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Abstract Recently orthogonal nonnegative matrix factorization (ONMF), imposing an
orthogonal constraint into NMF, has been attracting a great deal of attention. ONMF is more
appropriate than standard NMF for a clustering task because the constrained matrix can be
considered as an indicator matrix. Several iterative ONMF algorithms have been proposed,
but they suffer from slow convergence because of their matrix-wise updating. In this paper,
therefore, a column-wise update algorithm is proposed for speeding up ONMF. To make the
idea possible, we transform the matrix-based orthogonal constraint into a set of column-wise
orthogonal constraints. The algorithm is stated first with the Frobenius norm and then with
Bregman divergence, both for measuring the degree of approximation. Experiments on one
artificial and six real-life datasets showed that the proposed algorithms converge faster than
the other conventional ONMF algorithms, more than four times in the best cases, due to their
smaller numbers of iterations.
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1 Introduction

Orthogonal nonnegative matrix factorization (ONMF), first proposed by Ding et al. (2006),
factorizes a nonnegative matrix into two nonnegative matrices under a one-sided orthogonal
constraint imposed on the first factor matrix. That is, ONMF is a minimization problem:

minF,G ‖X − FGT ‖2F ,

subject to F ≥ 0, G ≥ 0, FTF = I,
(1)

where X ∈ R
M×N , F ∈ R

M×J , G ∈ R
N×J (J � N , M) and I is the identity matrix. In

addition, T denotes the transpose and ‖ · ‖2F denotes the squared Frobenius norm (the sum
of squared elements). In this formulation, FTF = I is imposed as a condition, but the strict
application of both nonnegativity and orthogonality is too strong. In fact, it yields a subset of
orthonormal vectors in the standard basis. Therefore, in a practical sense, the optimization
problem is stated as

min
F,G

‖X − FGT ‖2F + λ‖FTF − I‖ (2)

with a positive coefficient λ. This corresponds to a Lagrangian formulation, as will be shown
in the following section.

To the best of the authors’ knowledge, conventional algorithms for solving ONMF prob-
lems are all based on matrix-wise alternating block coordinate descent. However, it is known
that matrix-wise update algorithms require a relatively large number of iterations to converge.
This is because those algorithms do not solve each conditional matrix-wise problem opti-
mally (Cichocki and Anh-Huy 2009; Kim and Park 2011). In NMF without the orthogonal
constraint, some state-of-the-art algorithms updateF andG column-wisely or element-wisely
to gain faster convergence. In ONMF, however, it is difficult to incorporate the orthogonal
constraint into column-wise or element-wise coordinate descent updates.

In this paper, we propose a Fast Hierarchical Alternating Least Squares (HALS) algorithm
for ONMF (HALS-ONMF). Our algorithm is based on a column-wise update algorithm for
NMF proposed by Cichocki and Anh-Huy (2009). To enable such a column-wise update even
in ONMF, we derive a set of column-wise orthogonal constraints, taking into consideration
both nonnegativity andorthogonality at the same time. Furthermore,we show that the column-
wise orthogonal constraint can also be applied to column-wise update algorithms called scalar
Block Coordinate Descent for solving Bregman divergence NMF (sBCD-NMF) (Li et al.
2012) where the Frobenius norm in (1) is replaced with more general Bregman divergence
(Li et al. 2012). This sBCD-ONMF algorithm is the first algorithm to solve ONMF with
Bregman divergence.

The rest of this paper is organized as follows. We summarize previously proposed NMF
algorithms and ONMF algorithms by connecting them to the corresponding optimization
criteria in Sect. 2. Then we explain HALS-NMF proposed by Cichocki and Anh-Huy (2009)
and propose HALS-ONMF with a newly invented column-wise orthogonal constraint in
Sect. 3. In Sect. 4, we incorporate the column-wise orthogonal constraint into sBCD-NMF
proposed by Li et al. (2012) in order to propose sBCD-ONMF algorithm. In Sect. 5, we
present the results of experiments using the conventional and proposed algorithms on several
real-life datasets. The conclusion is given in Sect. 6.

We will use a bold uppercase letter for a matrix, such as X, and an italic lowercase letter
for a vector such as x. Both Xi j and xi j stand for the (i, j)th element in a matrix X. A vector
1J ∈ R

J shows the vector whose elements are of one’s. In this paper, NMFmeans Frobenius
norm NMF, unless stated otherwise.
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2 Related work

In this section, we first provide a brief review of NMF and ONMF algorithms.

2.1 Nonnegative matrix factorization

NMF aims to find a nonnegative matrix F = [ f 1, f 2, . . . , f J ] ∈ R
N×J+ and another

nonnegative matrix G = [g1, g2, . . . , g J ] ∈ R
M×J+ whose product approximates a given

nonnegative matrix X ∈ R
N×M+ :

min
F,G

‖X − FGT ‖2F ,

subject to F ≥ 0, G ≥ 0.
(3)

Since the NMF problem is not convex both in F and G, various iterative algorithms have
been proposed (Lee and Seung 2000; Cichocki et al. 2009; Kim and Park 2011; Hsieh and
Dhillon 2011). They are categorized according to the unit of updates as follows.

2.1.1 Matrix-wise update algorithms

Lee and Seung (2000) proposed a Multiplicative Update (MU) algorithm. This MU algo-
rithm is one of the efficient algorithms for NMF proposed in the early stage, and thus many
extensions followed (e.g., Cai et al. 2011; Cichocki et al. 2009). However, from the viewpoint
of convergence, they were not sufficient (Kim et al. 2014). Lin (2007) proposed a Project
Gradient Descent (PGD) algorithm for NMF. This algorithm solves an NMF problem by
solving Nonnegative Least Squares (NLS) problems for F and G alternatively and, gains
faster convergence than MU algorithms. The difference in these algorithms is that the MU
algorithm uses a fixed step size in the gradient descent, while PGD uses a flexible step size.

2.1.2 Vector-wise update algorithms

Cichocki and Anh-Huy (2009) proposed a Hierarchical Alternating Least Squares (HALS)
algorithm. The HALS algorithm solves a set of column-wise NLS problems for each column
and updates F and G column-wisely. Since column-wise NLS problems can be solved at a
high accuracy and efficiency, HALS converges very fast. Kim and Park (2011) proposed an
active-set like algorithm that also decomposes a matrix NLS problem into a set of column-
wise sub-problems. The difference between HALS and the active-set like method lies in
the way to solve a column-wise sub-problem. The former uses the gradient to solve a sub-
problem, while the latter uses an active-set method to solve a sub-problem. The active-set
method consists of two stages: first, it finds a feasible point in standardNMF, as a nonnegative
point, and then it solves a column-wise NLS problem while maintaining feasibility. Li et al.
(2012) recently proposed scalar Block Coordinate Descent (sBCD) algorithm. The sBCD
algorithm is applicable to not only NMF with Frobenius norm but also NMF with more
general Bregman divergence. They used Taylor series expansion to derive the element-wise
problem. Since the sBCD algorithm uses the column-wise residual in their update rule, its
complexity is the same as that of column-wise update algorithms. Therefore, in this paper,
we consider sBCD as a column-wise update algorithm (see Sect. 4.1). All of these vector-
wise update algorithms can be regarded as state-of-the-art algorithms, because they converge
empirically faster than matrix-wise update algorithms. However, addition of matrix-based
constraints such as FTF = I is still challenging in such column-wise updates.
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2.1.3 Element-wise update algorithms

Hsieh and Dhillon (2011) proposed an element-wise update algorithm called a Greedy Coor-
dinate Descent (GCD) algorithm. To the authors’ knowledge, it is the fastest algorithm for
NMF. The GCD algorithm takes a greedy strategy to decrease the value of the objective
function. It selects and updates the most contributable variables for minimization. The low
computational cost of GCD is due to the fact that it does not update unnecessary elements.
Unfortunately, theGCDalgorithm cannotworkwith such a constraint that affects all elements
of one column at the same time. One example of such a constraint is the graph regularized
constraint that appears when weminimize α(tr(FTLF)), whereL is a graph Laplacian matrix
of XTX. The GCD relies on the fact that, with a fixed G, updating of an element fi j of F
changes only the gradients of elements in the same row f i : because the gradient in F is
given by (−2XG + 2FGTG). In more detail, GCD iteratively selects and updates the most
contributable variable fi j in the i th row. Unfortunately, the GCD is not applicable to ONMF
because the orthogonal condition requires an interaction between different rows.

2.2 Orthogonal NMF

An additional orthogonal constraint, FTF = I, is imposed in ONMF. At first, we briefly
review the first ONMF algorithm proposed by Ding et al. (2006) and reveal the problem
behind ONMF.

The goal of ONMF is to find a nonnegative orthogonal matrix F and a nonnegative matrix
G minimizing the following objective function with a Lagrangian multiplier λ,

L(F,G) = ‖X − FGT ‖2F + Tr[λ(FTF − I)]. (4)

The KKT complementary condition gives1

(−2XG + 2FGTG + 2Fλ)njF2
nj = 0, n = 1, 2, . . . , N , j = 1, 2, . . . J. (5)

Then the update rule of the constrained matrix F is derived as

Fnj ← Fnj

√
(XG)nj

[F(GTG + λ)]nj . (6)

The point is how to determine the value of the Lagrange multiplier λ. Since it is not easy
to solve this problem for every value of λ, Ding et al. (2006) ignored the nonnegativity and
relied only on FTF = I to have approximate values of off-diagonal elements. By multiplying
FT from the left in (5), we have

λ = FTXG − GTG.

Thus, inserting this λ into (6), we have the final update form as

Fnj ← Fnj

√
(XG)nj

(FFTXG)nj
.

Note that their formulation with the specific values of λ do not strictly satisfy the orthogo-
nality. Nevertheless, this specification is useful in avoiding the zero-lock problem appearing
both in ONMF and in NMF: Once an element becomes zero in the middle of iterations, the
element will not be recasted in the following steps [see the multiplicative update rule (6)].

1 Hereafter, we will not state the nonnegative constraint explicitly.
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Besides, when the orthogonality is strictly posed with nonnegativity, each row vector of F
must have only one non-zero value. That is, any algorithm using a multiplicative update rule
falls easily into a hole of the zero-lock problem. Therefore, ONMF algorithms put the first
priority on the approximation while loosening the degree of orthogonality.

As a result of compromise, an ONMF algorithm can be seen as an algorithm that balances
the trade-off between orthogonality and approximation with a weighting parameter λ as seen
in (2).We do not categorizeONMF algorithms by the unit of updates because all conventional
ONMF algorithms are based only on matrix-wise updates. Rather, those algorithms should
be categorized according to whether the algorithm employs a weighting parameter or not. If
an algorithm minimizes an objective function with a weighting parameter and if the value
is not appropriately chosen, then the algorithm would fail in either acceptable degree of
approximation or orthogonality. Such a failure has often been reported in past experimental
results (Li et al. 2010; Mirzal 2014; Pompili et al. 2012).

2.2.1 Without a weighting parameter

Ding et al. (2006) proposed the first ONMF algorithm based on the MU algorithm (Lee
and Seung 2000). This algorithm has no weighting parameter. It solves approximately the
Lagrangian (4) as we reviewed. Yoo and Choi (2008) also proposed an MU-based algorithm.
They used the gradient on the Stiefel manifold that is the set of all orthogonal matrices.
The gradient on the Stiefel manifold is compatible with that of the MU algorithm because
the manifold constrains every matrix to be orthogonal and the employed MU algorithm
guarantees nonnegative values.2

2.2.2 With a weighting parameter

Mirzal proposed a convergent algorithm that is also based on the MU algorithm in practice.
He proposed two algorithms in Mirzal (2014), one of which is the same as the one by Li et al.
(2010). The first algorithm introduced a weighting parameter α instead of the Lagrangian
multiplier λ in (4). The second algorithm was a convergent algorithm. The convergence of
the algorithm is proved, but the computational cost is high. In this algorithm, the zero-lock
problemwas forcibly avoided by replacing zero valueswith a small positive value ε. There are
algorithms that put the first priority on nonnegativity rather than orthogonality. Pompili et al.
(2012) tackled directly the zero-lock problem. They employed the Augmented Lagrangian
method. In more detail, they used the gradient on the Stiefel manifold and explicitly intro-
duced a Lagrangian multiplier ψ for nonnegativity. The initial value of the Lagrangian was
approximated to a smaller value in order to avoid the zero-lock problem. They increase the
value of ψ gradually to strengthen the nonnegativity while the iteration is repeated. As a
result, the nonnegativity was not strictly guaranteed in the algorithm. In addition, it has three
parameters to be set appropriately for orthogonality, nonnegativity and step size.

There are mainly two problems to be solved in order to develop fast ONMF algorithms.
First, we have to incorporate thematrix-type orthogonal conditionFTF = I into column-wise
or element-wise updating NMF algorithms. This is necessary to obtain efficiency. Next, we
need to solve the zero-lock problem. This is necessary to find an appropriate balance between
orthogonality and nonnegativity without a weighting parameter. This problem prevents us

2 In general, the resultant constrained matrix by ONMF in Yoo and Choi (2008) also does not satisfy strict
orthogonality because the MU algorithm is gradient descent with a fixed step size, and thus, it may undershoot
or overshoot.
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Table 1 A summary of categorization of ONMF algorithms. Frobenius, KL and Bregman denotes distortions
used for measuring the degree of approximation

Author (year) Updates Weighting
(YES/NO)

Distortion
measure

Matrix Vector

Ding et al. (2006) MU NO Frobenius

Yoo and Choi (2008) MU NO Frobenius

Li et al. (2010) MU YES Frobenius/KL

Pompili et al. (2012) PGD YES Frobenius

Mirzal (2014) MU YES Frobenius

Proposed (HALS-ONMF) HALS NO Frobenius

Proposed (sBCD-ONMF) sBCD NO Bregman

from using the Lagrangian and alternatively forces us to take a balance between orthogonality
and nonnegativity appropriately. In this paper, we show a way to realize two things in ONMF
algorithms (Table 1).

3 Hierarchical alternating least squares algorithm for ONMF

In this section, we show a way of utilizing the HALS for ONMF. First, we briefly review
the HALS for standard NMF and then describe how to incorporate the orthogonal constraint
column-wisely to propose HALS-ONMF.

3.1 Hierarchical alternating least squares for NMF

The key idea of HALS is efficient decomposition of the residual. Suppose that all of the
elements of matrices F andG are fixed except for the j th columns f j and g j . Since FG

T =∑J
j=1 f j g

T
j , the objective function (3) can be minimized by finding more appropriate f j

and g j than the current ones such as

min
f j ,g j

J j =
∥∥∥X( j) − f j g

T
j

∥∥∥2
F

, (7)

where X( j) � X − ∑
k �= j f k g

T
k is a residue. Since f j affects only g j , HALS alternatively

minimizes (7) for j = 1, 2, . . . , J, 1, 2, . . ., until convergence, keeping the nonnegative
constraints, f j ≥ 0 and g j ≥ 0. This objective function (7) with nonnegative constraints
can be considered as an Nonnegative Least Squares (NLS) problem. HALS solves the set of
such NLS problems.

In order to find a stationary point, the gradients of (7) in f j and g j are calculated:

0 = ∂ J j
∂ f j

= f j g
T
j g j − X( j)g j , and (8)

0 = ∂ J j
∂ g j

= g j f
T
j f j − X( j)T f j . (9)
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Hence, we have the following update rules:

f j ← 1

g j
T g j

[X( j)g j ]+, (10)

g j ← 1

f j T f j

[X( j)T f j ]+, (11)

where [x]+ = max(ε, x) (ε being a sufficiently small positive value).
Without loss of generality,wemay normalize so as to ‖ f j‖22 = 1 after updating.Assuming

this normalization, we can remove gTj g j and f Tj f j from (10) and (11), respectively. Now
the update rules (10) and (11) become simpler:

f j ← [X( j)g j ]+, and, after re-normalization to ‖ f j‖22 = 1,

g j ← [X( j)T f j ]+.

Since X( j) = X − ∑
k �= j f k g

T
k = X − FGT + f j g

T
j , we finally obtain the following

column-wise update rules:

f j ←
[
(XG) j − F(GTG) j + f j g

T
j g j

]
+ , and

g j ←
[
(XTF) j − G(FTF) j + g j f

T
j f j

]
+ .

Note that XG and GTG do not change their values while vectors f j ( j = 1, . . . , J ) are
updated. Therefore, HALS computesXG andGTG before updating those vectors. Similarly,
we per-calculate XTF and FTF before updating g j ( j = 1, . . . , J ).3 This is the HALS
algorithm usable for regular NMF.

3.2 Column-wise orthogonal constraint

Since f j affects the other columns in FTF, the orthogonal constraint cannot be directly
introduced into the HALS algorithm above. In this paper, we exploit a simple fact that if
the sum of nonnegative values is zero, then all of the values are zero. Since the orthogonal
condition FTF = I means f Tk f j = 0 for every k �= j , we can use a single condition∑

k �= j f Tk f j = 0 for fixed j coupledwith f Tk f j ≥ 0, instead of J−1 conditions f Tk f j = 0

for every k (�= j). That is, one matrix condition FTF = I is equivalently replaced with 2J
column-wise constraints of f Tj f j = 1 and

∑
k �= j f Tk f j = 0 for every j . As will be shown,

the newly derived column-wise constraints can be updated with O(M) for each column (M
being the number of rows of X to be factorized).

Now it suffices to impose the conditions

F( j)T f j �
∑
k �= j

f Tk f j = 0, j = 1, 2, . . . , J. (12)

In addition, we normalize each column vector so as to ‖ f j‖2 = f Tj f j = 1 to satisfy

FTF = I. Thus, we introduce constraint F( j)T f j = 0 ( j = 1, 2, . . . , J ) into (4) as the
column-wise orthogonal constraint. The nonnegativity of the elements is preserved with the
ε-truncate function [ ]+.

3 Sometimes it is called Fast HALS.
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3.3 HALS-ONMF

With the derived column-wise constraint (12), the localized objective function is formulated
as a Lagrangian:

L( f j , g j , λ j ) =
∥∥∥X( j) − f j g

T
j

∥∥∥2
F

+ λ j

(
F( j)T f j

)
, where

X( j) = X −
∑
k �= j

f k g
T
k ,

F( j) =
∑
k �= j

f k, λ j ≥ 0.

The gradient is given as

∂L

∂ f j
= −2X( j)g j + 2 f j g

T
j g j + λ jF( j). (13)

By solving ∂L/∂ f j = 0 and forcibly keeping the nonnegativity, we obtain the update rule,

under the assumption of normalization of f Tj f j = 1, as post-processing:

f j ←
[
X( j)g j − λ j

2
F( j)

]
+

. (14)

Unfortunately, the setting of the value of λ still remains as a problem. In this study, we take
the same way as Ding et al. did in (2006). By multiplying F( j) from the left in (13) and using
F( j)T f j = 0, we obtain

λ j = 2F( j)TX( j)g j

F( j)TF( j)
.

Hence, (14) becomes

f j ←
[
X( j)g j − F( j)TX( j)g j

F( j)TF( j)
F( j)

]
+

. (15)

Since the orthogonal constraint F( j)T f j = 0 does not affect g j , we can use the same update
rule as HALS-NMF, that is, with (11),

f j ←
[
X( j)g j − F( j)TX( j)g j

F( j)TF( j)
F( j)

]
+

, and

g j ←
[
X( j)T f j

]
+ .

UsingX( j) = X−∑
k �= j f k g

T
k = X−FGT + f j g

T
j , we have the final form of updating

rules:

f j ←
[
h − F( j)T h

F( j)TF( j)
F( j)

]
+

,

f j ← f j/‖ f j‖22, and

g j ←
[
(XTF) j − G(FTF) j + g j f

T
j f j

]
+ , where

h = (XG) j − F(GTG) j + f j g
T
j g j .
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Algorithm 1 Fast HALS-Orthogonal NMF
Input: Nonnegative matrix X, Number of components J
Output: Decomposing nonnegative matrices F and G such that X � FGT and FT F ∼= I.

Initialize F and G arbitrary.
U = F1J
repeat
A = XG
B = GTG
for j = 1 to J do
F( j) = U − f j
h = A j − FB j + B j j f j

f j = [h − F( j)h
F( j)T F( j) F

( j)]+
f j = f j / ‖ f j ‖2
U = F( j) + f j

end for
C = XT F
D = FT F
for j = 1 to J do
g j ← [C j − GD j + D j j g j ]+

end for
until Convergence criterion is satisfied.

The zero-lock problem is resolved by [ ]+ operation as it is inMirzal (2014). The proposed
HALS-ONMF algorithm is shown in Algorithm 1.

This vector-wise update algorithm is faster than conventional matrix-wise update algo-
rithms for the following reason. Thematrix-wise update rule (6) is derived from (5), while the
vector-wise update rule (15) of the proposed HALS-ONMF is derived from (13). The former
comes from the KKT complementary condition which is just a necessary condition for the
solution to minimize (4). Therefore, there is no guarantee for the updating to be optimum
in each iteration. While, in the latter, the corresponding optimization problem can be solved
analytically in a closed form. Therefore, the updating is always optimal in each iteration.

4 ONMF with Bregman divergence

In this section, we consider a wider class of ONMF problems; that is, Bregman divergence is
introduced instead of the Frobenius norm tomeasure the degree of approximation. In the case
ofNMF, Li et al. (2012) already proposed a column-wise update algorithm called scalar Block
Coordinate Descent (sBCD) to solve Bregman divergence NMF. In this paper, we develop
Bregman divergence ONMF, by incorporating the column-wise orthogonal constraint into
their sBCD algorithm. We first briefly review the sBCD-algorithm (Li et al. 2012) and then
explain how our column-wise orthogonal constraint can be incorporated in sBCD.

4.1 Scalar block coordinate descent algorithm (sBCD)

The objective function is now given as

minF,G Dφ(X||FGT ),

subject to F ≥ 0,G ≥ 0,
(16)
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Table 2 Examples of Bregman Divergence

Description Function φ(a) Dφ(a||b)

Frobenius norm a2
2 (a − b)2/2

KL-divergence a log a a log a
b − a + b

IS-divergence − log a a
b − log a

b

β-Divergence aβ+1−(β+1)a+β
β(β+1)

1
β(β+1) (a

β+1 − bβ+1 − (β + 1)bβ(a − b))

where Dφ(A||B) is a Bregman divergence between matrices A and B using a strictly convex
function φ. The definition of Bregman divergence is as follows.

Definition 1 (Bregman divergence) Let φ : S ⊆ R → R be a strictly convex function
with the continuous first derivation ∇φ. Then, Bregman divergence corresponding to φ,
Dφ : S× int(S) → R+, is defined as Dφ(x, y) = φ(x)−φ(y)−∇φ(y)(x − y). Here int(S)

is the interior of S.

A Bregman divergence for scalars is extended to the one for matrices by Dφ(A||B) =∑
m,n Dφ(Amn |Bmn). Bregman divergences include many well-known divergences such as

Frobenius norm and KL-divergence (Table 2). Recently, Li et al. proposed a column-wise
update algorithm for Bregman divergence NMF. 4 The key idea of the update rules is Taylor
series of Bregman divergences.

Let Et (a||b) � |a − b|t and Et (X||X′) �
∑

mn |xmn − x ′
mn |t be the t th power of t-norm

distance. Then, for X′ = FGT , we have

min
X′ Et (X||X′) = min

FG
Et (X||FGT ) = min

∀ j f j ,g j

Et

(
X( j)|| f j g

T
j

)
.

We want to connect Et (X( j)|| f j g
T
j ) with Bregman divergence Dφ(X||FGT ) to minimize

Et (X( j)|| f j g
T
j ). In the scalar case, by applying the Taylor series of φ(x) at x = b to φ(a),

we have

Dφ(a||b) = φ(a) − φ(b) − ∇φ(b)(a − b)

= ∇φ(b)(a − b) +
∞∑
t=2

∇ tφ(b)

t ! (a − b)t

−∇φ(b)(a − b) (Taylor series of the first two terms)

=
∞∑
t=2

∇ tφ(b)

t ! (a − b)t

=
∞∑
t=2

∇ tφ(b)

t ! (−sgn(b − a))t Et (a||b), (17)

where ∇ tφ(b) is the t-order derivative of φ(x) at x = b. The last equation comes from the
relation: (a − b)t = (sgn(a − b))t |a − b|t . Hence, as a natural extension, Dφ(X||FGT ) can
be re-written as

4 They proposed the scalar Block Coordinate Descent algorithm as an element-wise update algorithm. How-
ever, their update rules need to re-calculate the residual column-wisely. Therefore, we consider their algorithm
as a column-wise update algorithm.
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Dφ(X||FGT ) =
∑
mn

∞∑
t=2

∇ tφ
(
x ′
mn

)
t !

(−sgn
(
x ′
mn − xmn

))t
Et

(
x ( j)
mn || fmj gnj

)
,

where x ( j)
mn = (X − ∑

k �= j f k gk)mn and x ′
mn = (FGT )mn . Thus, we can use the partial

derivation of Et (x
( j)
mn || fmj gnj ) instead of that of Dφ(X||FGT ). Since

∂

∂ fmj

(
∇ tφ

(
x ′
mn

)
t !

(
−sgn

(
fmj gnj − x ( j)

mn

))t
Et

(
x ( j)
mn || fmj gnj

))

= −gnj
∇ tφ

(
x ′
mn

)
t − 1!

(
x ( j)
mn − fmj gnj

)t−1 + gnj
∇ t+1φ

(
x ′
mn

)
t !

(
x ( j)
mn − fmj gnj

)t
,

with (17), we have

∂Dφ

(
xmn ||x ′

mn

)
fmj

= gnj∇2φ
(
x ′
mn

) (
fmj gnj − x ( j)

mn

)

+
∞∑
t=2

(
−gnj

∇ t+1φ
(
x ′
mn

)
t !

(
x ( j)
mn − fmj gnj

)t

+ gnj
∇ tφ

(
x ′
mn

)
t !

(
x ( j)
mn − fmj gnj

)t)

= gnj∇2φ
(
x ′
mn

) (
fmj gnj − x ( j)

mn

)
.

Taking the sum over the rows and columns, we obtain the gradient of Dφ(X||FGT ) in fn j :

∂Dφ

(
X||FGT

)
∂ fn j

=
N∑

n=1

gnj∇2φ
(
x ′
mn

) (
fmj gnj − x ( j)

mn

)
. (18)

Finally, the update rule of sBCD is given by

fn j ←
[∑N

n=1 ∇2φ
(
x ′
mn

)
x ( j)
mngnj∑N

n=1 ∇2φ
(
x ′
mn

)
gnj gnj

]
+

. (19)

This sBCD algorithm (19) needs to calculate column-wise residual X( j) = X −∑
k �= j f k gk for x ( j)

mn in (19). Therefore, instead of the element-wise update (19), we adopt
the following:

f j ←
[

(∇2φ(FGT ) � X( j))g j

∇2φ(FGT )g2j

]
+

. (20)

4.2 Bregman divergence ONMF

Now,we introduce the orthogonal constraint into Bregman divergenceNMF to haveBregman
divergence ONMF. The minimization problem of Bregman divergence ONMF is given by

minF,G Dφ(X||FGT )

subject to F ≥ 0,G ≥ 0, FTF = I.
(21)
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For the same reason as that stated before, we solve its relaxed version:

minF,G Dφ(X||FGT ) + λ‖FTF − I‖
subject to F ≥ 0,G ≥ 0.

This problem can be re-written equivalently and column-wisely as

O = min
∀ j f j ,g j ,λ j

Dφ

⎛
⎝X||

⎛
⎝∑

k �= j

f k g
T
k

⎞
⎠ + f j g

T
j

⎞
⎠ + λF( j)T f j ,

where F( j) =
∑
k �= j

f k, λ j ≥ 0. (22)

Note that the first term of RHS of (22) is equivalent to (21). Hence, we have

∂O

∂ f j
=

(
∇2φ

(
X′
mn

) �
(
f j g

T
j − X( j)

))
g j + λ jF( j). (23)

To determine the value of the Lagrangian multiplier λ j , we again assume F( j)T f j = 0 and
multiply F( j)T from the left to (23) to be zero. This gives

λ jF( j)TF( j) = −F( j)T
(
f j g

T
j � ∇2φ(FGT )

)
g j + F( j)T

(
X( j) � ∇2φ(FGT )

)
g j .

Under nonnegativity f j ≥ 0 and F( j) ≥ 0, with the assumption F( j)T f j = 0, we have

f j ,F
( j) ≥ 0 and F( j)T f j = 0 ⇒ F( j)T

(
f j g

T
j � ∇2φ(FGT )

)
g j = 0.

This is because the row indices of zero values of ( f j g
T
j � ∇2φ(FGT ))g j are the same as

those of f j . Hence, we may set λ j to

λ j = F( j)T (X( j) � ∇2φ(FGT ))g j

F( j)TF( j)
.

Then the update rule of sBCD-ONMF becomes

f j ←
⎡
⎣ (∇2φ(FGT ) � X( j))g j − F( j)T (X( j)�∇2φ(FGT ))g j

F( j)T F( j) F( j)

∇2φ(FGT )g2j

⎤
⎦

+
. (24)

If we use φ(x) = x2/2 corresponding to the Frobenius norm, it is easy to verify
∇2φ(FGT ) = 1. It implies that (24) is equivalent to (15) with post-processing normalization
‖ f Tj ‖22 = 1.

This sBCD-ONMF algorithm is an extension of the previousHALS-ONMF algorithm, but
its convergence is slower because sBCD-ONMF needs to update the column-wise residual
in addition to the updating of each column, while HALS-ONMF does not need to do so for
the residual. The proposed sBCD-ONMF algorithm is shown in Algorithm 2.

4.3 Relation to Bregman hard clustering

The original ONMF is known to be related to k-means clustering (Ding et al. 2006). So,
in this section, we make clear the relationship between Bregman divergence ONMF and
Bregman Hard Clustering proposed by Banerjee et al. (2005b). The criterion of Bregman
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Algorithm 2 sBCD-Orthogonal NMF (a generalized HALS-ONMF)
1: Input: Nonnegative matrix X, Number of components J and functionφ for a Bregman Divergence
2: Output: Decomposing nonnegative matrices F and G such that X � FGT and FT F ∼= I.
3:
4: Initialize F and G arbitrary.
5: U = F1J
6: X′ = FGT

7: E = X − X′
8: repeat
9: B = ∇2X′
10: for j = 1 to J do
11: X( j) = E + f j g

T
j

12: F( j) = U − f j
13: h = (B � X( j))g j

14: f j =
⎡
⎣ h− F( j)T h

F( j)T F( j) F
( j)

Bg2j

⎤
⎦

+
15: g j =

[
(B�X( j))T f j

BT f 2j

]
+

16: U = F( j) + f j
17: E = X( j) − f j g

T
j

18: end for
19:
20: X′ = FGT

21: until Convergence criterion is satisfied.

hard clustering to minimize is a natural extension of that of k-means clustering as shown
below:

min
π j=1,2,...,J

J∑
j=1

∑
n∈π j

Dφ(xn ||µ j ), (25)

where π j for j = 1, 2, . . . , J is a set of disjoint clusters and μ j = ∑
n∈π j

1
|π j | xn is the

centroid of cluster π j . Then, we have the following theorem.

Theorem 1 (Equivalence between Bregman divergence ONMF and Bregman hard cluster-
ing) The minimization problem of Bregman divergence ONMF (21) is equivalent to that of
the Bregman hard clustering defined in (25).

Proof Let us suppose a given data matrix X = [x1, x2, . . . , xN ] ∈ R
M×N and impose

the orthogonal constraint into G instead of F, that is, GTG = I.5 We first consider the
minimization problem for ONMF with Bregman divergence:

Dφ(X||FGT ) =
N∑

n=1

Dφ(xn ||(FGT )n),

where (FGT )n denotes the nth column vector of matrix FGT . As stated before, each row
vector of the orthogonal nonnegative matrix G has only one non-zero value. In a clustering

5 This formulation is acceptable since the problem is equivalent to problem (1) with transpose X ← XT .
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Table 3 Datasets used in the
experiments

Here #nnz is the number of
non-zero values

Dataset Size #nnz Source

20Newsgroup 61,188 × 18,774 2,435,219 Document

TDT 36,771 × 9394 1,224,135 Document

RCV 29,992 × 9625 730,879 Document

Reuters21678 18,993 × 8293 389,455 Document

MNIST 784 × 70,000 10,505,375 Image

ORL64 × 64 4096 × 400 1,638,400 Image

task, this non-zero value corresponds to the clustering index that the data belong to. Therefore,
we can rewrite the minimization problem as

N∑
n=1

∑
Dφ(xn ||(FGT )n) =

J∑
j=1

∑
n:gnj �=0

Dφ(xn ||gnj f j ).

According to Ding et al. (2008), let us impose the row normalization condition

gnj = 1.

Then, it suffices to minimize ∑
π j=1,2,...,J

∑
n∈π j

Dφ(xn || f j ).

The last thingwe need to show is f j = μ j = ∑
n∈π j

1
|π j | xn , but this has already been proved

in previous studies (Banerjee et al. 2005a, b): the best predictor in Bregman divergence is the
arithmetic mean of the data. Therefore, the optimal solution f ∗

j with a fixed G is given by

f ∗
j =

∑
n:gnj �=0

1

|g j |
xn =

∑
n∈π j

1

|π j | xn = μ j .

��
Since Bregman hard clustering is applicable to various data types with appropriate choices

of φ(x) (e.g., text data with KL-divergence and speech data with IS-divergence), Bregman
divergence ONMF has a wider variety of applications than does the standard ONMF.

5 Performance evaluation

5.1 Datasets

We compared the performance of those algorithms for six real-life datasets and one artificial
dataset. For the artificial dataset, we followed the setting in Li et al. (2012).6 A summary of
the datasets is given in Table 3.7

6 The code of their sBCD-NMF algorithm (Li et al. 2012) and the data generator are available at http://www.
cc.gatech.edu/grads/l/lli86/sbcd.zip.
7 These datasets are downloadable from http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html (Cai
et al. 2009).
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5.2 Compared algorithms and evaluation measures

In ONMF problems, we compared the proposed HALS-ONMF with four traditional Frobe-
nius norm ONMF algorithms. In Bregman divergence ONMF problems, we compared
sBCD-ONMF with Li’s KL-divergence ONMF. In addition, in order to investigate the
trade-off of orthogonality and approximation in Bregman divergence, we also compared
sBCD-ONMF with sBCD-NMF, although sBCD-NMF does not have an imposed orthogo-
nality constraint. This is because sBCD-ONMF is the first and only one ONMF algorithm
workable with any Bregman divergence. We used IS- (φ(x) = − log x) and β-divergence
( 1
β(β+1) (x

β+1 − (β + 1)x + β) with β = 2) in this comparison. We measured the orthog-
onality and approximation accuracy. We compared all of the algorithms shown in Table 1
except for Pompili’s ONMF (Pompili et al. 2012). Pompili’s ONMF algorithm (Pompili et al.
2012) was not used because their algorithm attains orthogonality but not nonnegativity. It is
also reported already in their own comparison (Pompili et al. 2012). We also noted that their
algorithm was slowest among all the compared algorithms. For the weighting parameter α

in Li’s ONMF (Li et al. 2010) and Mirzal’s ONMF (Mirzal 2014), we used α = 1, because
the value worked satisfactorily on most datasets.

We employed the same evaluation setting as that in Li et al. (2012). Ten trials with different
initial values are conducted and the average values of measurements were shown here. We
fixed the number of iterations to 100 for all of the algorithms. We evaluated the degree of
approximation and the degree of orthogonality by

Normalized Residual Value:
‖ X − FGT ‖2F

‖ X ‖2F
(for ONMF) (26)

Relative Residual Value: log10
Dφ(X||FGT )

Dφ(X||F0GT
0 )

(for Bregman ONMF) (27)

Orthogonality: ‖FTF − I‖2F (28)

Here, F0 and G0 are the matrices used for initialization. In addition, we evaluated the com-
putation time (seconds), the normalized residual value (26), and the degree of orthogonality
(28) for Frobenius norm ONMF. For Bregman divergence ONMF, we evaluated the relative
residual value (27) and (28) since (26) cannot be appropriately normalized for Bregman
divergence.

5.3 Comparison on ONMF problems

Figure 1 shows the values of the normalized residual for J = 30 (number of components)
for the six real-life datasets. The proposed HALS-ONMF converges faster than do the other
ONMF algorithms. HALS-ONMF converges before 250 seconds for all six datasets. This is
because HALS-ONMF needs a smaller number of iterations, because of the fact that HALS-
ONMF solves vector-wise problems with the analytical solutions [(8) and (9)]. Figure 2
shows the degrees of orthogonality attained. The HALS-ONMF achieves almost the highest
degree of orthogonality among the algorithms in the early stage, though the final degree of
orthogonality is slightly worse than that of others. In the ORL dataset (Fig. 2e), a dense
dataset, only HALS-ONMF succeeded in achieving an acceptable degree of orthogonality.

To show the speed of convergence, we defined the stopping criterion of the iteration
according to the way conventional researches adopted (Pompili et al. 2012; Kim and Park
2008) as:
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Table 4 The results when the stopping criterion (29) with ε = 10−4 is applied on four datasets

Algorithm Evaluation criterion

# Iteration CPU time(s) NRV Orthogonality

Dataset: 20Newsgroup (ε = 10−4)

Ding et al. (2006) 89 3638.784 0.177 6.960

Yoo and Choi (2008) 65 1899.256 0.173 3.606

Li et al. (2010) 83 3101.354 0.157 58.566

Mirzal (2014) 78 4289.880 0.164 85.314

HALSONMF 16 459.936 0.159 9.642

Dataset: TDT (ε = 10−4)

Ding et al. (2006) 68 1471.580 0.706 1.957

Yoo and Choi (2008) 66 1008.414 0.702 1.242

Li et al. (2010) 68 1127.494 0.689 11.228

Mirzal (2014) 48 1267.000 0.697 8.031

HALSONMF 20 326.622 0.685 5.441

Dataset: Reuter (ε = 10−4)

Ding et al. (2006) 93 1014.908 0.584 2.751

Yoo and Choi (2008) 52 383.856 0.582 2.221

Li et al. (2010) 100 951.008 0.564 25.394

Mirzal (2014) 93 1337.524 0.576 13.128

HALSONMF 23 197.200 0.556 9.825

Dataset: MNIST (ε = 10−4)

Ding et al. (2006) 100 412.206 0.248 1.469

Yoo and Choi (2008) 94 285.862 0.230 1.312

Li et al. (2010) 100 289.862 0.233 19.011

Mirzal (2014) 68 360.948 0.261 8.031

HALSONMF 48 170.702 0.221 5.441

The bold values indicate the best performance among compared methods
NRV normalized residual values (26)

‖ X − Ft−1Gt−1T ‖2F − ‖ X − FtGtT ‖2F
‖ X ‖2F

< ε, (29)

where ε is a threshold and Gt and Ft are matrices after t th update. In this paper, we set the
threshold ε to 10−4 in all datasets.

Table 4 shows the result on four datasets when we terminated the calculation with the
stopping criterion (29).8 The proposed HALS-ONMF is the fastest with the smallest number
of iterations. The proposed algorithm converged about 1.6 to 4.1 times faster than the others,
keeping comparable approximation accuracy and orthogonality.

8 We omit the results on RCV dataset and ORL dataset because, on RCV dataset, Li’s ONMF (Li et al. 2010)
and Mirzal’s ONMF (Mirzal 2014) and, on ORL dataset, all ONMF algorithms except the proposed HALS-
ONMF decreased the approximation error too slowly and made the stopping criterion (29) satisfied in only a
few iterations. See Fig. 1d, e.
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5.4 Comparison on Bregman divergence ONMF problems

In Bregman divergence ONMF problems, we compared sBCD-ONMF with Li’s KL-
divergence ONMF (Li et al. 2010) and sBCD-NMF with KL-divergence. In addition, we
compared sBCD-ONMFwith sBCD-NMF for IS- or β-divergence. Unfortunately, since KL-
divergence and IS-divergence do not allow zero values (0 /∈ domφ), most datasets were not
suitable for this comparison. Besides, sBCD-NMF or sBCD-ONMF does not scale because
of their high computational costs [see, for example, Step (11) and Step (17) in Algorithm 2].
Therefore, we dealt with only one artificial dataset of X ∈ R

2000×1000.
The results are shown in Fig. 3. As predicted, the sBCD-NMF algorithm without an

orthogonal constraint achieved better approximation than did the algorithms with orthogonal
constraints, Li’s ONMF and sBCD-ONMF, while the latter two achieved a higher degree of
orthogonality. In comparison of convergence speeds, sBCD-ONMF is almost the same as
sBCD-NMF or even faster. Li’s ONMF is inferior to sBCD-ONMF in convergence speed.9

In total, we can say that sBCD-ONMF is a fast algorithms to find a solution in Bregman
divergence ONMF problems with a sufficient degree of orthogonality at the expense of a
little amount of degradation of approximation.

5.5 Clustering experiments

As we stated before, ONMF is suitable for clustering tasks more than standard NMF. This is
because the constrained matrix F can be considered as an indicator matrix in ONMF. Let X
be an instance × f eature matrix factorized by FGT . Then i th row of F can be considered
as a membership vector of instance i to J groups (features). Especially, a solution FGT in
ONMF is expected to have a crisp membership of a single one. We assign the i th instance to
kth cluster such as

k = argmax
j

Fi j .

We compared the proposed HALS-ONMF and sBCD-ONMF with one standard NMF
algorithm (HALS-NMF) and conventional ONMF algorithms [Ding’s ONMF (2006) and
Yoo’s ONMF (2008)].We set the number iteration to 30 whichwas sufficient for convergence
in the previous experiments inSects. 5.3 and5.4. In addition,we conducted k-means algorithm
as a base-line method. We used four TREC document classification datasets (see Table 5
for the detail). Since these dataset have class labels, we hid them for clustering and then
evaluated the difference between the true clustering induced by the class labels and the
obtained clustering.

We measured Normalized Mutual Information (NMI) defined as

NMI : I (Ĉ;C)

(H(Ĉ) + H(C))/2
,

where Ĉ is the predicted clustering and C is the ground truth. Here, H(·) is Shanon Entropy,
and I (; ) is theMutual Information.We averaged the results for ten trials with different initial
points.

9 In Li et al. (2010), it is reported that Li’s KL-divergence ONMF algorithm needs a large number of iterations
to attain a sufficient level of orthogonality.
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Table 5 Datasets used in the
clustering experiments

Dataset # Instance # Feature # Class

k1b 2340 21,819 6

Reviews 4069 18,483 5

Sports 8580 14,870 7

Hitech 2301 10,080 7

Table 6 The clustering results evaluated in NMI (the higher, the better) on four-real life datasets

Criterion Algorithm Dataset

k1b Reviews Sports Hitech

K-means 0.503 ± 0.018 0.338 ± 0.040 0.235 ± 0.022 0.197 ± 0.019

Frobenius norm HALS-NMF (Cichocki
et al. 2009; Li et al.
2012)

0.527 ± 0.081 0.337 ± 0.040 0.268 ± 0.024 0.299 ± 0.020

Ding’s ONMF (Ding
et al. 2006)

0.520 ± 0.039 0.333 ± 0.082 0.242 ± 0.029 0.292 ± 0.017

Yoo’s ONMF (Yoo and
Choi 2008)

0.559 ± 0.035 0.370 ± 0.065 0.271 ± 0.040 0.315 ± 0.018

HALS-ONMF 0.540 ± 0.050 0.420 ± 0.095 0.390 ± 0.048 0.334 ± 0.015

KL-divergence sBCD-NMF (Li et al.
2012)

0.593 ± 0.032 0.530 ± 0.071 0.544 ± 0.032 0.271 ± 0.048

SBCD-ONMF 0.587 ± 0.019 0.474 ± 0.095 0.610 ± 0.040 0.228 ± 0.017

IS-divergence sBCD-NMF (Li et al.
2012)

0.032 ± 0.045 0.022 ± 0.017 0.070 ± 0.059 0.016 ± 0.017

SBCD-ONMF 0.025 ± 0.010 0.048 ± 0.024 0.030 ± 0.020 0.034 ± 0.020

The bold values indicate the best performance among compared methods

Unfortunately, the general advantage of ONMF over NMFwas not confirmed,10 as long as
their algorithms arewithFrobenius norm.Nevertheless, the proposedHALS-ONMFachieved
the best score in NMI among them. Rather, we confirmed the advantage of KL-divergence
over Frobenius norm and IS-divergence. This is not an unexpected result because it is known
that the document data is well explained byMultinomial distribution models and minimizing
KL-divergence is corresponding tomaximum likelihoodwithMultinomial distributionmodel
(Banerjee et al. 2005b; Li et al. 2012). The best choice is one of conventional SBCD-NMF
with KL-divergence, sBCD-ONMF with KL-divergence, and HALS-ONMF with Frobenius
norm (Table 6).

6 Conclusion

In this paper, we have proposed a fast algorithm for solving one-sided orthogonal nonnegative
matrix factorization problems in the Frobenius norm and in Bregman divergence. Orthogonal
NMF algorithms proposed so far suffered from slow convergence mainly due to their matrix-
wise updates. By decomposing the matrix-type orthogonality condition into a set of column-

10 Note that the orthogonal constraint gives more crisp membership, however, this does not mean better
clustering accuracy.
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wise orthogonality conditions, we succeeded in speeding up the convergence. One of the
proposed algorithms is the first algorithm to solve a Bregman divergence NMF problem
with an orthogonal constraint. In addition, we showed that Bregman divergence ONMF
problem is equivalent to Bregman hard clustering. Experiments for six real-life datasets and
an artificial dataset demonstrated that the proposed algorithms are in fact faster than state-of-
the-art algorithms in convergence while keeping a satisfactory level of orthogonality. In the
best case, the proposed algorithm converged more than four times faster than state-of-the-art
algorithms.
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