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Abstract In domain adaptation, the goal is to find common ground between two, potentially
differently distributed, data sets. By finding common concepts present in two sets of words
pertaining to different domains, one could leverage the performance of a classifier for one
domain for use on the other domain. We propose a solution to the domain adaptation task, by
efficiently solving an optimization problem through Stochastic Gradient Descent.We provide
update rules that allow us to run Stochastic Gradient Descent directly on a matrix manifold:
the steps compel the solution to stay on the Stiefel manifold. This manifold encompasses
projection matrices of word vectors onto low-dimensional latent feature representations,
which allows us to interpret the results: the rotation magnitude of the word vector projection
for a given word corresponds to the importance of that word towards making the adapta-
tion. Beyond this interpretability benefit, experiments show that the Stiefel manifold method
performs better than state-of-the-art methods.

Keywords Domain adaptation · Stochastic gradient descent · Matrix manifolds

1 Introduction

Text classification is an important data mining task with many applications. E.g., senti-
ment analysis assesses texts to be written positively or negatively. This information can help
companies to find out how well their products catch on. When we want to solve such text
classification tasks via supervised learning, we need labelled training data. Such data can be
quite hard to get; in sentiment analysis the identification of a positive tone can be ambiguous,

Editors: Thomas Gärtner, Mirco Nanni, Andrea Passerini, and Celine Robardet.

B Christian Pölitz
christian.poelitz@tu-dortmund.de

1 TU Dortmund, Computer Science, LS 8, 44221 Dortmund, Germany

2 Data Science Lab & iMinds, Universiteit Gent, 9000 Gent, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5577-5&domain=pdf
http://orcid.org/0000-0003-1690-0540


316 Mach Learn (2016) 104:315–336

and sarcasm or individual writing styles can make the labelling difficult even for experts with
a linguistic background. To forego labelling an unlabelled data set, we can reuse other data
sets that have already been labelled for a similar task: review texts for electronic appliances
with labels about their sentiment could be used to train a classifier for unlabelled review
texts about DVDs. When the dissimilarity increases between texts from the labelled data set
and the texts we want to classify, expected performance decreases. Ben-David et al. (2010)
showed that the expected error on a data set A of a classifier trained on a data set B correlates
positively with the distributional difference between the data sets. The task to find common
distributional ground between data sets, with the goal of training a classifier on one data set
and applying it on another, is called domain adaptation.

One approach to domain adaptation is to find a low-dimensional latent feature representa-
tion on which the two data sets of text documents are more similar in distribution. We expect
that many data sets share similarities on latent feature representations. For instance, a book
might be described as tedious while a toaster might be described as malfunctioning. Both
words have a negative connotation and very likely appear together with other negative words
like bad, poor or poorly. Projecting the reviews results in a low-dimensional latent feature
representation, in which we expect these words to jointly span a dimension representing their
common ground. These latent features represent the common concepts (e.g., sentiments)
between different words from different domains, and can be expected to contain less noise.
We propose to find a latent feature representation in the space spanned by word vectors. This
is done by a linear projection that optimally matches text documents from one domain to
another domain with different data distributions. The projection is performed on the word
vectors of the documents from the different domains and maps into a low-dimensional latent
feature representation. The goal is to make the training and the test data more similar in the
new feature representation, in order to safely apply a classifier on the test data that is trained
on the differently distributed training data. We concentrate on latent features that are linear
projections of the original data, for two reasons: linear approaches can be better interpreted
in terms of the transformation of individual features (or individual words!) required to make
the two data sets similar in distribution, and linear methods scale better than non-linear pro-
jections via kernels, as pointed out for instance by Pan et al. (2009). The main disadvantage
of these non-linear kernel approaches is that they scale quadratically or even cubically in the
number of examples, and new data points must be projected via kernel evaluation of up to all
other data points. Linear projections are more efficient since the word vectors from texts are
usually sparse, allowing linear maps via a projection matrix to be efficiently implemented
with sparse matrix operations.

To find an optimal projection, we propose a matrix-variate optimization that minimizes
the distance in distribution between the training and the test data. The optimal matrix is the
projection matrix mapping all training and test data into a low-dimensional feature repre-
sentation with minimal distributional difference between projected training and test data.
To solve this optimization problem, we employ Stochastic Gradient Descent (SGD), which
allows for larger data sets. This is important, since review text collections are usually large:
for Sentiment Analysis, more than 34.000.000 Amazon reviews are available (McAuley and
Leskovec 2013). Closed-form solutions or other optimization methods like plain Gradient
Descent would be prohibitively expensive when using all data. Solving SGD without con-
straints on the matrix will easily end in rank-deficient matrices that map the data onto too
low-dimensional representations. Hence, we add the constraint to the optimization problem
that the matrices must be projection matrices: they must contain only orthogonal columns.
This constraint makes the optimization more difficult, which is traditionally resolved by
projecting the matrices onto the set of orthogonal matrices. The induced additional error is
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amplified by SGD, sincewe performmany optimization steps. To avoid poor convergence, we
perform the optimization directly on the matrix manifold M(p, q), encompassing projection
matrices from a p-dimensional Euclidean space into q-dimensional linear feature represen-
tations. Thus, we remove the constraint and the need of projecting the matrices during the
SGD steps onto the set of orthogonal matrices.

1.1 Main contributions

This paper provides update rules, enabling the running on large document collections of Sto-
chastic Gradient Descent (SGD) directly on the Stiefel manifold. The optimization problem
encompassing the SGD steps efficiently identifies projections into low-dimensional latent
feature representations for domain adaptation. The resulting projection matrices are inter-
pretable: the rotation magnitude of the word vector projection for a given word into a latent
feature dimension represents the contribution of that word towards the underlying concept
represented by that latent feature. Therefore, the rotation corresponds to the importance of
the word for the domain adaptation. This interpretability of the solutions for the domain
adaptation task provided by the Stiefel method is the main contribution of this paper. Col-
lateral benefit is that the Stiefel method delivers high-accuracy results in comparison with
state-of-the-art methods.

In contrast to previous approaches like TCA (Pan et al. 2009) and JCA (Long et al.
2013), we propose an optimization that extracts interpretable linear factors based on the
Bag-of-Words representation of documents. Echoing the previous approaches, we match
the distributions of the documents based on Maximum Mean Discrepancy. This measure
estimates the discrepancy of the two data sets based on all moments estimated from the data.
Thismakes the problem harder, since it is no longer convex.We have no closed-form solution,
and must resort to gradient-based approaches. The reason to apply SGD is twofold. First, we
make our approach applicable to large-scale scenarios. For large text collections, we resort to
an online solution. Second, since our problem is non-convex and high-dimensional, we will
easily end up with local optima during the optimization. SGD, in contrast to plain Gradient
Descent (GD), adds randomness into the optimization that is gradually reduced in the course
of the optimization. This allows to skip local minima in the beginning.

2 Related work

Before turning to the question of transferring knowledge from one domain to another, we
need to discuss how to measure the distributional difference between different data sets
from different domains. In the context of domain adaptation, divergence measures like KL-
divergence (Sugiyama et al. 2008) or A-distance (Ben-David et al. 2006) have been used.
We use the kernelized Maximum Mean Discrepancy (MMD) as proposed by Gretton et al.
(2008) for an estimation of the difference in distribution between two data domains using
samples. We do so, since this method is able to compare distributions by using all moments
of the distributions. This choice is not pivotal to the contributions of this paper; it’s merely a
parameter that can be changed at will.

A large part of the research on domain adaptation concentrates on estimating weights
for the target domain: data from one domain will be weighted to increase distributional
similarity to data from another domain. Under the so-called sample selection bias, the target
domain can be made similar to a source domain by adapted weighted sampling. For instance,
Dudík et al. (2005) propose density estimators that incorporate sample selection bias to adapt
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different test domains to training domains. In Bickel et al. (2009), the distance between the
data from the two domains is directly minimized to find the optimal weights. Huang et al.
(2007) propose to learn weights for a target domain such that the distance in distribution of
the weighted target domain to a source domain is minimized, using Kernel Mean Matching
as distance measure between the domains and performing the search for optimal weights in
a universal Reproducing Kernel Hilbert Space. By contrast, Sugiyama et al. (2007) find the
optimal weights via matching distributions by minimizing the KL-divergence.

Subspace-based domain adaptation strives to increase similarity, not by adapting distribu-
tions, but by transform their support. This results in a low-dimensional feature representation
of the original data. The transformation is done by a projection onto an appropriate subspace.
Si et al. (2010) propose to minimize the Bregman divergence for regularized subspace learn-
ing. Via a matrix-variate optimization problem they find an optimal subspace for a given
cost function. On this subspace, two given data sets are gauged to be similar with respect
to a divergence criterion. Contrary to the Stiefel approach that we propose in Sect. 4, this
optimization is directly done in �n . In Shao et al. (2012), a low-dimensional subspace is
extracted such that the data from a target domain can be expressed as linear combination
of a basis from a source domain. The authors solve this problem by inexact Augmented
Lagrangian Multipliers, which is computationally expensive, especially since it demands
several Singular Value Decompositions (SVDs) on the data matrix. Ni et al. (2013) propose
to find a sequence of subspaces in which the data from the target domain can be expressed as
linear combination of a source domain. For domain adaptation they project all data onto each
subspace and concatenate all resulting feature representations. This approach also needs to
perform several expensive SVDs on the data matrix. In Chen et al. (2009) and Chattopadhyay
et al. (2012), domain adaptation is coupled with the training of a classifier. Chen et al. (2009)
do this by inverting the whole data matrix, which can be quite expensive. The approach in
Chattopadhyay et al. (2012) needs additional labels for the target domain, and a kernel matrix
which might become prohibitively expensive to use.

As an alternative to the subspaces in �n of the word vectors, Kernel-based methods
have been proposed to find non-linear data representations for domain adaptation. Pan et al.
(2008) introduce a transfer learning by feature transformation that optimizes the MMD. In
Pan et al. (2011), Transfer Component Analysis finds low-dimensional representations in a
kernel-defined Hilbert space to make two given data domains more similar. Long et al. (2013)
extend this approach by including class label information. Zhang et al. (2013) propose to
transfer knowledge in a Hilbert space by aligning a kernel with the target domain. Muandet
et al. (2013) propose to learn domain invariant data transformation to minimize differences
in source and target domain distributions while preserving functional relations of the data.

2.1 Related manifold methods

We use optimization directly on matrix manifolds. A general introduction can be found
in Absil et al. (2008). An early work on such optimization is Edelman et al. (1999). The
authors develop a gradient-based optimization method on Grassmann and Stiefel manifolds.
They provide a general framework for the optimization on these matrix manifolds. Both
Balzano et al. (2010) and Bonnabel (2013) describe a stochastic gradient descent on Riemann
manifolds and illustrate its use for subspace tracking and optimization on matrices with rank
constraints.

Gong et al. (2012) and Gong et al. (2013) perform domain adaptation on manifolds.
They project the data onto all subspaces that lie on the shortest path (geodesic) between
two subspaces from, respectively, the source and target domain. They define a kernel on the
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Table 1 Notation employed
throughout the paper

Symbol Description

S Source domain data

T Target domain data

pS Distribution of the source domain

pT Distribution of the target domain

P Projection matrix

M Stiefel manifold

Exp Exponential map

Z Set of matrices zi = [xi , yi ] with xi ∼ pS , yi ∼ pT

concatenation of all projections to extract a new feature representation. Gopalan et al. (2011)
sample interpolated subspaces on the Grassmann manifold between a target and a source
subspace, extracting domain, intermediate, and possibly invariant information. Projections
onto subspace samples transform the data into new feature representations. Gopalan et al.
(2011) sample these subspaces, and use projections onto these samples to transform the data
into new feature representations. Baktashmotlagh et al. (2013) perform gradient descent on
a Grassmann manifold to find a subspace where the two given data domains have a low
distance. In Cheng and Pan (2014), the authors propose semi-supervised learning for domain
adaptation on manifolds.

3 Preliminaries

The classic assumption for a supervised classification task is that training and test data come
from the same distribution. By contrast, domain adaptation methods adapt data from a source
domain S with a certain distribution pS to a target domain T with a different distribution pT .
For the source domain we have additional information like labels to train a classifier. For the
target domain we have no additional information. The task is to extract information from the
source domain that is also relevant for classification on the target domain. In this paper, each
domain is represented by a set of word vectors of the corresponding documents, and each
word vector contains frequency information of the words in the document. The notation in
Table 1 will be used throughout the paper; we will write P for a projection matrix, M for
the Stiefel manifold, Exp for the exponential map, and Z for a set of matrices with columns:
zi = [xi , yi ], with xi ∼ pS, yi ∼ pT . These terms will be further explained when their time
is due.

3.1 Matrix manifolds

For two given data sets from a source domain and a target domain we want to find an optimal
projection matrix onto a low-dimensional feature representation. The optimal projection
projects onto a representation in which the distribution of the projected data points from the
source domain is the most similar to the distribution of the projected data points from the
target domain. Within this representation, a discriminative classifier is trained on the source
domain. Since the distributions are similar on this representation, we can expect that this
classifier can be safely applied to the projected data points from the target domain. Such
projections have been successfully used in text mining and Natural Language Processing.
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For example, in text classification, latent semantic analysis (LSA) has proven to be quite
successful to approximate documents by low-dimensional concept vectors. See for instance
Deerwester et al. (1990) for an introduction. This motivates the hypothesis that such low-
dimensional representations in the vector space of the documents might be beneficial for
transferring knowledge from one domain of documents to another.

A latent subspace L in a vector space V is identified by a projection matrix P such that
PT · x ∈ L ∀x ∈ V and PT · P = I , where PT is the transpose of P and I the identity
matrix. The projected data PT · x is the new low-dimensional feature representation of the
data. The optimal projection matrix is found via minimizing the difference between the
document distributions projected via P . The set M(p, q) = {P | P ∈ �q×p, PT · P = I },
together with an inner product ·, forms a Stiefel manifold. A manifold is a topological space
that is locally Euclidean: for each point on the manifold we find a neighbourhood that is
isomorphic to �q×p . Also, a metric is defined on each manifold that measures the distance
between two points on the manifold. This local linearity and the metric enable us to define
gradients, required for performing Stochastic Gradient Descent.

3.2 Maximum mean discrepancy

In order tomake the source and target domain similar, we need away tomeasure howdifferent
their distributions pS and pT are. Gretton et al. (2008) propose to use the Maximum Mean
Discrepancy (MMD) to estimate the difference in distribution between two domains:

M M D2[pS, pT ] = ‖μ[pS] − μ[pT ]‖2H (1)

whereμ[p] is themeanoperator and H denotes the unit ball in a universalReproducingKernel
Hilbert Space (RKHS). Hence, the MMDmeasures the difference in distribution as the norm
in the RKHS between the means of the mappings of the distributions into this universal
RKHS. In all experiments we use Gaussian kernels, which are universal. Using a universal
kernel, the MMD measures the difference based on any moment of the two distributions.
Gretton et al. (2008) describe how a linear estimation of M M D2 can be defined as empirical
mean over the distances of random draws from the two distributions in the RKHS:

M M D2[Z ] = 1

m

�m/2�∑

i=1

h(z2i , z2i+1) (2)

where Z = {z1, · · · , zm} is a sample of random variables zi = (xi , yi ) with xi ∼ pS ,
yi ∼ pT , and where h(zi , z j ) = k(xi , x j ) − k(xi , y j ) − k(x j , yi ) + k(yi , y j ) for a universal
kernel k(., .)which induces the RKHS H . This estimation enables us to use SGD tominimize
the MMD between two distributions pS and pT .

4 Optimization on the Stiefel manifold

To find the optimal projection matrix onto a low-dimensional feature representation for
domain adaptation, we define an optimization problem that minimizes theMMDwith respect
to a matrix P such that PT · P = I . The latter constraint is added to avoid rank deficiency.
Minimizing the distancewith respect to a projectionmatrixwill easily end upwith projections
that make the data points small in length, collapse them into the origin, or destroy the data
structure to match the two distributions (regardless of the rank). To avoid this, we propose to
regularize P via ‖P · Z‖22. This leads to the optimization problem:
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min
P

M M D[Z P ]2 − λ
1

m
·

n∑

i=1

∥∥z′
i

∥∥2
2 s.t. PT · P = I

with samples Z P = {z′
1, · · · , z′

m} of random variables z′
i = (PT · xi , PT · yi ) for xi ∼ pS

and yi ∼ pT .
To derive a joint update rule for stochastic gradient descent for both the MMD and the

expected length, we define the partial cost C p of the optimization problem for the pair of
matrices (z2i , z2i+1) from Z as:

C p([z2i , z2i+1], P) = h(z′
2i , z′

2i+1) − λ · ∥∥[z′
2i , z′

2i+1]
∥∥2
2 (3)

where the first term comes from the linear approximation of the M M D and the second term
regularizes the length of the new feature representation for the drawn data points from the
sources. The overall cost after having seen m pairs is derived from the m partial costs:

C(Z , P) = 1

m
·

m∑

i=1

C p([z2i , z2i+1], P) (4)

4.1 Stochastic gradient descent over the Stiefel manifold

Weperform Stochastic Gradient Descent (SGD) on the Stiefel manifold M to find the optimal
projectionmatrix that solves the optimizationproblem.SGDestimates a sequenceof gradients
with respect to randomdraws from the data.Under simple conditions, this sequence converges
to the optimum of the corresponding optimization problem (Bottou 1999). For the SGD, we
use the following update rule for the projection matrix P at step t (Bonnabel 2013):

Pt+1 = ExpPt (H(zt , Pt ),−γt · ‖H(zt , Pt )‖) (5)

where H is the gradient of the cost function on the manifold. From the current projection
matrix Pt , we move along the geodesic in the direction of the negative gradient of the cost
function with respect to Pt . We denote by Exp the exponential map that moves a point along
the manifold in a given direction (Wen and Yin 2013):

ExpP (H, t) =
(

I + t

2
· H

)−1

·
(

I − t

2
· H

)
· P (6)

The major reason for directly optimizing on the Stiefel manifold is that SGD performs a
large number of gradient steps. If we do not stay on the Stiefel manifold, we need to project
back onto the manifold after each step due to the constraint PT · P = I . Figure 1 illustrates
this with a schematic view on the manifold. The curved line pictures the Stiefel manifold. At
each step in the SGD we move from a current point P in the direction of the gradient ∇P C .
Moving just in the direction of the gradient can result in matrices that are far away from the
manifold. These matrices must be projected back onto the Stiefel manifold. This results in an
error at each step. These errors can result in slower convergence and suboptimal solutions.
We investigate this issue in detail in the experimental section.

Nevertheless, we will explore the use of projections onto the Stiefel manifold. This is
much easier to compute than the exponential map. Such a projection is a smooth mapping
from tangent space (in which the gradient H lies) to the manifold. We can calculate the
projection Proj St onto the Stiefel manifold via QR decomposition (Absil et al. 2008):

Proj St
P (H, t) = Q (7)

Q · R = P + t · H (8)
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Fig. 1 An optimization step on
the Stiefel manifold M . Starting
at point P on M , we move in the
direction of the gradient ∇P C .
Moving along M ends in
ExpP (∇P C). Moving simply in
direction of the gradient ends in a
point that must be projected back
onto M via (for instance) QR
decomposition. The difference of
the two points is
‖ExpP (∇P C) − Q‖M , the norm
of the difference on the Stiefel
manifold

M * P

∇PC

ExpP (∇P C)

P + γ∇P C

P roj(P + γ∇P C)

Q : Q · R = P + ∇P C

‖ExpP (∇P C) − Q‖M

For the cost function C p([zi , z j ], P) and the next random pair (zi , z j ) from Z building a
new matrix ẑt = [zi , z j ] we get the gradient:

H([zi , z j ], P) = ∂P C p([zi , z j ], P)

= ∂P h(zi , z j ) − λ2(zi + z j )
T · (zi + z j ) · PT (9)

consisting of the gradient of the new part of the linear approximation of the M M D and the
gradient of the norm of the projected data: we minimize the distance on any two samples
from the target and the source domain in Z , projected onto a low-dimensional subspace, in
a universal RKHS, while maximizing their length.

The gradient of h depends on the used kernel. For the Gaussian kernel k on the projected
points, for instance, we obtain the following kernel definition with respect to the projection
matrix P:

k
(

PT · x, PT · y
)

= exp

(
− (x − y)T · P · PT · (x − y)

2 · σ 2

)
(10)

which has a gradient of:

∂P k
(

PT · x, PT · y
)

= − 1

σ 2 · k
(

PT · x, PT · y
)

· (x − y)T · (x − y) · PT (11)

4.2 Convergence and optimality

For StochasticGradientDescent convergence,we need a bounded cost function and a compact
set over which we optimize. Further, we need to specify the step size γ such that

∑
γ 2

t < ∞
and

∑
γt = ∞. For further details on SGD and convergences see Bonnabel (2013). Our

cost function C consists of two parts that both are bounded. On the one hand, the M M D
is bounded since it is the norm in a universal RKHS with bounded kernel k(x, y) ≤ K ,
hence 0 ≤ M M D2[Z P ] < ∞. On the other hand, the norm of the projected documents
is bounded, since we know that norm of the projection matrix is one and the norm of the
data matrix is bounded since the data is already bounded. All together, we see that 0 ≤∥∥PT · Z

∥∥
2 ≤ ‖P‖2 ·‖Z‖2 < ∞. The Stiefel manifold is a compact set, since any sequence of
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projection matrices from the Stiefel manifold stays on the manifold. Therefore, our proposed
optimization by SGD on the Stiefel manifold converges.

Stochastic Gradient Descent might converge to a local minimum or saddle point instead of
a global minimum (Bottou 1999). To overcome this, we perform multiple starts for the opti-
mization: we randomly sample starting points on the manifold and perform the optimization.
The optimization result with the smallest cost is used as projection matrix.We use the follow-
ing calculations to draw uniformly distributed points as starting points for the optimizations
over the manifolds. For an arbitrary point W on the Stiefel manifold, X = X1 · W · X2 is
uniformly distributed over the Stiefel manifold, with X1 a q × q and X2 a p × p normally
distributed orthogonal matrix (Mezzadri 2007).

4.3 Informativeness

An advantage of using linear projections to find low-dimensional latent feature representa-
tions for domain adaptation is that they are interpretable. The projection is performed in the
vector space that is spanned by the words. Hence, the projection in the individual dimensions
corresponds to the word adaptation required to make two domains similar in distribution.
The word vectors are rotated and stretched, where the stretching is limited due to the regu-
larization on the feature vector sizes. The amount of rotation in the vector space in certain
dimensions tells howmuch individual words need to be adapted (of weighted). We can gauge
how strongly individual words need to be adapted by inspecting the magnitude of the rotation
in the vector space in the corresponding dimensions.

Figure 2 illustrates this concept with an artificial example. In two dimensions of a vector
space, word vectors of two domains are plotted. Each axis displays the normalized term
frequency values (tf–idf values) in one component; each component tells the frequency of
a certain word in a document multiplied by a normalization term. The Stiefel method finds
latent subspaces such as the diagonal line in the figure. Projecting the vectors from both
domains onto this space via the found projection matrix P implies rotating the word vectors.
The vectors for “word 1” and “word 2” are rotated to adapt domains. The average rotation
required for the red circles is lower than the average rotation required for the blue circles.
Hence, although both words are important to adapt domains, “word 2” is more different in the
two domains than “word 1”. If we find little or no rotation in some dimensions, we conclude
that the corresponding words are less important for domain adaptation. In the experimental
section, we explore this concept on concrete real-world results.

4.4 Complexity

The complexity of our proposed method depends on two factors. On the one hand, the
initialization needs to sample random points on the Stiefel manifold. For this, two random
Gaussian matrices X1 and X2 must be sampled and orthogonalized. For the matrix X1 this
can be done in O(q3) and for matrix X2 in O(p3), where p is the dimension of the word
vectors and q is the dimension of the latent feature representations. In general, we assume
that q < p  nT + nS , where nx denotes the number of data samples from domain x .
On the other hand, the exponential maps that move the projection matrices along a geodesic
need the inversion on the matrix (I + t

2 · H)−1. This can be done in O(p3) with standard
techniques. All this results in a complexity of O(sp3) for s SGD steps. Transfer Component
Analysis (Pan et al. 2009), which has similar objectives to our methods, has complexity
O(q(nS + nT )2). Hence, our method is to be preferred on data sets that are so large, that
O (

(nS + nT )2
)
storage space or computational complexity is prohibitively expensive.
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Fig. 2 Informativeness of the projections for domain adaptation: word vectors from Domain 1 and Domain
2 are rotated onto a common latent feature; the rotation magnitude represents how strongly the words need to
be adapted to make the domains similar

5 Experiments

We test the proposed method to find projection matrices onto low-dimensional latent feature
representations for domain adaptation, on three standard benchmark data sets that are com-
monly used in the domain adaptation literature. As first data set, we use the Amazon reviews
(Blitzer et al. 2007) about products from the categories books (B), DVDs (D), electronics (E)
and kitchen (K). The classification task is to predict a given document as being written in a
positive or negative context. We use stop word removal and keep only the words that appear
in less than 95% and more than 5% of all documents. This results in n = 1993 words. The
second data set is Reuters-21578 (Lewis et al. 2004). It contains texts about categories like
organizations, people and places. For each two of these categories a classification task is set
up to distinguish texts by category. Each category is further split into subcategories; different
subcategories are used as source and target domains. We denote the categories Organization
by C1, Places by C2 and People by C3. The third data set is 20 newsgroups (http://qwone.
com/~jason/20Newsgroups/). We use the top-four categories (comp, rec, sci, and talk) in the
experiments. Again, we set up a classification task for each pair of categories. Each category
is further split into subcategories and different subcategories are used as source and target
domains; each such configuration is denoted by Confi . Documents of categories comp and
rec shall be distinguished in Conf1, comp and sci in Conf2, comp and talk in Conf3, rec and
sci in Conf4, rec and talk in Conf5, and sci and talk in Conf6.

We implement the SGD in Matlab in the ManOpt library (Boumal et al. 2013) for general
Riemann manifolds. The implementations are available at: http://sfb876.tu-dortmund.de/
auto?self=Software under the link to Stochastic Gradient Descent on Stiefel Manifolds.

We compare our proposed SGD on the Stiefel manifold using exponential maps (StOpt)
and projections based on QR decomposition (PrOpt) with five state-of-the-art domain adap-
tation methods: covariate shift adaptation by Kernel MeanMatching (KMM) by Huang et al.
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(2007), Transfer Component Analysis (TCA) by Pan et al. (2009), SGD on the Grassmann
manifold (GrExp) by Baktashmotlagh et al. (2013), Gradient Flow Kernel (GFK) by Gong
et al. (2012) and Joint Distribution Adaptation (JCA) by Long et al. (2013).

All experiments were repeated several times; the reported accuracy values correspond to
the smallest cost reached during the optimizations. The start points for the optimization are
uniformly drawn from the Stiefel manifold.

For all experiments we set the dimension q = 100 for all methods and the weight λ to
5. These values have proven empirically to perform best over all data sets; additionally, we
show a sensitivity analysis on these two parameters. Unless stated otherwise, we let the SGD
perform 1000 steps, after which all experiments showed convergence. We also investigate
how the dimension q influences the quality of the domain adaptation for the subspace based
methods. Although we get better results for higher dimensions on some data sets, the ranking
of the methods by accuracy does not change.

We project all sampled documents onto the new feature representation, and train an SVM
classifier on the source documents (after projection) and their labels. Finally, we use labels
for the target domain to evaluate the accuracy of the classifier on the target domain (after
projection). The labels from the target domain are only used for evaluation. We use an RBF
kernel for the SVM with the meta parameter γ . The reported accuracies are the highest ones
found by a grid search over the two parameters γ for the kernel andC for themisclassification
penalty for the training of the SVM.

5.1 Single-to-Single domain experiments

In the first experiment, we use only documents belonging to one designated domain (different
from the target domain) as source domain. For example, we use DVD reviews as source
domain and book reviews as target domain. On the Amazon data set, we experiment with all
possible choices for source and target domain. On the Reuters and the 20 newsgroups data
set, we configure the target and source domains as explained above. We perform SGD on
the Stiefel manifold to obtain an optimal projection matrix. Here, we use both domains but
no labels. Then, the reviews from both domains are projected into the new low-dimensional
latent feature representation. An SVM is trained on the projected source domain reviews and
evaluated on the projected target domain reviews.

In Tables 2 and 3 we report the results of the first experiment. The SGD on the Stiefel
manifold results in a new feature representation for domain adaptation with the highest
accuracies over all domains. KMM, TCA and GFK also show good results on some of the
domains, but on average they deliver worse accuracies than SGD on the Stiefel manifold. On
the Reuters data set, Stiefel outperforms KMM and TCA. On the 20 newsgroups data set,
Stiefel outperforms TCA and GrExp. The optimization on the Grassmann manifold has the
worst performance of all methods tested.

Comparing the projection and exponential map on the Stiefel manifold, we see differences
on all data sets. On the Amazon data set and the Reuters data set, the optimization with
exponential map performs much better.

To investigate the quality of the SGD solution, we perform additional experiments. We
compare SGD to standard gradient descent (GD1) with random starting points. Further, we
use the optimal projection matrix P∗ found by SGD as starting point for a gradient descent
(GD2). The second setting serves to illustrate that the optimum found by SGDcannot improve
much more. The rationale behind using SGD is, besides its applicability to large data sets,
that the random behaviour at the start of the SGD process makes its less prone to get stuck in
local optima. While GD will stay in the first local optimum it finds, SGD still can escape the
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Table 2 Accuracies on the
Amazon reviews, performing
domain adaptation from one
source domain to one target
domain. X → Y denotes training
on reviews from X and testing the
classifier on reviews from Y

Highest values are given in bold

E→D E→B E→K D→E D→B D→K

KMM 64.7 65.2 80.3 73.7 69.55 77.2

TCA 68.7 70.7 81.8 70.7 74.3 74.1

GrExp 61.8 61.8 66.2 58.2 66.0 58.8

GFK 59.8 59.3 68.2 59.4 56.3 61.2

JCA 71.0 67.2 80.8 71.6 76.6 75.4

PrOpt 75.0 73.7 77.2 67.6 71.7 71.2

StOpt 75.2 75.0 81.4 75.0 78.9 76.2

B→E B→D B→K K→E K→D K→B

KMM 73.0 69.55 73.8 76.7 67.8 63.7

TCA 68.0 71.2 69.6 83.9 73.5 74.6

GrExp 57.0 59.6 59.2 62.2 60.4 60.4

GFK 60.4 58.5 61.7 66.2 62.7 60.5

JCA 70.8 73.8 75.7 77.4 71.0 62.6

PrOpt 66.0 71.5 68.2 79.8 78.5 74.1

StOpt 73.4 78.1 76.8 83.3 78.9 76.2

Table 3 Accuracies on the Reuters and 20 newsgroups data sets

Reuters

C1→C2 C2→C1 C2→C3 C3→C2

KMM 60.1 56.8 58.5 56.2

TCA 53.0 51.5 58.1 55.8

GrExp 65.0 65.0 70.0 56.8

GFK 72.9 66.1 68.7 66.4

JCA 77.4 80.7 75.3 72.8

PrOpt 70.0 69.3 72.9 58.2

StOpt 84.2 80.9 74.7 62.4

20 newsgroups

Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

KMM 96.8 84.4 98.4 91.2 98.5 95.3

TCA 94.4 87.7 96.1 90.1 94.0 88.9

GrExp 88.8 86.4 98.6 87.8 96.7 89.3

GFK 84.0 74.6 91.9 72.4 86.5 79.0

JCA 99.7 73.6 55.5 73.0 96.8 88.6

PrOpt 98.7 87.1 99.4 96.2 99.6 96.4

StOpt 99.4 93.0 99.3 96.6 99.5 97.4

Highest values are given in bold
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Table 4 Minimal MMD values found when using row X as source domain and column Y as target domain;
the first part of the Table gives these values directly for SGD, while the second and third part gives differentials
with MMD values found through GD with various starting points

MMDSGD E D B K

E 0 0.0024364 0.0021104 0.0046920

D 0.0028555 0 0.0004567 0.0033506

B 0.0020263 0.0004198 0 0.0027398

K 0.0044783 0.0034033 0.0026004 0

MMDGD1 − MMDSGD E D B K

E 0 0.0006637 0.0012029 −0.0021750

D 0.0000310 0 0.0008182 0.0001125

B 0.0006695 0.0011025 0 0.0007358

K −0.0019814 0.0000122 0.0009033 0

MMDGD2 − MMDSGD E D B K

E 0 −0.0000004 −0.0000003 0

D −0.0000002 0 −0.0000007 −0.0000003

B −0.0000009 −0.0000004 0 −0.0000005

K −0.0000001 −0.0000001 −−0.0000004 0

The second part investigates minima reached by GD with random starting points (GD1), and the third part
investigates minima reached by GD starting from the SGD results (GD2). The values given are MMDG Dx–
MMDSG D , and since lower values for MMD are better, a negative value in this cell means that the GD variant
finds a better result than SGD, while a positive value means that the GD variant finds a worse result than SGD.
This effect is highlighted through italicized and bold

trap and end up in a possibly better local optimum. This is important, since our optimization
problem is non-convex: while the MMD is convex in the Hilbert space induced by the
corresponding kernel, it is not convex with respect to a projection matrix of the word vectors.
All experiments are repeated 10 times and the results presented are the lowest minimum
found for the corresponding methods.

In Table 4, we report the difference of the optimal values found by minimizing only the
linearized M M D (see Eq. (2)) using the gradientmethodswith SGD. The first part of the table
displays the optimal MMD values found by SGD using row X as source domain and column
Y as target domain (where X, Y ∈ {E, D, B, K }). The second part of the table displays
the difference in MMD optima found by SGD and found by gradient descent using random
starting points (GD1). The third and final part of the table displays the same differences,
between the optima found by SGD and the optima found by gradient descent using the result
from SGD as starting point for optimization (GD2).

Comparing the different gradient methods, SGD finds always a better local optimum than
GD1 except for the categories kitchen (K) and electronics (E). These two text collections
are already similar in terms of MMD, as we will discuss in the next section. We assume
that this closeness in distribution results in fewer local minima. When we start a standard
gradient descent from the result found by SGD (GD2), we see that MMD values can only be
insignificantly improved (at the seventh position after the decimal point; less than 1‰ of the
raw MMD value).
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Table 5 Maximum Mean
Discrepancy (MMD) measure on
the Amazon data set

E D B K

E 0 0.0177 0.0207 0.0067

D 0.0177 0 0.0174 0.0173

B 0.0207 0.0174 0 0.0200

K 0.0067 0.0174 0.0200 0

Table 6 Accuracies on the target
domains using all the other
categories as source domain. The
column with label X corresponds
to the domain adaptation task
(E ∪ D ∪ B ∪ K\X) → X

Highest values are given in bold

E D B K

KMM 81.0 75.2 72.5 83.9

TCA 81.4 77.8 74.7 84.9

GrExp 68.7 66.3 62.2 70.7

GFK 68.7 66.3 62.2 70.7

JCA 77.0 72.7 74.9 82.3

PrOpt 81.0 75.1 72.7 80.8

StOpt 82.0 78.6 76.3 83.7

5.2 Multiple-to-Single domain experiment

Table 2 shows the accuracies on the target domains using documents from only one category
as source domain. Choosing the right category might result in better performance. In the
experiments on the Amazon reviews data, we find always one category that outperforms
the other categories. For instance, for the categories kitchen (K) the best results are attained
when we use the documents from the category electronics (E) as source domain. All other
categories cannot bring equivalently good results when employed as source domain.

To investigate this behavior we calculate the Maximum Mean Discrepancy as defined
in Eq. (1) to estimate the difference of the distributions of the target and source domains;
results are displayed in Table 5. For the category electronics (E), the documents from the
category kitchen (K) are closest in distributions. Comparing this result with the accuracies in
Table 2 on the target domain with documents from category electronics, the documents from
category kitchen performs best for domain adaptation. The documents from reviews about
DVDs (D) have similar MMD-values among the other categories. This is also reflected in
the accuracies above that show no clear category that performs best as source domain. The
category kitchen behaves similar to electronics, and books similar to DVDs.

Hence, employing prior knowledge of the target domain to choose the right source domain
would be beneficial. Since in many cases this information might not be available, one could
resort to using documents from a mixture of all categories but the one used as target domain.
In the next experiment, we investigate this setting on the Amazon data set.

The documents from a designated category (E,D,B,K) are used as target domain. From this
category we use only the documents. From the other categories we use documents and labels
as source domain (as before). Since the source documents stem from three times as many
categories as before, in this experiment we let the SGD run for three times as many steps.

In Table 6 we report the accuracies on the target domains for one category using all
other categories as source domains. The overall performance on the subspace found by the
optimization on the Stiefel manifold is better than KMM and TCA. Again, the optimization
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Table 7 Accuracies on the target domains using all the other categories as source domain using cross validation
for the optimal dimension parameter

E D B K

TCA 81.4 78.3 75.4 85.2

GrExp 68.7 66.3 62.2 70.7

GFK 81.0 77.5 76.3 82.7

StOpt 82.3 78.4 77.0 85.3

The column with label X corresponds to the domain adaptation task (E ∪ D ∪ B ∪ K\X) → X
Highest values are given in bold

on the Grassmann manifold results in the worst results. Comparing the exponential maps
to the projections, the computationally more expensive exponential maps find more optimal
subspaces. This shows that also on a mixture of different categories as source domain, Stiefel
manifold optimization results in suitable projection matrices for domain adaptation.

Additionally, we perform an experiment with cross validation for the dimensionality of
the subspace for the methods: Transfer Component Analysis (TCA), SGD on the Grassmann
manifold (GrExp), Gradient Flow Kernel (GFK) and our approach (Stiefel). We cut off 10%
of the target data to find the optimal dimensionality by maximizing the accuracy. On the
remaining data, we calculate the final accuracies. The results are reported in Table 7. The
SGD on the Stiefel manifold results in the highest accuracies, TCA andGFK perform slightly
worse.

5.3 Convergence

The advantage of SGD directly on the Stiefel manifold is that we avoid additional projec-
tion steps after each SGD step to satisfy the orthogonality constraint of the matrices. This
additional step will induce errors after each SGD step. Consequently, we expect slower con-
vergence when we perform only projections onto the Stiefel manifold. Here we investigate
the convergence of the stochastic gradient descent on the Stiefel manifold. We show the costs
of the optimization function for the target domain of electronic reviews. As source domain we
use reviews about kitchens. Figure 3 plots these costs against the number of documents from
both the target and source domain for the optimization. We report the course of the costs dur-
ing the optimization of the Stiefel manifold using both a projection by a QR decomposition
onto the manifold and the exponential map that moves along the manifold.

Figure 3 shows a fast convergence for both methods. The exponential map has a faster
convergence than the projection method, from having seen only few documents onwards.
The convergence is quite stable for both methods. The optimization with exponential maps
reaches lower cost than the optimization with the projection. This shows that exponential
maps can indeed result in better optimization performance using the proposed cost function:
optimization on the Stiefel manifold with exponential maps converges faster and reaches
a lower cost. This matches the results from the previous experiment that showed typically
better performance when using exponential maps as opposed to using projections.

6 Parameter sensitivity analysis

The proposed optimization method fixes the dimension of the latent feature representation
and the regularization parameter in the cost function. While in the main experiments we used
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Fig. 3 Convergence of the costs from the optimization problem after a number of documents have been seen.
As target domain we use electronic reviews and the source domain consists of the kitchen reviews. On all
other possible settings of target and source domains, we get similar convergence results

fixed values for the dimension and the regularization parameter, here we investigate different
values in a sensitivity analysis.

The dimensionality of the latent feature representation and hence the used manifold M is
a meta parameter that has to be chosen beforehand. It is clear that for a good performance we
need a large enough number of dimensions to capture all necessary information. On the other
hand, the higher the dimensionality, the more computation is needed to estimate the gradient
steps. Beside this, too high-dimensional representations might introduce too much variance
from the different domains. In Table 8 we show the accuracies on the target domains in the
feature representations from the projection matrices found by SGD on the Stiefel manifold
for various dimensionalities q . The results show that higher numbers of dimensions generally
but not consistently correspond to slightly better accuracies. Hence, without labels for the
target domain, the choice should be in favour of large dimensionalities. In case we have labels
for the target domain, we can perform cross validation to find the optimal parameter q .

In the experiments so far, we used maximum mean discrepancy and regularization on the
norm for the optimization with a fixed parameter λ = 5. Here, we analyse the difference
of the accuracy from the projections that have been found by SGD with various weights on
the regularization of the norm. Table 9 shows the accuracies for various weights λ. We see
that the regularization of the norm is vital for the performance of the domain adaptation.
Without the regularization, the found projection is not able to capture enough information
from the domains for a good classifier on the target domain. Higher weights result in better
performance on average. This means, that the regularization on the norm helps retaining
enough information from the domains necessary to train a good classifier for the target
domain.

6.1 Informativeness

An important argument for the proposed method is its interpretability. In Fig. 4 we plot
(as introduced in Sect. 4.3) for two words the tf–idf values in the vector space of the word
vectors for Amazon reviews about books (the source domain) and electronics (the target
domain). The top figure shows the tf–idf values that correspond to the words “professional”
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Table 8 Accuracies on the projected target domain onto subspaces of various dimensionalities q for the target
domains

Dimensionality q E D B K C1→C2 C2→C1 C2→C3 C3→C1

40 77.0 75.9 73.3 79.9 76.5 70.7 66.8 59.0

60 72.2 66.3 70.8 75.4 75.7 70.6 65.3 58.6

80 76.3 74.1 72.2 78.3 73.2 72.3 69.8 58.1

100 74.8 73.5 72.4 80.0 72.6 72.4 72.9 58.2

Dimensionality q Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

40 97.7 92.5 99.9 97.3 99.2 97.0

60 99.6 92.0 99.6 97.7 99.5 98.2

80 99.2 90.8 99.7 96.3 99.7 97.4

100 99.4 91.7 99.5 95.8 99.6 98.2

The optimization is on the Stiefel manifold. The classifier is trained on the source domains projected onto the
corresponding subspace. The first four columns with label X corresponds to the domain adaptation task on
Amazon reviews (E ∪ D ∪ B ∪ K\X) → X ; the next four columns correspond to the domain adaptation task
on Reuters; the last six columns correspond to the domain adaptation task on the 20 newsgroups data set

Table 9 Accuracies on the projected target domain onto subspaces with various weights λ in the optimization
problem

weights λ E D B K C1→C2 C2→C1 C2→C3 C3→C1

0 64.7 62.3 62.2 64.4 76.5 70.7 66.8 59

1 79.1 71.8 70.9 80.8 74.9 70.8 69.9 58.4

4 78.9 73.2 73.9 82.3 72.4 71.6 71.3 58.8

5 79.4 73.6 74.6 81.7 75.7 70.8 71.0 59.4

10 78.9 73.6 72.8 81.5 73.4 70.6 71.1 58.8

weights λ Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

0 92.4 82.2 98.8 78.3 94.0 87.7

1 99.3 89.9 99.5 97.4 99.5 98.5

4 99.1 89.4 99.4 96.6 99.5 96.4

5 99.7 87.9 98.9 96.5 99.7 96.4

10 98.8 86.8 99.5 97.1 99.4 97.0

The optimization is on the Stiefel manifold. The classifier is trained on the source domains projected onto the
corresponding subspace. The first four columns with label X corresponds to the domain adaptation task on
Amazon reviews (E ∪ D ∪ B ∪ K\X) → X ; the next four columns correspond to the domain adaptation task
on Reuters; the last six columns correspond to the domain adaptation task on the 20 newsgroups data set

and “interesting” in the word vectors from both domains. The bottom figure shows the tf–idf
values that correspond to the words “display” and “author”. The word vectors from the book
reviews are represented by blue crosses and the word vectors from the electronic reviews are
plotted as red circles. In each figure, the left plot shows the word vectors that correspond to
the words before projection, and the right plot shows the word vectors after projecting them
with the matrix we found with the proposed method.
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Fig. 4 Tf–idf values of word vectors in the original feature space (left) and projected space (right), for the
adaptation of “professional” and “interesting” (top), and “display” and “author” (bottom)

We see that the words “professional” and “interesting” are important for the domain
adaptation since the corresponding word vectors are rotated in the vector space. The found
projection matrix makes the corresponding components of the word vector also more similar
in the latent feature representation. This makes sense, since both words represent a common
positive connotation; they are only differently distributed in the two original domains. On
the other hand, the conceptually orthogonal words “display” and “author” are less important
for domain adaptation: there is only little rotation of the word vectors in the corresponding
components. This corroborates the hypothesis that the found projections help interpreting
the adaptation needed to adapt the given domains of word vectors.

To further investigate the informativeness of the projections learned for domain adaptation,
we visualize the words in a 2-dimensional map. We use the method of Stochastic Neighbour-
hood Embedding by Maaten and Hinton (2008). This methods models the joint probability
of two words wi , w j as p(wi , w j ) ∝ e−‖xi −x j ‖2 , where xi , x j are low-dimensional feature
representations of the words.

In Fig. 5 we visualize positive adjectives before and after projection with the optimal
projection matrix for domain adaptation in the same two-dimensional space for reviews
from books and electronic articles. The distance between the adjectives gets smaller after
projecting. For instance, the words “perfect” and “useful” are much closer after projection

123



Mach Learn (2016) 104:315–336 333

−40 −30 −20 −10 0 10 20 30 40
−50

−40

−30

−20

−10

0

10

20

30

"professional"

"interesting"

"amazing"

"awesome"

"beautiful"

"brilliant"

"entertaining"
"fascinating"

"perfect"

"useful"

"professional"

"interesting"

"amazing"

"awesome"

"beautiful"

"brilliant"

"entertaining"
"fascinating"

"perfect"

"useful"

t−sne Projected
t−sne Original

Fig. 5 Visualization of positive adjectives before and after projection

compared to the original data. The word “perfect” appears in 54 reviews of books but in
none of the reviews of electronic articles. The word “useful” appears in 106 reviews of
electronic articles but only in 54 reviews of books. This distributional mismatch can be seen
in the distance of the words in the original space. Clearly, the new feature representation
by the optimal projection matrix results in smaller Euclidean distance and hence larger joint
probability of the two words.

7 Conclusions

We propose to use Stochastic Gradient Descent (SGD) on Stiefel manifolds to find a pro-
jection onto a latent subspace that is best suited for domain adaptation. We provide update
rules that compel the SGD steps to remain on the Stiefel manifold, and solve an optimization
problem employing these steps. Since the Stiefel manifold encompasses projection matrices
on word vectors, the results are interpretable: the importance of a word towards making the
domain adaptation can be gauged by measuring the rotation magnitude of the projection of
that word, as is illustrated by Fig. 4. Furthermore, we have seen that in terms of accuracy, the
Stiefel method performs at least as good as or simply better than competing state-of-the-art
domain adaptation methods; optimization on the Grassmann manifold cannot compete (cf.
Table 2). Kernel Mean Matching and Transfer Component Analysis can deliver compara-
ble accuracies, but these methods are regularly outperformed by Stiefel method as well (cf.
Table 3). When increasing the amount of domains from which source documents are taken,
this behavior remains (cf. Table 6): accuracy of the Stiefel method is typically best or equiva-
lent to best, while every competing method performs sometimes equivalently and sometimes
substantially worse. For domain adaptation, the Stiefel method delivers interpretable results
without substantial loss, and even regularly to the benefit, of accuracy.

Analysis of the (dis-)similarities between the multiple category domains on the Amazon
data set (cf. Table 5), and their relation to domain adaptation accuracies, suggests that the
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Stiefel methods might deliver the greatest benefit when source and target domain are more
dissimilar, when domain adaptation typically struggles (Ben-David et al. 2010); the MMD
scores in Table 5 show that the E andK domains form the pair which is by far themost similar,
and in Table 2 we see that this is the only pair on which the Stiefel method is outperformed.
We plan to fortify the hypothesis that Stiefel shines in difficult cases in future work, by further
studying larger data sets with many more domains. Also, we plan to investigate what cost
functions can be used to find good projections for domain adaptation. Especially, we are
interested in different regularizations on the projections. One direction could also be how to
integrate external knowledge in the optimization.We could use different sources and different
views of the data to bridge the domains for domain adaptation. One possible extension is
to use additional class labels given for the different domains. So far we assume to have no
such label information for the domain adaptation. Since we show the quality of the domain
adaptation based on a trained classifier with given labels for a source domain, the domain
adaptation might also use this information. As a preliminary empirical exploration into the
potential benefit of using class labels, we can compare the results from JCA and TCA, since
JCA can be seen as a variant of TCA which incorporates knowledge about the class labels.
For the Single-to-Single domain adaptation, taken over all 22 test cases in Tables 2 and 3, we
find that JCA outperforms TCA in 13 cases, whereas TCA ourperforms JCA in 9 cases. In
fact, if we remove the Reuters data set (where JCA dominates TCA) from this experiment,
we find a perfect tie between the two methods on the remaining two data sets: on the Amazon
and 20 newsgroups data sets, TCA outperforms JCA exactly as often (9 times) as vice versa.
This is a surprising negative initial result regarding the value of class label information for
domain adaptation, which clearly requires further study. domains are already

In the multi-to-Single domain adaptation, the usedmethod also showed no benefit in using
additional class label information. In this setting, the label distribution is a mixture from the
different source domains. This makes the adaptation with respect to the labels complicated.
Different domain adaptation methods using class label information might results in different
results but are not the scope of this paper. For the future, we want to further investigate when
and how to integrate label information into the domain adaptation, and we would like to
explore the generality of the newly proposed methods by experimentally evaluating them on
data sets beyond the text domain, such as image data.
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