
Mach Learn (2016) 103:407–449
DOI 10.1007/s10994-016-5558-8

Probabilistic logic programming for hybrid relational
domains

Davide Nitti1 · Tinne De Laet2 · Luc De Raedt1

Received: 14 December 2014 / Accepted: 23 February 2016 / Published online: 22 April 2016
© The Author(s) 2016

Abstract We introduce a probabilistic language and an efficient inference algorithm based
on distributional clauses for static and dynamic inference in hybrid relational domains. Static
inference is based on sampling, where the samples represent (partial) worlds (with discrete
and continuous variables). Furthermore, we use backward reasoning to determinewhich facts
should be included in the partial worlds. For filtering in dynamic models we combine the
static inference algorithm with particle filters and guarantee that the previous partial samples
can be safely forgotten, a condition that does not hold in most logical filtering frameworks.
Experiments show that the proposed framework can outperform classic samplingmethods for
static and dynamic inference and that it is promising for robotics and vision applications. In
addition, it provides the correct results in domains in which most probabilistic programming
languages fail.

Keywords Probabilistic programming · Statistical relational learning · Discrete and
continuous distributions · Particle filter · Likelihood weighting · Logic programming

Davide Nitti is supported by the IWT (Agentschap voor Innovatie door Wetenschap en Technologie).

Editor: Filip Železný.

B Davide Nitti
davide.nitti@cs.kuleuven.be

Tinne De Laet
Tinne.DeLaet@kuleuven.be

Luc De Raedt
luc.deraedt@cs.kuleuven.be

1 Department of Computer Science, KU Leuven, Leuven, Belgium

2 Faculty of Engineering Science, KU Leuven, Leuven, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5558-8&domain=pdf
http://orcid.org/0000-0002-0031-6094

408 Mach Learn (2016) 103:407–449

1 Introduction

Robotics research has made important achievements in problems such as state estimation,
planning, and learning. However, the majority of probabilistic models used, such as Bayesian
networks, cannot easily represent relational information, that is, objects, properties as well
as the relations that hold between them. Relational representations allow one to encode more
general models, to integrate background knowledge about the world, and to convert low-level
information into human-readable form. Probabilistic programming languages (DeRaedt et al.
2008) and statistical relational learning techniques (SRL) (Getoor and Taskar 2007) provide
such relational representations and have been successful in many application areas ranging
from natural language processing to bioinformatics.

This paper extends probabilistic logic programming techniques to deal with hybrid rela-
tional domains, involving both discrete and continuous random variables in two settings. The
first setting is a static one, where we contribute a new inference algorithm for Distributional
Clauses (DC) (Gutmann et al. 2011), a recent extension of Sato’s distribution semantics (Sato
1995) for dealing with continuous variables. The second setting is a dynamic one, where we
extend the DC framework for coping with time. For the resulting Dynamic Distributional
Clauses (DDC), we develop a particle filter (DCPF) that exploits the static inference algo-
rithm for filtering. Particle filters (Doucet et al. 2000) are widely applied in domains such as
probabilistic robotics (Thrun et al. 2005), and we adapt them here for use in hybrid relational
domains, in which each state of the environment is represented as an interpretation, that is, a
set of ground facts that defines a possible world. The statistical relational learning literature
already contains several approaches to temporal models and to particle filters; see Sect. 8
for a detailed discussion. However, few frameworks are suited for tracking or other robotics
applications: they are too slow for online applications or they only support discrete domains.

The distinguishing features of the proposed framework are that: (1) it provides an inference
method that extends the applicability of likelihood weighting (LW) and works with zero
probability evidence; (2) it exploits partial worlds as samples allowing for a potentially
infinite state space; (3) it employs a relational representation to represent (context-specific)
independence assumptions, and exploits these to speed up inference; (4) it is suited for
tracking and robotics applications; and (5) it has a bounded space complexity for filtering by
avoiding inference backward in time (backinstantiation).

The contributions of this paper are that (1) we propose an improved sampling algorithm
for static inference; (2) we extend DC for dynamic domains (DDC); (3) we introduce an
optimized particle filter forDDC; (4)we prove the theoretical correctness forDCPF and study
its relation with Rao–Blackwellized particle filters; (5) we integrate online learning in the
DCPF; and (6)we adopt theDCPF in some tracking scenarios. This paper is based on previous
papers (Nitti et al. 2013, 2014c) (plus a position paper Nitti et al. 2014a and a summary paper
Nitti et al. 2014b), but is extended with contributions (1) and (4), and additional experiments.

This paper is organized as follows: we first reviewDC (Sect. 2), introduce some extensions
and present the static inference procedure (Sect. 3). We then introduce the Dynamic DC, the
particle filters (Sect. 4), and propose the DCPF (Sect. 5). We then integrate learning in DCPF
(Sect. 6), present some experiments (Sect. 7), discuss related work (Sect. 8), and conclude
(Sect. 9).

2 Distributional clauses

We now introduce the distributional clauses (DC) (Gutmann et al. 2011), an extension of
distribution semantics (Sato 1995), while assuming some familiaritywith statistical relational

123

Mach Learn (2016) 103:407–449 409

learning and logic programming (De Raedt et al. 2008) (see “Logic programming” in the
Appendix for a brief overview).

Formally, a distributional clause is a formula of the form h ∼ D ← b1, . . . ,bn, where
the bi are literals and ∼ is a binary predicate written in infix notation.
The intended meaning of a distributional clause is that each ground instance of the clause
(h ∼ D ← b1, . . . ,bn)θ defines the random variable hθ with distribution Dθ whenever all
the biθ hold, where θ is a substitution. In other words, a distributional clause can be seen
as a powerful template to define conditional probabilities: p(hθ |(b1, . . . ,bn)θ) = Dθ . The
termD can be nonground, i.e., values, probabilities, or distribution parameters can be related
to conditions in the body. Furthermore, given a random variable r , the term �(r) constructed
from the reserved functor �/1 represents the value of r . Abusing notation, for brevity, we
shall sometimes write r ∼= v instead of �(r) = v, which is true iff the value of the random
variable r unifies with v.

Example 1 Consider the following clauses:

n ∼ poisson(6). (1)

pos(P) ∼ uniform(0,M) ← n ∼= N,between(1,N,P),M is 10 ∗ N. (2)

left(A,B) ← �(pos(A)) <�(pos(B)). (3)

where ‘is’ is the equality operator. Capitalized terms such asP,A, andB are logical variables,
which can be substituted with any constant. Clause (1) states that the number of people n is
governed by a Poisson distribution with mean 6. Clause (2) models the position pos(P) as
a continuous random variable uniformly distributed from 0 to M = 10N (that is, 10 times the
number of people), for each person identifier P such that 1 ≤ P ≤ N, where P is integer and
N is unified with the number of people n. For example, if the value of n is 2, there will be
2 independent random variables pos(1) and pos(2) with distribution uniform(0,20).
Finally, clause (3) defines the binary relation left, comparing people positions. Note that
the atom left(a,b) is defined using a deterministic clause, but it is a random variable as it
depends on other random variables.

DCs support continuous distributions (under reasonable conditions) and naturally cope
with an unknown number of objects (Gutmann et al. 2011). In addition to distributional
clauses, we shall also employ deterministic clauses as in Prolog. We shall often talk about
clauses when the context is clear.

A distributional program P is a set of distributional and/or deterministic clauses that
defines a distribution p(x) over possible worlds x . The probability p(q) of a query q can be
estimated using Monte-Carlo methods, that is, possible worlds are sampled from p(x), and
p(q) is approximated as the ratio of samples in which the query q is true.

The procedure used to generate possibleworlds defines the semantics and a basic inference
algorithm. A possible world is generated starting from the empty partial world x = ∅; then
for each distributional clause h ∼ D ← b1, . . . ,bn, whenever the body {b1θ, . . . ,bnθ} is
true in the set x for the substitution θ , a value v for the random variable hθ is sampled from
the distribution Dθ and hθ = v is added to the new partial world x̂ . This is also performed
for deterministic clauses, adding ground atoms to x̂ whenever the body is true. This process
is then recursively repeated until a fixpoint is reached, that is, until no more variables can
be sampled and added to the world. The final world is called complete or full, while the
intermediate worlds are called partial. The process is based on sampling, thus ‘world’ is
often replaced with sample or particle. Notice that a possible world may contain a countably
infinite number of random variables (and atoms).

123

410 Mach Learn (2016) 103:407–449

Example 2 Given the DC program P defined by (1), (2), and (3), {n = 2,pos(1) = 3.1,

pos(2) = 4.5,left(1,2)} is a possible (complete) world. This world is sampled in
the following order: ∅ → {n = 2} → {n = 2,pos(1) = 3.1,pos(2) = 4.5} → {n = 2,

pos(1) = 3.1,pos(2) = 4.5,left(1,2)}.

Gutmann et al. (2011) formally describe this generative process using the STP operator.
To define a proper probability distribution p(x), P needs to satisfy the validity conditions
described in Gutmann et al. (2011). See “Distributional clauses” in the Appendix for details
on the validity conditions and the STP operator. Throughout the paper the partial worlds
will be written as x P , while x ⊇ x P indicates a complete world consistent with x P , and
xa = x \ x P represents the remaining part of the world.

We extended DC to allow for negated literals in the body of distributional clauses. To
accommodate negation, we need to consider the case that a random variable is not defined
in a full world x . Any comparison involving a non-defined variable will fail; therefore, its
negation will succeed. In contrast, grounded atoms a are considered false in x , if a /∈ x
(standard closed-world assumption). For further details on negation in DC see “Negation” in
the Appendix.

3 Static inference for distributional clauses

Sampling full worlds is generally inefficient or may not even terminate as possible worlds
can be infinitely large. Therefore, Gutmann et al. (2011) use magic sets (Bancilhon and
Ramakrishnan 1986) to generate only those facts that are relevant for answering the query.
Magic sets are a well-known logic programming technique for forward reasoning. In this
paper, we propose a more efficient sampling algorithm based on backward reasoning and
likelihood weighting.

3.1 Importance sampling

Given a program P, the probability of the query q is estimated by applying importance
sampling to partial samples x P(i), with i = 1, . . . , N where N is the number of samples. In
importance sampling the proposal probability g(x) used to generate samples is not necessary
the target probability p(x).

The Monte-Carlo approximation is the following (where 1 is the indicator function1):

p(q) = Ep(x)[1(x |� q)]=
∫
x
1(x |� q)p(x)dx=

∫
x P

∫
xa

1(x |� q)p(xa |x P)p(x P)dxadx P

=
∫
x P

∫
xa

1(x |� q)p(xa |x P)dxa

︸ ︷︷ ︸
p(q|x P)

p(x P)dx P =
∫
x P

p(q|x P)p(x P)dx P

=
∫
x P

p(q|x P)
p(x P)

g(x P)︸ ︷︷ ︸
wq

g(x P)dx P ≈ 1

N

N∑
i=1

w(i)
q , (4)

1 The indicator function is 1 when the argument is true, zero otherwise.

123

Mach Learn (2016) 103:407–449 411

where the weight isw
(i)
q = p(q|x P(i))

p(x P(i))

g(x P(i))
. Formula (4) uses a fixed split x = x P ∪xa .

Following Milch (2006) we extend this idea to exploit context-specific independencies: we
can have a different split in different samples.

There are two reasons to sample partialworlds instead of complete ones. First, the sampling
process is faster and terminates (under some conditions) even when the complete world is a
countably infinite set. Second, the estimator variance is generally lowerwith respect to a naive
Monte-Carlo estimator that samples complete worlds. Indeed, sampling some variables x P(i)

and computing p(q|x P(i)) analytically is an instance of the conditional Monte-Carlo method
(Lemieux 2009) (sometimes called Rao–Blackwellization), which has better performance
with respect to naive Monte-Carlo.

The split of x has to guarantee that the probability p(q|x P(i)) is analytically com-
putable. Let var(q) denote the set of all random variables in q . If var(q) ⊆ var(x P(i)),
all the variables in q are instantiated in x P(i), thus q can be determined deterministically:
p(q|x P(i)) = 1(x P(i) |� q). In some cases it is possible to compute p(q|x P(i)) without
sampling variables in q .

Example 3 Given the clauses (1), (2), (3),

p(q|x P(i)) = p(pos(1) > 5 | {n = 3,pos(1) = 3}) = 0,

while themarginalized variablespos(2),pos(3),left(X,Y) are irrelevant.We could even
do better, for example p(q|x P(i)) = p(pos(1) > 5|{n = 3}) is analytically computable
without sampling var(q) = {pos(1)}.

In general, it is impossible to sample only var(q) as the DC program does not directly
define the distribution of these variables. For example, to sample pos(1) defined by (2) we
first need to sample n defined by (1); thus we need to follow the generative sampling process
(STP operator) until the variables of interest are sampled. Backward reasoning (or the magic
set transformation) can help to focus the sampling.

The probability of a query given evidence p(q|e) can be estimated using formula (4) twice,
once to estimate p(q, e) and another time to estimate p(e), then p(q|e) is approximated as the
ratio of the two quantities. As an alternative, formula (4) can be adapted to use the same partial
samples to estimate the two quantities. In detail, each sample is split in x = x P

e ∪x P
q ∪xa , such

that x P
e is sufficient to compute p(e|x P

e) and x P
q ∪x P

e is sufficient to compute p(q|e, x P
q , x Pe).

Formula (4) is applied to estimate p(e), then the same partial samples x P(i)
e are expanded to

estimate p(q, e):

p(q, e) =
∫
x Pe

∫
x Pq

p(q, e|x Pq , x Pe)p(x Pq , x Pe)dx Pq dx
P
e

=
∫
x Pe

∫
x Pq

p(q|e, x Pq , x Pe)p(e|x Pe)p(x Pq |x Pe)p(x Pe)dx Pq dx
P
e

=
∫
x Pe

∫
x Pq

p(q|e, x Pq , x Pe)p(x Pq |x Pe)dx Pq p(e|x Pe)p(x Pe)dx Pe

=
∫
x Pe

∫
x Pq

p(q|e, x Pq , x Pe)
p(x Pq |x Pe)

g(x Pq |x Pe)
g(x Pq |x Pe)dx Pq p(e|x Pe)

p(x Pe)

g(x Pe)
g(x Pe)dx Pe

123

412 Mach Learn (2016) 103:407–449

≈ 1

N

N∑
i=1

p(q|e, x P(i)
q , x P(i)

e)
p(x P(i)

q |x P(i)
e)

g(x P(i)
q |x P(i)

e)︸ ︷︷ ︸
w

(i)
q

p(e|x P(i)
e)

p(x P(i)
e)

g(x P(i)
e)︸ ︷︷ ︸

w
(i)
e

= 1

N

N∑
i=1

w(i)
q w(i)

e

p(q|e) = p(q, e)

p(e)
≈

∑N
i=1 w

(i)
q w

(i)
e∑N

i=1 w
(i)
e

, (5)

where the proposal g has the same factorization of the target distribution: g(x P
q , x Pe) =

g(x P
q |x P

e)g(x P
e).

3.2 Sampling partial possible worlds

We now present our approach to sampling possible worlds and computing p(q) following
Equation (4) and p(q|e) following (5). Central is the algorithm with signature

EvalSampleQuery(q : query, x P(i) : partial world) returns (w
(i)
q , x P(i)

q)

that starts from a given query q and a partial world x P(i) (which will be empty in case there
is no evidence, cf. below), and generates an expanded partial world x P(i)

q together with its

weight w(i)
q so that

1. x P(i)
q ⊇ x P(i), i.e., x P(i)

q is an expansion of x P(i) obtained using STP ,

2. var(q) ⊆ var(x P(i)
q), which ensures that we can evaluate q in x P(i)

q and therefore

p(q|x P(i)
q),

3. w
(i)
q = p(q|x P(i)

q)
p(x P(i)

q |x P(i))

g(x P(i)
q |x P(i))

.

p(q) is estimated by calling (w
(i)
q , x P(i)

q) ← EvalSampleQuery(q,∅) N times and apply-

ing (4). The probability p(q|e) is estimated by calling, for each sample, (w
(i)
e , x P(i)

e) ←
EvalSampleQuery(e,∅) for the evidence, and (w

(i)
q , x P(i)

q)←EvalSampleQuery(q, x P(i)
e)

for the query given x P(i)
e , and then applying (5).

The key question is thus how to sample one such partial world x P(i)
q for a generic call

of EvalSampleQuery(q, x P(i)). To realize this, we combine likelihood weighting (LW)
(Fung and Chang 1989; Koller and Friedman 2009) with a variant of SLD-resolution in the
EvalSampleQuery algorithm that we describe below.

SLD-resolution (Apt 1997; Lloyd 1987; Nilsson and Małiszyński 1995) is an inference
procedure to prove a query q , used in logic programming, that focuses the proof on the
relevant part of the program P. The basic idea is replacing an atom with its definition. Given
q = (q1, q2, . . . , qn) and a rule head ← body ∈ P such that θ = mgu(q1, head) (i.e.
q1θ = headθ), then the new goal becomes q ′ = (body, q2, . . . , qn)θ , where mgu indicates
the most general unifier. If the empty goal is reached then the query is proved. If it is impos-
sible to reach the empty goal, the query is assumed false under the closed-world assumption.
There may be more than one rule that satisfies the mentioned conditions, resulting in the
SLD-tree. In Prolog the tree is traversed using depth-first search with backtracking.

123

Mach Learn (2016) 103:407–449 413

Likelihood weighting is a type of importance sampling that forces variables to be consistent
with the evidence by using an adapted proposal distribution g. It has been shown (Fung
and Chang 1989) that LW reduces the variance of the estimator with respect to the naive
Monte-Carlo estimator. In this paper LW is also used to force variables to be consistent with
the query. LW has connections with conditional Monte Carlo (for binary events). Indeed,
computing p(r = v|x P(i)) is equivalent to imposing r = v and weight the sample with
w = p(r = v|x P(i)).

Adapting SLD-resolution. EvalSampleQuery employs an extension of SLD-resolution to
determine which random variables to sample, until the query q can be evaluated. However,
unlike traditional SLD-resolution, it keeps track of a number of global variables:

1. the weight w(i)
q , initialized to 1,

2. the initial query iq , initialized to q , and
3. the partial sample x P(i).

Starting from a goal G = q , EvalSampleQuery applies inference rules until the goal G
is empty (i.e., q has been proven) or no more rules can be applied (q fails). If the query
succeeds, the algorithm returns the final weight and the expanded sample (w

(i)
q , x P(i)

q). If the

query fails it returns (w
(i)
q = 0, x P(i)

q).

Given a goal G and the global variables w
(i)
q , iq, x P(i), applying a rule produces a new

goal G ′ and modifies the global variables:

1. G ′ is the new goal obtained from G using a kind of SLD-resolution step;
2. if a new variable r is sampled with value v,

– set w(i)
q ← w

(i)
q

p(r=v|x P(i))

g(r=v|x P(i))
(based on LW) and

– x P(i) ← x P(i) ∪ {r = v}.
In addition, if r ∼= Val ∈ iq and (r ∼= v, iq) ⇔ iqθ with r grounded and
θ = {Val = v} then:
– iq ← iqθ

3. if a new atom h is proved, set x P(i) ← x P(i) ∪ {h}.
The inference rules applied by EvalSampleQuery resemble SLD resolution applied to

a query q: they are applied with a backtracking strategy, negation as failure to prove negated
literals (as in SLDNF) and tabling to improve performance. However, important differences
are required to handle the stochastic nature of sampling and to exploit LWwhenever possible.
Note that the partial sample x P(i) can only grow during the application of the inference rules,
i.e., backtracking does not remove sampled values from the partial sample. This is necessary
to guarantee the generation of a sample from the defined proposal distribution g.

The algorithm needs the original query to apply LW. Since the inference rules change the
current goal to prove,we distinguish the current goalG from the original query iq = q; during
sampling iq can be simplified (e.g., applying substitutions) as long as P |� (x P(i), iq) ⇔
(x P(i), q), i.e. iq is logically equivalent to q given x P(i) and the DC program P. For those
reasons x P(i), w

(i)
q , and iq are global variables.

Let us assume that the query q = (q1, q2, . . . , qn) contains only equality comparisons for
random variables, e.g., r ∼= v. Any other comparison operator r � v can be converted in
r ∼= Val, Val�v, where Val is a logical variable and Val�v is ground during evaluation.
For example, �(n) > 5 becomes n ∼= N , N > 5. The inference rules are the following:

123

414 Mach Learn (2016) 103:407–449

1a. If [∃h ∈ x P(i) : θ = mgu(q1, h)] OR [builtin(q1), ∃θ : q1θ] then:
(q1, q2, . . . , qn) � (q2, . . . , qn)θ

i.e., if q1θ is true in x P(i) for a substitution θ , remove q1 from the current goal and apply
the substitution θ to the current goal. q1 can also be a built-in predicate such as 1 < 4
that is trivially proved.

1b. If ∃θ s.t. h ← body ∈ P, θ = mgu(q1, h) then:

(q1, q2, . . . , qn) � (body, add(h), q2, . . . , qn)θ

i.e., if q1 unifies with the head of a deterministic clause, then add the body of the clause
and add(h) to the current goal, and apply substitution θ . The special predicate add(h)

indicates that h must be added to x P(i) after the body has been proven.
2a. If ∃θ s.t. h = v ∈ x P(i), θ = mgu(q1, h ∼= v):

(q1, q2, . . . , qn) � (q2, . . . , qn)θ

i.e., if q1θ compares a sampled random variable h to a value and q1θ is true in x P(i),
then remove q1 from the current goal and apply substitution θ .

2b. If ∃θ s.t. h ∼ D ← body ∈ P, θ = mgu(q1, h ∼= Val), h /∈ var(x P(i)):

(q1, q2, . . . , qn) � (body, sample(h,D), q1, q2, . . . , qn)θ

i.e., if q1 compares a (not yet sampled) variable h that unifies with the head of a DC
clause, then add the body of the clause and sample(h,D) to the current goal and apply
the substitution θ ; sample(h,D) is a special predicate that indicates that we need to
sample h from D and add h = val to x P(i) after the body has been proven.

3a. If (h ∼= v) ∈ iq, ground(h ∼= v), h /∈ var(x P(i)), [(h �= v, x P(i)) |� ¬iq]:
(sample(h,D), q2, . . . , qn) � (q2, . . . , qn)

w(i)
q ← w(i)

q · likelihoodD(h = v)

x P(i) ← x P(i) ∪ {h = v}
i.e., if sample(h,D) is in the current goal, h ∼= v is ground in iq , and h �= v makes
iq false (always true if iq is a conjunction of literals), and h is not sampled in x P(i),
then add h = v to x P(i), weight accordingly (LW), and remove sample(h,D) from the
current goal.

3b. If h /∈ var(x P(i)), ground(h), and rule 3a is not applicable:

(sample(h,D), q2, . . . , qn) � (q2, . . . , qn)

x P(i) ← x P(i) ∪ {h = v}
if h ∼= Val ∈ iq, ((h ∼= v, iq) ⇔ iqγ) then iq ← iqγ

with v sampled from D, and γ = {Val = v}. That is, if sample(h,D) is in the cur-
rent goal, and rule 3a is not applicable, then sample h, add it to x P(i), and remove
sample(h,D) from the current goal. Finally, apply the substitution γ to iq iff iqγ is
equivalent to iq with h ∼= v (always true if iq is a conjunction of literals).

3c. If ground(h):

(add(h), q2, . . . , qn) � (q2, . . . , qn)

x P(i) ← x P(i) ∪ {h}

123

Mach Learn (2016) 103:407–449 415

i.e., if add(h) is in the current goal and h is ground, then add h to x P(i) and remove
add(h) from the current goal.

EvalSampleQuery performs lazy instantiation exploiting context-specific independencies:
only the randomvariables needed to answer the query are sampled, the values of the remaining
random variables are irrelevant to determine the true value of q for that specific partial
instantiation.

Theorem 1 For N → ∞ samples generated using EvalSampleQuery, the estimation
p̂(q) obtained using (4) converges with probability 1 to the correct probability p(q).

Proof It is sufficient to prove that EvalSampleQuery satisfies the importance sampling
requirement forwhich convergence guarantees are available (Robert andCasella 2004), that is
∀x : p(q|x)p(x) > 0 ⇒ g(x) > 0 or equivalently: ∀x : g(x) = 0 ⇒ p(q|x)p(x) = 0. The
algorithm samples random variables h using the target distribution when LW is not applied
(rule 3b): g(h|x P(i)) = p(h|x P(i)). LW is applied with proposal g(h = val|x P(i)) = 1
for grounded equalities in the initial query (h ∼= val) ∈ iq (rule 3a). Therefore,
g(h �= val, x P(i)) = 0 but also p(q|h �= val, x P(i))p(h �= val, x P(i)) = 0, because
the query q fails for h �= val. Indeed, (h �= val, x P(i)) |� ¬iq as required in rule 3a, and it
is easy to show that P |� (x P(i), iq) ⇔ (x P(i), q), therefore (P, h �= val, x P(i)) |� ¬q . The
requirement is thus satisfied (∀x : g(x) = 0 ⇒ p(q|x)p(x) = 0). ��

Theorem 1 is extendable for conditional probabilities p(q|e) = p(q, e)/p(e), as long as
p(e) > 0. The remainder of this section will consider p(e) = 0; it can be safely skipped by
the reader less interested in technical details.

Zero probability evidence. Special considerations need to be made for queries with zero
probability evidence. For example, when the evidence is h ∼= val with h a continuous
random variable defined with a density distribution. Such conditional distributions are not
unambiguously defined, and a reformulation of the problem, e.g., a change of variables, can
produce a different result (Borel–Kolmogorov paradox (Kadane 2011, Chap. 5.10). To avoid
these issuesweneed tomake some assumptions. In this sectionwemake an explicit distinction
between probabilities P , and densities p: d

dx P(X ≤ x) = p(x). Following Kadane (2011),
we define the conditional probability for zero probability evidence as follows:

P(q|e = v) = lim
dv→0

P(q, e ∈ [v − dv/2, v + dv/2])
P(e ∈ [v − dv/2, v + dv/2])

= lim
dv→0

∫
x 1(x |� q)p(x, e = v)dxdv

p(e = v)dv

=
∫
x 1(x |� q)p(x, e = v)dx

p(e = v)
, (6)

The conditional density is thus p(x |e = v) = p(x,e=v)
p(e=v)

. If the evidence is a disjunction, the
limit might not exists, e.g.,:

P(q|e = a ∨ e = b) = lim
da→0
db→0

P(q, (e ∈ [a − da/2, a + da/2] ∨ e ∈ [b − db/2, b + db/2]))
P(e ∈ [a − da/2, a + da/2] ∨ e ∈ [b − db/2, b + db/2])

= lim
da→0
db→0

P(q, e ∈ [a − da/2, a + da/2]) + P(q, e ∈ [b − db/2, b + db/2]))
P(e ∈ [a − da/2, a + da/2]) + P(e ∈ [b − db/2, b + db/2])

123

416 Mach Learn (2016) 103:407–449

= lim
da→0
db→0

∫
x 1(x |� q)p(x, e = a)dxda + ∫

x 1(x |� q)p(x, e = b)dxdb

p(e = a)da + p(e = b)db
.

To avoid this issue, we assume da = db. In this case we obtain

P(q|e = a ∨ e = b) =
∫
x 1(x |� q)p(x, e = a)dx + ∫

x 1(x |� q)p(x, e = b)dx

p(e = a) + p(e = b)
.

For example, the probability of nationality given a height of 180cm or 160cm is defined as
P(nationali t y|height ∈ [180 − da/2, 180 + da/2] OR height ∈ [160 − db/2, 160 +
db/2]) for da → 0, db → 0. The limit depends on how da and db relate to each other. Setting
da = db seems a reasonable assumption when the intervals are comparable quantities, but
other assumptions are possible. Definition (6) is extendable to more complex distributions
that involve multiple variables and mixtures of discrete and continuous variables.

To apply importance sampling to definition (6), it is sufficient to estimate
P(e ∈ [v − dv/2, v + dv/2]) and P(q, e ∈ [v − dv/2, v + dv/2]) for dv → 0. Knowing
that dr → 0 ⇒ P(h ∈ [r − dr/2, r + dr/2]) → p(h = r)dr , every time we apply LW to a
continuous variable, h = r is intended as h ∈ [r − dr/2, r + dr/2] with dr → 0, thus the
incremental weight in rule 3a is p(h = r)dr .

Formula (5) needs the sum of importanceweights. This has to be carefully computedwhen
there is a mix of densities and probability masses (Owen 2013, Chap. 9.8). Imagine that there
is a sample weightw1 = P(x) obtained assigning a discrete variable to a value, and a second
sample weight w2 = p(y)dy obtained assigning a continuous variable to a value, or more
precisely to a range [y−dy/2, y+dy/2], with dy → 0. The weightw1 trumpsw2, because
the latter goes to zero. Indeed, the second sample has a weight infinitely smaller than the first,
and thus it is ignored in the weight sum: w1 + w2 = P(x) + p(y)dy = P(x) (for dy → 0).
Analogously, a weight wa = p(x1, . . . , xn)dx1, . . . , dxn that is the product of n (one-
dimensional) densities trumps aweightwb = p(x ′

1, . . . , x
′
n, x

′
n+1, . . . , x

′
n+m)dx1, . . . , dxn+m

that is the product of n densities of the same variables and m > 0 other densities (i.e.
wa + wb = wa). If all the weights are n-dimensional densities (of the same variables),
then the quantities are comparable and are trivially summed. However, if the weights
refer to different variables, we need an assumption to ensure the existence of the limit,
e.g., ∀i : dxi = dx , thus dxn+m/dxn → 0, making again n-dimensional densities
trump (n + m)-dimensional densities. For m = 0 the densities are trivially summed, e.g.,
w1 = p(a, b, c)dadbdc andw2 = p(f, g, e)d f dgde, assumingdadbdc = d f dgde = dx3,
we obtain w1 + w2 = (p(a, b, c) + p(f, g, e))dx3. Finally, the ratio of weights sums in (5)
is computed assuming again ∀i : dxi = dx , obtaining P(q|e) ≈ lim

dx→0
(kndxv)/(kddxl). If

v > l then P(q|e) = 0, otherwise for v = l we have P(q|e) ≈ kn/kd . Those distinctions are
automatically performed in EvalSampleQuery. For zero probability evidence we do not
have convergence results for every DC program, query, and evidence, nonetheless the infer-
ence algorithm produces the correct results in many domains, as shown in the next section
and in the experiments.

3.3 Examples

We now illustrate EvalSampleQuery and the cases when LW can be applied with the
following example.

123

Mach Learn (2016) 103:407–449 417

Example 4

n ∼ uniform([1,2,3,4,5,6,7,8,9,10]). (7)

color(X) ∼ uniform([grey,blue,black]) ← material(X) ∼= metal.

(8)

color(X) ∼ uniform([black,brown]) ← material(X) ∼= wood. (9)

material(X) ∼ finite([0.3 : wood,0.7 : metal]) ← n ∼= N,between(1,N,X).

(10)

drawn(Y) ∼ uniform(L) ← n ∼= N,findall(X,between(1,N,X),L). (11)

size(X) ∼ beta(2,3) ← material(X) ∼= metal. (12)

size(X) ∼ beta(4,2) ← material(X) ∼= wood. (13)

We have an urn, where the number of balls n is a random variable and each ball X has a color,
material, and size with a known distribution. The i-th ball drawn with replacement from the
urn is named drawn(i). The special predicate findall(A,B,L) finds all A that makes B
true and puts them in a list L. In (11) L is the list of integers from 1 to N, where N is unified
with the number of balls.

Let us consider the queryp(color(2) ∼= black), the derivation is the following (omit-
ting iq = q):

123

418 Mach Learn (2016) 103:407–449

The algorithm starts checking whether a rule is applicable to the current goal initialized
with the query. For example, rule 2a fails because color(2) is not in the sample x P(i). Rule
2b can be applied to clause (8), obtaining tuple 2. At this point material(2) needs to be
evaluated, it is not sampled and it unifieswith the head of clause (10), thus applying rule 2bwe
obtain tuple 3. Now ‘n’ is required, thus it is sampledwith value e.g, 3 (rules 2b on (7) and 3b),
for which ‘n ∼= N,between(1,N,2)’ succeeds for N = 3 (rule 2a and 1a). At tuple 6 the
body of (10) has been proven; therefore, material(2) is sampled with a value e.g., wood
(rule 3b). Now in tuple 7, the formula material(2) ∼= metal fails because the sampled
value is wood (and thus the body of clause (8) fails); the algorithm backtracks to tuple 1
and applies rule 2b on clause (9) obtaining tuple 9. This time material(2) ∼= wood is
true and can be removed from the current goal (rule 2a). At this point color(2) needs to be
sampled (tuple 10). LW is applied because color(2) is in the original query iq = q , thus
color(2) = black is added to the sample with weight 1/2 (rule 3a). The query in this
sample is true with final weight 1/2.

3.3.1 Query expansion

Instead of asking for color(2) ∼= black, let us add a ← color(2) ∼= black to
the DC program and ask p(a); the query does not change. However, the described
rules do not apply LW because iq = a, and a is deterministic. It is clear that
LW should be applicable also in this case. To solve this issue it is sufficient to
expand iq , replacing each literal in iq by its definition; e.g., iq = a becomes
iq = (color(2) ∼= black). At this point the algorithm is able to apply LW as
before. We can go even further, replacing iq = (color(2) ∼= black) with iq =
(color(2) ∼= black, (material(2) ∼= metal OR material(2) ∼= wood)),
where the disjunction of the bodies that define color(2) has been added. Note that
for random variables we need to keep the literal in iq after the expansion (e.g.,
color(2) ∼= black). Indeed, the disjunction of the bodies guarantees only that the ran-
dom variable exists, not that it takes the value black. This procedure is a type of partial
evaluation (Lloyd and Shepherdson 1991) adapted for probabilistic DC programs. There are
several ways to unfold (expand) a query, one possible way is the following. Before applying
the inference rules, the initial query iq is set to the disjunction of all proofs of q without
sampling: iq = (proof1 OR proof2 OR . . . OR proofn). Each proof is determined using
SLD-resolution (a number of unfolding operations); since random variables are not sampled,
if the truth value of a literal cannot be determined because it is non-ground (e.g., N > 0, or
between(A,B,C)) it is left unchanged in the proof. Starting from proof = q , a proof can
be found as follows:

e1 replace each deterministic atom h ∈ proof with bodyθ where head ← body ∈ P and
θ = mgu(h, head), the process is repeated recursively for bodyθ ;

e2 if the truth value of h ∈ proof cannot be determined it is left unchanged;
e3 for each h ∼= value ∈ proof add bodyθ where head ∼ D ← body ∈ P and

θ = mgu(h, head), the process is repeated recursively for bodyθ .

A depth limit is necessary for recursive clauses. The obtained formula can be simplified, e.g.,
(a, b) OR (a, d) becomes a, (b OR d); this is useful to know which variables can be forced
to be true (in the example ‘a’).

After the iq expansion the sampling algorithm can start using the same inference rules, that
cover the case in which iq contains disjunctions. As described in rule 3a, we can apply LW
setting h = val, only when (h �= val, x P(i)) |� ¬iq . Thus, if iq = ((h ∼= val OR a),b),

123

Mach Learn (2016) 103:407–449 419

LW cannot be applied for h ∼= val. However, if a becomes false, iq simplifies to
(h ∼= val,b), and LW can be applied setting h = val, because h �= val makes iq false. To
determine whether (h �= val, x P(i)) |� ¬iq holds, it is convenient to simplify iq whenever
a random variable is sampled. For example, after a random variable h has been sampled with
value v,h ∼= val is replaced with its truth value (true or false). Furthermore, (true OR a)

is simplified with true, (false OR a) with a, and so on. The expansion of iq and the sim-
plification guarantee that P |� (x P(i), iq) ⇔ (x P(i), q) as required by Theorem 1. The iq
expansion allows to exploit LW in a broader set of cases. Indeed, it is basically a form of
partial evaluation adapted for DCs and being able to exploit similar optimizations, e.g., using
constraint propagation where the constraints that make the query true are propagated with
the iq expansion, and updated according to the sampled variables.

3.3.2 Complex queries

Example 5 A more complex query is �(color(2)) = �(color(1)), which is converted
to color(2) ∼= Y,color(1) ∼= Y as in this way each subgoal refers to a single
random variable. In this case, color(2) is sampled (rule 3b: LW is not used) for
example to red (after sampling n and material). Assuming n ≥ 2 the first subgoal
color(2) ∼= Y succeeds with substitution γ = {Y = red}, thus the original query
becomes iq = (color(2) ∼= red,color(1) ∼= red). The remaining subgoal will be
color(1) ∼= red for which LW is used (rule 3a). Indeed, the original query iq becomes
grounded and LW can be applied.

The examples show that EvalSampleQuery exploits LW in complex queries (or evidence).
This is also valid for continuous random variables for which MCMC or naive MC will
return 0. The probability of such queries is 0, but p(e) = 0 is not a satisfactory answer
to estimate p(q|e), and the limit (6) needs to be computed. For simple evidence or queries
(e.g., size(1) ∼= v) classical LW is sufficient to solve the problem. For more complex
evidence (e.g., �(size(1)) = �(size(2))) MCMC, naive MC or classical LW will fail to
provide an answer (all samples are rejected). Many probabilistic languages cannot handle
those queries (if we exclude explicit approximations such as discretization). In contrast, the
proposed algorithm is able to provide a meaningful answer.

Example 6 Let us consider the IndianGPAproblem (Perov et al.) proposed by Stuart Russell.
According to Perov et al. “Stuart Russell [...] pointed out that most probabilistic program-
ming systems [...] produce the wrong answer to this problem”. The reason for this is that
contemporary probabilistic programming languages do not adequately deal with mixtures of
density and probability mass distributions. The proposed inference algorithm for DC does
provide the correct results for the Indian GPA problem. The DC program that defines the
domain is the following:

isdensityA ∼ finite([0.95 : true,0.05 : false]).
agpa ∼ beta(8,2) ← isdensityA ∼= true.

americanGPA ∼ finite([0.85 : 4.0,0.15 : 0.0]) ← isdensityA ∼= false.

americanGPA ∼ val(V) ← agpa ∼= A,V is A ∗ 4.0.

isdensityI ∼ finite([0.99 : true,0.01 : false]).
igpa ∼ beta(5,5) ← isdensityI ∼= true.

indianGPA ∼ finite([0.1 : 0.0,0.9 : 10.0]) ← isdensityI ∼= false.

123

420 Mach Learn (2016) 103:407–449

indianGPA ∼ val(V) ← igpa ∼= A,V is A ∗ 10.0.

nation ∼ finite([0.25 : america,0.75 : india]).
studentGPA ∼ val(A) ← nation ∼= america,americanGPA ∼= A.

studentGPA ∼ val(I) ← nation ∼= india,indianGPA ∼= I.

where h ∼ val(v) means that h has value v with probability 1. Briefly, the student GPA
has a mixed distribution that depends on the student nationality. An interesting query is
p(nation ∼= america|studentGPA). For example, for studentGPA = 4 such
probability is 1. The proposed inference algorithm provides the correct result for this query.
This is due to the proper estimation of limit (6) and the relative importanceweights.Moreover,
the iq expansion and the generalized LW avoid rejection-sampling issues with continuous
evidence.

Example 7 The last case to discuss is a query that contains random variables
that are nonground terms, e.g., color(X) ∼= black, which is interpreted as
∃X color(X) ∼= black. In this case LW is not applied because the goal is nonground.
Applying LW would produce wrong results because we would force the value black only
for the first proof (e.g., color(1) ∼= black), ignoring the other possible proofs (e.g.,
color(2) ∼= black), and thus violating the importance sampling requirement. In some
cases, query expansion can enumerate all possible grounded proofs, making LW applicable.

LW can also be applied for the query �(material(�(drawn(1)))) = wood
(the first drawn ball is made of wood) which is converted to (drawn(1) ∼= X,

material(X) ∼= wood). Once drawn(1) is sampled to a value v (without LW), the
substitution θ = {X = v} is applied to the current goal and to iq . At this point LW can be
applied to material(v) ∼= wood because it is grounded in iq (rule 3a). In other words,
for the partial world x P(i) = {drawn(1) = v} the only value of material(v) that makes
the query true is wood for which LW is applicable. For this query one sample is sufficient to
obtain the exact result.

4 Dynamic distributional clauses

We now extend Distributional Clauses to Dynamic Distributional Clauses (DDC) for mod-
eling dynamic domains. We then discuss how inference by means of filtering is realized in
the propositional case.

4.1 Dynamic distributional clauses

As in input-output HMMs and in planning, we shall explicitly distinguish between the hidden
state xt , the evidence or observations zt , and the action ut (input). Therefore, in DDCs, each
predicate/variable is classified as state x , action u, or observation z, with a subscript that
refers to time 0, for the initial step; time t for the current step, and t +1 for the next step. The
definition of a discrete-time stochastic process follows the same idea of a Dynamic Bayesian
Network (DBN). We need sets of clauses that define:

1. the prior distribution: h0 ∼ D ← body0,
2. the state transition model : ht+1 ∼ D ← bodyt:t+1 (the body involves variables at

time t and eventually at time t + 1),
3. the measurement model: zt+1 ∼ D ← bodyt+1, and

123

Mach Learn (2016) 103:407–449 421

4. clauses that define a random variable at time t from other variables at the same time
(intra-time dependence): ht ∼ D ← bodyt.

Obviously, deterministic clauses are allowed in the definition of the stochastic process. As
these clauses are all essentially distributional clauses, the semantics remains unchanged.

Example 8 Let us consider a dynamic model for the position of 2 objects: a ball and a box.
For the sake of clarity we consider one-dimensional positions.

pos(ID)0 ∼ uniform(0,1) ← between(1,2,ID). (14)

pos(ID)t+1 ∼ gaussian(�(pos(ID)t),0.1). (15)

obsPos(ID)t+1 ∼ gaussian(�(pos(ID)t+1),0.01). (16)

The object positions have a uniform distribution at step 0 (14). The next position of each
object is equal to the current position plus Gaussian noise (15). In addition, the observation
model (16) for each object is a Gaussian distribution centered in the actual object position.
As in Example 1, we can also define the number of objects as a random variable.

4.2 Inference and filtering

If we consider the time step as an argument of the random variable, inference can be done as
in the static case with no changes. However, the performance will degrade, while time and
space complexity will grow linearly with the maximum time step considered in the query.
This problem can be mitigated if we are interested in filtering, as we shall show in the next
section.

The problem of filtering has been well studied in the propositional case (e.g., for DBNs).
It is concerned with the estimation of the current state xt when the state is only indirectly
observable throughobservations zt . Formally, filtering is concernedwith estimating the belief,
that is, the probability density function bel(xt) = p(xt |z1:t , u1:t). The Bayes filter computes
recursively the belief at time t + 1, starting from the belief at t , the last observation zt+1, and
the last action performed ut+1 through

bel(xt+1) = ηp(zt+1|xt+1)

∫
xt
p(xt+1|xt , ut+1)bel(xt)dxt ,

where η is a normalization constant. Even in the propositional case, the above integral
is only tractable for specific combinations of distributions bel(xt), p(xt+1|xt , ut+1), and
p(zt+1|xt+1) [e.g., the Kalman filter (Kalman 1960)], and one therefore has to resort to
approximations. One solution used in the propositional case is to use Monte-Carlo tech-
niques for approximating the integral, resulting in the particle filter (Doucet et al. 2000). The
key idea of particle filtering is to represent the belief by a set of weighted samples (often
called particles). Given N weighted samples {(x (i)

t , w
(i)
t)} distributed as bel(xt), a new obser-

vation zt+1, and a new action ut+1, the particle filter generates a new weighted sample set
that approximates bel(xt+1).

The Particle Filtering (PF) algorithm proceeds in three steps:

(a) Prediction step: sample a new set of samples x (i)
t+1, i = 1, . . . , N , from a proposal

distribution g(xt+1|x (i)
t , zt+1, ut+1).

(b) Weighting step: assign to each sample x (i)
t+1 the weight:

w
(i)
t+1 = w

(i)
t

p(zt+1|x (i)
t+1)p(x

(i)
t+1|x (i)

t , ut+1)

g(x (i)
t+1|x (i)

t , zt+1, ut+1)

123

422 Mach Learn (2016) 103:407–449

(c) Resampling: if the variance of the sample weights exceeds a certain threshold, resample
with replacement, from the sample set, with probability proportional to w

(i)
t+1 and set the

weights to 1.

A common simplification is the bootstrap filter, where the proposal distribution is the state
transition model g(xt+1|x (i)

t , zt+1, ut+1) = p(xt+1|x (i)
t , ut+1) and the weight simplifies to

w
(i)
t+1 = w

(i)
t p(zt+1|x (i)

t+1).

5 DCPF: a particle filter for dynamic distributional clauses

We now develop a particle filter for a set of dynamic distributional clauses that define the
prior distribution, state transition model and observation model, (cf. Sect. 4.1). Throughout
this development, we only consider the bootstrap filter for simplicity, but other proposal
distributions are possible.

5.1 Filtering algorithm

The basic relational particle filter applies the same steps as the classical particle filter sketched
in Sect. 4.2 and employs the forward reasoning procedure for distributional clauses sketched
inSect. 2. Each sample x (i)

t will be a complete possibleworld at time t .Workingwith complete
worlds is computationally expensive and may lead to bad performance. Therefore, we shall
work with samples that are partial worlds as in the static case. The resulting framework, that
we shall now introduce, is called the Distributional Clauses Particle Filter (DCPF).

Starting from a DDC program P, weighted partial samples {(x P(i)
t , w

(i)
t)}, a new observa-

tion list zt+1 = {z jt+1 = v j }, and a new action ut+1, the DCPF filtering algorithm performs
the weighting and prediction steps from time t to time t + 1 expanding the partial samples
as shown in Fig. 1. The new set of samples is {(x̂ P(i)

t+1 , w
(i)
t+1)}. The DCPF filtering algorithm

is the following:

– Step (1): expand the partial sample to compute w
(i)
t+1 = w

(i)
t p(zt+1|x̂ P(i)

t+1)

– Resampling (if necessary)
– Step (2): complete the prediction step (a)

Step (1) performs the weighting step (b) and implicitly (part of) the prediction step (a): it
computes the weight w

(i)
t+1 = w

(i)
t p(zt+1|x̂ P(i)

t+1) calling EvalSampleQuery(zt+1, x
P(i)
t).

EvalSampleQuery will automatically sample relevant variables at time t + 1 and t until
p(zt+1|x̂ P(i)

t+1) is computable. If there are no observations, Step (1) is skipped, and the weights

remain unchanged. At this point each sample has a new weight w
(i)
t+1, and resampling can

be performed. For resampling we use a minimum variance sampling algorithm (Kitagawa
1996), but other methods are possible.

Step (2) performs the prediction step for variables that have not yet been sampled because
they are not directly involved in the weighting step. The algorithm queries the head of any
DC clause in the state transition model (intra-time clauses excluded), thus it evaluates the
body recursively. Whenever the body is true for a substitution θ , the variable-distribution
pair rt+1θ ∼ Dθ is added to the sample. Avoiding sampling is beneficial for performance,
as discussed in Sect. 3.1. Step (2) is necessary to make sure that the partial sample at the
previous time step t can be safely forgotten, as we shall discuss in the next section. After Step
(2) the set of partial samples x̂ P(i)

t+1 with weightsw
(i)
t+1 approximates the new belief bel(xt+1).

123

Mach Learn (2016) 103:407–449 423

xP
t

xa
t

xt+1xa
t+1

xP
t

xm
t

x̂a
t

x̂P
t

x̂P
t+1

x̂a
t+1

Before After

time t

time t + 1

Fig. 1 Sample partition, before (left) and after (right) the filtering algorithm. Initially xt+1 is not sampled,
therefore xat+1 = xt+1 and x

P
t+1 = ∅. The inference algorithm samples variables xmt ⊆ xat , x

m
t+1 ⊆ xat+1 and

adds them respectively to x Pt and x Pt+1. Indeed, x̂
P
t = x Pt ∪ xmt , x̂at = xat \ xmt , x̂ Pt+1 = x Pt+1 ∪ xmt+1 = xmt+1,

x̂at+1 = xat+1 \ xmt+1

In the classical particle filter resampling is the last step (c). In contrast, DCPF performs
resampling before completing the prediction step (i.e., before Step (2)). This is loosely con-
nected to auxiliary particle filters that perform resamplingbefore the prediction step (Whiteley
and Johansen 2010). Anticipating resampling is beneficial because it reduces the variance of
the estimation.

To answer a query qt+1, it suffices to call (w
(i)
q , x̂ P(i)

qt+1) ← EvalSampleQuery(q, x̂ P(i)
t+1)

for each sample and use formula (5) where w
(i)
e is replaced by w

(i)
t+1. After querying, the

partial samples x̂ P(i)
qt+1 ⊇ x̂ P(i)

t+1 are discarded, i.e., the partial samples remain x̂ P(i)
t+1 . This

improves the performance, indeed querying does not expand x̂ P(i)
t+1 .

Example 9 Consider an extension of Example 8, where the next position of the object after a
tap action is the current position plus a displacement and plus Gaussian noise. The latter two
parameters depend on its type and the material of the object below it. We consider a single
axis for simplicity.

pos(ID)t+1∼ gaussian(�(pos(ID)t),0.01) ← not(tap(ID)t+1). (17)

pos(ID)t+1∼ gaussian(�(pos(ID)t) + 0.3,0.04) ←
type(ID,cube),on(ID,B)t,material(B,wood),tap(ID)t+1. (18)

pos(ID)t+1∼ gaussian(�(pos(ID)t) + 0.2,0.02) ←
type(ID,cube),on(ID,B)t,material(B,fabric),tap(ID)t+1. (19)

pos(ID)t+1∼ gaussian(�(pos(ID)t) + 1,0.1) ←
type(ID,ball),tap(ID)t+1. (20)

obsPos(ID)t+1∼ gaussian(�(pos(ID)t+1),0.01). (21)

type(1,cube). type(2,ball). type(3,table). material(3,wood). (22)

We define on(A,B)t from the z position of A and B. A is on B when A is above B and the
distance is lower than a threshold. We omit the clause for brevity.

To understand the filtering algorithm let us consider Step (1) for the observation
obsPos(1)t+1 ∼= 2.5 (there is no observation for object 2), and action tap(1)t+1. Let
us assume x P(i)

t = {pos(1)t = 2,pos(2)t = 5}. The sample before and after the filter-

123

424 Mach Learn (2016) 103:407–449

pos(1)t = 2
pos(2)t = 5

on(X, Y)t
pos(ID)t+1

on(X, Y)t+1

pos(1)t = 2
pos(2)t = 5
on(1, 3)t
tap(1)t+1

pos(1)t+1 = 2.35

pos(2)t+1 ∼ gaussian(5, 0.01)
on(X, Y)t for (X, Y) = (1, 3)

on(X, Y)t+1

Sampled

Marginalized

Before
After

Fig. 2 A partial sample for Example 9, before (left) and after (right) the filtering algorithm

ing step is shown in Fig. 2. The algorithm tries to prove obsPos(1)t+1 ∼= 2.5. Rule 2b
applies for DC clause (21) that defines obsPos(1)t+1 for θ = {ID = 1}. The algorithm
tries to prove the body and the variables in the distribution recursively, that is pos(1)t+1.
The latter is not in the sample and rule 2b applies for DC clause (17) with θ = {ID = 1}.
The proof fails, therefore it backtracks and applies rule 2b to (18). Its body is true assuming
that on(1,3)t succeeds (and added to the sample). Thus, pos(1)t+1 will be sampled from
gaussian(2.3,0.04) and added to the sample (rule 3b). Deterministic facts in the back-
ground knowledge, such as type(1,cube), are common to all samples; therefore, they are
not added to the sample. At this point p(obsPos(1)t+1 ∼= 2.5|x̂ P(i)

t+1) is given by (21).
This is equivalent to applying rule 3a that imposes the query to be true and updates the
weight.

Step (1) is complete, let us consider Step (2). The algorithm queries all the variables in
the head of a clause in the state transition model, in this case pos(ID)t+1. This is nec-
essary to propagate the belief for variables not involved in the weighting process, such
as pos(2)t+1. The query pos(ID)t+1 ∼= Val succeeds for ID = 2 applying (17), and
pos(2)t+1 ∼ gaussian(5,0.01) is added to the sample. The algorithm backtracks look-
ing for alternative proofs of q , there are none, so the procedure ends. In the next step
pos(2)t+1 is required for pos(2)t+2, so pos(2)t+1 will be sampled from the distrib-
ution stored in the sample. Note that on(A,B)t is evaluated selectively. Any other relation
or random variable eventually defined in the program remains marginalized. For example,
any relation that involves object 2 is not required (e.g., on(2,B)t).

5.2 Avoiding backinstantiation

We showed that lazy instantiation is beneficial to reduce the number of variables to sample
and to improve the precision of the estimation in the static case. However, to evaluate a query
at time t in dynamic models, the algorithm might need to instantiate variables at previous
steps, sometimes even at time 0. We call this backinstantiation. This requires one to store
the entire sampled trajectory x P(i)

1:t , which may have a negative effect on performance. If we
are interested in filtering, this is a waste of resources.

We shall now show that the described filtering algorithm performs lazy instantiation over
time and avoids backinstantiation. We will first derive sufficient conditions for avoiding
backinstantiation in DDC, and then prove that these conditions hold for the DCPF algorithm.

Rao-Blackwellization. Let us assume that the complete world at time t can be written as
xt = x P

t ∪ xat (Fig. 1). Let us consider the following factorization:

123

Mach Learn (2016) 103:407–449 425

bel(xat , x P1:t) = p(xat , x P1:t |z1:t , u1:t)
= p(xat |x P

1:t , z1:t , u1:t)p(x P
1:t |z1:t , u1:t)

= p(xat |x P
1:t , z1:t , u1:t)bel(x P

1:t)

≈
N∑
i=1

p(xat |x P(i)
1:t , z1:t , u1:t)w(i)

t δ
x P(i)
1:t

(x P
1:t).

In the particle filtering literature this is called Rao–Blackwellization (Doucet et al. 2000),
where bel(x P

1:t) is approximated as a set of weighted samples2
∑

i w
(i)δ

x P(i)
1:t

(x P
1:t) (δv(x) is

the Dirac delta function centered in v), while the posterior distribution of xat is available in
closed form.

Rao–Blackwellized particle filters (RBPF) described in the literature, adopt a fixed and
manually defined split of xt = x P

t ∪ xat . In contrast, our approach exploits the language
and its inference algorithm to perform a dynamic split that may differ accross samples, as
described for the static case in Sect. 3.

Backinstantiation in the DCPF. One contribution in the DCPF is that it integrates RBPF and
logic programming to avoid backinstantiation over variables r ∈ x1:t−1. For this reason we
are interested in performing a filtering step determining the smallest partial samples that
approximate the new belief bel(xt+1) and are d-separated from the past. To avoid backin-
stantiation we require that p(xat |x P(i)

1:t , z1:t , u1:t) is a known distribution for each sample i or

at most parametrized by x P(i)
t : p(xat |x P(i)

1:t , z1:t , u1:t) = f (i)
t (xat ; x P(i)

t). Note that the latter

equation does not make any independence assumptions: f (i)
t is a probability distribution that

incorporates the dependency of previous states and observations and can be different in each
sample.

Formally, starting from a partial sample x P(i)
1:t with weight w

(i)
t sampled from

p(x P
1:t |z1:t , u1:t), a new observation zt+1, a new action ut+1, and the distribution

p(xat |x P(i)
1:t , z1:t , u1:t), we look for the smallest partial sample x̂ P(i)

1:t+1 = {x P(i)
1:t−1, x̂

P(i)
t , x̂ P(i)

t+1 }
with x P(i)

t ⊆ x̂ P(i)
t , such that x̂ P(i)

1:t+1 withweightw
(i)
t+1 is distributed as p(x̂

P
1:t+1|z1:t+1, u1:t+1)

and p(xat+1|x̂ P(i)
1:t+1, z1:t+1, u1:t+1) is a probability distribution available in closed form. Even

though the formulation considers the entire sequence x1:t+1, to estimate bel(xt+1) the previ-
ous samples {x P(i)

1:t−1, x̂
P(i)
t } can be forgotten.

D-separation conditions. We will now describe sufficient conditions that guarantee d-
separation and thus avoid backinstantiation; then we will show that these conditions hold
for the DCPF filtering algorithm. The belief update is performed by adopting RBPF steps.

Starting from x P(i)
t , w

(i)
t , p(xat |x P(i)

1:t , z1:t , u1:t) = f (i)
t (xat ; x P(i)

t) and a new observation

zt+1, let us expand x P(i)
t sampling random variables rt ∈ var(xat) from f (i)

t (xat ; x P(i)
t), and

rt+1 ∈ var(xt+1) from the state transition model p(rt+1|x P(i)
t) defined by DDC clauses,

until the expanded sample {x̂ P(i)
t , x̂ P(i)

t+1 } and the remaining x̂at , x̂at+1 satisfy the following
conditions:

1. the partial interpretation x̂ P(i)
t+1 does not depend on the marginalized variables xat :

p(x̂ P(i)
t+1 |x̂ P(i)

t , x̂at , ut+1) = p(x̂ P(i)
t+1 |x̂ P(i)

t , ut+1);

2 The Monte-Carlo approximation replaces a distribution with an empirical distribution given by a set of
(weighted) samples. If the distribution is continuous the empirical distributon is described as a sum of Dirac
delta centered in the samples.

123

426 Mach Learn (2016) 103:407–449

2. the weighting function does not depend on the marginalized variables: p(zt+1|x (i)
t+1) =

p(zt+1|x̂ P(i)
t+1)

3. p(x̂at+1|x̂ P(i)
1:t+1, z1:t+1, u1:t+1) = f (i)

t+1(x̂
a
t+1; x̂ P(i)

t+1) is available in closed form.

Condition 1 is a common simplifying assumption in RBPF (Doucet et al. 2000), while condi-
tion 2 is not strictly required; however it simplifies theweighting and the computation of f (i)

t+1.
In some cases condition 2 can be removed, for example for discrete or linear gaussian models
(using Kalman Filters). Condition 3 guarantees that the previous samples {x P(i)

1:t−1, x̂
P(i)
t } can

be forgotten to estimate bel(xτ) for τ ≥ t + 1.

Theorem 2 Under the d-separation conditions 1,2,3 the samples
{x̂ P(i)

t+1 , f (i)
t+1(x̂

a
t+1; x̂ P(i)

t+1)} with weights {w(i)
t+1} approximate bel(xt+1), with

w
(i)
t+1 ∝ p(zt+1|x̂ P(i)

t+1)wt and

f (i)
t+1(x̂

a
t+1; x̂ P(i)

t+1) = p(x̂at+1|x̂ P(i)
1:t+1, z1:t+1, u1:t+1)

=
∫
x̂at

p(x̂at+1|x̂at , x̂ P(i)
t , x̂ P(i)

t+1) f (i)
t (x̂at ; x̂ P(i)

t)dx̂at . (23)

If x̂at+1 does not depend on x̂at , then f (i)
t+1(x̂

a
t+1; x̂ P(i)

t+1) = p(x̂at+1|x̂ P(i)
t , x̂ P(i)

t+1).

Proof The formulas are derived from RBPF (for the bootstrap filter) for which:

f (i)
t+1(x̂

a
t+1; x̂ P(i)

t+1) = 1

η
p(zt+1|x (i)

t+1)

∫
x̂at

p(x̂at+1|x̂at , x̂ P(i)
t , x̂ P(i)

t+1) f (i)
t (x̂at ; x̂ P(i)

t)dx̂at

w
(i)
t+1 ∝ η · w

(i)
t ,

where η = p(zt+1|x̂ P(i)
0:t+1, z1:t). Condition 2 makes p(zt+1|x (i)

t+1) = p(zt+1|x̂ P(i)
t+1) and η =

p(zt+1|x̂ P(i)
t+1), simplifying the formulas. ��

Step (1) in the filtering algorithm (Sect. 5.1) guarantees condition 1 and 2, while Step
(2) guarantees condition 3. For a proof sketch see Theorems 5 and 6 in “Theorems” in the
Appendix. Indeed, EvalSampleQuery used in Step (1) and (2) will never need to sample
variables at time t − 1 or before, because the belief distribution of marginalized variables
rt ∈ x̂at is f (i)

t (xat ; x̂ P(i)
t) are available in closed form and (eventually) parameterized by

x̂ P(i)
t , while rt+1 ∈ x̂at+1 are sampled from the state transition model. After Step (2) any

rt+1 ∈ x̂at+1 is derivable from x̂ P(i)
t+1 together with the DDC program. These conditions avoid

backinstantiation during filtering or query evaluation, thus previous partial states x P(i)
0:t can

be forgotten.
Step (2) avoids computing the integral (23). The integral is approximated with a sin-

gle sample, or equivalently the partial sample is expanded until x̂at+1 does not depend on

marginalized x̂at , for which f (i)
t+1(x̂

a
t+1; x̂ P(i)

t+1) = p(x̂at+1|x̂ P(i)
t , x̂ P(i)

t+1) is derivable from the
DDC program. In detail, for each rt+1θ ∈ x̂at+1 Step (2) stores rt+1θ ∼ Dθ , where Dθ =
p(rt+1θ |x̂ P(i)

t , x̂ P(i)
t+1), e.g., pos(2)t+1 ∼ Gaussian(5,0.01) = f (i)

t+1(pos(2)t+1) as
shown in Fig. 2. Such distribution is not parametrized and it is generally different in each
sample. In contrast, p(size(A)t|x P(i)

1:t , z1:t , u1:t) = Gaussian([if type(A,ball) then

μ = 1; else μ = 2], 0.1) = f (i)
t (size(A)t; x P(i)

t) is a distribution parametrized by other
variables in x P(i)

t . It is sufficient to store this parametric function once, using DDC clauses,

123

Mach Learn (2016) 103:407–449 427

instead of storing each distribution separately for each sample. Similarly, the DDC clause that
defines on(A,B)t from object positions at time t is sufficient to represent all marginalized
facts on(a,b)t not in x P(i)

t . In general, intra-time DDC clauses can represent distributions
of marginalized variables for an unspecified number of objects. Thus, Step (2) does not need
to query variables defined by intra-time clauses, as proved in Theorem 6, “Theorems” in the
Appendix.

Step (2) could be improved applying (23) whenever possible. Moreover, if there is a set of
variables that has the same prior and transitionmodel, the belief update (23) can be performed
once for all whole set. Whenever a variable is required, it will be sampled. This does not
require bounding the number of such sets of variables, and it can be considered as a simple
form of lifted belief update. In some cases the belief f (i)

t (xat ; x P(i)
t) can be directly specified

for any time t , we call this precomputed belief. As lifted belief update, this is applicable to
an unbounded set of variables, and avoids unnecessary sampling.

Theorem 3 DCPF has a space complexity per step and sample bounded by the size of the
largest partial state x P(i)

t , together with f (i)
t (xat ; x P(i)

t).

Proof (sketch) Thefiltering algorithmproposed forDCPF avoids backinstantiation, therefore
the space complexity is bounded by the dimension of the state space at time t . A tighter bound
is the size of the largest partial state. ��
5.3 Limitations

We will now describe the limitations of the proposed algorithms.
Lazy instantiation is beneficial only when there are facts or random variables that are

irrelevant during inference. For example, this is true when the model includes background
knowledge that is not entirely required for a query. In fully-connected models or when the
entire world is relevant for a query, lazy instantiation is useless. Nonetheless, the proposed
method generalizes LW, thus it can be beneficial even in the described worse cases.

The above issues apply also to inference in dynamicmodels, but the latter raises additional
issues for filtering in particular. One is the curse of dimensionality that produces poor results
for high-dimensional state spaces, or equivalently it requires a huge number of samples to
give acceptable results. There are some solutions in the literature (e.g., factorising the state
space Ng et al. 2002). In DCPF this problem can be alleviated using a suboptimal proposal
distribution (see “Proposal distribution” in the Appendix for details).

6 Online parameter learning

So far we assumed that the model used to perform state estimation is known. In practice,
it may be hard to determine or to tune the parameters manually, and therefore the question
arises as to whether we can learn them. We will first review online parameter learning in
classical particle filters, then we will show how to adapt those methods in DCPF.

6.1 Learning in particle filters

A simple solution to perform state estimation and parameter learning with particle filters
consists of adding the static parameters to the state space: x̄t = {xt , θ}. The posterior dis-
tribution p(x̄t |z1:t) is then described as a set of samples {x (i)

t , θ(i)}. However, this solution
produces poor results due to the following degeneracy problem. As the parameters are sam-
pled in the first step and left unchanged (since they are static variables), after a few steps

123

428 Mach Learn (2016) 103:407–449

the parameter samples θ(i) will degenerate to a single value due to resampling. This value
will remain unchanged regardless of incoming new evidence. Limiting or removing resam-
pling is not a good solution, because it will produce poor state estimation results. Better
strategies have been proposed and are summarized in Kantas et al. (2009). We focus on
two simple techniques with limited computational cost: artificial dynamics (Higuchi 2001)
and resample-move (Gilks and Berzuini 2001). Both methods introduce diversity among the
samples to solve the described degeneration problem.

The first method adds artificial dynamics to the parameter θ : θt+1 = θt + εt+1, where
εt+1 is artificial noise with a small and decreasing variance over time. This strategy has the
advantage to be simple and fast, nonetheless it modifies the original problem and requires
tuning (Kantas et al. 2009). We will show that this technique is suitable for the scenarios
considered in this paper (for a limited number of parameters).

The second method is resample-move that adds a single MCMC step to rejuvenate the
parameters in the samples. There are several variants of this technique, the most notable are
Storvik’s filter (Storvik 2002) and Particle Learning by Carvalho et al. (2010). To understand
these approaches, consider the following factorization of the joint distribution of interest:

p(x0:t , θ |z1:t) = p(x0:t , θ, zt |z1:t−1)

p(zt |z1:t−1)

= p(θ |x0:t−1, z1:t−1)p(x0:t−1|z1:t−1)
p(zt |xt , θ)p(xt |xt−1, θ)

p(zt |z1:t−1)
.

In addition to the standard propagation and weighting steps, both algorithms perform a Gibbs
sampling step that samples a new parameter value θ

(i)
t from the distribution p(θ |x (i)

0:t , z1:t) =
p(θ |s(i)

t) where s(i)
t captures the sufficient statistics of the distribution. p(θ |x0:t , z1:t) is

recursively updated as follows:

p(θ |st) = p(θ |x0:t , z1:t)
∝ p(zt , xt , θ |x0:t−1, z1:t−1)

= p(θ |x0:t−1, z1:t−1)p(zt |xt , θ)p(xt |xt−1, θ)

= p(θ |st−1)p(zt |xt , θ)p(xt |xt−1, θ) (24)

This leads to a deterministic sufficient statistics update st = S(st−1, xt , xt−1, zt).
Storvik’s filter algorithm goes as follows:

– propagate: x (i)
t ∼ g(xt |x (i)

t−1, θ
(i)
t−1, zt),

– resample samples with weights: w(i)
t = p(zt |x (i)

t ,θ
(i)
t−1)p(x

(i)
t |x (i)

t−1,θ
(i)
t−1)

g(x (i)
t |x (i)

t−1,θ
(i)
t−1,zt)

,

– propagate sufficient statistics: s(i)
t = S(s(i)

t−1, x
(i)
t , x (i)

t−1, z
(i)
t), and

– sample θ
(i)
t ∼ p(θ |s(i)

t).

The Particle Learning proposed by Carvalho et al. (2010) is an optimization of Storvik’s
filter since it adopts the auxiliary particle filter (Pitt and Shephard 1999) and an optimal pro-
posal distribution g. Resample-move strategies do not change the problem as in the artificial
dynamics, and have been proven to be successful for several classes of problems (Carvalho
et al. 2010; Carvalho et al. 2010; Lopes et al. 2010). However, they suffer from the sufficient
statistics degeneracy problem that can produce an increasing error in the parameter posterior
distribution (Andrieu et al. 2005).

123

Mach Learn (2016) 103:407–449 429

θ

xt−1 xt

ztzt−1

θ

θ̂t−1 θ̂t

xt−1 xt

ztzt−1

Fig. 3 Left HMM-like dynamic model parameterized by θ . Right modified version used to apply a Storvik’s
filter variant in DCPF

6.2 Online parameter learning for DCPF

We now propose an integration of the mentioned learning methods in DCPF. The main
contribution is to adapt artificial dynamics and the Storvik’s filter for DCPF and allow
learning of a number of parameters defined at run-time. Indeed, the relational represen-
tation allows to define an unbounded set of parameters to learn, e.g., the size of each object
size(ID). The number of objects and thus parameters to learn is not necessarily known in
advance.

Artificial dynamics in DCPF. To describe the integration of artificial dynamics in DCPF we
consider an object tracking scenario called Learnsize (Sect. 7.4), in which the parameters to
learn are the sizes of all objects.Wedefined auniformprior:size(ID)0 ∼ uniform(0,20).

Since the number of objects is not defined in advance we can directly define the size distrib-
ution at time t for any size(ID)t not yet sampled: size(ID)t ∼ uniform(0,20) (i.e.,
f (i)
t (xat ; x P(i)

t) is directly defined for not sampled size(ID)t). Whenever the size of an
object x (not yet sampled) is needed for inference, size(x)t is sampled for the above rule
with no need to perform backinstantiation. While the transition model defines the artificial
dynamics: size(ID)t+1 ∼ gaussian(�(size(ID)t),σ̄

2/Tx),where T is the time step,
X is a fixed exponent (set to 1 in this paper) and σ̄ 2 is a constant that represents the initial
variance. Initially the variance is high, thus the particle filter can “explore” the parameter
space, after some steps the variance decreases in the hope that the parameter converges to
the real value.

Storvik’s filter in DCPF. Equation (24) shows how to update the parameter posterior and then
the sufficient statistics for each sample. However, this formulation needs a conjugate prior for
the parameter likelihood. For a complex distribution this may be hard.We developed a variant
of Storvik’s filter to overcome this problem. In detail, we add θ̂t to the state that represents
the currently sampled “parameter” value, while θ is the parameter to estimate, e.g., the mean
of θ̂t (Fig. 3 on the right). We also assume the state xt and the observations depend only on
θ̂t : p(xt |xt−1, θ̂t , θ) = p(xt |xt−1, θ̂t) and p(zt |xt , θ̂t , θ) = p(zt |xt , θ̂t). Thus, the posterior
becomes:

123

430 Mach Learn (2016) 103:407–449

p(x0:t , θ, θ̂0:t |z1:t) ∝ p(zt , x0:t , θ, θ̂0:t |z1:t−1) =
= p(zt , xt , θ̂t , θ, θ̂0:t−1, x0:t−1|z1:t−1) =
= p(zt |xt , θ̂t)p(xt |xt−1, θ̂t)p(θ̂t |θ)p(θ |θ̂0:t−1)p(θ̂0:t−1, x0:t−1|z1:t−1).

Knowing that p(θ |θ̂0:t , x0:t , z1:t) ∝ p(x0:t , θ, θ̂0:t |z1:t) we replace (24) with:
p(θ |θ̂0:t , x0:t , z1:t) ∝ p(θ̂t |θ)p(θ |θ̂0:t−1) = p(θ̂t |θ)p(θ |st−1).

Thus p(θ |θ̂0:t , x0:t , z1:t) = p(θ |θ̂0:t) = p(θ |st). At this point we can avoid sampling θ as
required by the Storvik’s filter, but sample θ̂t from the marginal distribution: p(θ̂t |st−1) =∫
θ
p(θ̂t |θ)p(θ |st−1)dθ.

For example, in the Learnsize scenario, for each object IDwe have θ̂t = cursizet(ID)

and the parameter to learn is θ = size(ID). For each object p(θ̂t |θ) is defined
as cursizet(ID) ∼ Gaussian(�size(ID),σ̄ 2), where σ̄ 2 is a fixed variance. The
conjugate prior of size(ID) is a Gaussian with hyperparameters μ0(ID), σ2

0 (ID):
size(ID) ∼ Gaussian(μ0(ID), σ2

0 (ID)). As explained θ = size(ID) need not
be sampled, indeed θ̂t = cursizet(ID) is directly sampled from p(θ̂t |st−1), i.e.
cursizet(ID) ∼ Gaussian(μt−1(ID), σ2

t−1(ID) + σ2). For each ID the posterior
p(θ |st) is a Gaussian as the prior, and the sufficient statistics st = μt(ID), σ2

t (ID) are
computed using Bayesian inference. The posterior distribution of the parameters can become
peaked in few steps, causing again a degeneration problem. This issue is mitigated reducing
the influence of the evidence during the Bayesian update.

7 Experiments

This section answers the following questions:

(Q1) Does the EvalSampleQuery algorithm obtain the correct results?
(Q2) How do the DCPF and the classical particle filter compare?
(Q3) How do the DC and DCPF perform with respect to a representative state-of-the-art
probabilistic programming language for static and dynamic domains?
(Q4) Is the DCPF suitable for real-world applications?
(Q5) How do the learning algorithms perform?

Among the several state-of-the-art probabilistic languages, BLOG (Milch et al. 2005) is a
system that shares some similarities with DC and DCPF. For this reason, we compared the
performance with BLOG for static domains and its dynamic extension DBLOG (de Salvo
Braz et al. 2008) for temporal domains.

All algorithms were implemented in YAP Prolog and run on an Intel Core i7 3.3GHz for
simulations and on a laptop Core i7 for real-world experiments. Tomeasure the error between
the predicted and the exact probability for a given query, we compute the empirical standard
deviation (STD). The average used to compute STD is the exact probability when available
or the empirical average otherwise. We report STD 99% confidence intervals. Notice that
those intervals refer to the uncertainty of the STD estimation, not to the uncertainty of the
probability. If the number of samples is not sufficient to give an answer (e.g., all samples
are rejected), a value is randomly chosen from 0 to 1. The results are averaged over 500
runs. In all the experiments we measure the CPU time (“user time” in the Unix “time”
command). This makes a fair comparison between DC and DCPF (not parallelized in the

123

Mach Learn (2016) 103:407–449 431

Fig. 4 Results for static inference with LW and without LW (naive). For LW we show
results with (LWexp) and without query expansion. The queries are q1 = (drawn(3) ∼= 10)

with evidence ((drawn(1) ∼= 9,drawn(2) ∼= 9) OR (drawn(1) ∼= 10,drawn(2) ∼= 10)) and
q2 = (drawn(1) ∼= X, drawn(2) ∼= X,color(X) ∼= black). The axes in (a) and (b) are in loga-
rithmic scale. q1LWexp and q2naive partially overlap in (a) and (b); q2LWexp and q2LW overlap in (b)

current implementation) and (D)BLOG that often uses more than one CPU at the time. Time
includes initialization: around 0.3s for (D)BLOG, 0.03s for DC and DCPF.

We first describe experiments in static domains, then in dynamic domains (synthetic and
real-world scenarios).

7.1 Static domains

In the first experiment we tested the correctness of EvalSampleQuery for static inference
with andwithout LW and query expansion (Q1) using Example 4 in Sect. 3.3. Figure 4 shows
some results. The error (STD) converges to zero for all algorithms. EvalSampleQuery
with LW (without query expansion) has a lower STD (Fig. 4b), but it is slower for the same
number of samples (Fig. 4c). Nonetheless, the overhead is beneficial because for the same
execution time the STD of LW is lower (Fig. 4a). Adding query expansion (Sect. 3.3.1) to
LW has a computational cost. This is beneficial for query q1 (as defined in the caption of Fig.
4), allowing to exploit LW in disjunctions. Nonetheless, for query q2 the query expansion
overhead is not compensated by an error reduction.

In the second experiment (Fig. 5) we considered an identity uncertainty domain3 used
in BLOG (Milch et al. 2005). The query considered is the probability that the second and
third drawn balls are the same, given that the color of the drawn balls are respectively
black, white, and white. We compared DC with BLOG. We consider several settings for
DC: naive (EvalSampleQuery without LW), LW (EvalSampleQuery with LW, using
formula (5) to compute p(q|e)), and LW2 where EvalSampleQuery estimates p(q, e) and
p(e) independently using half of the available samples each. LW and LW2 are tested with
and without query expansion (respectively LWexp and LW2exp). The results show that the
error (STD), for the same number of samples or time, is lower for DC with LW (Fig. 5a,
b). In particular, the lowest error is obtained with LW2exp. Any DC setting is faster than
BLOG (Fig. 5c). The latter has an unexpected logarithmic-like behavior for a small number
of samples. In addition, it seems that BLOG does not use LW in this domain, indeed the
error is comparable with naive Monte Carlo for the same number of samples (Fig. 5b). In

3 Available at https://github.com/BayesianLogic/blog/blob/master/example/balls/id-uncert-det.blog.

123

https://github.com/BayesianLogic/blog/blob/master/example/balls/id-uncert-det.blog

432 Mach Learn (2016) 103:407–449

Fig. 5 Identity uncertainty domain used in Milch et al. (2005). The axes in (a) and (b) are in logarithmic
scale. LW and LWexp overlap in (b); BLOG and naive overlap in (b); LW and LW2 overlap in (c)

contrast, as described in Sect. 3.3.2 EvalSampleQuery exploits LW in complex queries as
equalities between random variables.

In the third experiment we considered continuous variables using Example 4 (Fig. 6).
We queried the probability that the first drawn ball is made of wood, given that its size is
0.4. BLOG and naive MC failed to give an answer, while DC (LW) provides a probability.
To compare with BLOG we had to consider an interval instead of a value ([0.39, 0.41]).
Both DC and BLOG converge to 0.16, this confirms that DC works properly with continuous
variables. Figure 6 shows the STD and time performance. EvalSampleQuery exploits LW
also in this case, while BLOG needs evidence discretization to give an answer and does not
exploit LW in this case. For this reason BLOG performs poorly. In this case query expansion
does not provide an improvement. Another tested query is the probability that two drawn
balls are the same, given that they have the same size. This probability is one, because the
size has a continuous distribution, thus the probability of having two different balls with the
same size is infinitely smaller than the probability of sampling the same ball; for this reason
the balls must be the same. Again, DC provides the correct result, while BLOG does not
provide an answer.

In the fourth experiment we considered the Indian GPA problem (Example 6).
Most probabilistic programming languages are not able to handle
this domain. In contrast, DC is able to give the correct results. For instance, it
provides p(nation ∼= america | studentGPA ∼= 4) = 1 ± 0 and
p(nation ∼= america | studentGPA ∼= 3.9) = 0.193 ± 0.0035 as expected,
respectively in 0.33 and 0.37s with 10,000 samples. In this domain the query expansion
is necessary.

From the above experiments we make the following comparison with BLOG. Given a
query BLOG stacks variables that need to be sampled to answer the query, and uses LW
to generate samples consistent with the evidence. This follows the lazy instantiation princi-
ple applied in EvalSampleQuery, nonetheless there are the following differences. BLOG
exploits LW only for simple evidence statements of the form r = value, thus it performs
worse than DC with complex queries described in Sect. 3.3.2, which the experiments con-
firm. Furthermore, BLOG is not always able to give an answer for complex queries or
evidence containing continuous variables as shown above. In contrast, DC gives meaning-
ful answers and exploits LW in a much wide range of queries. Finally, BLOG seems to
be less suited than DC for real-time inference, because it is generally slower with higher
variance.

123

Mach Learn (2016) 103:407–449 433

Fig. 6 Experiments with continuous evidence. The query is the probability that the first drawn ball is made of
wood, given that its size is 0.4. BLOG requires evidence discretization. LW and LWexp overlap in (b); LW2
and LW2exp overlap in (b); LWexp and LW2exp overlap in (c)

7.2 Synthetic dynamic domains

We now answer questions Q2 and Q3 comparing the classical particle filter, DCPF and
DBLOG in dynamic domains. In all dynamic experiments we disabled the query expansion
because it is not necessary.

In this section we used a probabilistic Wumpus world [inspired by Russell and Norvig
(2009)]. This is a discrete world with a two-dimensional grid of cells, that can be either free,
a wall, or a pit. In one of the cells the horrible wumpus lives and each cell can contain gold.
Each pit produces a breeze in the neighboring cells, and the wumpus produces a stench in
the neighboring cells. The agent has to estimate the hidden state consisting of the wumpus’
location, the state of each cell (free, wall or pit), as well as its own position in the maze. The
agent has four stochastic ‘move’ actions: up, down, left, right, which change the position by
1 cell or lead to no change with a particular probability. Furthermore, the agent has noisy
sensors to observewhether there is a breeze, a stench, or gold in the cell, andwhether there are
walls in the neighboring cells. We assume that the agent starts from position (0,0), therefore
the cell (0,0) is free.

In theWumpus domainwe use a lifted belief update or precomputed belief. For example, if
the belief at time t for each cell not in the partial sample is maze(X,Y)t ∼ finite([0.6 :
free,0.4 : wall]) and the state transition is maze(X,Y)t+1 ∼ val(�(maze(X,Y)t))

(the next cell state is equal to the current cell state), the belief update can be done
once for all the cells that have not been sampled yet. In this case the belief remains
the same over time, thus, we can directly define the belief at time t without doing
lifted belief update. If a cell maze(x,y)t is required it will be sampled, and the
belief update for this cell will be performed by sampling. For non-sampled cells
maze(X,Y)t ∼ finite([0.6 : free,0.4 : wall]) is used instead. Lifted belief update
and precomputed belief do not require that the size of the grid is specified.

Classical Particle Filter (Q2). The classical particle filter samples the entire state every step
with a forward reasoning procedure.

In the first experiment (Wumpus1) there are no pits and no wumpuses. The goal is to
compute the joint distribution of 3 cells state (maze(0,2)t, maze(1,1)t, maze(2,0)t)
given noisy gold and cell observations. The experiment consists of 3 steps (to keep exact
inference feasible) with one or two observations per step. In the classical particle filter, we

123

434 Mach Learn (2016) 103:407–449

Fig. 7 Experiments. Total variation distance as a function of run-time (a) or the number of samples (b) for the
probabilistic wumpus example. c Run-time for various grid sizes with 1000 samples. a, b are in logarithmic
scale

need to limit the size of the grid in advance. In contrast, the DCPF estimates the borders
of the maze itself. To measure the error between the predicted and the exact posteriors we
use the total variation divergence (i.e., the sum of absolute differences averaged over runs).
Figure 7a, b show that both algorithms provide correct results (Q1), but our DCPF produces
lower errors and is faster when compared to the classical particle filter for the same number
of samples (Fig. 7b). This is because DCPF reduces the number of tracked variables and
therefore reduces both the variance in the sampling process and the execution time. As
expected, the maze size of the classical particle filter affects the performance. The DCPF by
contrast does not require a fixed grid size using a precomputed belief or lifted belief update.
This makes DCPF more flexible and faster in comparison (Q2).

In the second experiment (Wumpus2) we used a wumpus world with one wumpus that
produces stench sensed with a noisy sensor.We alsomodel the agent’s energy as a continuous
variable that decreases over time with Gaussian noise. The probability to move is a function
of the energy. We randomly generated worlds of different sizes (2 worlds per size, 5 runs
per world), together with a sequence of 100 actions and observations (neighboring cells
state, stench and energy). The sequence of actions and observations was used as the input
to the particle filter (classic or DCPF) with 1000 samples. The model is too complex to
compute exactly, therefore we focused on runtime evaluation. The results (Fig. 7c) show that
DCPF is faster than the classical particle filter (Q2), because it reduces the sample size. For
completeness, in the last step the average number of sampled variables in DCPF was 30.8,
40.6, 51.8, 53.1, 61.4 respectively for worlds 5x5, 9x9, 13x13, 17x17, 21x21.

DBLOG (Q3). Because (D)BLOG cannot fully cope with continuous evidence as DCPF, we
now focus on a discrete case for a further comparison.

In the third experiment (Wumpus3) we used a Wumpus domain similar
to Wumpus1 to compare DCPF with DBLOG. We executed 10 steps and
queried q = (maze(2,1)t ∼= free,maze(0,1)t ∼= free,maze(1,0)t ∼= free,

gold(1,1)t ∼= true); the error and time performance are shown in Fig. 8. The results
highlight that DCPF has a slightly lower error than DBLOG for the same number of samples
(Fig. 8b). In addition DCPF is faster for a small number of samples (Fig. 8c). For a large
number of samples DBLOG becomes faster, probably because of the unoptimized prolog
implementation of DCPF.

The fourth experiment (Wumpus4) is similar to the previous one (Wumpus3) where the
evidence contains statements such as the observed cell on the left is equal to the observed

123

Mach Learn (2016) 103:407–449 435

Fig. 8 Experiments (Wumpus3). Time refers to 10 steps. The axes in (a) and (b) are in logarithmic scale. For
STD there is a 99% confidence interval

Fig. 9 Wumpus experiments with complex evidence (Wumpus4). The axes in (a) and (b) are in logarithmic
scale. Time refers to 10 steps. For STD there is an 99% confidence interval

cell of the right. The results are shown in Fig. 9 and highlight that DCPF has a lower error
for the same number of particles (Fig. 9b) because DCPF exploits LW with such complex
evidence.

DBLOG does not currently implement Step (2) of our filtering algorithm4. This requires
a workaround that consists of in manually querying all the variables that might be relevant
for the given query, thus to fix the number of random variables (e.g., the size of the maze).
In Wumpus3 and Wumpus4 this is avoided because the cell variables are static and they
do not require belief updates. If the cell state changes over time, DBLOG needs to query
all the the cells at each step. This makes DBLOG equivalent to a classical particle filter,
where the size of the maze is fixed and sampled entirely. Thus, DBLOG becomes slow with
high variance, while for DCPF we exploit lifted belief update. This is shown in the fifth
experiment (Wumpus5, Fig. 10) where the cells state changes over time. It is problematic
for DBLOG when the worlds may contain different numbers of random variables. It is not
trivial to determine in advancewhich variables are relevant for a given query at time t . Indeed,
every sample will have different variables, thus propagation has to be performed in a different
way for each sample. In contrast, Step (2) in DCPF samples variables that are sufficient to
guarantee d-separation, and those variables can be different in different samples because

4 According to the following bug report https://github.com/BayesianLogic/blog/issues/330.

123

https://github.com/BayesianLogic/blog/issues/330

436 Mach Learn (2016) 103:407–449

Fig. 10 Wumpus experiments with changing cells (Wumpus5). Time refers to 4 steps. For DBLOG the rows
and columns cells from [−3, 3] has been queried at each step. The axes in (a) and (b) are in logarithmic scale

X

Z

yaw = 0
yaw = π

yaw = π/2

yaw = −3/4π

III

III IV

(a) (b)

Fig. 11 a Yaw of an object. Yaw is positive in quadrants I and II. b Physical principles considered

of context-specific independences. This avoids backinstantiation with the possibility to use
lifted belief updates and precomputed beliefs.

7.3 Real-world dynamic domains

The experiments shown so far are generated from synthetic data.We also ran experimentswith
real-world data (Q4). We considered two tracking scenarios called Packaging and Learnsize;
the latter is used to evaluate parameter learning.Theobjects havemarkers for an easy detection
with a camera (Fig. 14).

7.3.1 Packaging scenario

The goal of this scenario is to track objects moved by a human during a packaging activity
with boxes (Fig. 12). The framework should be able to keep track of objects inside boxes. To
solve this problem we defined a model in Dynamic Distributional Clauses where the state
consists of the position, the velocity and orientation of all objects, plus the relations between
them. The relations considered are left, right, near, on, and inside plus object properties such
as color, type and size; whenever a new object is observed its pose is added to the state
together with all the derived relations.
We modelled the following physical principles (Fig. 11b) in the transition model:

1. if an object is on top of another object, it cannot fall down;
2. if there are no objects under an object, the object will fall down until it collides with

another object or the table;

123

Mach Learn (2016) 103:407–449 437

3. an object may fall inside the box only if it is on the box in the previous step, is smaller
than the box and the box is open-side up;

4. if an object is inside a box it remains in the box and its position follows that of the box
as long as it is open-side up;

5. if the box is rotated upside down the objects insidewill fall downwith a certain probability.

As example consider the property 3: if an object A is not inside a box, is on top of a box B
with rotation yawt(B) > 0 (i.e. open-side up, Fig. 11a) and the object A is smaller than the
box B, then it falls inside B with probability 0.8 in the next step. This can be modelled by the
following clause:

insidet+1(A,B) ∼ finite([0.8 : true,0.2 : false]) ←
not(insidet(A,C) ∼= true),ont(A,B),type(B,box),

�(yawt(B)) > 0,smaller(A,B). (25)

To model the position and the velocity of objects in free fall we use the rule:

pos_velt+1(A)z ∼ gaussian

([�(post(A))z + 	t· �(velt(A))z − 0.5g	t2

�(velt(A))z − g	t

]
,Σ

)

← not(insidet(A,C) ∼= true),not(ont(A,D)),heldt(A) ∼= false. (26)

It states that if the object A is neither ‘on’ nor ‘inside’ any object, and is not held, the object
will fall with gravitational acceleration g. For simplicity we specify only the position and
velocity for the coordinate z. The variable heldt(A) indicates whether the object is held or
not, let us assume the following distribution:

heldt(A) ∼ finite([0.6 : true,0.4 : false]). (27)

The measurement model is the product of Gaussian distributions around each object’s
position (thereby assuming i.i.d. measurements):

obsPost+1(A) ∼ gaussian(�(pos(A)t),Σobs). (28)

where pos(A)t is the subvector of pos_velt related to the x, y, z position, and Σobs is a
fixed covariance matrix.

Furthermore, if A is inside B at time t , the relation holds at t + 1 with probability close to
one (clause omitted). The inside concept is transitive, therefore we defined a transitive inside
relation tr_insidet(A,B) from insidet(A,B):

tr_insidet(A,B) ← insidet(A,B) ∼= true.

tr_insidet(A,B) ← insidet(A,C) ∼= true,tr_insidet(C,B).

In addition, we assume that the probability of observing an object inside a box is
null. Therefore, to improve the performance we consider a proposal distribution for
insidet(A,B) that depends on the observation of A.

For the packaging scenario we performed several test-cases. We assume the type, size and
color are known for each object. We also encoded the static object ‘table’, therefore when
an object is not held it will fall down until it collides with another object or the table. The
first test-case consists in taking a box, putting an object inside the box, moving the box and
then rotating the box upside down. The second test-case consists in putting an object inside
a small box, putting the small box in a bigger box, then moving the bigger box and rotating
it upside down. Finally, we put an object inside a small box and then rotate the box on top
of another box, the object inside has to fall inside the other object. For this scenario we

123

438 Mach Learn (2016) 103:407–449

Fig. 12 Packaging scenario experiments. The bottom images represent moments of the experiment, while
the top images show the corresponding estimated objects’ positions, where each colored point represents an
object in a sample. The cube is represented in blue, the small box in fuchsia and the big box in beige. (a) cube
on the small box. (b) cube inside the small box (c) rotated small box on the big box. (d) cube and box inside
the big box

Fig. 13 Inference time per step in the packaging scenario, with 3 objects and 500 samples

used 600 samples. The results (Fig. 12) showed that the model is stable, correctly tracks the
objects, and successfully estimates the transitive relation inside (Q4). For example, whenever
we put an object in a box the DCPF estimates that it is inside the box or still outside with
a small probability. Similarly, when we rotate a box upside down the object that was inside
falls outside and goes inside the box below. One issue that was encountered is when the
objects are moved rapidly, in this case the filter keeps track of the visible objects but may
lose the sample diversity of the invisible objects. To avoid this problem the variance in the
state transition and observation model needs to be increased.

In this scenario we can consider queries such as how many objects there are in the
box with the respective probability for each object, or if there is a blue cube in the red
box. The second query would be the conjunction: type(A,cube),color(A,blue),

insidet(A,B) ∼= true,type(B,box),color(B,red). The answer is the probability
that the query is true. Alternatively we can list all object pairs (A,B) that satisfy the query
with the respective probability.

The filter performance for this scenario depends on the number of objects, the framework
spends around 0.37 ms, 0.6 ms, 0.87 ms and 1.08 ms per sample respectively for 1, 2, 3 and
4 objects, assuming all objects are visible. If some objects are not visible the performance is
better. Figure 13 shows an example of execution time per stepwith 3 objects and 500 samples.

123

Mach Learn (2016) 103:407–449 439

post(1) post(2)

size(1)

size(2)

overlap

Fig. 14 Learnsize scenario. Sketch on the left: the objects are pushed away from each other when they overlap,
applying a displacement. Picture on the center with 3 objects. The right figure represents the estimated objects’
positions (yellow, orange and grey), and the estimated size (one point per sample) using artificial dynamics.
The blue lines are the real size and the black lines the average estimated size. The distance is measured in
meters

7.4 Learnsize scenario

To illustrate the described learning algorithms and their adaptation for DCPF we consider
an object tracking scenario called Learnsize. In this scenario we have a table with several
objects. The goal is to track the objectsmoved by a human (or a robot), and estimate online the
size of the objects from their interaction. This problem involves static parameters, that is, the
objects’ size. This makes the problem difficult as explained in Sect. 6.1. The state variables
to estimate are the object positions, the size for each object (i.e., diameter assuming round
objects), and the object ID moved by a human or robot (if any). The observation is a set
of noisy object positions, and there are no actions. Whenever the objects touch (or overlap)
each other, each object is pushed away from the other one (Fig. 14). The actual objects never
overlap, nonetheless this can happen in the samples. The overlap occurs when the distance
between the center of the two objects is smaller than the sum of the objects’ radiuses (average
of the diameter). If there is an overlap we apply a displacement proportional to the absolute
difference between the distance and the radiuses sum. Multiple displacements can be applied
to the same object, in that case the total displacement is the sum of the simple components.
However, whenever the object is held we assume the displacement is 0. The object size
distribution is defined in Sect. 6.2 according to the learning method.

In this scenario we need to estimate which object is held and moved by a human. To
simplify the problem we assume the human can move at most one object at a time. Thus,
we added the variable movet in the state that indicates the object ID held/moved or zero for
none. We defined the following transition model, which considers more probable to remain
in the same state:

movet+1 ∼ uniform([�(movet),�(movet)|L]) ←
findall(ID,object(ID) ∼= V,L).

Whenever movet has the value ID the transition model for object ID will have a noise
variance double that of the other unmoved objects, e.g., for the axis x:

posx(ID)t+1 ∼ gaussian(�(posx(ID)t), σ
2) ← �(movet) = ID.

posx(ID)t+1 ∼ gaussian
(

�(posx(ID)t)+ �(totDispx(ID)t),
σ2

2

)
←

�(movet) �= ID. (29)

123

440 Mach Learn (2016) 103:407–449

Table 1 Learnsize scenario results

Algorithm Correct Avg error (cm) Time per sample (ms)

Artificial dynamics 27/30 0.7 1.6

Storvik’s filter variation 23/30 1.3 2.4

Avg error is the absolute distance between the ground truth and the averaged estimation of the objects size
(averaged over over objects and trials). ‘Correct’ is the total number of objects size estimated correctly, that
is with an error below 1.5 cm

If the object is not held we take in account the eventual displacements caused col-
lisions with other objects. Thus, totDispx(ID)t is the sum of all displacements
displacementx(ID,C)t applied to object ID along the x axis and caused by contact
with object C. Finally, to improve the performance we used a suboptimal proposal distribu-
tions (see “Proposal distribution” in the Appendix for details).

We tested the twodescribed learning algorithms in theLearnsize scenario: artificial dynam-
ics and the proposed Storvik’s filter variation. We performed 10 trials for each of the two
algorithms for three objects. In each trial we randomly pulled and pushed one object at a
time. The results of the experiments are summarized in Table 1 andwere performed using 700
samples. In the experiments with three objects both learning strategies perform reasonably
well (Q5). Artificial dynamics performs better and is faster than Storvik’s filter variation. An
example with three objects using artificial dynamics is shown in Fig. 14. Learning becomes
harder with a higher number of objects. For better performance offline methods are required.
In addition, the performance are highly dependent on the pushes/pulls performed. Indeed,
there are different objects sizes that can produce a similar behavior when moved. To make
the algorithms converge to the ground truth all objects were put in contact with all the others
during the experiments5. The videos of the described and other experiments are available at
https://dtai.cs.kuleuven.be/ml/systems/DC/.

8 Related work

8.1 Frameworks

In this section we will review related frameworks for static and then dynamic inference.
The proposed static inference is related to BLOG (Milch et al. 2005) inference and to

Monte-Carlo inference used in ProbLog (Kimmig et al. 2008). As discussed in Sect. 7.2
BLOG is based on LW and lazy instantiation as EvalSampleQuery. However, BLOG
exploits LW only for simple evidence statements, thus it performs worse than DC with
complex queries described in Sect. 3.3.2. Furthermore, many probabilistic languages [e.g.,
Anglican (Wood et al. 2014), Church (Goodman et al. 2008) and BLOG] are not always
able to give an answer for complex queries with evidence containing continuous variables as
shown in the experiments (for BLOG). In contrast, DC gives meaningful answers in those
cases exploiting LW in a larger set of cases.

For dynamic inference, DCPF is related to probabilistic programming languages such as
BLOG, Church (Goodman et al. 2008), ProbLog (Kimmig et al. 2008), and the Distribu-

5 This is valid for 3 or more objects, with 2 objects it is not possible to learn the objects size from pushes.
Indeed, any pair of objects with the same sum of sizes produces the same behaviour, because the distance
between the objects during contact is the same.

123

https://dtai.cs.kuleuven.be/ml/systems/DC/

Mach Learn (2016) 103:407–449 441

tional Clauses of Gutmann et al. (2011). While these languages are expressive enough to
be used for modeling dynamic relational domains, these languages do not support explic-
itly filtering (BLOG excluded), which makes inference prohibitively slow or unreliable for
dynamic models. Also worth mentioning is first-order logical filtering (e.g., see Shirazi and
Amir 2011) the logical deterministic counterpart of probabilistic filtering. This method can
inspire further DCPF extensions, nonetheless the absence of a probabilistic framework and
continuous distributions make them less suitable for the range of applications considered in
this paper.

There exist probabilistic programming approaches for temporal models. A variant of
BLOG for filtering in dynamic domains (de Salvo Braz et al. 2008) has been proposed, it
instantiates the variables needed for inference as BLOG. However, as discussed in Sect. 7.2,
DBLOG does not currently implement Step (2) of our filtering algorithm. This requires one
to manually query all the variables that d-separate from the past or at least those that might
be relevant for the given query. In contrast, DCPF automatically determines which variable
to samples to guarantee d-separation, exploiting context specific independences. This avoids
backinstantiation with the possibility to use lifted beliefs update and precomputed beliefs.
Furthermore, all the considerations about LW in complex queries and continuous evidence
are valid for the dynamic case.

Logical HMMs (Kersting et al. 2006) employ logical atoms as observations and states and
hence, their expressivity is more limited. The lifted relational Kalman filter (Choi et al. 2011),
performs efficient lifted exact inference for continuousdynamicdomains, but it assumes linear
Gaussian models. The relational particle filter of Manfredotti et al. (2010) cannot handle
partial samples. Finally, the approaches that are most similar to ours are those of Zettlemoyer
et al. (2007) and Probabilistic Relational ActionModel (PRAM) (Hajishirzi and Amir 2008).
The former employs first-order formulas to represent a set of states called hypothesis; these
are similar to our partial worlds in that they represent a potentially infinite number of states.
The key difference is that our approach explicitly defines random variables, (in)dependence
assumptions, and their conditional distributions in relationship to other random variables,
which allows us to efficiently compute the distribution of a random variable that needs to
be sampled and added to the sample. In PRAM the filtering problem is converted into a
deterministic first-order logic problem that can be solved using progression, regression and
sampling. PRAM is mainly suited for relational domains, that are inherently discrete and
binary. In addition, PRAM performs regression of a formula from time t to time 0 that
implies performance issues as previously discussed.

Furthermore, none of the frameworks of Thon et al. (2011), Kersting et al. (2006), Zettle-
moyer et al. (2007), Hajishirzi and Amir (2008), Natarajan et al. (2008) supports continuous
random variables (other than through discretization), therefore these techniques cannot deal
with real-world applications in robotics. Discretization is not always a good solution, and it
can dramatically increase the number of states, therefore it is unclearwhether these algorithms
wouldmaintain good performance in such cases. Finally, their first-order logic representation
allows discrete and fixed probabilities (for the transition and measurement model), instead
DCPF provides a flexible language to represent continuous and discrete distributions that
can be parameterized by other random variables or logical variables used in the body. This
allows a compact model and faster inference.

Several improvements to classical particle filtering have been proposed, such as Rao–
Blackwellization (Casella and Robert 1996) and Factored Particle Filtering (Pfeffer et al.
2009). The first method has been exploited in our approach, but further improvements are
possible. Factored Particle Filters cluster the state space reducing the variance and improving

123

442 Mach Learn (2016) 103:407–449

the accuracy. These methods are complementary to our work and could be adapted in future
work.

8.2 Applications

Some state estimation applications with a relational representation have been proposed. The
relational particle filter of Cattelani et al. (2012) uses relations such as ‘walking together’
in people tracking to improve prediction and the tracking process. They divide the state in
two sets: object attributes and relations, making some assumptions to speed up inference. In
their approach a relation can be true or false. In contrast, our approach does not make a real
distinction between attributes and relations, indeed, each random variable has a relational
representation, regardless of the distribution (binary, discrete or continuous). This allows
parametrization and template definition for any kind of random variable. Furthermore, our
language and inference algorithm are more general, keeping inference relatively fast. In
addition, it is not clear if they can support partial states and integrate background knowledge
while keeping good performance. A relational representation has been used in Meyer-Delius
et al. (2008) for situation characterization over time. However, this work is based on HMMs
and uses only binary relations (true or false). Interesting works have been proposed (Beetz
et al.; Tenorth and Beetz 2009) for manipulation tasks exploiting a relational representation.
Those works integrate relational knowledge about the world to reason about the objects and
perform complex tasks. For probabilistic inference and belief update they useMLNs (Markov
Logic Networks). However, MLNs are arguably less efficient for filtering inference because
they are undirected models that might require MCMC or the computation of the partition
function at each step, even though recent optimizations have been proposed (Papai et al.
2012).

9 Conclusions

We proposed a flexible representation for hybrid relational domains and provided an efficient
inference algorithm for static and dynamic models. This framework exploits the relational
representation and (context specific) independence assumptions to reduce the sample size
(through partial worlds) and the inference cost.

The proposed static algorithm EvalSampleQuery exploits LW in a wider range of cases
with respect to systems such as BLOG, and supports complex queries with continuous vari-
ables, for which most related frameworks fail. These features are also valid for dynamic
domains, where DCPF calls EvalSampleQuery during filtering. At the same time, DCPF
avoids backinstantiation to bound the space complexity and reduce time performance vari-
ability. This makes DCPF particularly suited for online applications.

One of the advantages of a relational framework like DCPF is the flexibility and generality
of the model with respect to a particular situation. Indeed, whenever a new object appears
all the respective properties and relations with other objects are implicitly defined (but not
necessary computed and added to the sample). In addition, the expressivity of the language
helps to bridge the gap between robotics and the high-level symbolic representation used in
Artificial Intelligence.

The static algorithm EvalSampleQuery and the DCPF filtering were empirically eval-
uated and applied in several synthetic and real-world scenarios. The results show that
EvalSampleQuery outperforms naive MC and BLOG in static domains. For dynamic
domains DCPF outperforms the classical particle filter and DBLOG for a small number of

123

Mach Learn (2016) 103:407–449 443

samples. The DCPF averaged error is lower than the DBLOG error for the same number
of samples. Nonetheless, DBLOG seems to be faster for a large number of samples, which
might be caused by implementation reasons.

The object tracking experiments show that DCPF is promising for robotics applications.
The overall performance is acceptable, but could be improved to scale well with high-
dimensional states. Indeed, each sample represents the entire state, therefore inference can
be computationally intensive for a high number of objects and relations. Nonetheless, DCPF
exploits the structure of the model and partial samples to speed up inference and improve the
performance.

Finally, both learning strategies tested in this framework perform reasonably well for a
limited number of parameters. More sophisticated strategies and offline methods need to be
investigated for a higher number of parameters.

Appendix

Logic programming

In this appendix we briefly introduce logic programming concepts. See Nilsson and
Małiszyński (1995), Apt (1997), Lloyd (1987) for an extensive introduction.

An atomic formula (atom) is a predicate applied to a list of terms that represents objects.
For example, inside(1,2) is an atomic formula, where inside is a predicate, sometimes
called relation, and 1, 2 are symbols that refer to objects. A literal is an atomic formula or a
negated atomic formula. A clause, in logic programming, is a first-order formula with a head
(atom), and a body (a list of literals). For example, the clause

inside(A,B) ← inside(A,C),inside(C,B)

states that for allA,B andC,A is insideB ifA is insideC andC is insideB (transitivity property).
A,B and C are logical variables, that informally refer to an arbitrary object. A clause usually
contains non-ground literals, that is, literals with logical variables (e.g., inside(A,B)). A
clause with logical variables is assumed to be preceded by universal quantifiers for each
logical variable, e.g., in the above clause: ∀A,∀B,∀C. A substitution θ replaces the variables
with other terms (eventually other variables). For example, for θ = {A = 1,B = 2,C = 3}
the above clause becomes:

inside(1,2) ← inside(1,3),inside(3,1)

and states that if inside(1,3) and inside(3,1) are true, then inside(1,2) is true. We
indicate with θ = mgu(A,B) the most general unifier, i.e. the most general substitution θ

that makes Aθ = Bθ .
Let P be a definite program and I a Herbrand interpretation. The TP (I) operator is defined

as follows:

TP (I) = {hθ |h ← b1, . . . , bn ∈ P, {b1θ, . . . , bnθ} ⊆ I }
That is if the body of a rule is true in I , the head is in TP (I). Given a program it is possible
to derive all possible true atoms using the TP operator a number of times recursively starting
from I = ∅, until a fixpoint is reached (i.e., TP (I) = I). The interpretation obtained is called
Least Herbrand Model and contains all the atoms that can be derived from P.

123

444 Mach Learn (2016) 103:407–449

Distributional clauses

Validity conditions

To define a proper probability distribution p(x), a DC program P needs to satisfy the validity
conditions described in Gutmann et al. (2011). For each predicate h or random variable we
assign a rank (natural number) that defines an order. A DC program is valid if:

1. For each ground hθ,hθ ∼ Dθ has to be unique in the least fixpoint, i.e., there is one
distribution defined for each random variable.

2. The program has to be stratified, that is, there exists a rank assignment such that for each
distributional clause h ∼ D ← b1, . . . ,bn. : rank(h ∼ D) > rank(bi), while each
definite clause h ← b1, . . . ,bn. : rank(h) ≥ rank(bi).

3. All ground probabilistic facts are Lebesgue-measurable.
4. Each atom in the least fixpoint can be derived from a finite number of probabilistic facts

(finite support condition Sato 1995).

STP operator

To generate a possible world, Gutmann et al. (2011) define the STP operator, a stochastic
version of the well-known TP operator in logic programming. This operator is applied on
partial worlds (or interpretations); these contain ground atoms (as in standard logic program-
ming), and for each random variable r defined in the partial worlds, there will be an atom of
the form r ∼ D, and an equality r = v in a separated table, where v is the value sampled
from the distribution D. Throughout the paper we do not always write the r ∼ D explicitly.
To generate a possible world, one starts from the empty partial world I = ∅, and applies
I ← STP (I) until a fixpoint is reached (STP (I) = I).

Negation

A distributional program P needs to be stratified to be valid, thus no specific requirements
are needed to support negation. The semantics is defined along the same lines as the perfect
model MP (Przymusinski 1988), that is, the STP operator is applied at each rank from lowest
to highest rank. The result is a world x sampled from the distribution p(x) defined by the
program P.

Consider a DC program P, a literal l and a (partial) world x P(i) obtained by applying the
STP operator till the least fixpoint for rank(var(l)) is reached (or exceeded). If l is a classic
atomic formula, l is true in x P(i) iff l ∈ x P(i), and not (l) holds in x P(i) iff l /∈ x P(i). This
follows the closed world assumption: a literal is false if it is not in the least fixpoint. If l is a
comparison operator involving a random variable r : l = (r ∼= val), then not (r ∼= val)
holds in x P(i) whenever r ∼= val is false in x P(i) or the random variable r is not defined
in x P(i), that is, when r � var(x P(i)). Note that x P(i) is the least fixpoint for rank(r) (or
higher), thus r � var(x P(i)) implies that r is not defined for eachworldm ⊇ x P(i) consistent
with x P(i). To determine not (l), not (r ∼= val) or just the existence of a variable r it is
not required to explicitly apply the STP operator. In logic programming, negation as failure
is used to prove negated formulas: if the query q fails then not (q) is true and vice versa. A
common inference procedure is SLDNF, that is SLD resolution with negation as failure.

Consider the following examples:

n ∼ poisson(6). (30)

123

Mach Learn (2016) 103:407–449 445

color(X) ∼ uniform([red,blue,black]) ← n ∼= N,between(1,N,X). (31)

notred ← not(color(2) ∼= red). (32)

nothing_red ← not(color(X) ∼= red). (33)

notred is true in those worlds where the value of the random variable color(2) is not
red. In some worlds, the variable color(2) is not defined, for example when n = 1, in such
cases notred still succeeds. Similarly, the atom nothing_red is true in a world x iff the
query color(X) ∼= red fails, that is, iff every variable color(X) defined in x is not red
(for X between 1 and n). Therefore, nothing_red is also true in worlds with no objects
(n = 0).

Theorems

A distributional program describes a conditional distribution, and independence assumptions
as described in the following theorem.

Theorem 4 Given a valid DC program P, a DC clause r ∼ D ← body and a partial world
x P(i), if there exists a grounding substitution θ such that (∀v : v ∈ var(x P(i)) ⇒ rank(v) ≤
rank(rθ)) and (x P(i) |� bodyθ) then p(rθ |x P(i)) = p(rθ |bodyθ) = Dθ .

Proof (sketch) The proof can be obtained from the semantics of DC (see Gutmann et al.
2011, or Milch 2006 for a general discussion). The result is similar to Bayesian networks
for which each random variable is conditionally independent of its non-descendants given
its parents. The same result is valid for context-specific independencies. ��
Theorem 5 Step (1) guarantees d-separation conditions 1 and 2

Proof Weneed toprove p(x̂ P(i)
t+1 |x̂ P(i)

t , x̂at , ut+1) = p(x̂ P(i)
t+1 |x̂ P(i)

t , ut+1) and p(zt+1|x (i)
t+1) =

p(zt+1|x̂ P(i)
t+1). The sampling algorithm can sample a random variable rt+1 only when

the body of a clause that defines rt+1 is true in the partial sample, i.e., when there
exists a substitution θ and a clause ht+1 ∼ D ← bodyt:t+1 ∈ P such that rt+1 =
ht+1θ , var(bodyt:t+1θ) ⊆ var(x̂ P(i)

t :t+1) and x̂ P(i)
t :t+1 |� bodyt:t+1θ . From Theorem 4,

p(rt+1|bodyt:t+1θ, x̂ P(i)
t , x̂at , ut+1) = p(rt+1|bodyt:t+1θ) holds for each rt+1 ∈ x̂ P(i)

t+1 ,

this proves condition 1 since var(bodyt:t+1θ) ⊆ var(x̂ P(i)
t :t+1). Similarly, the sampling algo-

rithm will sample variables that prove the evidence zt+1; by applying Theorem 4 again we
have p(zt+1|x (i)

t+1) = p(zt+1|x̂ P(i)
t+1). ��

Theorem 6 Step (2) guarantees d-separation condition 3.

Proof Condition 3 is satisfied iff the posterior distribution of the marginalized variables:
f (i)
t+1(x̂

a
t+1; x̂ P(i)

t+1) = ∏
rt+1∈x̂at+1

f (i)
t+1(rt+1; Parents(rt+1)) is computed for each sample.

The probability distribution f (i)
t+1 is represented using DDC clauses or storing rt+1 ∼ D in

the sample. There are two cases to discuss for each random variable rt+1 ∈ x̂at+1:

c1 rt+1 is defined with a grounded DC clause of the form ht+1θ ∼ Dθ ← bodyt+1θ

(derived from ht ∼ D ← bodyt), with rt+1 = ht+1θ . In this case no actions are
required because in the next step rt+1 → rt and f (i)

t (rt; Parents(rt)) is defined by
htθ ∼ Dθ ← bodytθ . The variable rt+1 may depend on random variables dt+1 ∈
bodyt+1θ that are not yet sampled: dt+1 ∈ x̂at+1. In this case, if dt+1 is defined by
intra-time clauses of the form dt+1 ∼ D ← dbodyt+1, the case c1 applies recursively.
If dt+1 is defined by inter-time clauses: dt+1 ∼ D ← dbodyt:t+1, the case c2 applies.

123

446 Mach Learn (2016) 103:407–449

c2 rt+1 is defined with a grounded DC clause of the form ht+1θ ∼ Dθ ← bodyt:t+1θ

(derived from the state transition model) with rt+1 = ht+1θ . In this case Step (2)
queries rt+1, thus variables in bodyt:t+1θ will be eventually sampled if not in x̂ P(i)

t :t+1.

If bodyt:t+1θ is true in x̂ P(i)
t :t+1, Step (2) adds rt+1 ∼ Dθ is to the sample. Indeed, from

Theorem 2 we have f (i)
t+1(rt+1; Parents(rt+1)) = p(rt+1|x̂ P(i)

t , x̂ P(i)
t+1) = Dθ .

��
The case c1 implies that Step (2) does not need to query variables defined by intra-time
clauses ht+1 ∼ D ← bodyt+1. Querying those variables would sample unnecessary
random variables. For the remaining variables, Step (2) performs the prediction step, that is,
determines the distribution of such variables (case c2). If lifted belief update or precomputed
belief are used for a random variable rt+1, the marginal distribution f (i)

t+1 of such variable
is defined by DDC clauses. In conclusion, c1 and c2 show that Step (2) guarantees that the
distributions of the marginalized variables are defined in any situation.

Proposal distribution

To make the particle filter more efficient the optimal proposal distribution p(xt+1|xt , zt+1)

and the corresponding weight p(zt+1|xt) can be used. Given a complex nonlinear transition
model those distributions are not easy to compute analytically, therefore we adopt suboptimal
solutions. Let us assume that the state is xt = {at , bt } and the observations depend only on
bt+1, then the weight can be written as:

w
(i)
t+1 = w

(i)
t

p(zt+1|b(i)
t+1)p(b

(i)
t+1|a(i)

t+1, x
(i)
t)p(a(i)

t+1|x (i)
t)

g(x (i)
t+1|x (i)

t , zt+1)

A suboptimal proposal distribution is g(xt+1|x (i)
t , zt+1) = p(bt+1|at+1, x

(i)
t , zt+1)

p(at+1|x (i)
t), with weight w

(i)
t+1 = w

(i)
t p(zt+1|a(i)

t+1, x
(i)
t). If p(bt+1|at+1, xt) is a linear

Gaussian transition model or discrete we can easily compute the above suboptimal proposal
and relative weight after sampling at+1. In the scenarios, bt is the set of the objects’ positions,
while the remaining states define the set at . For example, the proposal that replaces (29) is:

posx(ID)t+1 ∼ gaussian(M,Var) ← Var is (σ−2 + ω−2)−1,

M is Var ∗ (�(obsPosx(ID)t)ω
−2+ �(posx(ID)t)σ

−2),

�(movet) = ID. (34)

Where ω2 is the variance of the Gaussian measurement model.

Comparison with Murphy’s interface algorithm

Murphy (2002) proposed the interface algorithm for Dynamic Bayesian Networks to perform
efficient exact filtering. It is based on the notion of interface: the set of variables that have
children in the next time slide.

In DCPF, we can define the interface as the set of random variables that appears in the
body of a clause of the state transition model. The interface is sufficient to d-separate the
future from the past. Thus, Step (2) can perform the prediction step only for random variables
in the interface. However, to query a non-interface variable ht , the partial sample x P(i)

t−1 is

required in addition to x P(i)
t (while x P(i)

0:t−2 can be forgotten). This is because the prediction

123

Mach Learn (2016) 103:407–449 447

step is not performed for non-interface variables. Unfortunately, the interface is fixed and
does not consider context-specific independencies, therefore the non-interface set might be
empty or small in several domains.

For the described reasons the interface concept is less appealing for inference optimization
inDCPF. Therefore, the interface is not exploited in the current implementation. Nonetheless,
some domains might benefit of this improvement.

References

Andrieu, C., Doucet, A., & Tadic, V. B. (2005). On-line parameter estimation in general state-space models.
In Proceedings of the 44th IEEE conference on decision and control, 2005 and 2005 European control
conference (CDC-ECC ’05), pp. 332–337.

Apt, K. (1997). From logic programming to Prolog. Upper Saddle River: Prentice-Hall international series in
computer science. Prentice Hall.

Bancilhon, F., & Ramakrishnan, R. (1986). An amateur’s introduction to recursive query processing strategies.
SIGMOD Record, 15, 16–51.

Beetz, M., Jain, D., Mosenlechner, L., Tenorth, M., Kunze, L., & Blodow, N., et al. (2012) Cognition-enabled
autonomous robot control for the realization of home chore task intelligence. Proceedings of the IEEE,
100(8), 2454–2471.

Carvalho, C. M., Johannes, M. S., Lopes, H. F., & Polson, N. G. (2010). Particle learning and smoothing.
Statistical Science, 25(1), 88–106.

Carvalho, C. M., Lopes, H. F., Polson, N. G., & Taddy, M. A. (2010). Particle learning for general mixtures.
Bayesian Analysis, 5(4), 709–740.

Casella, G., & Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83(1), 81–94.
Cattelani, L., Manfredotti, C., & Messina, E. (2012). A particle filtering approach for tracking an unknown

number of objects with dynamic relations. Journal of Mathematical Modelling and Algorithms in Oper-
ations Research, 13(1), 3–21.

Choi, J., Guzman-Rivera, A., &Amir, E. (2011). Lifted relational Kalman filtering. In Proceedings of the 22nd
international joint conference on artificial intelligence (IJCAI 2011), pp. 2092–2099.

De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic inductive logic pro-
gramming, theory and applications. Lecture notes in computer science, Vol. 4911. Berlin: Springer.

de Salvo Braz, R., Arora, N., Sudderth, E., & Russell, S. (2008). Open-universe state estimation with DBLOG.
In NIPS workshop on probabilistic programming: Universal languages, systems and applications.

Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised particle filtering for dynamic
bayesian networks. In Proceedings of the 16th conference on uncertainty in artificial intelligence (UAI
’00) (pp. 176–183). Burlington: Morgan Kaufmann.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing, 10(3), 197–208.

Fung, R. M., & Chang, K. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian
networks. In Proceedings of the 5th conference on uncertainty in artificial intelligence (UAI 1989).

Getoor, L., & Taskar, B. (2007). An introduction to statistical relational learning. Cambridge, MA:MIT Press.
Gilks, W. R., & Berzuini, C. (2001). Following a moving targetmonte carlo inference for dynamic bayesian

models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1), 127–146.
Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language

for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence
(UAI 2008) (pp. 220–229). Edinburgh: AUAI Press.

Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference
in probabilistic programming. Theory and Practice of Logic Programming, 11, 663–680.

Hajishirzi, H., & Amir, E. (2008). Sampling first order logical particles. In Proceedings of the 24th conference
on uncertainty in artificial intelligence (UAI 2008) (pp. 248–255). Edinburgh: AUAI Press.

Higuchi, T. (2001). Self-organizing time seriesmodel. InA.Doucet, N. Freitas, &N.Gordon (Eds.), Sequential
Monte Carlo methods in practice, statistics for engineering and information science (pp. 429–444). New
York: Springer.

Kadane, J. (2011). Principles of uncertainty. Abingdon: Taylor & Francis.
Kalman, R. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering,

82, 35–45.

123

448 Mach Learn (2016) 103:407–449

Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M. (2009). An overview of sequential monte carlo
methods for parameter estimation in general state-space models. In 15th IFAC symposium on system
identification, Vol. 15, (pp. 774–785).

Kersting,K.,DeRaedt, L.,&Raiko, T. (2006). Logical hiddenMarkovmodels. Journal of Artificial Intelligence
Research, 25, 425–456.

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of
ProbLog programs. In Proceedings of the 24th conference on logic programming (ICLP 2008). Lecture
notes in computer science (Vol. 5366, pp. 175–189). Berlin: Springer.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-gaussian nonlinear state space models. Journal
of Computational and Graphical Statistics, 5(1), 1–25.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques—adaptive
computation and machine learning. Cambridge, MA: MIT Press.

Lemieux, C. (2009).Monte Carlo and Quasi-Monte Carlo sampling (Vol. 20). Berlin: Springer.
Lloyd, J. (1987). Foundations of logic programming. New York: Springer.
Lloyd, J., & Shepherdson, J. (1991). Partial evaluation in logic programming. The Journal of Logic Program-

ming, 11(34), 217–242.
Lopes, H. F., Carvalho, C. M., Johannes, M., & Polson, N. G. (2010). Particle learning for sequential bayesian

computation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith,
M. West (Eds.), Bayesian statistics 9 (Vol. 9, pp. 317–360). Oxford: Oxford University Press.

Manfredotti, C. E., Fleet, D. J., Hamilton,H. J., &Zilles, S. (2010). Relational particle filtering.NIPSWorkshop
on Monte Carlo methods for modern applications, December 2010.

Meyer-Delius, D., Plagemann, C.,Wichert, G., Feiten,W., Lawitzky, G., &Burgard,W. (2008). A probabilistic
relational model for characterizing situations in dynamic multi-agent systems. InData analysis, machine
learning and applications. Berlin: Springer.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005). BLOG: Probabilistic models
with unknown objects. In Proceedings of the 19th international joint conference on artificial intelligence
(IJCAI 2005), pp. 1352–1359.

Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., & Kolobov, A. (2005). Approximate inference for
infinite contingent Bayesian networks. In R. G. Cowell, Z. Ghahramani (Eds.), Proceedings of the 10th
international workshop on artificial intelligence and statistics (AISTATS 2005) (pp. 238–245). Society
for Artificial Intelligence and Statistics.

Milch, B. C. (2006). Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berke-
ley.

Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Ph.D. thesis,
University of California, Berkeley.

Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., & Keen Wong, W. (2008). Logical hierarchical hidden
markov models for modeling user activities. In Proceedings of the 18th international conference in
inductive logic programming (ILP 2008). Lecture notes in computer science (Vol. 5194, pp. 192–209).

Ng, B., Peshkin, L., & Pfeffer, A. (2002). Factored particles for scalable monitoring. In Proceedings of the
18th conference on uncertainty in artificial intelligence (UAI2002) (pp. 370–377). Burlington: Morgan
Kaufmann.

Nilsson, U., & Małiszyński, J. (1995). Logic, programming and prolog (2nd ed.). New York: Wiley.
Nitti, D., Chliveros, G., De Raedt, L., Pateraki, M., Hourdakis, M., & Trahanias, P. (2014a). Application of

dynamic distributional clauses for multi-hypothesis initialization in model-based object tracking. In 9th
International conference on computer vision theory and applications (VISAPP 2014), Vol. 2.

Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In Proceedings
of the international conference on intelligent robots and systems (IROS 2013), pp. 2764–2771.

Nitti, D., De Laet, T., & De Raedt, L. (2014b). Distributional clauses particle filter. In Machine learning and
knowledge discovery in databases, lecture notes in computer science (Vol. 8726, pp. 504–507). Berlin:
Springer.

Nitti, D., De Laet, T., & De Raedt, L. (2014c). Relational object tracking and learning. In Proceedings of the
International conference on robotics and automation (ICRA 2014).

Owen, A. B. (2013). Monte Carlo theory, methods and examples. http://statweb.stanford.edu/~owen/mc/
Papai, T., Kautz, H., & Stefankovic, D. (2012). Slice normalized dynamicMarkov logic networks. In Advances

in neural information processing systems (NIPS 2012) (pp. 1907–1915).
Perov, Y., Paige, B., & Wood, F. The Indian GPA problem. Retrieved February 23, 2016, from http://www.

robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa.
Pfeffer, A., Das, S., Lawless, D., & Ng, B. (2009). Factored reasoning for monitoring dynamic team and goal

formation. Information Fusion, 10(1), 99–106.

123

http://statweb.stanford.edu/~owen/mc/
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa

Mach Learn (2016) 103:407–449 449

Pitt, M. K., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American
statistical association, 94(446), 590–599.

Przymusinski, T. C. (1988). Perfect model semantics. In Proceedings of the 5th international conference on
logic programming and symposium (ICLP/SLP 1988), pp. 1081–1096.

Robert, C., & Casella, G. (2004). Monte Carlo statistical methods. Springer texts in statistics. New York:
Springer.

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Englewood Cliffs, NJ:
Prentice Hall.

Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Proceedings of
the 12th international conference on logic programming (ICLP 1995) (pp. 715–729). Cambridge, MA:
MIT Press.

Shirazi, A., & Amir, E. (2011). First-order logical filtering. Artificial Intelligence, 175(1), 193–219.
Storvik, G. (2002). Particle filters for state-space models with the presence of unknown static parameters.

IEEE Transactions on Signal Processing, 50(2), 281–289.
Tenorth, M., & Beetz, M. (2009). KnowRob—Knowledge processing for autonomous personal robots. In

Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009),
pp. 4261–4266.

Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient inference and appli-
cations. Machine Learning, 82(2), 239–272.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press. ISBN:
0262201623.

Whiteley, N., & Johansen, A. M. (2010). Recent developments in auxiliary particle filtering. Barber, C., &
Chiappa, (Eds.), Inference and learning in dynamic models (pp. 38, 39–47). Cambridge: Cambridge
University Press.

Wood, F., van de Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming
inference. In Proceedings of the 17th international conference on artificial intelligence and statistics
(AISTATS 2014), pp. 1024–1032.

Zettlemoyer, L. S., Pasula, H. M., & Kaelbling, L. P. (2007). Logical particle filtering. In Proceedings of the
Dagstuhl seminar on probabilistic, logical, and relational learning.

123

	Probabilistic logic programming for hybrid relational domains
	Abstract
	1 Introduction
	2 Distributional clauses
	3 Static inference for distributional clauses
	3.1 Importance sampling
	3.2 Sampling partial possible worlds
	3.3 Examples
	3.3.1 Query expansion
	3.3.2 Complex queries

	4 Dynamic distributional clauses
	4.1 Dynamic distributional clauses
	4.2 Inference and filtering

	5 DCPF: a particle filter for dynamic distributional clauses
	5.1 Filtering algorithm
	5.2 Avoiding backinstantiation
	5.3 Limitations

	6 Online parameter learning
	6.1 Learning in particle filters
	6.2 Online parameter learning for DCPF

	7 Experiments
	7.1 Static domains
	7.2 Synthetic dynamic domains
	7.3 Real-world dynamic domains
	7.3.1 Packaging scenario

	7.4 Learnsize scenario

	8 Related work
	8.1 Frameworks
	8.2 Applications

	9 Conclusions
	Appendix
	Logic programming
	Distributional clauses
	Validity conditions
	STP operator

	Negation
	Theorems
	Proposal distribution
	Comparison with Murphy's interface algorithm

	References

