; with associated weight 6; such that it equals ¢’ when it is satisfied and 1
otherwise. Similarly each ¢;;(X;, X ;) can be formulated as a conjunction of two clauses!?
[(=X; VX)) A (X; v—=X})], with associated weight n - C which equals e”’C when X; = X
and e~ "€ otherwise. Hence, the Ising model can be translated into CNF as:

— Unit clauses: (X;,0;),VX; € X
— Pairwise clauses: [(—X; V X;) A (X; vV =X;),60;j =n-C|,VX;, X; €€

Now, without difficulty, we can directly apply the soft update rule from Table 3 for such
clauses when computing the marginals on the factor graph. Now assume that we want to
present some determinism in the model. We can achieve that by adjusting the parameters in
such a way that makes either univariate or pairwise potential produce O when it is unsatisfied.
For instance, if C is very large (say C — 00) in the setting of parameters 6;; we obtain that
all the valid local entries of ¢;; (X;, X;)’s clauses equal e> and all its invalid local entries
equal O (i.e., e~°°), which can be simply re-cast as {0, 1} clauses. Thus in this case we can
apply the hard update rule from Table 3 when computing the marginals.

6 Empirical evaluation

The goal of our experimental evaluation was to investigate the following key questions:

— (Q1.) Is GEM-MP’s accuracy competitive with state-of-the-art inference algorithms for
Markov logic? This question is important to answer as it examines the soundness of
GEM-MP inference.

— (Q2.) In the presence of graphs with problematic cycles, comparing with LBP exhibiting
oscillations, does GEM-MP lead to convergence? We want to explore and emphasize
experimentally that GEM-MP inference indeed addresses Limitation 1.

— (Q3.) Is GEM-MP more accurate than LBP in the presence of determinism? We want to
check experimentally the effectiveness of GEM-MP inference to remedy Limitation 2.

— (Q4.) Is GEM-MP scalable compared to other state-of-the-art propositional inference
algorithms for Markov logic? We wish to examine the real-world applicability of GEM-
MP inference.

— (Q5.) Is GEM-MP accurate compared to state-of-the-art convergent message-passing
algorithms for other probabilistic graphical models such as Markov Random Fields? We
wish to examine the accuracy and convergence behaviour of GEM-MP inference for
other related model classes and algorithms.

— (Q6.) Is GEM-MP’s accuracy influenced by the initialization of the marginals? We will
examine if the initialization of approximate marginals using random values differs from
initializing marginals using a uniform distribution.

To answer Questions Q1-Q4, we first selected three real-world datasets: Cora for Entity
resolution, Yeast for Protein-interactions, and UW-CSE for Advising relationships. Such
datasets'? and their corresponding MLN formulations contain the problematic properties of
determinism and cycles and therefore represent good bases for carrying out our experimental
evaluations. The first point to note is that their expressive Markov logic networks have a
formidable number of cycles. Besides this, some of their rules can be expressed as hard

12 Note that l1 < I converted into CNF gives two clauses : (=1 V Ip) A (I1 V —lp)
13 Publicly available: http://alchemy.cs.washington.edu/data/.
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formulas. Thus, it is highly anticipated that the inference procedure will face the hindrances
engendered from determinism and cycles. The second point is that they exemplify important
applications: Entity resolution has recently become somewhat of a holy grail sort of task;
Adpvising relationships and Protein-interactions are instances of Link prediction, an important
task that always receives much interest in statistical relational learning (Richardson and
Domingos 2006).

To evaluate our proposed GEM-MP inference algorithm, we compared its results with five
prominent state-of-the-art inference algorithms'# that are built into the Alchemy system (Kok
et al. 2007), one of the most powerful tools to perform inference on Markov logic models: '3

— MC-SAT proposed by Poon and Domingos (2006).

Lazy MC-SAT (LMCSAT) proposed by Poon et al. (2008).

Loopy Belief Propagation (LBP) (refer to Yedidia et al. 2005).

Gibbs sampling (Gibbs) (Richardson and Domingos 2006).

Lifted Importance sampling (L-Im) proposed by Venugopal and Gogate (2014b) as an
improvement of the one proposed by Gogate et al. (2012).

MC-SAT converges rapidly when performing inference in the presence of determinism and
L-Im is the recent lifted importance sampling inference algorithm that addresses the evidence
problem (Venugopal and Gogate 2014a) and as a result improves the scalability and accuracy
of reasoning. Therefore to answer Q1 and Q4, our main comparison is with MC-SAT and L-
Im. Since our GEM-MP algorithm is a variant of message-passing inference, we shall compare
with LBP to answer Q1, Q2, Q3, and Q4. Gibbs, a popular MCMC algorithm, can serve as
a good baseline here. Additionally, even though GEM-MP is built on a propositional basis,
it may be suitable to compare its scalability with two state-of-the-art approaches for scaling
inference such as Lifted in the L-Import algorithm and Lazy in the LMCSAT algorithm. Note
that a few other efficient inference methods are not considered in our experiments because
they are completely dominated by one of the three considered algorithms (e.g., simulated
tempering had shown poor results compared to MC-SAT, as shown by Poon and Domingos
(2006)), or they run exact inference [like PTP introduced by Gogate and Domingos (2011)],
which is out of reach for the underlying datasets.

6.1 Datasets

Cora. This dataset consists of 1295 citations of 132 different computer science papers.'®

— MLN: We used the MLN model which is similar to the established one of Singla and
Domingos (2006). The MLN involves formulas stating regularities such as: if two cita-
tions are the same, their fields are the same; if two fields are the same, their citations are
the same. It also has formulas representing transitive closure, which are assigned very
high weight (i.e. near deterministic clauses). The final knowledge base contains 10 atoms
and 32 formulas (adjusted as 4 hard, 3 near-deterministic and 25 soft).

— Query: The goal of inference is to predict which pairs of citations refer to the same citation
(SameBib), and similarly for author, title and venue fields (SameTitle, SameAuthor and
SameVenue). The other atoms are considered evidence atoms.

14 These algorithms run on the original factor graph G.
15 Alchemy v0.2 is publicly available at: http://alchemy.cs.washington.edu/.

16 Primarily labeled by Andrew McCallum (https://www.cs.umass.edu/~Cmccallum/data/cora-refs.tar.gz)
and recently cleaned up and split into five subsets for cross-validation by Singla and Domingos (2006).
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Yeast. This dataset captures information about a protein’s location, function, phenotype,
class, enzymes, and protein-protein interaction for the Comprehensive Yeast Genome.!” Tt
contains four subsets, each of which contains the information about 450 proteins.

— MLN: We used the MLN model described by Davis and Domingos (2009). It involves
singleton rules for predicting the interaction relationship, and rules describing how protein
functions relate to interactions between proteins (i.e. two interacting proteins tend to have
similar functions). The final knowledge base has 7 atoms and 8 first-order formulas (2
hard and 6 soft).

— Query: The goal of inference is to predict the interaction relation (Interaction, Function).
All other atoms (e.g., location, protein-class, enzyme, etc.) are considered evidence atoms.

UW-CSE. This dataset records information about the University of Washington (UW), Com-
puter Science and Engineering Department (CSE). The database consists of five subsets: Al
graphics, programming languages, systems, and theory (which corresponds to five research
areas).

— MLN: We used the MLN model available from the Alchemy website.!® It includes
formulas such as the following: each student has at most one advisor; if a student is an
author of a paper, so is her advisor; advanced students only TA courses taught by their
advisors; a formula indicates that it is not allowed for a student to have both temporary
and formal advisors at the same time (=T em Advised(s, p) V —Advised(s, p) which
is a true statement at UW-CSE), etc. The final knowledge base contains 22 atoms and 94
formulas (considered as 7 hard and 65 soft and we excluded the 22 unit clauses). Note
that ten out of these 22 clauses are equality predicates: Sameperson(person; person),
Samecourse(course; course), etc. which always have known, fixed values that are true if
the two arguments are the same constant. The rest of them are easily predictable using
the unit clause method.

— Query: The inference task is to predict advisory relationships (AdvisedBy), and all other
atoms are evidence (corresponding to the all-information scenario in Richardson and
Domingos (2006)).

6.2 Metrics

Since computing exact marginal or joint conditional distributions is not feasible for the
underlying domains, we evaluated the quality of inference with our method using two metrics:
the average conditional log marginal-likelihood (CLL) and the balanced Fj score. The CLL,
which approximates the KL-divergence between the actual and computed marginals returned
by an inference algorithm for query ground atoms, is an intuitive way of measuring the quality
of the produced marginal probabilities. After obtaining the marginal probabilities from the
inference algorithm, the average CLL of a query atom is computed by averaging the log-
marginal probabilities of the true values over all its groundings. For the F-score metric, we
predict that a query ground atom is true if its marginal probability is at least 0.5; otherwise
we predict that it is false (Huynh and Mooney 2011, 2009; Papai et al. 2012, for more details
about measuring prediction quality on the basis of marginal probabilities). The advantage of
F-score is its insensitivity to true negatives (TNs), and thus it can demonstrate the quality
of an algorithm for predicting the few true positives (TPs).

17 Originally prepared by the Munich Information Center for Protein Sequence.
I8 Available at: http://alchemy.cs.washington.edu/data/uw-cse/.
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6.3 Methodology and results

All the experiments were run on a cluster of nodes with multiprocessors running 2.4 GHz Intel
CPUs with 4 GB of RAM under RED HAT Linux 5.5. We used the implementations of both
the training algorithm (preconditioned scaled conjugate gradient) and inference algorithms
(MC-SAT, LBP, and Gibbs) that exist in the Alchemy system (Kok et al. 2007). In addition,
we implemented our GEM-MP algorithm as an extension to Alchemy’s inference. All of
Alchemy’s default parameters were retained (e.g., 100 burn-in iterations to negate the effect
of initialization in MC-SAT and Gibbs). We conducted our experimental evaluation through
five experiments.

6.3.1 Experiment I

The first experiment was dedicated to answering Q1 and Q2. We ran our experiments using
a five-way cross-validation for both Cora and UW-CSE, and a four-way cross-validation for
Yeast. In the training phase we learned the weights of models by running a preconditioned
scaled conjugate gradient (PSCG) algorithm (in Lowd and Domingos 2007, it was shown
that PSCG performed the best). In the testing phase, and using the learned models, we
carried out inference on the held-out dataset by using each of the four underlying inference
algorithms to produce the marginals of all groundings of query atoms being true. Such
marginal probabilities were used to compute the F and average CLL metrics.

Although a traditional way to assess the inference algorithms would be to run them until
convergence and to compare their running times, it is problematic here because some of
the algorithms may never converge in the presence of determinism and cycles (e.g. LBP).
Or some may converge very slowly with the existence of near-determinism (e.g., Gibbs).
Instead we assigned all inference algorithms an identical running time sufficient to judge
the inference behavior. Then, at each time step, we recorded the average CLL over all query
atoms by averaging their CLLs on each held-out test set. In addition, we computed the Fj
score based on the results we obtained at the end of the allotted time.

Figure 5 shows the results for the average CLL as a function of time for inference algo-
rithms on the underlying datasets. For each point, we plotted error bars displaying the average
standard deviation over the predictions for the groundings of each predicate. Note that when
the error bars are tiny, they may not be clearly visible in the plots. Overall GEM-MP is the
most accurate of all the algorithms compared, achieving the best average CLL on Yeast and
UW-CSE datasets (this answers Q1). For the Cora dataset it took about 225 min to dominate
all other inference algorithms.'® MC-SAT came close behind GEM-MP on both Cora and
UW-CSE, but considerably further behind on Yeast. LBP was marginally less accurate than
Gibbs on both Cora and UW-CSE [which is consistent with the experiments of Singla and
Domingos (2008)], but more accurate than Gibbs on Yeast. Remarkably GEM-MP converged
quickly on both the Yeast and UW-CSE datasets and converged comparatively fast on Cora
as well (this answers Q2). By contrast LBP was unable to converge, oscillating on both the
Cora and Yeast datasets, and Gibbs converged very slowly on all datasets. L-Im was clearly
more accurate than Gibbs on all the tested datasets. In addition its accuracy was better than
LBP’s accuracy with a large margin on Cora and UW-CSE, and slightly less accurate than
LBP on the Yeast dataset. The accuracy of MC-SAT and of its lazy algorithm (LMCSAT)
were very close on all the datasets.

19 Note that for the Cora dataset the construction of the grounded network required for inference takes about
185 min on average.
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Table 4 reports the average F scores for the inference algorithms on the underlying
datasets. The results complement those of Fig. 5: underscoring the promise of our proposed
GEM-MP algorithm to obtain the highest quality among the alternatives for predicting mar-
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Table4 Average F scores for the GEM-MP, MC-SAT, Gibbs, LBP, LMCSAT, and L-Im inference algorithms
on Cora, Yeast, and UW-CSE at the end of the allotted time

Datasets Query Algorithms

GEM-MP MC-SAT Gibbs LBP LMCSAT L-Im

Cora SameBib 0.778 0.695 0.443 0.382 0.690 0.491
SameAuthor 0.960 0.926 0.660 0.657 0.926 0.690
SameTitle 0.860 0.790 0.570 0.515 0.780 0.581
SameVenue 0.843 0.747 0.584 0.504 0.739 0.613
Yeast Interacts 0.792 0.669 0.474 0.536 0.651 0.512
Function 0.820 0.691 0.492 0.575 0.679 0.532
UW-CSE advisedBy 0.762 0.589 0.483 0.415 0.580 0.504
Overall average 0.831 0.730 0.529 0.512 0.720 0.560

The bold values represent the cases in which an inference algorithm has the highest average F| score compared
to the other tested inference algorithms

ginals, particularly for the TP query atoms (i.e. query atoms that are true and predicted to be
true). GEM-MP substantially outperformed LBP, Gibbs and L-IM on all datasets, achieving
39, 37, and 33 % greater accuracy respectively (answer Q2). MC-SAT was relatively com-
petitive compared with GEM-MP on Cora and UW-CSE, but on the Yeast dataset GEM-MP
performed significantly better, attaining 13 % greater accuracy than MC-SAT (conclusive
answer to QI). Gibbs and LBP rivaled each other on the tested datasets but were both
dominated by MC-SAT. LMCSAT was very competitive to its propositional MC-SAT with
approximately a 2.2 % loss in accuracy.

6.3.2 Experiment I1

Here we concentrated on Q3. To obtain robust answers we examined the performance of
GEM-MP, MC-SAT and LBP at varying amounts of determinism. That is, we re-ran Exper-
iment I at gradual amounts of determinism. We marked each amount of determinism as a
level, with determinism levels in the range [0, 50]. For example the O-level stands for zero
percentage of determinism (i.e., all clauses in the model are considered soft clauses) and the
50-level means 50 % of determinism (i.e., we considered 50 % of the clauses in the model as
hard clauses and 50 % as soft clauses).

Figure 6 reports the average CLL as a function of time for GEM-MP, LBP, and MC-SAT at
different levels of determinism. Overall the results confirm that the amount of determinism in
the model has a great impact on both the accuracy and the convergence of GEM-MP and LBP.
That is, when increasing the level of determinism, we observe an increase in the accuracy
of GEM-MP and a decrease in the accuracy of LBP. At each level of determinism and on
all datasets GEM-MP prevailed over the corresponding LBP in terms of accuracy of results
(answering 03). In addition the greater the level of determinism, the greater the convergence
for GEM-MP, and the greater the non-convergence for LBP (answering 02). Remarkably the
0-level, which has no amount of determinism, exhibits the worst behaviour for GEM-MP.20
In contrast it is the best level for LBP, though even at this level GEM-MP surpassed LBP

20 With no determinism the hard update rule of GEM-MP is not being used.
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Fig. 6 The impact of determinism on the accuracy of GEM-MP, MC-SAT and LBP for Cora (top), Yeast

(middle), and UW-CSE (bottom)
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on all datasets. For MC-SAT increasing the determinism in the model has a small negative
impact on its accuracy.

6.3.3 Experiment II1

This experiment examines Q4. We are interested here in judging the scalability of various
inference algorithms. To guarantee a fair comparison, we reran Experiment I while increasing
the number of objects in the domain from 100 to 200 by increments of 25, following the
methodology previously used by Poon et al. (2008), Shavlik and Natarajan (2009). Then we
reported the average running time to achieve convergence or up to a maximum of 5000 and
10,000 iterations respectively for the entire inference process.

Figure 7 reports the average inference time as a function of the number of objects in
the domain. Overall the results show that both LMCSAT (a lazy-based algorithm) and L-
IM (lifted-based algorithm) rivaled each other, and both dominate all other propositional
algorithms compared. L-IM was relatively scalable compared with LMCSAT on Yeast and
UW-CSE, but on the Cora dataset LMCSAT’s scalability was significantly better than L-IM.
Aside from Lazy- and Lifted-based algorithms and by considering the propositional ones,
the results demonstrate that GEM-MP is scalable compared to the other evaluated inference
algorithms. It clearly prevailed over both LBP and Gibbs on the entire range of domain sizes
by a significant margin, while saving time by more than a factor of 2 on all datasets. It also
rivaled the MC-SAT algorithm overall. Although it came in slightly behind MC-SAT on the
Cora dataset, it outperformed MC-SAT in handling all domain sizes on both the Yeast and
UW-CSE datasets, whereas MC-SAT ran out of memory with 200 objects on UW-CSE.

6.3.4 Experiment IV

This experiment was performed to answer QS. Here the goal is to compare GEM-MP with
three state-of-the art convergent message-passing algorithms:

— L2-convex proposed by Hazan and Shashua (2010, 2008), which runs sequential message
passing on the convex-L2 Bethe free energy.

— RBP proposed by Elidan et al. (2006), which runs damped Residual BP, a greedy informed
schedule for message passing.

— CCCP double loop algorithm proposed by Yuille (2001, 2002), which runs message-
passing on the convex-concave Bethe free energy.

To evaluate the four underlying message-passing algorithms we apply them to Ising
models on a two-dimensional grid network. These model networks are standard bench-
marks to evaluate message-passing algorithms as they provide a systematic way to analyze
iterative algorithms (Elidan et al. 2006). Following Hazan and Shashua (2010) and Eli-
dan et al. (2006), we generated 20 x 20 grids: The distribution has the form p(x)

g i XiX i+ 6-X; . . .
eZ<X1~XJ)es ij Xi Xj+2x, O ', where 6;, 6;; are parameters (i.e., weights) of the univariate

and pairwise potentials respectively. For univariate potentials, the parameters 6; were drawn
uniformly from/[—dy, dy] where dy € {0.05, 1}. For pairwise potentials, we use e"C when
x; = xj where we sample 7 in the range [—0.5, 0.5] having some nodes to agree and disagree
with each other. C is an agreement factor, so the higher values of C impose stronger clauses
(e.g., C =200 and n = 0.5 yield deterministic potentials since if a state violates a potential
with C = 200 it becomes 2.69 x 10*? times less probable). Thus to challenge and explore
the difficulty of inference in different regimes, we generate the networks with two levels of
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determinism: Level 1 is [0, 20%] and Level 2 is [20, 40 %], with realizations obtained at
10 % intervals, 50 graphs at each interval. In each individual realization of the interval, we
run the four underlying inference algorithms for the network until convergence or up to 500
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Fig. 8 The results of 20 x 20 grids of Ising model: (top) the cumulative percentage of convergence (conver-
gence %) versus number of iterations, and (bottom) the average KL-divergence (KL) metric versus number of
iterations at determinism level 1 [0, 20 %] (left) and 2 [20, 40 %] (right)

iterations. To diagnose the convergence we considered the cumulative percentage of conver-
gence of all algorithms as a function of the number of iterations. To address the quality of
results, where exact inference was tractable using the junction tree algorithm, we compute
the average KL-divergence (KL) metric between the approximate and exact node marginals
for each algorithm on all 20 x 20 generated Ising grids.

Figure 8 (top) displays the cumulative percentage of convergence as a function of the
number of iterations for each algorithm at Level 1 and 2. Overall the results show that GEM-
MP converges significantly more often than all other compared convergent message-passing
algorithms (answering Q5). Also it converges much faster than them. At Level 1 it finishes
at 97 % convergence rates versus 82 % for L2-convex, 68 % for CCCP, and 59 % for residual
BP. At Level 2 it clearly achieves at least 17.5, 34.8, and 48.4 % better convergence than
L2-convex, CCCP, and residual BP respectively.

Figure 8 (bottom) displays the average KL-divergence (KL) between the approximate and
exact node marginals for each algorithm as a function of the number of iterations at the two
levels. The results complement those of Fig. 8 (top), here again underscoring the promise of
GEM-MP for converging to more accurate solutions more rapidly than all other compared
algorithms (answering Q5). In the two determinism scenarios, it achieves on average 37.8, 56,
and 61.6 % higher quality marginals in terms of the average KL compared to the L2-convex,
CCCP, and residual BP methods respectively. Also it finishes at a KL-divergence of 0.23
and 0.19 in the two determinism levels respectively. This shows that the quality of marginals
obtained by GEM-MP at Level 2 are more accurate than the ones obtained at Level 1, which
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Fig.9 Top and middle: The average CLL of GEM-MP-random (x-axis) versus the average CLL of GEM-MP-
Uniform (y-axis) for Cora (left-red), Yeast (middle-green) and UW-CSE (right-magenta) at two determinism
levels, respectively. Bottom: the average KL-divergence of GEM-MP-random versus the average KL-
divergence of GEM-MP-Uniform for 20 x 20 grids of Ising model at Level 1 [0, 20 %] (left-blue) and at
Level 2 [20, 40 %] (right-blue) during iterations

is consistent with the results in Experiment II that demonstrate that GEM-MP provides more
robust results when there is more determinism in the model.

6.3.5 Experiment V

This experiment attempts to answer Q6. The goal is to compare the quality of solutions
returned by GEM-MP at different initialization settings of marginals: GEM-MP with random
initialization (GEM-MP-random) and GEM-MP with uniform initialization (GEM-MP-
uniform). We re-ran Experiment I for MLNs and recorded the relative correlations of the
average CLL between GEM-MP-random and GEM-MP-uniform. In addition, we re-ran
Experiment IV for Ising models and report the relative correlations of the average KL-
divergence between GEM-MP-random and GEM-MP-uniform.

Figure 9 shows the quality of marginals obtained from GEM-MP-random relative to
the quality of marginals of GEM-MP-uniform as a function of the number of iterations
at two determinism levels for Cora (red), Yeast (green), UW-CSE (magenta), and Ising
(blue). In each scatter plot the line of best fit indicates that both GEM-MP-random and
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GEM-MP-uniform yield results of nearly identical quality. Any point below the line means
that GEM-MP-uniform was more accurate than GEM-MP-random in that iteration, and the
contrary is true if the point is above the line. Overall the results show that none of the
initialization settings dominates the other (answering 06), and that GEM-MP is not sensitive
to the initialization settings.

7 Discussion

The experimental results from the previous section suggest that, in terms of both accuracy and
scalability, GEM-MP outperforms LBP inference. It improves message-passing inference in
two ways. First, it alleviates the threat of non-convergence in the presence of cycles. This
is due to making moderate moves in the marginal likelihood space and the consequences of
Jensen’s inequality which prevents such moves from overshooting the nearest fixed point.
Second, it improves the quality of approximate marginals obtained in the presence of deter-
minism, which we believe is attributable to the virtue of using the concept of generalized
arc consistency to leverage the local entries of factors in order to compute more accurate
outgoing messages.

Moreover, GEM-MP performs at least as well as the other state-of-the-art sampling-based
inference methods (such as MC-SAT and Gibbs). The goal of MC-SAT is to combine a
satisfiability-based method (e.g., SampleSAT) with MCMC-based sampling approaches to
remedy the challenges engendered by determinism in the setting of MCMC inference. On
one hand, GEM-MP achieves a similar goal, but by integrating a satisfiability-based method
(i.e., GAC) with message-passing inference, instead of sampling inference. On the other
hand, they completely differ in how they use ideas from satisfiability-oriented methods to
deal with the issue of determinism.

From the satisfiability perspective, MC-SAT uses SampleSAT (Wei et al. 2004) to help
slice sampling (i.e. MCMC) to near-uniformly sampling a new state given the auxiliary
variables. This provides MC-SAT with the ability to rapidly jump between breaking modes,
and thus it avoids the local search in MCMC inference from being trapped in isolated modes.
Accordingly, one of the limitation of MC-SAT is that it applies a stochastic greedy local search
procedure which is unable to make large moves in the state-space between isolated modes.
This may affect its capacity to converge to accurate results. Conversely, at a high level, GEM-
MP optimizes the setting of parameters with respect to a distribution over hidden variables
that captures the relative weights of samples (i.e., the valid local entries) that are generated by
individual variables in closed form. Thereby it performs a sort of gradient descent/ascent local
search procedure. This gives GEM-MP an advantage in converging to more accurate results
than MC-SAT, though MC-SAT is more likely to converge faster than GEM-MP. This could
explain the great success of GEM-MP over MC-SAT on most of the experiments (MC-SAT
only surpassed GEM-MP on the Cora dataset in experiment IIT). But we have to remember
that, during the training phase, we trained the models by applying a preconditioned scaled
conjugate gradient (PSCG) algorithm which uses MC-SAT for its inference step. This in turn
gave an advantage to the MC-SAT algorithm when performing inference in the testing phase.

Gibbs is only reliable when neither determinism nor near-determinism are present. LBP
for its part also deteriorates in the presence of determinism and near-determinism, but also
when cycles are present. Thus if LBP gets stuck in cycles with determinism, it may be lodged
there forever. However, if Gibbs hits a local optimum, it would eventually leave, even though
it may take considerable time. This could explain the success of Gibbs over LBP. But with
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the increase of determinism in the model, Gibbs loses out to LBP, as seen in the case of the
Yeast dataset in experiment I. Thus determinism apparently has a stronger effect on Gibbs
than on LBP in this experiment.

Furthermore GEM-MP performs better than the other state-of-the-art convergent message-
passing inference algorithms such as L2-convex, CCCP and Damped residual BP. The goal
of L2-convex is to convexify the Bethe free energy to guarantee BP converging to an accurate
local minimum. The CCCP algorithm uses a convex-concave Bethe energy to achieve the
same purpose. On the one hand, GEM-MP achieves a similar purpose by optimizing a concave
variational free energy, which is a lower bound to the model evidence. On the other hand, it
additionally leverages the determinism and therefore, while the presence of determinism in a
model can hinder the performance and converging behaviour of both L2-convex and CCCP to
reach alocal minimum, it increases the possibility that GEM-MP converges to an accurate one.

Overall the experimental results suggest that the initialization of GEM-MP does not sig-
nificantly matter in practice since the correlation of two initialization settings (i.e., uniform
and random) is often moderately positive on average. While we believe that it is important to
have a good initialization to ensure that the local minimum that is found is sufficiently close
to the global minimum, it seems that a good initialization will depend on the model and data.
Therefore in some cases either random or uniform initialization will suffice, whilst in others
it may be necessary to use a heuristic. Generally speaking it appears however that GEM-MP
is able to reach an accurate result given any initialization, possibly at the expense of a minor
increase in computation time.

From the scalability point of view, although Singla (2012) conjectured that lifted infer-
ence may subsume lazy, a clear relationship between lifted inference and lazy inference still
eludes us. Our experimental results show that neither one was able to dominate the other.
On one hand, lazy inference exploits sparseness to ground the network lazily, and therefore
greatly reduces the inference memory and time as well. But lazy inference still works at
the propositional level, in the sense that the basic units during inference are ground clauses.
In contrast, lifted inference exploits a key property of first-order logic to allow answering
queries without materializing all the objects in the domain inference. On the other hand, lifted
inference requires the network to have a specific symmetric structure, which is not always
the case in real-world applications and, in addition, in the presence of evidence most models
are not liftable because evidence breaks symmetries. Thus at a high level the structure of the
model network plays a significant role in the scalability of inference using different factors:
symmetry and sparseness. If the model is extremely sparse then one can expect lazy inference
to be more scalable. Lifted inference dominates when the symmetry prevails in the model’s
structure.

8 Related work

Belief propagation (BP) was developed by Pearl (1988) as an inference procedure for singly
connected belief networks. Pearl was the first to observe that running LBP leads to incorrect
results on multi-connected networks. Conversely, other work (such as Mceliece et al. 1998;
Frey and MacKay 1998) has shown success with LBP on loopy networks for turbo code
applications. Further, Murphy et al. (1999) reported that LBP can provide good results on
graphs with loops. These promising results shed light on evaluating the performance of BP
in other applications and suggest the value of a closer study of its behavior for understanding
the reasons for this success. Accordingly, several formulations of LBP have appeared, such
as the direct implementation in a factor graph by Kschischang et al. (2001), tree-weighted
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BP (Wainwright et al. 2003) and the generalized cluster graph method of Mateescu et al.
(2010). Most such formulations were influenced by the admirable analysis of Yedidia et al.
(2003) who proved a relationship between LBP and Bethe approximation such that the
local minima of Bethe free energy are the fixed points of LBP. Complementing this, further
analysis has also explored LBPs relationships to variational approximations (Yedidia et al.
2005). This pioneering work outlined new research directions for a deeper understanding of
and improvements to LBP.

Studying LBP’s convergence The convergence of LBP has been studied by examining the
sufficient conditions to ensure the existence and the uniqueness of local minima. Early on,
Heskes (2004) pointed out that if a graph involves a single cycle, then we have a unique local
minimum, and the convergence of LBP can be all but guaranteed. Supplementing Heskes
(2004), Yedidia et al. (2005) showed that if a factor graph has more than one cycle then the
convexity of Bethe free energy is violated and thus the uniqueness of LBP’s fixed points
is also violated. More recently, Shi et al. (2010) discussed new sufficient conditions for the
convergence of LBP by deriving uniform and non-uniform error bounds on the messages.
But this research direction ignores an important observation made by Heskes (2002):

“Still, loopy belief propagation can fail to converge, and apparently for two different
reasons. The first rather innocent one is a too large step size, similar to taking a too
large “learning parameter” in gradient-descent learning”

In this paper, by relying on a variational formulation, our algorithm optimizes variational
bounds on the model evidence and it implicitly guarantees not to overstep a local minimum.
LBP and Bethe free energy Here, mainstream work attempts to derive new types of LBP
for approximate inference by directly optimizing the Bethe energy functional, such as the
double loop algorithm (Yuille 2001). However, the main disadvantage of this algorithm is
that it requires solving an optimization problem at each iteration, which results in a slower
convergence. Another class of algorithm is known as cluster-graph BP, which runs LBP on
sub-trees of the cluster graph. These algorithms exhibit faster convergence and introduce a
new way of characterizing the connections between LBP and optimization problems based
on the energy functional. Consequently, several works appeared which generalized the class
of LBP by introducing variants of the energy functional that improve the convergence of
LBP. For instance, Wainwright and Jordan (2003) and Nguyen et al. (2004) proposed a
convexified free energy that provides an upper bound on the partition functions. But the
algorithms that have been built on this energy functional still cannot guarantee convergence.
Recently, alternative algorithms have been introduced to guarantee convergence for such
energy functionals (Hazan and Shashua 2008; Meltzer et al. 2009; Globerson and Jaakkola
2007; Hazan and Shashua 2010).

At a high level, our GEM-MP approach resembles previously mentioned approaches in
that it is based on variational inference and involves minimizing a free-energy functional.

It remains unclear if there is a relationship between determinism and the uniqueness
of local minima of LBP. However, our experiments here support prior work that has also
observed that applying LBP on graphical models with determinism and cycles is more likely
to oscillate or converge to wrong results.

LBP and Constraint propagation Horsch and Havens (2000) proposed an algorithm that is a
generalization of arc consistency used in constraint reasoning, and a specialization of the LBP
used for probabilistic reasoning. The idea was to exploit the relationship between LBP and
arc consistency to compute the solution probabilities, which can be then used as a heuristic to
guide constructive search algorithms to solve binary CSPs. The bucket-elimination procedure
was proposed by Dechter and Mateescu (2003). However it is known that such a procedure
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has a time and space complexity that is exponential in the induced width of the problem
graph, related to the processing order of variables and to how densely these variables are
connected to each other. Alternatively, Mateescu et al. (2010) presented approaches that are
based on constructing a relationship between LBP and constraint propagation techniques.
One idea underlying these approaches is to transform the loopy graph into a tree-like structure
to alleviate the presence of cycles, and then to exploit constraint propagation techniques to
tackle the determinism. Building on these ideas we explore the second research hypothesis:
constraint satisfaction techniques might be able to help address the challenges resulting from
determinism in the graphical models.

A recent extension of such approaches is the combination of LBP, constraint propaga-
tion, and expectation maximization to derive an efficient heuristic search for solving both
satisfiability problems (Hsu et al. 2007, 2008) and constraint satisfaction problems (Le Bras
et al. 2009). Although these algorithms perform well in finding solutions, they apply only to
graphical models that have no probabilistic knowledge. In contrast, our GEM-MP method is
able to handle probabilistic knowledge.

Damped LBP Another traditional research area to handle non-convergence has involved
dampening the marginals (Koller and Friedman 2009) in order to diminish oscillation. How-
ever, in many cases, the dampening causes LBP to converge but often yields a poor quality
result (Mooij and Kappen 2005). This is because the correct results are not usually in the
average point (Murphy et al. 1999). The second track of this research direction is to allevi-
ate double counting by changing the schedule of updating messages [e.g., sequentially on
an Euler path, as per Yeang (2010), residual BP, as per Elidan et al. (2006), among others]
besides adapting the initialization of the marginals [e.g., restart with different initializations,
as per Koller and Friedman (2009)]. However, this cannot guarantee convergence since the
algorithm still runs the risk of overshooting the nearest local minimum. Whilst, a key of
the approach of GEM-MP is that its iterations are constrained by the variational inequality
and therefore updates to distributions over hidden variables are done in a way such that the
variational lower bound never exceeds the log marginal likelihood.

Re-parameterized LBP More recently, Smith and Gogate (2014) introduced a new approach
aimed at dealing with determinism more effectively. The idea of this approach is to re-
parameterize the Markov network by changing the entry in a factor that has zero to any
non-negative real value in such a way that the LBP algorithm converges faster. Our GEM-
MP also addresses the problem of determinism by improving message-passing inference to
deal with determinism and cycles more effectively, but our approach is different being rooted
in both variational techniques and leveraging generalized arc consistency.

LBP and variational methods Another research area combines message-passing with other
variational methods to produce new types of LBP that can guarantee convergence. For
example, Winn and Bishop (2005) presented variational message passing as a way to view
many variational inference techniques, and it represents a general purpose algorithm for
approximate inference. This algorithm shows great performance when it applies to conjugate
exponential family models network. Weinman et al. (2008) proposed a sparse variational
message passing algorithm to dramatically accelerate the approximate inference needed for
parameter optimization related to the problem of stereo vision. Recently, Dauwels et al.
(2005) proposed a generic form of structured variational message-passing and investigated
a message-passing formulation of EM. Our GEM-MP method can be seen as akin to these
message-passing inference methods. But a basic aspect of GEM-MP is the exploitation of
ideas from CS to handle the challenges stemming from determinism.

Lifted LBP Another promising research area that has been recently explored seeks to improve
the scalability of LBP on models that feature large networks. Here, mainstream work attempts
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to exploit some structural properties in the network like symmetry (Ahmadi et al. 2013),
determinism (Papai et al. 2011; Ibrahim et al. 2015), sparseness (Poon et al. 2008), and type
hierarchy (Kiddon and Domingos 2011) to scale LBP inference. For instance, Lifted Inference
either directly operates on the first-order structure or uses the symmetry present in the structure
of the network to reduce its size (e.g., Ahmadi et al. 2013). In this context, the key idea is to
deal with groups of indistinguishable variables rather than individual variables. Poole (2003)
was one of the first to show that variable elimination can be lifted to avoid propositionalization.
This has been extended with some lifted variants of the algorithm proposed by De Salvo Braz
etal. (2005) and Milch et al. (2008). Subsequently, Singla and Domingos (2008) proposed the
first lifted version of LBP, which has been extended by Sen et al. (2009), and generalized with
the emergence of the color message-passing algorithm introduced by Kersting et al. (2009)
for approximating the computational symmetries. Subsequently, it was shown by Gogate and
Domingos (2011) that to avoid dissipating the capabilities of first-order theorem proving, we
have to take into considerations the logical structure. Based on that, lifted variants of weighted
model counting have been proposed by Gogate and Domingos (2011), meanwhile variants of
lifted knowledge compilation such as the bisimulation-based algorithm were introduced by
Vanden Broecketal. (2011). Later on, it was observed that in some cases the constructed lifted
network can itself be quite large, making it very close in size to the fully propositionalized
one, and yielding no speedup by lifting the inference. The interesting argument proposed
by Kersting (2012) concludes that the evidence problem could be the reason: symmetries
within models easily break down when variables become correlated by virtue of depending
asymmetrically on evidence and thus lifting produces models that are often not far from
propositionalized ones, diminishing the power of lifted inference. Thus, one can obtain better
lifting by performing shattering as needed during BP inference such as anytime BP proposed
by De Salvo Braz et al. (2009), or exploit the model’s symmetries before we obtain the
evidence as demonstrated in (Bui et al. 2012), or shattering a model into local pieces and
then iteratively handling the pieces independently and re-combining the parameters from
each piece as explained in (Ahmadi et al. 2013). Recently, Gogate et al. (2012) show that the
evidence problem with lifting inference can be solved when applied to importance sampling
algorithms by using an informed distribution derived from a compressed representation of
MLN. Our approach is different from the above lifted-based message passing algorithms
being built on a propositional basis, but it can be easily incorporated with their benefits for
lifting its inference.

9 Conclusion and future work

Our work has targeted the less studied issue of the use of LBP and message passing techniques
in probabilistic models possessing both cycles and determinism. To fully exploit determin-
ism as opposed to having determinism posing a problem for inference, we have examined
some of the intricacies of message passing algorithms. The novelty of our work lies in the
proposal and exploration of an approach which we have named Generalized arc-consistency
Expectation-Maximization Message-Passing (GEM-MP), a message-passing algorithm that
applies a form of variational approximate inference in an extended form of an underlying
graphical model. We have focused our experiments on Markov logic, but our method is easily
generalized to other graphical models. To demonstrate the ease of generalizing our approach,
we have also presented results using Ising models and we find that our method outperforms a
variety of state-of-the-art techniques. The rules of GEM-MP can be viewed as a free energy
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minimization method whose successive updates form a path of bounded steps to the near-
est local minimum in the space of approximate marginals. Using entity resolution and link
prediction problems, we have experimentally validated the effectiveness of GEM-MP for
converging to more accurate marginals and addressed the limitations of LBP engendered by
the presence of cycles and determinism.

As with other variational methods, much of the strength of our method is a consequence
of Jensen’s inequality which enables variational message-passing inference to estimate mar-
ginals - through the optimization of variational parameters - by tightening a lower bound on
the model’s marginal likelihood at each approximate marginal update, such that we cannot
overshoot the underlying true marginal likelihood. We believe this effect alleviates the threat
of non-convergence due to cycles. In addition, the effectiveness of generalized arc consis-
tency for handling the logical structures can be used to exploit structure in the problem that
is not normally available to a more naive message-passing algorithm. In so doing, our for-
mulation transforms determinism from a limitation into an advantage from the perspective
of GEM-MP.

These explorations point to a number of promising directions for future work. We plan
to evaluate the use of GEM-MP as an inference subroutine for learning. Also, we intend to
investigate the lifted (Ahmadi et al. 2013; Singla et al. 2010) and the lazy (Poon et al. 2008)
versions of GEM-MP to enhance its scalability. Finally, we intend to increase the accuracy
of GEM-MP by deriving new update rules that apply a global approximation for ¢ (); 7y))
in the M (y)-step of GEM-MP.
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Appendix: Proofs of Propositions

This section contains the proofs of Propositions 1 and 2 in Sect. 3, and the proof of Proposi-
tion 3 in Sect. 4.

— Proposition 1.

Proof Assume that we have a non-negative factor f;(Xq, ..., X,) of n argument variables in
the original factor graph G that is extended to f, (X1, ..., Xy, O;,Y;) in the extended factor
graph G by attaching to it both an auxiliary activation node O; and an auxiliary mega-node
Y; such that the extended f, (X1, ..., Xy, 0;, Y;) never shares either its activation node or
its mega-node with other extended factors. Let Z being the set of all possible local entries
of f’, that involves O; = 1. Each local entry of Z has the form (x1, ..., x, y;, 1), where
x = (x1, ..., X,) is a configuration to the argument variables of f;, y; is a state of auxiliary
mega-node Y;, and value 1 for auxiliary activation node O;. By construction, for each possible
local entry (xy, ..., x,, yi, 1) in Z we have that:

ZY.]A‘i(xl,...,xn,Yi =yi,0_i) ‘ -

0i=1

+> Bt Yi = v, O)) ‘ . (56)

YiiZ (i) Gi=1

@ Springer



48 Mach Learn (2017) 106:1-54

The first and the second parts in the right hand side of Eq. (56) represent the marginalization
over the local entries in Z that involve x = y; and x # y;, respectively. However, we have

from Eq. (10) that fi(xl, e X, Y = i, 0)) '0_ = 0 when y; # x. This is because at

=

the dissatisfaction of the indicator constraint, the extended factor fl assigns a value 0. Thus,
we now have that:

Zy,f" (Xts e es Xn, Yi = yi, O;) ‘(5—1

=

Zero

+ZY’_:Z(}#X) fi (x1s oo 0, Yi = i, O;)

Furthermore, there is no need to take the summation ZY’_ 2 (y=x) since often there is only
one possible local entry in Z on which y; = x, Vx, Vy;. In addition, we have from Eq. (9)

P (57)

that f‘,-(xl, e Xn, Yi = i, 0)) ‘0’ X preserves the value of f; when y; = x (i.e., the case

of satisfaction of the indicator cons‘traint). Thus, we have:
D Fi . x Y=y, Oh) ‘0___12 fi (k1,0 xn) (58)

Y; "
Since Eq. (58) is true for any configuration to the argument variables of x = (x1, ..., x,)
of f;, then it is also true for any set of configurations:
S (Xteeee X, Y, O) ‘(5.-1: X1 X)) Ve F (59)
Y; '

This implies the correctness of the proposition for any factor of n argument variables in
the original factor graph. O

— Proposition 2.

Proof The equivalence is proved once we demonstrate that the two factor graphs define an
identical joint probability over variables whose marginals we want to compute. Assume that

we have an arbitrary factor graph G that involves N random variables, {X1, ..., X N}.21 It
accommodates M factors, {f1(Xy,), ..., fu(Xf,)}, where Xy, is the subset of variables
from {Xy, ..., Xy} that are adjacent (i.e., argument) variables to f,.

Then, without loss of generality, the joint probability of G can be defined as follows:

M
P(X1,....xyn) =[] fa (xp,) (60)

a=1

Further, assume that we extend G to an extended factor graph G by adding both
an auxiliary activation node O, and auxiliary mega-node Y, for each individual fac-
tor f,(Xp,), obtaining its corresponding extended factor f[, (X, Oq4, Y,). The extended
factor graph _C’; now includes the original variables {Xi, X», ..., Xy}, activation vari-
ables {01, Oy, ..., Oy}, and mega-node variables {Y1, Y2, ..., Yy }. It accommodates M
extended factors, {fl (Xp, 01, YD), ..., fM(XfM, Om, Yum)}.

21 For simplicity, suppose that we want to compute their marginal probability for all variables {X1q, ..., XN}
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Thus, the joint probability of G is defined as follows:

M
P (X ... Xn Yo Y O1 o On) = [ ] fua (X, Oan Ya) 61)

a=1

Since it is a condition that all the activation variables must be evidenced with one to get
the equivalence, then we can reduce each extended factor f, with O, = 1:

P (X1, .. XN, Y1, .. Yu, Oy, .., Oy)

0,=1
(62)
At this point, we can eliminate the auxiliary mega-node variables from Eq. (62) by mar-
ginalizing each extended factor f, over its mega-node Y,, we then have:

P(Xl,...,XN):z

M
éazl,VaE{l,,_’M}z ];'1: fa (Xfas Oa, Ya)

a

P (X], o XN, Y1, Yy, O, O_M)

Yi,..Ym Ou=1,Vae(l,...M)

M A _
=3 o fa (. Ouva) | (63)

.....

However since all auxiliary mega-nodes are connected independently to individual factors,
then we can distribute the summation over the product with respect to individual extended
factors in Eq. (63), and we obtain:

M
P X = [[ 2 ful¥y, 0 Yo | (64)

a=1 Y,

However, from Proposition 1 we have that:

> Ji (¥, 01,7 ‘0-__12 fi (X1,) (65)
Y, '
By applying Eq. (65) for each reducefi extended factor in Eq. (64), we obtain the joint
probability of the extended factor graph G over the variables {X,, ..., Xy} as follows:
M
P (X1, xw) =[] fa(x) (66)
a=1

This joint distribution we obtained for the extended factor graph G is identical to the
joint distribution that is defined by the original factor graph G in Eq. (60), which implies the
equivalence between the two factor graphs. O

— Proposition 3.

Proof We introduce a complexity bound of the algorithm that is based on the efficiency of
functions and tools implemented in Alchemy (Kok et al. 2007) that are used by the algorithm.
Assume that n is the number of ground atoms and m,, mg are the number of hard and soft
ground clauses respectively, where m = my 4 my is the total number of ground clauses.
Let 7; be the time required for computing the pGAC probability, 1 — &(X;, f;), of a ground
atom X ; with respect to a ground clause f;. Also assume that T}, T are the time required to
perform hard and soft update rules respectively. The algorithm consists of three stages:

— Initialization stage S;: requires S; € @ (n) to initialize the marginals of n ground atoms.

@ Springer



50 Mach Learn (2017) 106:1-54

— Discrimination stage Sy: requires S» € & (nm) since for each ground atom we iterate
through its ground clauses to decide whether it is involved in hard clauses or soft clauses
or both.

— Inference stage S3: here for each ground atom in &), we run the hard update rule, then
for each ground atom in X; we run the soft update rule, thus we have:

83 = |Xh| x T + | K| x T (67)

To compute the computational complexity required by both 7;, and 7. For T, we first
compute ‘.7—" ;’(j ‘ once which requires & (m,) and then compute 7; for the set of hard ground

clauses that involve X ; as positive and negative respectively, which requires ® (m;,T}).
To compute the pGAC probability T; for each X ; € &) with respect to one ground clause
Jfi we iterate through other ground atoms in f; except X ; to multiply their marginals at
the opposite value. This requires linear time in the arity of the clause, therefore, we have
that 7; is bounded above by r, the maximum arity of the ground clauses. Hence, the time
required by each hard update rule can be obtained as follows:

Ty € O (myp) + O (myTy) € O(myr) (68)
In an analogous way, the time required by each soft update rule:
Ts € O(my) + O(msTh) € O(myr) (69)

We take Eqgs. (68) and (69) and substitute for Eq. (67) to obtain the computational com-
plexity of S3:
83 € || x O(myr) + | Xs| x O(mgr) (70)

Since | X}, | and | X| are less than n, and mj, and m; are less than m
S3 € O(nmr) 71)

Using Eq. (71), the total complexity of the three stages of the algorithm can be bounded
as:
S1+ S + 83 € O(max[n, nm, nmr]) = O (nmr) (72)

This implies that the worst case complexity of the algorithm is O (nmr). O
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