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Abstract Multi-instance learning (MIL) has been widely used on diverse applications
involving complicated data objects such as images, where people use a bag generator to
represent an original data object as a bag of instances, and then employ MIL algorithms.
Many powerful MIL algorithms have been developed during the past decades, but the bag
generators have rarely been studied although they affect the performance seriously. Consid-
ering that MIL has been found particularly useful in image tasks, in this paper, we empirically
study the utility of nine state-of-the-art image bag generators in the literature, i.e., Row, SB,
SBN, k-meansSeg, Blobworld, WavSeg, JSEG-bag, LBP and SIFT. From the 6923 (9 bag
generators, 7 learning algorithms, 4 patch sizes and 43 data sets) configurations of experi-
ments we make two significant new observations: (1) Bag generators with a dense sampling
strategy perform better than those with other strategies; (2) The standard MIL assumption of
learning algorithms is not suitable for image classification tasks.

Keywords Multi-instance learning - Bag generator - Empirical study -
Image bag generators

1 Introduction

In investigating the problem of drug activity prediction, Dietterich et al. (1997) proposed the
notion of multi-instance learning (MIL). Contrasting to traditional single-instance learning,
the multi-instance representation enables the learning process to exploit some inherent struc-
ture information in input patterns. Specifically, MIL receives a set of bags that are labeled
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positive or negative, rather than receiving a set of instances which have positive or negative
labels. In addition, instances in MIL bags have no label information. The goal of MIL is to
learn a classifier from the training bags such that it can correctly predict the labels of unseen
bags.

With the rapid development of MIL, it has been widely used on diverse applications,
especially the tasks involving complicated data objects, such as image categorization (Chen
et al. 2006; Song et al. 2013), image annotation (Tang et al. 2010; Zhu and Tan 2011), image
retrieval (Zhang et al. 2002; Zhou et al. 2003; Xu and Shih 2012), medical image diagno-
sis (Fung et al. 2007), face detection (Zhang and Viola 2008), text categorization (Andrews
et al. 2003) and so on. Particularly, when we tackle the image tasks, an image can be
naturally partitioned into several semantic regions; each region is represented as a feature
vector (an instance). Consequently, MIL solutions have been recognized as state-of-the-art
image categorization/annotation methods, particularly for region-based image categoriza-
tion/annotation (Chen and Wang 2004; Yang et al. 2006; Vijayanarasimhan and Grauman
2008).

In practice, users first use a bag generator to represent an original data object as a bag
of instances, and then apply MIL algorithms. It is noteworthy that the bag generators are
different from the feature extraction process; that is, a bag generator decides how an image
will be represented by a set of patches, whereas a feature extraction process decides how each
patch is characterized by a feature vector. As there are many different ways for representing
one data object into multiple instances, bag generators are crucial to MIL learning perfor-
mances. However, the evaluation of different bag generators has rarely been studied, although
many effective MIL learning algorithms have been developed during the past decades (rep-
resentative examples include EM-DD (Zhang and Goldman 2000), Citation-kNN (Wang and
Zucker 2000), RIPPER-MI (Chevaleyre and Zucker 2001), miSVM (Andrews et al. 2003),
MiIBoosting (Xu and Frank 2004), miGraph (Zhou et al. 2009), MILES (Chen et al. 2006),
MiIForests (Leistner et al. 2010), etc.).

In this paper, we focus on image categorization tasks and empirically investigate the
properties of nine popular image bag generators, i.e., Row, SB, SBN (Maron and Ratan 2001),
Blobworld (Carson et al. 2002), k-meansSeg (Zhang et al. 2002), WavSeg (Zhang et al. 2004),
JSEG-bag (Liu et al. 2008), LBP (Ojala et al. 2002) and SIFT (Lowe 2004). Note that here
we are studying what kind of bag generators are suitable to MIL algorithms, rather than
studying general image classification approaches or novel image feature representations.
Readers interested in those topics can refer to Felzenszwalb et al. (2010), Chatfield et al.
(2011) and Nguyen et al. (2009).

Given an image for bag generators, they first separate the image into a number of regions,
and then represent a region as an instance. Thus, by setting different patch sizes, a bag
generator can obtain multiple bags with different number of instances for the same image.
To examine the impact of bag generators on the classification performances with different
learning algorithms, we employ seven state-of-the-art MIL methods as the test bed, including
Citation-kNN (Wang and Zucker 2000), miSVM (Andrews et al. 2003), MIBoosting (Xu
and Frank 2004), miGraph (Zhou et al. 2009), MILES (Chen et al. 2006), miFV (Wei et al.
2014) and MIForests (Leistner et al. 2010). Forty-three data sets with diverse target concepts
are created from the COREL and MSRA image data sources. In all, by combining nine
bag generators (five of them with different patch sizes, i.e., Row, SB, SBN, k-meansSeg
and JSEG-bag), seven learning algorithms and forty-three data sets, we set up an extensive
empirical study with 6923 configurations. From the experimental results, we have some
important observations. Specifically, some bag generators (i.e., SB, SBN and LBP) with the
dense sampling strategy will outperform other generators in most cases, which is consistent
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with the conclusion in computer vision (Li and Perona 2005; Nowak et al. 2006); miGraph,
MIBoosting and miFV stress the relationship between instances in MIL bags, which do not
adopt the standard MIL assumption (i.e., the bags are labeled positive in the way that if a
bag contains at least one positive instance, otherwise it is labeled as negative), thus these
learning algorithms could achieve better classification accuracy rates (cf. Table 5). Note that
these two important observations have not been made before. Moreover, we analyze the
utilities of these bag generators for different kinds of image classification tasks, i.e., scene
classification and object classification. In addition, we also have some interesting findings
about learning algorithms, and recommend several combinations of learning algorithm and
bag generator for practical applications. In short, these observations, on one hand, give
practical suggestions for bag generator selections with diverse needs, and on the other hand,
they are insightful on designing better bag generators or MIL algorithms for image related
tasks.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce multi-instance
learning and the related works. In Sect. 3, we introduce some image bag generators, especially
the ones which will be empirically studied later in this paper. We then give information about
our empirical configurations in Sect. 4, including the learning algorithms, data sets and
evaluation criteria used in our study. In Sect. 5, we present our empirical results. Finally, we
summarize our main observations in Sect. 6 and conclude the paper.

2 Background

In the middle of the 1990s, Dietterich et al. (1997) investigated the problem of drug activity
prediction. The goal was to use a model to predict whether a new molecule can be qualified to
make some drug, through analyzing a set of known molecules. The difficulty of this problem
was that, each molecule may have a wide range of possible types of low-energy shapes, but
biochemistry experts at that time only knew which molecules were qualified to make drug,
instead of knowing which special shapes played a decisive role.

In order to solve this problem, Dietterich et al. regarded each molecule as a bag, and
regarded each kind of low-energy shapes of one molecule as an instance in its corresponding
bag, thereby formulating multi-instance learning.

Formally, let & denote the instance space and ) the set of class labels. The task of
multi-instance learning is to learn a function f : 2% — {—1, +1} from a given data set

{X1,y1), X2,¥2), ..., X, ym)}, where X; C X is a set of instances {XY), xg), R xf,?},

x;i) e X(j € {1,...,n;}),and y; € {—1, +1} is the known label of X;. In contrast, the
task of traditional supervised learning is to learn a function f : X — ) from a given data
set {(x1, y1), X2, ¥2), - .-, X, Ym)}, where x; € X is an instance and y; € ) is the known
label of x;.

Far beyond drug activity prediction, the multi-instance problem emerges naturally in a
variety of challenging learning problems in image related tasks, including natural scene classi-
fication (Maron and Ratan 2001), image categorization/classification (Chen et al. 2006; Song
etal.2013), image annotation (Tang et al. 2010; Zhu and Tan 2011) and image retrieval (Zhang
et al. 2002; Zhou et al. 2003; Xu and Shih 2012). In addition, MIL techniques have already
been used on diverse applications, for example face detection (Zhang and Viola 2008; Viola
et al. 2006), text categorization (Andrews et al. 2003; Settles et al. 2008), web mining (Zhou
et al. 2005) and so on.
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In the applications of multi-instance learning, Maron and Ratan (2001) were the first to
apply the MIL framework to image tasks. In their work, several bag generators (i.e., Row,
SB, SBN) for transforming images into image bags were presented and tested, and more
importantly, they demonstrated that bag generators play a key role in developing a practical
CBIR system based on multi-instance learning and significantly affect the performance of
the retrieval.

After that, several image bag generators have been proposed during the past decade.
However, very little work has been done on the evaluation of image bag generators. Even
worse, it is usually the case that researchers used a new bag generator without comparing to
existing bag generators (e.g., Carson et al. (2002) and Zhang et al. (2004)).

Zhou et al. (2003) compared the performances of several different bag generators when
they proposed the ImaBag image bag generator. In their experiments, they compared ImaBag
with Maron and Ratan’s SBN (Maron and Ratan 2001) and Yang and Lozano-Pérez’s bag gen-
erator (Yang and Lozano-Pérez 2000), yet merely by employing the Diverse Density (Maron
and Lozano-Pérez 1998) algorithm. Later they showed that the performances of ImaBag were
worse than that of SBN, but were much better than that of Yang and Lozano-Pérez’s method.
Additionally, Zhang et al. (2002) studied the performances of EM-DD (Zhang and Goldman
2000) across different image processing techniques based on SBN (Maron and Ratan 2001)
and their k-meansSeg bag generator. However, they only reported k-meansSeg outperformed
SBN in some cases. Compared to the previous work, we perform a very large number of
experiments to study the utilities of nine state-of-the-art image bag generators and present
an exhaustive evaluation of these image bag generators.

3 Image bag generators

Image bag generators extract information from an original image and then construct a set
of instances which is regarded as an MIL bag. Depending on whether bag generators can
distinguish the semantic components from images, image bag generators can be divided into
two categories, i.e., non-segmentation bag generators and segmentation bag generators. Non-
segmentation bag generators adopt a fixed strategy which is independent of image structures
to extract instances from images. While segmentation bag generators try to segment an
image into multiple semantic components, and construct MIL bags by using one instance to
represent one corresponding semantic component.

In this paper, seven staple image bag generators are studied, including the simple method
Row (Maron and Ratan 2001), the original image non-segmentation based methods SB and
SBN (Maron and Ratan 2001), and the transformation based methods Blobworld (Carson
etal. 2002), k-meansSeg (Zhang et al. 2002), WavSeg (Zhang et al. 2004) and JSEG-bag (Liu
et al. 2008). Among which, Row, SB and SBN are non-segmentation bag generators, and
Blobworld, k-meansSeg, WavSeg and JSEG-bag are segmentation bag generators. In addition,
some local descriptors! in computer vision have been frequently applied to generate bags for
MIL in recent years. Therefore, we employ two famous local descriptors, i.e., local binary
patterns (LBP) (Ojala et al. 2002) and scale invariant feature transform (SIFT) (Lowe 2004),
as bag generators to extract sets of features from images. Detailed descriptions of these

I Local descriptors are used in computer vision to represent interest regions’ different characteristics of
appearance or shape. They are distinctive, robust to occlusion, and do not require segmentation, which has
proven to be very successful in applications, e.g., image classification, image retrieval, object recognition and
texture recognition.
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methods will be shown in the next subsections, followed by a brief introduction to some
other bag generators and finally an abbreviated conclusion of these image bag generators.

3.1 Row, SB and SBN

Maron and Ratan (2001) proposed five bag generators with the same preprocessing steps.
The most popular three among them are Row, SB and SBN which all work in the RGB color
space.

Row. For an 8 x 8 filtered image, as Fig. 1a demonstrates, the bag is constructed as
following: for each row, one instance is constructed by the mean color of this row and the
mean color difference in the rows above and below it.

The SB bag generator is short for Single Blob with no neighbors. As shown in Fig. 1b,
each instance is a 2 x 2 sized blob of the original image. Note that there is no overlapping
between pairwise blobs.

The SBN bag generator is short for Single Blob with Neighbors, which takes the relation-
ship between neighboring blobs into account. Each instance is constructed as the mean color
value of a 2 x 2 blob and the color difference with its four neighboring blobs. See Fig. 1c.

Note that the key difference between SBN and SB lies in that SBN has overlapping blobs.
Figure 2 is an example of the bag generating process of SBN for an 8 x 8 image. Here each

(b)

Fig. 1 The examples of the instances abstracting process of Row, SB and SBN bag generators. The original
image is collected from the 7iger data set which is a sub-category in the COREL image data source (Color
figure online)

(a) (b) (©
Fig. 2 The instances abstracting process of the SBN bag generator. The sliding window is cross-shaped

shown in (a). From a—c, on each step the sliding window moves one pixel and abstracts one instance in current
positions. The figures are best viewed in color (Color figure online)
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Fig. 3 The stages of Blobworld processing: from pixels to region descriptions

blob is a 2 x 2 image patch and the sliding window is cross-shaped as presented in Fig. 2a.
During the bag generation process, when the sliding window moves one pixel from left to
right, SBN abstracts one instance from the image in the current position at that time. Thus,
as shown from Fig. 2a—c, the abstracted instances overlap with each other.

Additionally, there also exists another difference between SB and SBN. SB traverses the
whole image with no blind zones, while SBN produces blind zones on the corners when
sliding window moves to the edge of the image, which could contribute nothing for image
representation. In Fig. 2c, the northeast and northwest blobs highlighted with red rectangles
are two blind zones.

3.2 Blobworld

The process of Blobworld (Carson et al. 2002) is as follows. First, Blobworld extracts each
image pixel’s color feature which has a three-dimensional color descriptor in the L*a*b*
color space. Second, it extracts texture features from the grayscale images, which are to get
the anisotropy, the contrast and the polarity. So far the color/texture descriptor for a given
pixel consists of six values: Three for color and three for texture. In the third step, we append
the (x, y) position of the pixel to the previous feature vector. After obtaining the pixel features
of 8-dimension, Blobworld groups pixels into regions by modeling the distribution of pixel
features with a mixture of Gaussians. In order to divide these pixels into groups, it uses the
Expectation-Maximization (EM) algorithm to estimate the maximum likelihood parameters
of this mixture of K Gaussian components. Finally, Blobworld describes the color distribution
and texture of each region for the MIL algorithms, i.e., the representation of each region in
an image is one instance in a bag. The stages of Blobworld processing are depicted in Fig. 3.

3.3 k-meansSeg

Zhang et al. (2002) proposed the k-meansSeg bag generator method when they studied
content-based image retrieval. In k-meansSeg, images are executed in the YCbCr color space?
without any preprocessing. It defines a 4 x 4 image patch as a blob, represented by a six-
dimensional vector. The first three dimensions are the mean values of three color components
of these 16 (4 x 4) pixels, and the latter three dimensions are composed by three sub-bands,
i.e., HL, LH and HH, which are obtained by the Daubechies-4 wavelet transformation on the
luminance (Y) component. Thus, the blobs of an original image can be expressed as:

blobs = {{Y;,Cb;,Cr;, HL(Y);, LH(Y);, HH(Y);) |i =1,2,...,n}

where 7 is the number of 4 x 4 blobs.

2 AL*a*b* color space is a color-opponent space with dimension L* for lightness and a* and b* for the color-
opponent dimensions. One of the most important attributes of the L*a*b*-model is device independence. This
means that the colors are defined independent of their nature of creation or the device they are displayed on.

3 The YCbCr color space is a family of color spaces used as a part of the color image pipeline in video
and digital photography systems. It is not an absolute color space; rather, it is a way of encoding RGB
information. “Y” is the luminance component and “Cb” and “Cr” are the blue-difference and red-difference
chroma components, which are used in diverse applications, such as the JPEG and MPEG format.
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After that, the k-means segmentation algorithm is employed on these six-dimensional
vectors to segment the image into K segments, and thus one segment is corresponding to
one instance. The unknown parameter K is set as 2 at the beginning of this method, then
increases by cycling, and terminates until its stop conditions (Zhang et al. 2002). Finally, the
ith instance in bags is obtained by averaging all the six-dimensional vectors representing all
blobs in the ith segment:

bag = {(mean(Y,-j), mean(Cb;j), mean(Cr;),
mean(HL(Y);;), mean(LH(Y);;), mean(HH (Y);;)) |i =1,2,..., K}

where K is the number of segments and j’s are all blobs of the ith segment.

3.4 WavSeg

Zhang et al. (2004) proposed the WavSeg bag generator to automatically construct multiple
instances (regions) in MIL bags (images). WavSeg mainly involves the wavelet analysis and
the Simultaneous Partition and Class Parameter Estimation (SPCPE) algorithm (Chen et al.
2000). In the first step, the images are preprocessed by the Daubechies-1 wavelet transform.
After the wavelet transformation, the high-frequency components will disappear in larger
scale subbands and therefore, possible regions will be clearly evident. Then by grouping
the salient points from each channel, an initial coarse partition can be obtained and passed
as the input to the SPCPE segmentation algorithm. In Zhang et al. (2004), they showed
that the wavelet transform could lead to better segmentation results, and additionally, it can
produce other useful features such as texture features. In the following, WavSeg extracts both
the local color and local texture features for each image region. When extracting the color
features, they quantize the color space by using color categorization based on HSV value
ranges (totally 13 representative colors for these ranges) of the HSV color space.* For the
regions’ texture features, the Daubechies-1 transform could generate three corresponding
images in three frequency bands (i.e., HL, LH and HH) of the original image. For the wavelet
coefficients in each of the above three bands, the mean and variance values are collected
respectively. Therefore, the total six texture features are generated for each image region.
The form of the bag generated by WavSeg is as follows:

bag = {{histy, histy, ..., hist13,
mean(HL1), var(HLy), mean(LHy), var(LHy),
mean(H Hy), var(H Hy), mean(H L,), var(H L>),
mean(L H), var(LHj), mean(H Hy), var(H H»))}

3.5 JSEG-bag

Liu et al. (2008) proposed two bag generators. One of them is named JSEG-bag, which is
based on the JSEG image segmentation algorithm (Deng and Manjunath 2001). The other
one is named Attention-bag and based on the salient point-based technique. However, in their
experiments, the results of Attention-bag are worse than those of SBN, so we only consider
JSEG-bag.

4 Hue-Saturation-Value (HSV) are one of the most common cylindrical-coordinate representations of points
in a RGB color model. The HSV color space and its variants are proven to be particularly amenable to color
image analysis.
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Fig. 4 Local binary patterns (LBP). Supposing a is a 3 x 3 pixel window, c¢ is its corresponding gray values,
and d is the 8-bits LBP

Because JSEG-bag is based on the JSEG algorithm, we first introduce that algorithm. Deng
and Manjunath (2001) presented the JSEG image segmentation algorithm for unsupervised
segmentation of color-texture regions in images and videos. The method consists of two
independent steps: color quantization and spatial segmentation. In the first step, colors in an
image are quantized into several representative classes that can be used to differentiate regions
in the image. This quantization is performed in the color space alone without considering
the spatial distributions. Afterwards, image pixel colors are replaced by their corresponding
color class labels, thus forming a class-map of the image. The second step is the spatial
segmentation on the class-map of the image.

In JSEG-bag, it firstly segments an image with the JSEG algorithm (Deng and Manjunath
2001). Then it selects the top k regions from the segmented image in order of decreasing
regions’ areas. Note that in our experiments, we vary the different values of k as 2, 6, and
10. In the third step of JSEG-bag, it computes the R, G and B color mean values of each
region. Eventually, the image is converted into a corresponding image bag consisting of k
3-dimensional feature vectors (instances). The segmented result is shown in Fig. 6g.

3.6 Local binary patterns

Local binary pattern (LBP) (Ojala et al. 2002) is a local descriptor that captures the appearance
of an image in a small neighborhood around a pixel. An LBP is a string of bits, with one
bit for each of the pixels in the neighborhood. Each bit is turned on or off depending on
whether the intensity of the corresponding pixel is greater than the intensity of the central
pixel. Usually, these binary strings are pooled in local histograms, rather than directly using
the binary strings.

The LBP in our experiments is from the open source library VLFeat.” In VLFeat, it
implements only the case of 3 x 3 pixel neighborhoods which is found to be optimal in
several applications. In particular, as shown in Fig. 4, the LBP centered on pixel (x, y) is a
string of eight bits. Each bit is equal to one if the corresponding pixel is brighter than the
central one. Pixels are scanned starting from the one to the right in anti-clockwise order. For
a 3 x 3 neighborhood, an LBP is a string of eight bits and so there are 256 possible LBPs.
In practice, the 256 patterns are further quantized into a 58 quantized patterns according
to the uniform patterns (Heikkild and Pietikdinen 2006). The quantized LBP patterns are
further grouped into local histograms. In our experiments, we divide an image with 40 x 40
pixel windows. Then the quantized LBPs in each window are aggregated into a histogram
by using bilinear interpolation along the two spatial dimensions. Thus, the bag generated by

5 The VLFeat toolbox is available at http://www.vlfeat.org/.
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Fig. 5 A keypoint descriptor is created by first computing the gradient magnitude and orientation at each
image sample point in a region around the keypoint location, as shown on the left. These are weighted by
a Gaussian window, indicated by the overlaid circle. These samples are then accumulated into orientation
histograms summarizing the contents over 4 x 4 subregions, as shown on the right, with the length of each
arrow corresponding to the sum of the gradient magnitudes near that direction within the region. This figure
shows a 2 x 2 descriptor array computed from an 8 x 8 set of samples, whereas the experiments in this paper
use 4 x 4 descriptors computed from a 16 x 16 sample array (Color figure online)

LBP from a 240 x 360 image has totally 54 ((240/40) x (360/40) = 6 x 9) instances with
58 dimensions.

3.7 Scale invariant feature transform

A scale invariant feature transform (SIFT) feature (Lowe 2004) is a 3D spatial histogram of
the image gradients in characterizing the appearance of an image keypoint. The first thing
of computing SIFT descriptors is to extract SIFT keypoints, for whose details please refer
to Lowe (2004). After collecting N SIFT keypoints, as shown in Fig. 5, for each SIFT
keypoint, we compute the gradient magnitude and orientation at each image sample point in
an image patch. These samples are weighed by the gradient norm and accumulated in a 3D
histogram &, which forms the SIFT descriptor of the image patch. An additional Gaussian
weighting function is applied to give less importance to gradients farther away from the
keypoint center. Orientations are quantized into 8 bins and the spatial coordinates into four
each. Therefore, the resulting SIFT descriptor is of dimension 128 (8 bins x4 x4 = 128 bins).
Note that, Fig. 5 just shows a 2 x 2 descriptor array computed from an 8 x 8 set of samples.
In consequence, the bag generated by SIFT contains N instances of 128 dimensions.

3.8 Other image bag generators

Yang and Lozano-Pérez (2000) developed a bag generator called PRegions which is based
on possible regions of images. This bag generator sets a list of possible regions of interest
(ROI) in advance. After that, an image is divided into such overlapping regions. Each region
is filtered and converted into a feature vector. In this way, the image is represented by a
set of feature vectors. However, PRegions is very time-consuming and its performance is
mediocre (Zhou et al. 2003).

In Zhou et al. (2003), a bag generator named ImaBag was presented. In the first step of
this method, image pixels are clustered based on their colored and spatial features, where
the clustering process is accomplished by a SOM neural network. Then, the clustered blocks
are transformed into a specific number of regions by eliminating isolated pixels and merging
scattered blocks. Finally, the resulting regions are converted into three-dimensional numerical
instances of the image bag formed by their mean R, G, B values. Note that performance of
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the two bag generators is much worse than that of SBN, as reported in Zhou et al. (2003),
and this is the reason why we evaluate the other seven bag generators without these two.

3.9 Recap of bag generators

We have described specific techniques and computations performed by the nine state-of-the-
art bag generators. In this section, we will provide a brief comparison and some conclusions
about them.

As mentioned earlier, Row, SB and SBN are three non-segmentation bag generators only
extracting color features. They segment the original images into multiple regions by using
fixed strategies, which might divide objects into several parts. And it might be disadvanta-
geous for SBN: its overlapping strategy could make one object in an original image (bags)
be presented in multiple regions (instances) many times, which appears to be problematic
based on the results shown in Sect. 5.2.1.

Blobworld, k-meansSeg, WavSeg and JSEG-bag are segmentation bag generators. They
are similar in that they first segment original images into multiple regions (instances), and
then extract features for presenting each local region. The different points among them
are their different segmentation approaches. Blobworld and k-meansSeg extract the pixel-
level or blob-level features firstly. After that, they cluster these pixels or blobs into several
regions (instances), i.e., Gaussian Mixture Model of Blobworld and k-means of k-meansSeg.
Finally, for each region, they compute the average value of pixels’ or blobs’ features in the
same one region as the regions’ features. WavSeg and JSEG-bag employ the SPCPE and
JSEG segmentation algorithms, respectively, to segment original images. The final step of
these two is extracting features from the multiple regions. In short, k-meansSeg and WavSeg
contain both color and texture information of each region, and apart from this, Blobworld
also contains the spatial information. However, JSEG-bag merely has color information. The
segmentation results of different segmentation bag generators are shown in Fig. 6.

LBP and SIFT are two famous local descriptors employed as bag generators in this paper.
They both compute the histogram-based features of local regions (instances) in images (bags).
Animportant thing is that they both process the grayscale images, therefore their local features
(i.e., the bits strings of LBP and the gradient distributions of SIFT) only contain texture
information, without any color information.

In addition, from the view of sampling strategies, it is obvious to find that SB, SBN
and LBP sample dense patches/regions to construct instances in bags. However, the SIFT
descriptor (instance) is just based on the keypoints detected by SIFT detectors, rather than
sampling dense local regions from original images. Moreover, the other bag generators only
treat image segments as instances.

4 Empirical configurations
In this section, we first introduce seven state-of-the-art multi-instance learning algorithms

used in our experiments. Then we describe the data sets and the evaluation criteria used in
our empirical study.

4.1 Learning algorithms

Since the investigation of the drug activity prediction problem, many MIL algorithms have
been proposed. According to a recent MIL review (Amores 2013), MIL algorithms are
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Fig. 6 Corresponding segmentation results of these four segmentation bag generators, i.e., WavSeg, k-
meansSeg, Blobworld and JSEG-bag. Segmented regions are shown in their representative colors. The figures
are best viewed in color. a Original image. b WavSeg. ¢ kmeansSeg. d Anisotropy of Blobworld. e Contrast
of Blobworld. f Polarity of Blobworld. g JSEG-bag (Color figure online)

grouped into three paradigms: (a) the Instance-Space (IS) paradigm; (b) the Bag-Space (BS)
paradigm; (c) the Embedded-Space (ES) paradigm, based on how they manage the informa-
tion from the multi-instance data. In short, for the IS paradigm, the discriminative information
is considered to lie at the instance-level, while in the BS paradigm, the discriminative infor-
mation is at the bag level. The MIL algorithms in ES explicitly or implicitly map each MIL
bag to a single feature vector which summarizes the relevant information about the whole
bag.

Therefore, we select the corresponding presentative learning algorithms from each para-
digm, respectively, which are: Citation-k NN (Wang and Zucker 2000) and miGraph (Zhou
et al. 2009) for the BS paradigm; MIBoosting (Xu and Frank 2004), miSVM (Andrews et al.
2003) and MIForests (Leistner et al. 2010) for the IS paradigm; MILES (Chen et al. 2006)
and miF'V (Wei et al. 2014) for the ES paradigm.

In addition, the assumptions in these MIL algorithms can be divided into two groups, i.e.,
the standard MIL assumption and the relaxed MIL assumptions. The standard MIL assump-
tion is that a bag is positive if and only if one or more of its instances are positive, otherwise
it is labeled negative. In this paper, Citation-kNN, miSVM, MILES and MIForests obey the
standard assumption. The relaxed assumptions stress the relationship between instances in
a bag in determining the bag’s label, rather than one key instance can determine the bag’s
label assumed in the standard assumptions. For example, miGraph treated instances in each
MIL bag as non-i.i.d. samples (Zhou et al. 2009); MIBoosting assumed that all instances
contributed equally and independently to a bag’s class label (Xu and Frank 2004); and miFV
grouped instances in bags and encoded them into a new feature representation with the
bag-level discriminative information, which implicitly assumed the instances in bag are non-
i.i.d. (Wei et al. 2014). In the following, we try to give the key points about these MIL
algorithms in this section.
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Citation-kNN was proposed by Wang and Zucker (2000). The minimum Hausdorff distance
was used as the bag-level distance metric, which is why we consider it to be a BS paradigm
learning algorithm. In addition, when predicting the label of a new bag, Citation-kNN con-
siders not only the bags that are the nearest neighbors of the new bag, but also the bags that
count the new bag as their neighbor.

miGraph. Most previous MIL algorithms treat instances in the bags as independently and
identically distributed. Considering that the instances in a bag are rarely independent in real
tasks, Zhou et al. (2009) proposed miGraph to solve MIL problems by treating instances as
non-i.i.d. samples. Their basic idea is to regard a bag as an entity to be processed as a whole
(which demonstrates that it is a BS paradigm algorithm), and instances as inter-correlated
components of the entity. miGraph implicitly constructs graphs by deriving affinity matrices
and defines an efficient graph kernel considering the clique information.

MIBoosting. In contrast to the standard MIL assumption that there exists one or several
“key” instances triggering the bag labels, MIBoosting (Xu and Frank 2004) assumes that
all instances contribute equally and independently to a bag’s label. Naturally, the process
of predicting the label of a bag is conducted in two stages. In the first stage, MIBoosting
determines each individual instance’s class probabilities in a bag. And then, it combines these
estimates to assign a class label to the bag in the second stage, which shows that it is an IS
paradigm algorithm.

miSVM (Andrews et al. 2003) was designed for the instance-level classification problem.
miSVM explicitly treats instance-level labels as unobserved integer variables, subjected to
constraints defined by their bag-level labels. Intuitively, miSVM tries to look for an MI-
separating linear discriminant such that at least one instance from every positive bag locates
in the positive half-space, while all instances from negative bags locate in the negative half-
space. Obviously, miSVM belongs to the IS paradigm.

MILES (Chen et al. 2006) converts MIL problems to standard supervised learning by embed-
ding bags into an instance-based feature space (implicitly mapping) and selecting the most
important features. They define a similarity measure between a bag and an instance. The
coordinates of a given bag in the feature space represent the bag’s similarities to various
instances in the training set. At last, the 1-norm SVM is used to construct classifiers and
select important features simultaneously.

miFV (Wei et al. 2014) is one kind of ES method with a vocabulary, and it is an efficient and
scalable MIL algorithm. In miFV, the instances in MIL bags are first clustered into several
“groups”, and then mapped by its mapping function (explicitly mapping) into a new feature
vector representation (i.e., Fisher Vector (Sanchez et al. 2013)) with the bag-level label, which
implicitly assumes the instances are non-i.i.d. samples. Note that miFV encodes instances
in bags into a bag-level feature vector, rather than embedding bags into an instance-based
feature space which is done in MILES.

MIForests (Leistner et al. 2010) brings the advantage of random forests to multi-instance
learning. MIForests treats the (hidden) labels of instances as random variables defined over
a space of probability distributions, which is obviously an IS paradigm algorithm. Thus,
they formulate multi-instance learning as an optimization procedure where the labels of the
instances become the optimization variables. After that, they disambiguate the instance labels
by iteratively searching for distributions that minimize the overall learning objective.
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Table 1 COREL images

ID Category name 1D Category name
0 African people and villages 10 Dogs

1 Beach 11 Lizards

2 Historical building 12 Fashion models
3 Buses 13 Sunset scenes

4 Dinosaurs 14 Cars

5 Elephants 15 Waterfalls

6 Flowers 16 Antique furniture
7 Horses 17 Battle ships

8 Mountains and glaciers 18 Skiing

9 Food 19 Deserts

Note that, in our experiments, we selected the corresponding optimal parameters of these
learning algorithms via cross validations on their training data. The specific information of
parameters can be found in Section II of the Appendix.

4.2 Data sets

The data sets used in our experiments are taken from COREL and MSRA image data sources
which are very representative and frequently used in many image tasks of MIL researches.

COREL images consist of 2000 images from 20 CD-ROMs published by the COREL
Corporation, and thus contain 20 categories where each category contains 100 images.®
Images are in the JPEG format of 384 x 256 or 256 x 384 image resolution. The category
names are listed in Table 1 along with the identifiers for these 20 categories. Figure 7 shows
some sample images from COREL images.

MSRA images are the second version of MSRA-MM data set (Li et al. 2009). The image
data set was collected from Microsoft Live Search and it contains about 1 million images man-
ually classified into 8§ categories, i.e., Animal, Cartoon, Event, Object, Scene, PeopleRelated,
NamedPerson, and Misc. We here select 10 sub-categories from them and each sub-category
has 500 images. Note that instead of the standard original image resolution in COREL images,
these images from MSRA images are in different image resolutions. The sub-category names
of MSRA images are listed in Table 2. Some sample images from MSRA images are shown
in Fig. 8.

Elephant, Tiger and Fox are another three data sets from COREL images. Note that in
this paper, we only consider the binary classification problem. For these 3 data sets, they are
constructed as follows. We treat each of them as the positive examples, and randomly sample
100 images from other categories as the negative ones. After that, we randomly partition the
positive (negative) images into two equal parts, one half used for training while the other is
used for testing.

On the other hand, we construct 3 image collections, i.e., /000-Image (10 data sets, i.e.,
Category 0-9 from COREL images), 2000-Image (20 data sets, i.e., Category 0-19 from
COREL images), and MSRA (10 data sets, i.e., 10 sub-categories from MSRA images). For
each image collection, one-against-one strategy is used to construct data sets, which means
that examples from one category are regarded as positive while examples from one of the
remaining categories are regarded as negative. If the positive category is already selected, it

6 The image data sets are available at http://www.cs.olemiss.edu/~ychen/ddsvm.html.
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Fig. 7 Images randomly sampled from 20 categories of COREL images. Each category has two sample
images. The figures are best viewed in color (Color figure online)

Table 2 10 sub-categories from

MSRA images 1D Sub-category name 1D Sub-category name
0 Bald eagle 5 Audi
1 Bob esponja 6 Converse
2 Bugs bunny 7 Waterfall
3 Sonic 8 Basketball
4 Firework 9 American flag

e

Category 6 Sub-Category 7 Sub-Category 8 Sub-Category 9

w

Sub-

Sub-Category 5

Fig.8 Imagesrandomly sampled from 10 sub-categories of MSRA images. Each sub-category has two sample
images. Note that images from MSRA images have different resolutions, but in order to make them look neat,
we show them in the same size. The figures are best viewed in color (Color figure online)

will have 9 (19/9) possible choices for 1000-Image (2000-Image/MSRA). For all the possible
pairs of datasets, we randomly partition the positive (negative) images into two equal parts
for training (test), which is the same as what we do on Elephant, Fox and Tiger. Moreover, on
the training data of Elephant, Tiger, Fox and these three image collections, we run two times
two-fold cross validations to obtain the corresponding optimal parameters for each learning
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Table 3 Bag-size of each bag generator with its different patch sizes on the 2000-Image data collection

Row_4 Row_8 Row_16 Row_32 SB_4 SB_8
Bag-size 4x9 8§ x9 16 x 9 32x9 4x12 16 x 12
SB_16 SB_32 SBN_4 SBN_8 SBN_16 SBN_32
Bag-size 64 x 12 256 x 12 4x15 9 x 15 121 x 15 729 x 15
kmeansS._4 kmeansS._8 kmeansS._16 kmeansS._32 Blob. WavsS.
Bag-size 4.7x6 6.3 x6 3.6x6 3.0x6 1.7 x 286 2x 19
J.-bag_2 J.-bag_6 J.-bag_10 LBP SIFT -
Bag-size 2x3 6x3 10 x 3 35 x 58 40 x 128 -

For example, the Row bag generator with the 4 x 4 patch size, we denote it by “Row_4". And for bag-size,
we report it as a formula, i.e., “4 x 97, which means each bag generated by Row_4 contains 4 instances with
9-dimention

algorithm. Finally, on each data set, we repeat the experiments three times with different
training/test data splittings, and report the average classification accuracy rates.

In order to study the effect of patch size on learning, we vary the patch size of Row, SB,
SBN and k-meansSeg among four different values, i.e., different patch sizes with 4 x 4,
8 x 8, 16 x 16, and 32 x 32. Note that the patch size in each bag generator has a different
meaning. In Row, SB and SBN, the original images are resized into assigned patch sizes.
But, the patch size in k-meansSeg is the size of the sliding window. For JSEG-bag, we vary
the value of top k as 2, 6 and 10. WavSeg and Blobworld do not involve different patch sizes.
In addition, considering the computational cost of learning algorithms in our experiments,
we employ LBP and SIFT to extract 35 and 40 instances per image, respectively. However,
some combinations (e.g., “miSVM with LBP”, “MILES with SIFT”, etc.) still can not return
results in 7 days, cf. Table 16 in the Appendix. We present the corresponding bag-size of bag
generators (with different patch sizes) as shown in Table 3.

4.3 Evaluation criteria

As mentioned earlier, because the number of positive bags is equal to the one of the negative
bags in these data sets of our experiments, the impact of class imbalance can be ignored.
So, we use accuracy as the evaluation criterion to evaluate the classification performances of
bag generators with different MIL algorithms. In addition, in order to perform performance
analysis among several combinations (bag generators+learning algorithms), the Friedman
test is employed here which is widely-accepted as the favorable statistical test for compar-
isons of multiple algorithms over a number of data sets. The experimental results are shown
in the next section.

4.3.1 Accuracy

Accuracy is used as a statistical measure of how well a binary classification test correctly
identifies or excludes a condition. That is, in our experiments, accuracy is the number of true
prediction test bags (both true positive bags and true negative bags) with respect to the total
number of test bags:

fi true positive bags + t true negative bags

accuracy =
Y i test bags
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4.3.2 The Friedman test

Accuracy can clarify the difference between the performances of one bag generator applied
with different learning algorithms. However, it is not sufficient when we try to use it to clarify
the differences between multiple bag generators with different learning algorithms. In that
case, we use the Friedman test for testing the significance of differences between multiple
bag generators applied with multiple different learning algorithms.

The Friedman test (Demsar 2006) is a non-parametric equivalent of the repeated-measures
ANOVA (Fisher 1959). It ranks the combinations of MIL algorithms and bag generators for
each test data of corresponding image data sets separately, the best performing combination
(bag generator+learning algorithm) getting the rank of 1, the second best rank 2 and so on.
Given k comparing combinations (bag generators+learning algorithms) and N data sets, let
rij denote the rank of the jth combination on the ith data set (mean ranks are shared in

case of ties). Let R; = % > rl:/ denote the average rank for the jth combination, under the
null hypothesis (i.e., all combinations have “equal” performance), the following Friedman
statistic Fr will be distributed according to the F'-distribution with k — 1 numerator degrees
of freedom and (k — 1)(N — 1) denominator degrees of freedom:

N —1Dx2
Fp = ( )XF

=— F _\where x2 =
Nk—1) —x2 XF

12N Zk: e Kt 1)2
kk+1) | = J 4

If the Friedman statistics Fr is larger than the corresponding critical values, the null
hypothesis of “equal” performance among the combinations will be rejected. After that, for
further analyzing the relative performance among the comparing combinations, the Nemenyi
test (Nemenyi 1963) is used. The detailed results can be found in the next section.

5 Empirical results

In this section, we present and discuss the experimental results of the evaluations. The per-
formances of image bag generators are demonstrated mainly in two aspects, i.e., accuracy
comparison and method observations.

5.1 Accuracy comparison

In Table 4, we report the experimental results of all combinations (bag generator+learning
algorithm) on the Elephant, Fox, Tiger, 1000-Image, 2000-Image and MSRA image data sets.
In the following, we discuss the empirical results in two views, i.e., the view of bag generator
and the one of learning algorithm. Finally, we recommend several outstanding combinations
for practical applications.

5.1.1 From the bag generator view

As shown in Table 4, when combined with learning algorithms, SB, SBN and LBP most
frequently achieve the best image classification performance on all the data sets. In order to
have an overview of all the combinations’ classification performance, we rank these combi-
nations according to the decreasing order of classification accuracy rates, which is shown in
Table 5. In this table, we can easily find that SB, SBN and LBP achieve satisfactory classi-
fication performance. As aforementioned in Sect. 3.9, SB, SBN and LBP extract features of
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dense regions (instances) from original images (bags). The observations from Tables 4 and
5 illustrate sampling dense regions to construct instances in bags provides better results than
other segmentation-based bag generators. Meanwhile, it is not a pure coincidence, because
in the computer vision community, dense sampling has already shown to improve results
over sparse interest points for image classification (Li and Perona 2005; Nowak et al. 2006).

In addition, because the image data sets contain various types of image classes, we partition
every data collection (i.e., /000-Image, 2000-Image and MSRA) into two main parts: object-
style classification and scene-style classification. In /000-Image, the categories 0, 1 and 8
are treated as scene-style classification, while the remaining categories are the object-style.
In 2000-Image, the categories 0, 1, 8, 13, 15, 18 and 19 are treated as scene-style. Finally,
in MSRA, the sub-categories 4 and 7 are treated as scene-style. Besides the general image
classification results (in Table 4), we also report the accuracy rates of object classification
performances and scene classification performances in Tables 6 and 7, respectively.

As shown in Table 6, it has an almost identical trend of the average image classification
results (in Table 4). Here we focus on the scene-style classification. Compared with the
object-style classification results in Table 6, from Table 7, we can find Row’s performance
becomes prominent and LBP gets worse in most cases. In order to directly compare these
results, we report them in Table 8 and do the pairwise ¢ test. From that table, we can see
the performances of Row on scene-style classification are significantly better than the ones
of object-style. And the performances of SB, SBN and LBP are comparable. Moreover, the
accuracy rates of LBP on scene-style classification are lower than the ones of object-style
in most cases. In addition, similar to Table 5, we report the scene-style classification results
in ranks shown in Table 9. In this table, we only rank the top eight combinations, which
also shows: SB and SBN still outperform others; Row becomes prominent; while LBP is
not satisfactory. That is straightforward. Because for scene classification, color features have
strong discriminative information, while some other features (e.g., texture features) might be
not strongly useful. As aforementioned, Row extracts color features, while LBP extracts the
texture patterns from gray scale images.

5.1.2 From the learning algorithm view

Recall the classification results and ranks presented in Tables 4 and 5. From the view of learn-
ing algorithms, as shown in Table 4, miGraph and MIBoosting achieve the greatest number
of wins in performance. Table 5 makes it clear which algorithm performs better. In addition,
miFV also has satisfactory accuracy rates. Similar observations are demonstrated in Table 9.
These observations can be explained by the fact that the miGraph, MIBoosting and miFV
algorithms do not adopt the standard MIL assumption. And instead, miGraph and miFV
explicitly or implicitly assume that the instances in the bag are non-i.i.d. samples; MIBoost-
ing takes advantage of aggregating properties of bags. Note that it is unclear whether real
problems really follow the standard MIL assumption. In particular, in image-related tasks,
the position-relation among the patches/pixels are crucial; for instance, given the same set of
patches/pixels, putting them into different positions will result in different image semantics,
leading to different labels. For example, in the image of a “beach” shown in Fig. 7, the “sand”
and “sea” must co-occur. However, if only one of these things occurs in the image then it will
be “non-beach”, e.g., the images of “deserts” only contain “sand”. Thus, it is not strange that
the performances of miGraph, MIBoosting and miFV on image classification are better than
algorithms that assume the instances as i.i.d. samples, especially on the bag-level prediction
tasks.
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Table 5 Ranks of average accracy rates of each combination on Elephant, Fox, Tiger and these three image

data collections

Combination Eleph. Fox Tiger 1000-Img. 2000-Img. MSRA Ave. Rank
miGra.+LBP 1° 1°® 2% 1° 1° 2.2°
MIBoost.+SB 2% 3 1° 2% 2% 2.5%
miGra.+SB 3 6 4 5 5 1° 4.0
MiIBoost.+SBN 4 5 3 4 4 4.0
miGra.+SBN 5 4 5 7 2% 4.8
miFV+LBP 8 2% 8 16 3 12 8.2
MIBoost.+kmeansS. 6 9 11 7 6 13 8.7
miFV+SBN 10 17 10 10 8 8 10.5
MIBoost.+Blob. 21 12 7 13 9 3 10.8
miGra.+kmeansS. 11 7 13 8 13 16 11.3
miFV+SB 14 11 15 14 15 23 15.3
MIBoost.+Row 19 19 9 18 19 9 15.5
MIForests+SB 9 13 12 9 10 40 15.5
MILES+SB 7 14 14 11 11 38 15.8
miFV+kmeansS. 12 20 29 12 12 24 18.2
miGra.+Row 18 21 16 19 23 15 18.7
miFV+WavS. 17 16 6 50 16 18 20.5
miFV+SIFT 20 15 19 30 17 29 21.7
miSVM+WavsS. 24 25 18 21 22 22 22.0
MiBoost.+LBP 29 18 27 27 25 11 22.8
C.-kNN+kmeansS. 16 24 21 24 21 32 23.0
MIForests+SBN 13 23 41 15 20 37 24.8
MIForests+LBP 32 10 22 20 14 57 25.8
MILES+SBN 15 26 40 17 24 39 26.8
MILES+LBP 30 8 25 23 18 59 27.2
MIBoost.+J.-bag 27 41 23 31 30 14 27.7
miFV+Blob. 40 22 32 22 43 10 28.2
MIForests+Row 25 28 26 25 26 41 28.5
MIBoost.+WavS. 44 37 17 41 36 6 30.2
miFV+Row 36 31 28 29 31 30 30.8
miSVM+Blob. 22 27 24 42 39 31 30.8
miFV+].-bag 39 35 38 3 37 33 30.8
MILES+Row 31 30 31 26 27 43 31.3
miGra.+WavS. 23 39 39 34 34 21 31.7
C.-kNN+Row 33 32 30 38 32 27 32.0
C.-kNN+SBN 26 40 35 37 38 17 322
C.-kNN+WavS. 41 38 20 32 29 35 325
miSVM+kmeansS. 37 33 34 28 28 36 32.7
miSVM+Row 42 29 33 35 33 26 33.0
C.-kNN+SB 28 36 37 39 35 28 338
miSVM+SBN 34 34 36 40 40 19 338
miSVM+SB 43 42 42 43 45 25 40.0
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Table 5 continued

Combination Eleph. Fox Tiger 1000-Img. 2000-Img. MSRA Ave. Rank
MIForests+kmeansS. 35 43 43 33 42 45 40.2
MILES+kmeansS. 38 44 45 36 41 44 413
MIBoost.+SIFT 50 46 46 44 44 20 41.7
C.-kNN+J.-bag 45 45 44 46 46 34 43.3
MIForests+Blob. 46 49 48 45 47 46 46.8
MILES+BIlob. 47 48 47 47 48 47 473
miSVM+].-bag 49 50 49 49 49 42 48.0
C.-kNN+SIFT 53 47 51 48 53 49 50.2
MIForests+WavsS. 51 52 53 53 51 51 51.8
miSVM+LBP 48 51 50 51 50 62 52.0
MILES+WavS. 52 53 52 52 52 53 523
MIForests+J.-bag 54 55 54 54 54 54 54.2
MILES+].-bag 55 54 56 55 55 55 55.0
miGra.+J.-bag 56 58 55 56 56 52 555
miGra.+Blob. 58 57 58 57 58 48 56.0
miSVM+SIFT 57 56 57 58 57 61 57.7
miGra.+SIFT 61 60 61 59 59 50 58.3
MIForests+SIFT 60 61 59 60 60 56 59.3
MILES+SIFT 59 59 60 61 61 60 60.0
C.-kNN+LBP 62 62 63 62 63 58 61.7
C.-kNN+Blob. 63 63 62 63 62 63 62.7

“er

The first rank one in one column is followed by “®”, and the second rank one is followed by “x”. “Ave. Rank”
is the average value of all the ranks on these data sets

5.1.3 Recommended combinations

In this section, we recommend several combinations (bag generator+learning algorithm)
which have outstanding performance in image classification tasks. In Table 5, we list all
the combinations by their corresponding ranks. Focusing on the top eight ones, we do the
Friedman test for them.

In our setting, we have k = 8 comparing combinations and N = 6 image data sets.
According to Sect. 4.3.2, we first compute the Friedman statistics. The Friedman statistics in
our setting is Fr = 9.0554, which is larger than the critical values (i.e., 2.29) at significance
level o = 0.05, therefore the null hypothesis is clearly rejected. It indicates that there are
significant differences between the performance of these eight combinations. Consequently,
we need to proceed with a post-hoc test to further analyze the relative performance among
these combinations. As we are interested in comparing all combinations with each other, the
Nemenyi test (Nemenyi 1963) is employed. The performance of two combinations is signif-
icantly different if the corresponding average ranks differ by at least the critical difference:

k(k+1)
CD = 4oy =gy
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Table 8 Results of Row, SB, SBN and LBP on object-style and scene-style classification

Datasets Algorithms Row SB SBN LBP
Ob;. Scene Obj. Scene Ob;. Scene Ob;j. Scene
1000-Img. Citation-kNN .831 .859 .830 811 .829 .832 .500 .500
miGraph .871 .884 931 .873 917 .866 951 .895
MIBoosting .877 879 938 .886 933 .887 .857 813
miSVM .839 .844 812 57 .833 .828 725 .760
MILES .855 875 .898 .861 871 .853 .866 871
miFV .844 .830 .892 .870 905 .868 .882 .850
MIForests .855 .879 901 .864 .875 .855 .869 .872
2000-Img. Citation-kNN .833 .859 .830 .829 .822 .838 .500 .500
miGraph .870 .873 914 .892 .904 .884 953 875
MIBoosting .873 877 926 .902 916 .891 .858 .834
miSVM .831 .845 .801 .803 814 .833 738 739
MILES .846 .855 .887 .869 .867 .875 .879 818
miFV .835 .852 .884 .864 .898 .883 928 .861
MIForests .850 855 .886 .869 .869 .876 .883 .819
MSRA Citation-kNN 815 907 .823 .894 .851 .890 .503 .501
miGraph .863 926 937 .944 932 .949 .895 917
MIBoosting .887 942 912 943 921 949 .864 918
miSVM .824 929 .834 .898 .839 909 N/A N/A
MILES 740 .814 758 815 758 789 N/A N/A
miFV 812 924 .828 917 .887 941 .858 .882
MIForests 739 813 758 .820 761 792 .828 .802
Pairwise  test h )4 h )4 h )4 h p
1 0.005 0 0.998 0 0.783 0 0.727

On the top of the table, we report the accuracy rates of each combination of two style image classification.
On the buttom, we present the pairwise ¢ test between object- and scene-style classification. In pairwise 7 test,
h = 0 indicates that the null hypothesis (“means are equal”) cannot be rejected at the 5 % significance level.
In addition, the p value indicates the validity of the null hypothesis. The larger the p value, the more valid the

result is. N/A indicates that these combinations could not return a result in 7 days

Table 9 Ranks of scene-style classification results of each combination (bag generator + learning algorithm)

on three collections, i.e., /000-Image, 2000-Image and MSRA

Combination 1000-Image 2000-Image MSRA Average rank
MIBoost.+SB 4x 1° 4 3.0°
MIBoost.+SBN 3° 3 3 3.0x
miGra.+SB 11 2% 5 6.0
MIBoost.+Row 6 8 6 6.7
miGra.+SBN 20 4 2% 8.7
miGra.+Row 5 12 11 9.3
MIBoost.+Blob. 22 6 1° 9.7
miFV+SBN 18 5 7 10.0

The best performance in one column is followed by

«®

Rank” is the average value of all the ranks on these three data sets

@ Springer
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Fig.9 Comparison of the top 8 combinations against each other with the Nemenyi test. Groups of combinations
that are not significantly different (at p = 0.05) are connected

For Nemenyi test, we have g, = 3.031 at significance level « = 0.05 and thus
CD = 4.2865 (when k = 8§, N = 6). To visually present the relative performance of
these top eight combinations, Fig. 9 illustrates the CD diagrams (Demsar 2006). When com-
paring all the combinations against each other, we connect the groups of combinations that
are not significantly different. We also show the critical difference above the figure. As
shown in this figure, “miGra.+LBP” and “MIBoost.+SB” significantly outperform against
the other combinations. However, the experimental data is not sufficient to reach any con-
clusion regarding “miGra.+SB”, “MIBoost.+SBN”, “miGra.+SBN” and “miFV+LBP”, i.e.,
we cannot tell which group they belong to.

In consequence, we recommend “miGraph with LBP” and “MIBoosting with SB” as the
best two combinations for image classification tasks.

5.2 Method observations

In this section, we will first report some findings about SB and SBN. And then, we present
some interesting observations about the patch sizes of certain bag generators.

5.2.1 Similar performance phenomenon of SB and SBN

Regardless of whether we are considering Tables 4 or 5, we can easily find that the classifica-
tion performances of SB and SBN are quite similar. Moreover, Fig. 10 presents the accuracy
rates of SB and SBN on two image data collections, i.e., 2000-Image and MSRA. Figure 10c
and f demonstrate the difference-value (D-value) of SB and SBN on these two data sets,
respectively. From the figures, we can easily find that SB and SBN perform quite similarly:
The D-value of SB and SBN on 2000-Image is not larger than 0.06; and the one on MSRA is
smaller than 0.07. We also do the pairwise ¢ test between SB and SBN, and the results are
presented in Table 10: The performances of SB and SBN are not significantly different from
each other. As illustrated in Sect. 5.2.1, SB abstracts instances without overlapping, while
SBN is with overlapping by a cross shaped sliding window. However, why the performances
of these two could be so similar? Here we focus on the overlapping in SBN.

Figure 11 shows the overlapping of SBN with the 16 x 16 and 64 x 64 patch size,
respectively. The number of the color-bar stands for the number of overlapping. As shown in
this figure, when the patch size increases, the overlapping regions become larger, and cover
the whole image eventually. In consequence, the larger the overlapping of SBN is, the more
redundancy exists among instances in the same bag. This explains why SB and SBN could
have similar performances. Moreover, one instance’s feature of SBN is the RGB values of
each pixel in a 2 x 2 blob and the corresponding color difference with its 4 neighboring
blobs. However, one SB instance is just the RGB values of each pixel in a 2 x 2 blob. The
similar performance phenomenon also indicates that the difference with blob’s neighbors in
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Fig. 10 Similar performances of SB and SBN on two image data collections. The figures in the first row are
the results on 2000-Image, and the ones in the second row are the results on MSRA. a and d are the classification
accuracy figures of SB with different patch sizes; b and e are the ones of SBN. In addition, we present the
difference-value (D-value) of SB and SBN on these two data sets, which are shown in ¢ and f, respectively.
The figures are best viewed in color. a SB on 2000-Img. b SBN on 2000-Img. ¢ D-value on 2000-Img. d SB
on MSRA. e SBN on MSRA. f D-value on MSRA (Color figure online)

SBN might not be useful. Meanwhile, SBN usually produce much more instances than SB
(cf. Table 3), which will cause a much larger computational cost. Therefore, it is better to
choose SB to be bag generator, instead of SBN.

In addition, when the patch size is small, the blind zones in SBN account for a large propor-
tion of the original image. However, when it increases, the blind zones will become negligible.
Thus, if the key objects locate in the corner of images, using SBN as bag generator might not
be a good choice; or it is more suitable to use SBN with a large patch size to abstract instances.

5.2.2 Observations about patch size

In our experiments, we vary different patch sizes for some bag generators. Here we report
some findings about that. As shown in Fig. 12, the figures in each row represent the classi-
fication results of one bag generator combined with four different learning algorithms. For
example, Fig. 12a shows the accuracy rates of the combination (i.e., “miGraph with SB”) on
the six image data sets. The horizontal axis is with different patch sizes (from left to right)
in order of increasing instances’ numbers. Moreover, Fig. 12b is the result of “MIBoosting
with SB”; (c) is for “miFV with SB”; (d) is for “miSVM with SB”.

If we treat miGraph, MIBoosting and miFV as an algorithm group, which do not obey
the standard MIL assumption, we will find an interesting observation: when the number of
instances increases, their classification accuracy rates will also increase. (Certainly, “miGraph
with k-meansSeg” is a small exception.) This phenomenon supports our findings in Sect. 5.1.2
again. In other words, more instances are helpful to infer the relationship of instances in bags
with the bag’s label. In this way, more instances mean a more accurate relationship in the

@ Springer
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Table 10 Pairwise ¢ test between SB and SBN on two image data collections, i.e., 2000-Image and MSRA

Datasets Algorithms SB_.4 SBN_4 SB 8 SBN_8 SB_16 SBN_16 SB_32 SBN_32

2000-Img.  Citation-kNN  .828  .809 .803 814 813 .821 813 811
miGraph .859 832 .881 .844 902 .883 910 902
MIBoosting 845 838 883 .85l 914 .904 926 920
miSVM .803 817 753 815 .693 732 N/A N/A
MILES 831 818 853 817 .888 .864 N/A N/A
miFV .832 820 845 822 .867 .883 .875 .897
MIForests 832 822 853 819 .890 .873 .867 .869

MSRA Citation-kNN  .823  .791 791 .854 740 .810 17 N/A
miGraph .873  .865 892 889 914 930 936 N/A
MIBoosting 884  .891 .895 .908 909 928 915 922
miSVM .829 838 796 845 778 .802 N/A N/A
MILES 144 744 158 756 N/A N/A N/A N/A
miFV 798 821 807  .843 .826 .887 .832 .892
MIForests 744 744 755 760 154 759 750 753

Pairwise  test h )4 h p h )4 h p

0 0.727 0 0.775 0 0.600 0 0.617

On the top of the table, we report the accuracy rates of each combination. On the buttom, we present the
pairwise ¢ test between SB and SBN of different patch sizes. In pairwise ¢ test, 7 = 0 indicates that the null
hypothesis (“means are equal”) cannot be rejected at the 5% significance level, which also shows SB and
SBN are not siginificantly different from each other. In addition, the p value indicates the validity of the null
hypothesis. N/A indicates that these combinations could not return a result in 7 days

(@ (b)

Fig. 11 Overlappings of the SBN bag generator with the a 16 x 16 and b 64 x 64 patch size. The warm color
represents the number of overlappings is large, while the cool color represents the one is small. Note that, the
maximum number of the overlapping is 20. The minimum one is 0, which indicates there are blind zones in
the four corners of this image. The figures are best viewed in color (Color figure online)

bag, which is good for miGraph etc. to build a better MIL classifier. On the other hand, for
miSVM, which obeys the standard MIL assumption, fewer instances yield a more accurate
MIL classifier, especially for image related tasks. But for the other MIL algorithms obey
the standard MIL assumption, i.e., Citation-kNN and MILES, their results with instances
increasing show no apparent pattern. In addition, the figures in the first three columns of SB
and SBN in Fig. 12 also demonstrate the effect of dense sampling. Because SB and SBN with
larger patch size will extract more instances (image regions), which indicates more dense
sampling from original images.
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Fig. 12 Accuracy rates figures of combinations (i.e., miGraph, MIBoosting, miFV and miSVM with SB,
SBN, kmeansSeg and JSEG-bag) on the six image data sets. Note that, the vertival axis is the averagy accuracy
rates, and the horizontal one is different patch sizes in order of increasing instances’ numbers. The different
marks stand for different image data sets. There also lack of some combinations’ results, e.g., “miSVM with
SB in the 32 x 32 patch size”, which caused by its large computational cost. In addition, “kmS.” is short for the
k-meansSeg bag generator; “J.-bag” is “JSEG-bag”; “miGra.” is “miGraph”; and “MIBoost.” is “MIBoost-
ing”. The figures are best viewed in color. a miGra.+SB. b MIBoost.+SB. ¢ miFV+SB. d miSVM+SB.
e miGra.+SBN. f MIBoost.+SBN. g miFV+SBN. h miSVM+SBN. i miGra.+kmS. j MIBoost.+kmsS.
k miFV+kmS. I miSVM+kmS. m miGra.+J.-bag. n MIBoost.+J.-bag. 0 miFV+J.-bag. p miSVM+J.-bag
(Color figure online)

6 Summary of findings

In this paper, we have presented an empirical study on image bag generators for multi-instance
learning. Our main findings are summarized as follows.

e SB, SBN and LBP outperform other bag generators in most cases, which indicates that
sampling dense regions to construct instances will provide better classification perfor-
mance. Itis also consistent with the conclusion in the computer vision community (Li and
Perona 2005; Nowak et al. 2006). In the future, it is better to incorporate dense sampling
into new image bag generators.
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e The assumptions adopted by different MIL algorithms critically determine their perfor-
mances on many tasks. The miGraph, MIBoosting and miFV algorithms that assume
non-i.i.d. instances or take advantage of aggregating properties of bags work well on
image classification tasks, whereas algorithms adopt the standard MIL assumption do
not. Therefore, in the future, it is preferable to design new learning algorithms by con-
sidering the nature of the relationship between instances in MIL bags for image related
tasks.

e The performances of SB and SBN are quite similar. However, SBN will lead to a larger
number of instances and larger time cost than SB. In practice, it is a better choice to select
SB as the bag generator, instead of SBN.

e For different image classification tasks, such as object classification and scene classifica-
tion, different kinds of instances’ features are the key point of classification accuracy. For
example, if the task is scene classification, bag generators which contain color features
will have satisfactory accuracy rates, while the ones containing texture features might be
unsatisfactory.

e There are interesting observations about several combinations. For miGraph, MIBoost-
ing or miFV, when they are combined with SB, SBN, k-meansSeg or JSEG-bag, along
with the number of instances increasing, their classification accuracy also increases,
while miSVM has the opposite behavior. These observations not only support the second
finding, they also demonstrate the effect of dense sampling.

e There are several recommended combinations for practical applications. “miGraph with
LBP” and “MIBoosting with SB” are two of the best combinations for image classification
(cf. Fig. 9).

7 Conclusions

Multi-instance learning has achieved great success in applications with complicated objects
such as image categorization. While most research interests focus on designing MIL algo-
rithms, bag generators are rarely studied. In this paper, we provide an empirical study with
thousands of configurations on state-of-the-art image bag generators. From these empirical
results, we make some interesting observations that are helpful for both image classification
and multi-instance learning. In the future, better image bag generators or MIL algorithms
might be designed based on the experimental observations. We also believe similar studies
could be made in other MIL applications, e.g., text bag generators for text categorization tasks.
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(61333014, 61321491), Tencent Fund, and the Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization.

Appendix: Detailed experimental results

Section I: The detailed averagy accuracy rates of each combination (bag generator
+ learning algorithm) on Elephant, Fox, Tiger, 1000-Image, 2000-Image and MSRA

See Tables 11, 12, 13, 14, 15 and 16.
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Section II: The corresponding optimal parameters for each combination on the
2000-Image and MSRA data collections

Here we introduce the parameters of each learning algorithm, followed by the corresponding
optimal parameters for different combinations on these two data collections. The implemen-
tations of Citation-kNN and miSVM are by using the Multiple Instance Learning Toolbox.’
The implementation of MIBoosting is by using the WEKA data mining software.® The
other implementations of learning algorithms and bag generators are all from the authors.
All the parameters were selected according to a two times two-fold cross validation on the
training set. Because we repeat the experiments three times with different training/test data
splitting, we also select the optimal parameters three times on the corresponding training
sets. Tables 17, 18, and 19 show the optimal parameters of three splittings on 2000-Image.
Tables 20, 21, and 22 show the ones on MSRA.

e Citation-kNN': There are three parameters in this MIL algorithm, i.e., “R”, “C” and “H”".
The “R” indicates the number of nearest references, and “C” is the number of nearest
citers, and “H” is rank of the Hausdorff distance. We chose R from 1 to 5 with step size
2, and C from 1 to 3 with step size 2, and H from 1 to 2.

e miGraph: The main parameters of miGraph are “y” and “thr”. For the “c” which used in
SVM, we fixed it as 100. In miGraph, “y” is the parameter of the RBF kernel, and “thr”
is the threshold used in computing the weight of each instance. We chose thr from 0.1
to 0.9 with step size 0.2. For y, its value is chosen from the set of {1.25,2.5, 5, 10, 20}.

e MIBoosting: In MIBoosting, we use the pruned “J48” as the base learner, and the other
parameters of “J48” is the default parameters in Weka. For the maximum number of
boost iterations N, we chose it from the set of {10, 50, 100}.

e miSVM has three main parameters, i.e., “C”, “K” and “E” (or “G”). “C” is the parameter
in SVM. “K” indicates the kernel function, i.e, the polynomial kernel or the RBF kernel.
If we use the polynomial kernel, the third parameter in miSVM is “E” which is the degree
of polynomial; if the RBF kernel is used, the third one is “G” which is the y in the RBF
kernel. We chose C as 1, 50 or 100. For E, its values is from 1 to 3 with step size 1. For
G, we chose its value as 0.1, 0.5 or 1.

e MILES: Three parameters o2, A and u need to be specified for MILES. We fixed iz = 0.5
as the authors do in Chen et al. (2006), which penalized equally on errors in the positive
class and the negative class. For o2, we chose its value from 5 to 15 with step size 2. For
A, we chose from 0.1 to 0.6 with step size 0.1.

e miFV: There are two main parameters in this learning algorithm. One of them is the
number of Gaussian components K in GMM, the other is the PCA energy (as noted by
“P E”), which reflects how much information is left after using PCA. We chose K from
1 to 5 with step size 1, and P E from 0.8 to 1 with step size 0.1.

e MIForests: The main parameters of MIForests are the number of trees “N” and the depth
of tree “d”. For “N”, its value is chosen from the set of {10, 50, 100}, and for “d”, it is
from {10, 20, 30}. In addition, we followed the cooling schedule described in Leistner
et al. (2010).

7 The Multiple Instance Learning Toolbox is available at http://prlab.tudelft.nl/david-tax/mil.html.

8 The WEKA software is available at http://sourceforge.net/projects/weka/files/weka-3-6/3.6.12/weka-3-6-
12.zip/download.

@ Springer
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