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Abstract Markov logic networks (MLNs) are a well-known statistical relational learning
formalism that combines Markov networks with first-order logic. MLNs attach weights to
formulas in first-order logic. Learning MLNs from data is a challenging task as it requires
searching through the huge space of possible theories. Additionally, evaluating a theory’s
likelihood requires learning the weight of all formulas in the theory. This in turn requires
performing probabilistic inference, which, in general, is intractable in MLNs. Lifted infer-
ence speeds up probabilistic inference by exploiting symmetries in a model. We explore
how to use lifted inference when learning MLNs. Specifically, we investigate generative
learning where the goal is to maximize the likelihood of the model given the data. First, we
provide a generic algorithm for learning maximum likelihood weights that works with any
exact lifted inference approach. In contrast, most existing approaches optimize approximate
measures such as the pseudo-likelihood. Second, we provide a concrete parameter learning
algorithm based on first-order knowledge compilation. Third, we propose a structure learning
algorithm that learns liftable MLNs, which is the first MLN structure learning algorithm that
exactly optimizes the likelihood of the model. Finally, we perform an empirical evaluation on
three real-world datasets. Our parameter learning algorithm results in more accurate models
than several competing approximate approaches. It learns more accurate models in terms of
test-set log-likelihood as well as prediction tasks. Furthermore, our tractable learner outper-
forms intractable models on prediction tasks suggesting that liftable models are a powerful
hypothesis space, which may be sufficient for many standard learning problems.
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1 Introduction

Statistical relational learning (SRL) (Getoor andTaskar 2007) and probabilistic logic learning
(DeRaedt et al. 2008) seek to develop representations that combine the benefits of probabilis-
tic models, such as Markov or Bayesian networks, with those of relational representations,
such as first-order logic. Markov logic networks (MLNs), which combine first-order logic
with Markov networks, are one of the most widely used SRL formalisms (Richardson and
Domingos 2006). MLNs attach a weight to each first-order logic formula in a theory. Given
a set of objects, they compactly specify how to construct a very large propositional Markov
network.

Markov logic networks pose a great challenge for inference and learning: using classical
algorithms, these tasks reduce to inference and learning in densely connected Markov net-
works with millions of random variables. The intractability of reasoning with SRL models
motivated a new class of lifted inference algorithms (Poole 2003; Kersting 2012), which
exploit the abundant symmetries in relational representations to speed up probabilistic
inference. For large classes of liftable models and queries, these algorithms perform effi-
cient inference without ever grounding to a propositional Markov network (Jaeger and Van
den Broeck 2012). Whereas lifted inference deals with the intractability of reasoning, the
intractability of learning is what motivates us in this paper. Moreover, we seek to efficiently
learn models that themselves are tractable, in the sense that they permit lifted inference.

When learning MLNs from data, two tasks are considered. The parameter learning task
is to learn the weights associated with each formula in a given theory. This is an analogous
problem to that of learning feature weights in a log-linear propositional Markov network. For
the structure learning task, one also learns the first-order logic formulas. In both cases, the
data consist of a set of relational databases. The recent success of lifted inference algorithms
raises important questions for the learning task:

1. Can lifted inference techniques improve parameter learning of liftable models, in terms
of learning time or the quality of the learned model?

2. Can we learn liftable structures that guarantee tractability for certain queries?
3. How is the quality of the learned model affected when learning liftable structures? Does

the reduced expressivity hurt, or is insisting on liftability and symmetry an effective reg-
ularization technique? Does support for lifted parameter learning outweigh the reduced
expressivity of liftable structures?

This paper addresses these questions for generative learning, where the objective is to learn
a model that maximizes the probability of observing the data. We focus on techniques from
the exact lifted inference literature, where liftable model and query classes were defined.
Moreover, this will allow us to compare the exact likelihoods of the learned MLNs, which is
the natural evaluation measure for generative learning (Darwiche 2009; Koller and Friedman
2009; Murphy 2012).

Our first contribution is a generic lifted parameter learning algorithm that can use
any lifted inference oracle to efficiently learn weights that maximize the exact training-
set likelihood. This is in contrast with most existing learners, which resort to optimizing
an approximate objective such as pseudo-likelihood (Besag 1975). Computing likelihoods
requires running inference, which is often highly intractable without lifting. We analyze two
properties of the algorithm that speed up learning. A key insight from lifting is the possibil-
ity of grouping indistinguishable objects that can be reasoned about as a whole. Grouping
these together can significantly reduce the number of inferences needed to learn parameters.
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Moreover, by using a lifted inference oracle, parameter learning can run in time polynomial
in the size of each training database when classical methods run in exponential time.

Our second contribution is a concrete lifted parameter learning algorithm based on first-
order knowledge compilation (Van den Broeck et al. 2011). This is a state-of-the-art lifted
inference algorithm that can compile a large class ofMLNs into a circuit language. The circuit
guarantees that likelihood computations run in time polynomial in the number of entities in the
databases. Its most appealing property for weight learning is that compilation only needs to
be performed once perMLN structure. In each iteration of lifted parameter learning, the com-
piled circuit can be reused with updated weights to compute a new likelihood and its gradient.

Our third contribution is a lifted structure learning algorithm that learns liftable MLN
theories. It uses our lifted parameter learning algorithm as a subroutine, and therefore
also optimizes the exact training-set likelihood. This contrasts with existing MLN struc-
ture learners which resort to optimizing pseudo-likelihood. Moreover, the learned structures
are guaranteed to support certain types of queries efficiently, including, for example, con-
ditional probability queries with bounded Boolean rank [see Van den Broeck and Darwiche
(2013) for details]. Our work thus follows in a long tradition of tractable structure learning
algorithms for probabilistic graphical models (e.g., Chechetka and Guestrin 2007), and is
among the first tractable learning algorithms for statistical relational representations.

Our fourth contribution is an extensive empirical evaluation of lifted parameter and struc-
ture learning on three standard real-world SRL datasets. We find that our lifted parameter
learning algorithm learns models with better test-set likelihood than competing approaches
(including approximate inference techniques), and scales well with the amount of available
data. When learning tractable structures, our lifted learning algorithm outperforms existing
learners in terms of likelihood, but also in terms of conditional likelihood and area under the
precision-recall curve on prediction tasks. We even find that our tractable structure learner
outperforms off-the-shelf intractable learners on prediction tasks, suggesting that liftable
models are a powerful hypothesis space, which is sufficient for many standard learning prob-
lems.

2 Background

We first present the necessary background on relational representations, Markov logic net-
works, and their inference and learning algorithms.

2.1 First-order logic

We first introduce some standard concepts from function-free first-order logic, which has the
following types of symbols: (uppercase) constants, (lowercase) variables, and predicates.
Constant symbols represent objects in the domain (e.g., people: Alice, Bob, etc.). Variable
symbols (x , y, etc.) range over the objects in the domain. Predicate symbols represent relations
among objects in the domain (e.g., Friends) or attributes of objects (e.g., Smokes). A
term is a variable or a constant. A predicate applied to a tuple of terms is an atom. A literal
is an atom or its negation. A formula is constructed by connecting literals using logical
connectives. Following the convention for lifted inference, we assume that all variables are
free, that is, formulas have no quantifiers [see Van den Broeck et al. (2014) for the general
case]. A ground atom or formula contains no variables, only constants. A database (i.e., a
possible world) assigns a truth value to each ground atom. A grounding substitution θ of a
formula F replaces all logical variables in F by constants, denoted by Fθ .
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2.2 Markov logic networks

Markov networks are undirected probabilistic graphical models that represent a joint proba-
bility distribution over a set of random variables X1, . . . Xn (Della Pietra et al. 1997). Each
clique of variablesXk in the graph has an associated potential function φk(Xk). The probabil-
ity of a possible world x represented by a Markov network is Pr(x) = 1

Z

∏
k φk(xk), where

xk is the state of the kth clique (i.e., the state of the variables that appear in that clique),
and Z is a normalization constant. Markov networks are often conveniently represented as
log-linear models, where clique potentials are replaced by an exponentiated weighted sum
of features of the state: Pr(x) = 1

Z exp
(∑

i wi fi (x)
)
. A feature fi may be any real-valued

function of the state.
Markov logic networks (MLNs) (Richardson and Domingos 2006) combine Markov net-

works with first-order logic. MLNs soften logic by associating a weight with each formula.
Worlds that violate formulas become less likely, but not impossible. Formally, an MLN is
a set of pairs, (Fi , wi ), where Fi is a first-order formula and wi ∈ R. As wi increases, so
does the strength of the constraint Fi imposed on the world. Formulas with infinite weights
represent pure logic formulas.

MLNs provide a template for constructing Markov networks. When given a finite set of
constants (the domain), the MLN formulas define a Markov network. Nodes in the network,
representing random variables, are the ground instances of the atoms in the formulas. Edges
connect literals that appear in the same ground instance of a formula. An MLN induces the
following probability distribution over relational databases db:

Pr(db) = 1

Z
exp

⎛

⎝
|F |∑

i=1

wi ni (db)

⎞

⎠ (1)

where F is the set of formulas in the MLN, wi is the weight of the i th formula, and ni (db)
is the number of true groundings of formula Fi in database db.

Example 1 Consider the following model:

w Smokes(x) ∧ Friends(x, y) ⇒ Smokes(y)

The logical formula states that smokers are only friends with other smokers. By associat-
ing a high weight w with this formula, its meaning becomes that smokers are more likely
to be friends with other smokers. Assuming a domain of two constants, Alice and Bob,
this MLN induces a distribution over 6 random variables, including Smokes(Alice) and
Friends(Alice,Bob), and 26 possible worlds. The MLN has a single first-order formula with
four groundings:

w Smokes(Alice) ∧ Friends(Alice,Alice) ⇒ Smokes(Alice)

w Smokes(Alice) ∧ Friends(Alice,Bob) ⇒ Smokes(Bob)

w Smokes(Bob) ∧ Friends(Bob,Alice) ⇒ Smokes(Alice)

w Smokes(Bob) ∧ Friends(Bob,Bob) ⇒ Smokes(Bob)

When n of these groundings are true in a possible world, its probability is ewn/Z .

2.3 Lifted probabilistic inference and tractability

The advent of statistical relational languages such as Markov logic has motivated a new class
of lifted inference algorithms (Poole 2003). SRLmodels with large domains lead to very large
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graphical models, causing inference to become intractable. Lifted algorithms mitigate this
cost, by exploiting the high-level structure and symmetries of the first-order logic formulas
to speed up inference (Kersting 2012). Surprisingly, they perform tractable inference even in
the absence of conditional independencies (Niepert and Van den Broeck 2014). For instance,
lifted inference algorithms exactly compute single marginal probabilities for the MLN in
Example 1 in time linear in the size of the corresponding Markov network (Van den Broeck
et al. 2011). They scale up to millions of random variables, whereas classical algorithms
require exponential time.

Recently, efforts were made to understand lifted inference at a theoretical level, and to
delineate the classes of MLNs and inference tasks1 for which lifted inference is tractable.
The intuition that lifted algorithms should efficiently deal with large domains is formalized
by the notion of domain-lifted inference.

Definition 1 (Van den Broeck (2011)) An algorithm is domain-lifted when it runs in time
polynomial in the domain size.

Domain-lifted algorithms are polynomial in the number of objects in the world, but can be
exponential in other parameters, such as the number of formulas.

Based on this notion of tractability, several classes of MLNs and inference tasks were
shown to support (domain-)lifted inference. Tractable classes of MLNs include two-variable
MLNs, where all features (formulas) have at most two logical variables (Van den Broeck
2011; Taghipour et al. 2013). Any combination of universal and existential quantification is
liftable (Van den Broeck et al. 2014). More tractable and intractable classes are discussed in
Beame et al. (2015). This list of known tractable classes is far from exhaustive, and many
more complex MLNs are liftable, including ones with more than two variables. The MLNs
considered in this paper are generally not in the classes above, yet they are still liftable.
Tractable classes of inference tasks include partition functions, single marginal probabilities
(Van den Broeck 2011), and expected counts of MLN formulas (Van den Broeck et al. 2013).
Conditional probability queries are liftable given unary evidence atoms (Van den Broeck and
Davis 2012; Bui et al. 2012) and binary evidence atoms of bounded Boolean rank (Van den
Broeck and Darwiche 2013).

2.4 Parameter learning

The weight learning task for MLNs (Singla and Domingos 2005; Richardson and Domingos
2006; Lowd and Domingos 2007; Huynh and Mooney 2009) uses data to automatically
learn the weight associated with each feature (formula) by optimizing a given objective
function. Ideally, each candidate model would be scored by its training-set (log-)likelihood.
For MLNs, the log-likelihood is a convex function of the weights and learning can be solved
via convex optimization. The derivative of the log-likelihood with respect to the j th feature
is (Richardson and Domingos 2006):

∂

∂w j
log Prw(db) = n j (db) − Ew[n j ] (2)

where n j (db) is the number of true groundings of Fj in the training data and Ew[n j ] is
computed using the current weight vector. The j th component of the gradient is simply

1 Note that tractability of probabilisticmodels is alwaysw.r.t. a class of inference tasks. For example, polytrees,
arithmetic circuits, and sum-product networks are generally considered to be tractable, but (partial) MAP
inference in them is still NP-complete (Park 2002).
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the difference between the empirical counts of the j th feature in the data and its expectation
according to the currentmodel. Thus, each iteration ofweight learningmust perform inference
on the current model to compute the expectations. This is often computationally infeasible.

Currently, the default generative weight learning approach for MLNs is to optimize the
pseudo-likelihood (Besag 1975), which is more efficient to compute. The pseudo-likelihood
is defined as

Pr•w(x) =
|X|∏

j=1

Prw(X j = x j |MBj = xMBj ),

where |X| is the number of random variables, x j is the state of the j th variable in x, MBj

is the Markov blanket of the j th variable, and xMBj is the state of that Markov blanket in
x. Maximum pseudo-likelihood weights can also be learned via convex optimization. The
(pseudo-)likelihood for a set of training examples is the product of the (pseudo-)likelihoods
for the individual examples.

For the purpose of discriminative learning, there has been work on optimizing the condi-
tional likelihood and themost advancedwork is byLowdandDomingos (2007). Theypropose
several approaches, the best of which is a second-order method called pre-conditioned scaled
conjugate gradient (PCSG). They use MC-SAT (Poon and Domingos 2006), which is a slice-
samplingMarkov chainMonteCarlomethod, to approximate the expected counts. Generative
learning is a special case of discriminative learning where the query set contains all the vari-
ables in the domain and the evidence set is empty. Therefore this approach is suitable for
learning maximum likelihood weights, although, to the best of our knowledge, this has yet
to be attempted until this paper (cf. Sect. 6).

2.5 Structure learning

The structure learning task is to learn both the formulas and their associated weights from
data. Structure learning is an incredibly challenging problem as there is a huge number of
candidate clauses and an even larger space of candidate models. Typically, the structure of
an MLN is learned by greedily adding one clause at a time to the MLN. While multiple
MLN structure learning approaches exist, they can be broadly divided into two categories:
top-down and bottom-up.

MSL (Kok and Domingos 2005) is a canonical example of a top-down approach. MSL
begins with an MLN that only contains the unit clauses. MSL starts by constructing all
clauses of length two. It then runs a beam search to find the current best clause and adds it
to the network. In each iteration, MSL constructs new candidate clauses by adding literals
to the best clauses in the beam. The search iterates until no clause improves the score of
the MLN. To evaluate the merit of each clause, MSL uses weighted pseudo-log-likelihood
(WPLL), which is an extension of pseudo-log-likelihood that diminishes the importance of
predicates with a large number of groundings. It does this by normalizing a predicate’s PLL
by its number of possible groundings (Kok and Domingos 2005). To avoid overfitting, each
clause receives a penalty term proportional to the number of literals that differ between the
current clause and the initial clause.

A second category of structure learners adopts a bottom-up approach (e.g., Mihalkova and
Mooney 2007; Kok and Domingos 2010), using the data to restrict the search space. BUSL
(Mihalkova andMooney 2007) is a two-step algorithm that follows this paradigm. In the first
step, it constructs a template Markov network from a groundMarkov network by discovering
recurring paths of true atoms. In the second step, it transforms the template Markov network
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into candidate clauses. It greedily iterates through the set of candidate clauses. It adds the
clause to the MLN that most improves the score of the model. The search terminates when
no clause improves the model’s score. BUSL also uses WPLL to evaluate the merit of a
candidate clause.

3 Lifted generative weight learning

In this section, we describe a general algorithm that uses lifted inference techniques for the
weight learning task, and only assumes a domain-lifted inference black box.

Even given a single formula F , learning its maximum likelihood weight is a challenging
task. Computing the likelihood of a weight w requires computing the partition function
Z , which is hard. Moreover, optimizing the likelihood requires computing the expectation
Ew[nF ] to obtain the gradient (Eq. 2) at each iteration of a convex optimization algorithm,
by summing the probabilities of each possible grounding of F :

Ew[nF ] = Pr (Fθ1) + · · · + Pr(Fθm) (3)

where θ1, . . . , θm are the grounding substitutions of F . Answering thesemarginal probability
queries simply requires calculating the probability that each formula is true according to the
model, and does not involve conditioning on the data. The only way in which the probabilities
depend on the data is the domain size of each variable, that is, the number of objects in the
world. Nevertheless, computing these marginal probabilities is computationally expensive
with traditional algorithms.

We will now show how to use lifted inference techniques to compute the likelihood of a
set of weights and its gradient. This approach yields two benefits:

1. Leveraging insights from the lifted inference literature allowsweight learning to compute
a small number of marginals to compute the gradient.

2. Each query is computed more efficiently using lifted inference. Namely, it is polynomial
in the size of the databases, that is, the number of objects in the databases, whereas
propositional inference is in general exponential in this size.

3.1 First benefit: decreasing the number of inference tasks

We first review some techniques from the lifted inference literature. Second, we show how
to use these techniques to efficiently compute Ew[nF ]. Third, we analyze the extent to which
this reduces the number of required inference tasks.

3.1.1 Equiprobable random variables

A set of random variables X is called equiprobable with respect to a given distribution Pr
iff for all X1, X2 ∈ X : Pr(X1) = Pr(X2). In the absence of evidence, many of the queries
in an MLN will be equiprobable, because of the symmetries imposed by the model. Lifted
inference algorithms therefore excel at answering queries with no evidence. In fact, one of
the key insights from lifted inference is that we can partition the set of random variables into
equiprobable sets by purely syntactic operations on the first-order model, and reason about
the sets as a whole.

Example 2 To illustrate this point, consider again the MLN from Example 1:

w Smokes(x) ∧ Friends(x, y) ⇒ Smokes(y)

123



34 Mach Learn (2016) 103:27–55

Assuming a domain of three constants, Alice, Bob, and Charlie, the random vari-
ables Friends(Alice,Bob) and Friends(Bob,Charlie) are equiprobable. The queries
have identical probabilities because they are indistinguishable w.r.t. the MLN. Intu-
itively, this can be seen by looking at a permutation of the constants, mapping Alice
into Bob and Bob into Charlie. This permutation turns Pr(Friends(Alice,Bob)) into
Pr(Friends(Bob,Charlie)), whereas the MLN model is invariant under this permu-
tation (it does not even explicitly mention the constants). Therefore, these atoms are
indistinguishable and they must have the same marginal probability. The random variables
Friends(Alice,Alice) and Friends(Bob,Charlie) are not equiprobable, since there is
no permutation of the constants that turns one into the other.

The question then is how to partition queries into equiprobable sets. This can be done based
on syntactic properties of the MLN by a technique called preemptive shattering (Poole et al.
2011). It is a conceptually simpler version of the influential shattering algorithm proposed by
Poole (2003) and de Salvo Braz et al. (2005) in the context of lifted inference. This technique
can be applied to a model with an arbitrary number of formulas. If the model does not
mention specific constants, the algorithm enumerates all ways in which the logical variables
in the same formula can be equal or different. More formally, in the single formula case,
Pr(Fθk) = Pr(Fθl)when for all pairs of logical variables xi , x j in F , we have xiθk = x jθk iff
xiθl = x jθl . If the model itself mentions certain unique information about specific constants,
we can still partition the queries into equiprobable sets, but finding such sets gets slightly
more complicated. Poole et al. (2011), Van den Broeck et al. (2012), Van den Broeck (2013)
contain the full details for this procedure.

3.1.2 Computing the gradient

To achieve the first benefit—a smaller number of inference tasks—we identify equiprobable
sets of groundings of the MLN formulas. This allows us to reduce the number of queries in
Eq. 3 that need to be answered during weight learning. For each equiprobable set, only one
representative query needs to be answered, as each other query in the group will have the
identical marginal probability.

Consider again the single-formula case. Let P = {E1, . . . Eq} be the equiprobable par-
tition found for formula F by preemptive shattering, and let FθEi be any arbitrary ground
formula in Ei . We can then simplify Eq. 3 to

Ew[nF ] =|E1| · Pr(FθE1) + · · · + |Eq | · Pr(FθEq ), (4)

involving as many queries as there are equiprobable sets in the partition P .

3.1.3 Analysis

In the multiple-database setting (for example, when performing cross-validation), it is nec-
essary to compute Eq. 4 for each database separately, as the domain size can vary between
individual databases. Both the size of each Ei , and the probability of individual FθEi are
affected by a change in domain size. The partition size |P|, however, is not affected by
domain size, and only depends on the structure of the MLN formulas. This allows us to state
the following.

Proposition 1 Given b databases and an equiprobable partition P , evaluating the gradient
of the likelihood of an MLN requires computing b · |P| probabilities.
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In the special case of a single formula with n logical variables, the number of queries we
need to pose is the Bell number Bn (Bell 1934; Rota 1964).

Definition 2 (Bell Number) Bell numbers are recursively defined as

Bn+1 =
n∑

k=0

(
n

k

)

Bk with B0 = B1 = 1.

The Bell number Bn represents the number of partitions of n elements into non-empty sets.
In our case, it is the number of equivalence relations on the n logical variables in the formula,
which does not depend on the size of the domain or database. Assuming a domain size of
D, that same formula will have Dn groundings and computing Eq. 2 without using these
insights from lifted inference would require answering Dn queries.

Example 3 The formula of Example 1 has two logical variables andBell number two.Assum-
ing a domain of 1000 people, one equiprobable set has size 999,000, and the other has size
1000. Computing the gradient with Eq. 3 requires one million inference calls. Computing
the gradient with Eq. 4 requires two calls.

When wemore generally have multiple formulas that do not explicitly mention any constants
from the database, the analysis is also easy, based on properties of the preemptive shattering
algorithm.

Proposition 2 AnMLNwith k formulas, containing respectively n1, . . . , nk logical variables
and no constants has an equiprobable partition P of size

∑k
i=1 Bni .

For this case, Eq. 3 requires computing
∑k

i=1 D
ni marginals per database, whereas lifted

learning requires computing
∑k

i=1 Bni , essentially removing the dependency on the size of
the database from the number of inference calls. This difference can be significant. Formulas
typically have a bounded number of variables ni , between two and four, which gives Bell
numbers B2 = 2, B3 = 5 and B4 = 15. SRL databases, on the other hand, typically describe
relations between thousands of objects, resulting inmodelswithmillions of randomvariables.
This is also true for the databases used in Sect. 6.

In the most general case, where the MLN being learned explicitly mentions certain con-
stants, the analysis becomes more complex. Still, the size of the equiprobable partition will
grow polynomially with the number of constants that appear in MLN formulas, and be inde-
pendent of the number of constants in the databases.

3.2 Second benefit: lifting individual inference tasks

Our general lifted weight learning algorithm assumes access to a lifted inference oracle
that can efficiently compute the partition function and marginal probability of any random
variable (ground atom) in theMLN, even for large domain sizes.More specifically,we assume
a black-box inference algorithm is domain-lifted.

The second benefit of lifted learning over its propositional counterpart is the complexity of
inference for each query. A domain-lifted inference algorithm guarantees that the complexity
of computing the partition function (needed to compute the likelihood), and the marginal
probabilities in Eq. 4 (needed to compute the gradient) grows polynomially with the domain
size, and therefore polynomially with the size of the training databases. On the other hand,
when doing propositional inference to compute the same numbers, inference is in general
exponential in the domain size. Treewidth is a polynomial of the domain size for most non-
trivial MLNs, and propositional inference is often exponential in treewidth. Indeed, running
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the propositional variable elimination algorithm on the MLN of Example 1 with 1000 people
would require building a table with 21000 rows.

4 Lifted weight learning using first-order knowledge compilation

The lifted weight learning algorithm assumed the presence of a lifted inference oracle. One
could use any exact lifted inference technique, such as PTP (Gogate and Domingos 2011)
or FOVE (de Salvo Braz et al. 2005; Milch et al. 2008; Taghipour and Davis 2012). We will
now look at the implications of choosing one particular algorithm, namely weighted first-
ordermodel counting by first-order knowledge compilation (WFOMC) (Van denBroeck et al.
2011; Van den Broeck 2013).WFOMC is chosen because it supports domain-lifted inference
on a large variety of MLN structures. Moreover, its knowledge compilation approach offers
circuit reuse, which will prove to be beneficial for learning. First, we give the necessary
background on WFOMC and then describe its application to lifted learning.

4.1 WFOMC background

TheWFOMC approach to lifted probabilistic inference consists of the following three steps:
(i) convert the MLN to a weighted model counting problem, (ii) compile the weighted model
counting problem into a First-Order d-DNNF (FO d-DNNF) circuit, and (iii) evaluate the
circuit for a given set of weights and domain sizes to compute the partition function.Marginal
probabilities can be obtained by taking ratios of partition functions of different circuits. We
will give a brief overview here, and refer to Van den Broeck (2013) for details. Darwiche
(2009) discusses weighted model counting for propositional probabilistic inference.

Weighted first-order model counting A WFOMC problem is similar to a Markov logic
network. The difference is that in a WFOMC problem, weights can only be associated
with predicates. For example, for the predicate Q, only weighted formulas of the form
(Q(x1, . . . , xn), w) are allowed. Formulas that are complex (containing logical connectives)
must be hard formulas, with infinite weight. Any MLN can be transformed into a WFOMC
problem by adding new predicates to the theory, representing the truth value of each complex
MLN formula.

Example 4 Example 1 contains one weighted complex formula. Its WFOMC representation
introduces the predicate F to carry the weight of the MLN formula, and consists of a single
weighted atom together with a hard formula:

w F(x, y)

∞ F(x, y) ⇔ [Smokes(x) ∧ Friends(x, y) ⇒ Smokes(y)] . (5)

First-order knowledge compilation The goal of first-order knowledge compilation is to take
a theory in first-order logic, and compile it into a circuit representation that allows certain
queries to be answered efficiently. In our case, the logical theory Δ consists of the hard
clauses in our WFOMC representation of the MLN M , the query is computing the weighted
model count WFOMC(Δ, w̄, D) for any weight vector w̄ and domain size D, corresponding
to the partition function of M , and the target circuit language is called FO d-DNNF. The
circuit is logically equivalent to the input theory, but has certain syntactic properties, called
decomposability, determinism, and automorphism, that make it a tractable representation for
WFOMC problems. Note that the FO d-DNNF circuit for aWFOMC problem is independent
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(a) (b) (c) (d) (e)

∀x
x∈D

Smokes(x)

∀x
x∈People∧x/∈D

¬Smokes(x)

∀x
x∈D

∀y
y∈People∧y/∈D

∧

∃D
D⊆People

∀x
x∈D

∀y
y∈D

∀x
x∈People∧x/∈D

∀y
y∈People

∨

∧

Friends(x, y) ¬F(x, y)

∧

¬Friends(x, y) F(x, y)

Fig. 1 A FO d-DNNF circuit for the friends and smokers problem (see Example 5)

of its domain size and weights. Once a FO d-DNNF is obtained, one can query the partition
function for any domain size and weights efficiently, that is, polynomially in the domain size,
by evaluating the circuit bottom-up.

Example 5 The FO d-DNNF for the WFOMC problem of Example 1 is shown in Fig. 1.
Its syntax and semantics are formally defined in Van den Broeck (2013). Intuitively, the
circuit root states that there exists a subset D of people in the domain. At the next layer, the
circuit makes five assertions: (a) all people in D smoke, and (b) nobody else smokes. This
defines D to be the set of smokers. Next, it encodes the truth value of the MLN formula: (c)
when x is a smoker and y is a non-smoker, then the formula is satisfied (F is true) precisely
when Friends is false. Moreover, when (d) x and y are both smokers, or (e) when x is a
non-smoker, then the formula is always satisfied. These assertions make the circuit logically
equivalent to Formula 5.

The FO d-DNNF circuit can be evaluated bottom-up to efficiently compute the partition
function Z . For our running example, this computation has the form

Z =
n∑

d=0

(
n

d

)

· 1d︸︷︷︸
(a)

· 1n−d
︸︷︷︸
(b)

· (1 + ew)d(n−d)

︸ ︷︷ ︸
(c)

· (2ew)d
2

︸ ︷︷ ︸
(d)

· (2ew)(n−d)n
︸ ︷︷ ︸

(e)

.

Here, n is the domain size (number of people), d is the size ofD (number of smokers), and we
associate each factor in the computation with a branch of Fig. 1.2 Note that the complexity
of this computation is polynomial in n.

The FO d-DNNF compilation algorithm cannot compile any arbitrary logical theory, but
certain guarantees exist. For example, any MLN with up to two logical variables per formula
can always be compiled. In our experiments, however, we will often be able to still compile
MLN structures that are outside this class.

2 Factors (a) and (b) are always 1 because our example has no weight for the Smokes relation.
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4.2 Lifted weight learning

To illustrate the benefits of our knowledge compilation approach, we first consider computing
the likelihood gradient for the single formula case, weights w and domain size D. Then,
computing the expected number of true groundings of F requires estimating Pr(FθEi ) once
for each equiprobable partition. WFOMC solves this by computing the ratio of weighted
model counts

WFOMC(FθEi ∧ Δ,w, D)

WFOMC(Δ,w, D)

Notice that each ratio has the same denominator WFOMC(Δ,w, D), which corresponds to
the partition function of the original MLN. If we have q equiprobable partitions, evaluating
the weighted model counts requires compiling q + 1 circuits: one for each equiprobable set,
and one for the partition function. These circuits are independent of the weights and domains
of the first-order model and can therefore be used to compute Eq. 4 for any database size and
weight vector. Thus, each circuit can be reused on each iteration of weight learning. This
exemplifies the idea behind the knowledge compilation approach to inference (Darwiche
and Marquis 2002): transform the model from a representation where a certain task is hard
to a representation where the task is easy, and reuse that representation to solve multiple
problems.

Algorithm 1 outlines our LiftedWeight Learning (LWL) approach. It takes anMLNM and
a set of databasesDB as inputs and returns aweight vector w̄. The algorithmworks as follows.
First, it builds all the circuits needed to compute the likelihood and its gradient. It compiles one
circuit for M to compute the partition function. Then it preemptively shatters each weighted
formula F in M to identify its equiprobable partition. It compiles one circuit for every
equiprobable set in the partition. Second, it runs an iterative procedure to learn the weights.
During each iteration i of convex optimization, it computes the gradient of the likelihood
given the current weights w̄i . First it computes the partition function. Then, for each of the b
databases, the expected counts for each formula are calculated by reevaluating the compiled
circuit associated with every one of the formula’s equiprobable partitions. Traditionally, this
is the most challenging step in computing Eq. 2 (the gradient). The algorithm terminates
when a stop condition is met (e.g., after a predefined number of iterations).

It follows from Proposition 1 that over t iterations of convex optimization, a vanilla lifted
learning algorithm needs to answer t ·b · |P| hard queries. UsingWFOMC for lifted learning
provides significant savings.

Proposition 3 Lifted weight learning by first-order knowledge compilation performs 1+|P|
hard compilation steps and reuses each circuit t ·b times by reevaluating it for different weight
vectors w̄i and domain sizes D.

An additional benefit of knowledge compilation is that it exploits local structure and context-
specific independencies in the MLN. These are regularities that arise from using Boolean
logic to compactly define potentials (Chavira and Darwiche 2008). They are not exploited
by factor-based lifted inference algorithms, such as FOVE (de Salvo Braz et al. 2005).

For the special case of a single formula with n logical variables, by using both knowledge
compilation and lifted inference, we went from answering t ·b ·Dn queries whose complexity
is exponential in the size of the databases to 1+ Bn compilations that are independent of the
training databases, and t · b circuit evaluations whose complexity is polynomial in the size
of the databases.
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Algorithm 1 LiftedWeightLearning(M,DB)

Input.
M: A set of MLN formulas with initial weights
DB: A set of training databases

Supporting functions.
Compile: Compile to FO d-DNNF circuit
Shatter: Partition into equiprobable sets
WFOMC: Compute weighted FO model count
LBFGS: Optimization algorithm

Function.
1: let Ddb be the domain sizes in database db
2: let ndbF be the number of true groundings of formula F in database db
3: let w̄ be the initial weight vector of M
4: let Δ be the hard clauses in the WFOMC representation of M
5: CZ ← Compile()

6: for each F ∈ M do
7: PF ← Shatter(M, F) // Partition
8: for each E ∈ PF do
9: for some FθE ∈ E do
10: CE ← Compile(Δ ∧ FθE )

11: repeat
12: L ← 0 // Log-likelihood
13: ∇L ← 0̄ // Log-likelihood gradient vector
14: for each db ∈ DB do
15: Z ← WFOMC(CZ , w̄,Ddb)
16: L ← L − log(Z)

17: for each Fi ∈ M do
18: L ← L + w̄i · ndbFi
19: ∇Li ← ∇Li + ndbFi
20: for each E ∈ PFi do

21: p ← WFOMC(CE , w̄,Ddb)/Z
22: ∇Li ← ∇Li − |E | · p
23: w̄ ← LBFGS(L, w̄, ∇L)

24: until convergence
25: return w̄

5 Lifted structure learning

In this section, we describe a general algorithm that uses lifted inference techniques for the
structure learning task. To optimally benefit from the existing lifted inference algorithms
and our lifted weight learning algorithm, we need a structure learning approach that learns
liftable theories.

The ideal way to learn a liftable model is to design a search space that only contains
liftable models. This is complicated by the fact that we still lack a full characterization
of which models are liftable. We know that models where each formula contains at most
two distinct logical variables are always liftable. However, this class of models may be too
restrictive. Manymodels that contain more expressive formulas are also liftable. This process
is complicated by the fact that two formulas, considered independently, may be liftable, but
combining them into a single model results in a theory that is not liftable. Furthermore, even
if a model is liftable, the circuit may be too big to fit in memory or too time-consuming to
evaluate. The end result is that it is difficult to design a suitable search space.

Consequently, learning a liftable model can be achieved in two ways. The first way is to
run an off-the-shelf structure learning algorithm, such as BUSL or MSL, using the default
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objective function of WPLL, and to perform parameter tuning in such a way that the final
learned theory is compilable. Since we have only little understanding of which theories are
compilable, the parameter tuning process can be tedious and time-consuming.

The second way is to integrate a check into the search procedure that verifies whether each
candidate theory is compilable. Hence, unliftable candidate theories are discarded from the
search space. Furthermore, a bias can be inserted into the search to avoid liftable theories that
are too big to fit inmemory or too complex to be evaluated in practice. An additional benefit is
that the learner can directly optimize the exact likelihood instead of using an approximation
such as the pseudo-likelihood. The end result is a theory that is guaranteed to be liftable.

Algorithm 2 outlines our Lifted Structure Learning (LSL) approach, which adopts the
latter search strategy. LSL takes a set of MLN formulas and training databases as inputs and
returns a theory of MLN formulas and their associated weights. The algorithm optimizes the
training-set log-likelihood by iteratively adding formulas to an initially empty theory.

Algorithm 2 LiftedStructureLearning(CFS,DB)

Input.
CFS: A set of candidate MLN formulas
DB: A set of training databases

Supporting functions.
LiftedWeightLearning Compute formula weights
ComputeLogLikelihood Compute training-set log-likelihood

Function.
1: T ← ∅ // Initialize theory
2: TLL ← 0 // Theory log-likelihood
3: while |CFS| > 0 do
4: BCT ← ∅ // Best candidate theory
5: BCF ← ∅ // Best candidate formula
6: BCTLL ← 0 // Best candidate theory log-likelihood
7: for each CF ∈ CFS do
8: CT ← T ∪ CF // Compose candidate theory
9: WCT ← LiftedWeightLearning(CT,DB)

10: WCTLL ← ComputeLogLikelihood(WCT,DB)

11: if WCTLL > BCTLL then
12: BCT ← WCT // Update best candidate theory
13: BCF ← CF // Update best candidate formula
14: BCTLL ← WCTLL // Update best candidate theory log-likelihood
15: T ← BCT // Replace theory by best candidate theory
16: CFS ← CFS \ {BCF} // Remove best candidate formula from candidate set
17: return T

In each iteration, the algorithm performs three steps. First, the algorithm builds a set of
candidate theories by adding each candidate formula to a distinct copy of the current theory.
Second, the algorithm learns the associated formula weights and computes the training-
set log-likelihood for each candidate theory. This step is allowed a user-specified amount of
time to complete. Each candidate formula that cannot be compiled or whose weight cannot be
learned within the allotted time, is discarded. By biasing the search process towards formulas
that can be compiled, the final theory’s liftability is ensured. Third, the algorithm replaces
the current theory by the best candidate theory in terms of training-set log-likelihood if that
theory yields a log-likelihood improvement. The algorithm ends when no more candidate
formulas are available or none of the remaining candidate theories yields a log-likelihood
improvement over the current best theory.

123



Mach Learn (2016) 103:27–55 41

The initial set of candidate formulas can be constructed either by running the candidate
formula construction step of an off-the-shelf structure learning algorithm or by greedily
enumerating all valid formulas satisfying certain constraints. In our experimental evaluation
(see Sect. 6), we enumerate all formulas having at most three literals and at most three object
variables. We only consider “connected” formulas for which a path via arguments exists
between any two literals.

To compute the training-set log-likelihood for a candidate theory, we employ an internal
cross-validation approach.We learn the formula weights on all-but-one training database and
compute the log-likelihood on the left-out database. We repeat this procedure such that each
database served as validation database once. To obtain the log-likelihood for a candidate
theory, we simply average the log-likelihoods across the validation databases.

6 Empirical evaluation

In this section, we evaluate both our liftedweight learning (LWL) and lifted structure learning
(LSL) approach.3 We first present the experimental setup and then address five research
questions; two questions related to weight learning and four questions related to structure
learning.

Weight learning questions

– Q1: How well does lifted weight learning scale with respect to database size?
– Q2:Does exactly optimizing the likelihood duringweight learning result inmore accurate

weights?

Structure learning questions

– Q3: How does lifted structure learning compare to the off-the-shelf structure learners in
terms of log-likelihood when learning tractable models?

– Q4: How does lifted structure learning compare to the off-the-shelf structure learners in
terms of AUC and CLL when learning tractable models?

– Q5: How does lifted structure learning compare to the off-the-shelf structure learners in
terms of AUC and CLL when learning intractable models?

– Q6: What is the effect of our clause evaluation time-out on the complexity and quality
of the models for each of the algorithms?

6.1 Experimental setup

We now introduce the datasets, explain how we learn the models, and discuss the inference
setup.

6.1.1 Datasets

We use the following three real-world datasets and a synthetic dataset:

– The IMDb dataset comes from the IMDb.com website (Mihalkova and Mooney 2007).
The dataset contains information about attributes (e.g., gender) and relationships among
actors, directors, and movies. The data is divided into five different folds.

3 LWL and LSL are available in the WFOMC package: http://dtai.cs.kuleuven.be/wfomc.
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– The UWCSE dataset contains information about the University of Washington CSE
Department (Richardson and Domingos 2006). The data contains information about
students, professors and classes, and models relationships (e.g., teaching assistant and
advisor) among these entities. The data consists of five folds, each one corresponding to
a different group in the CSE Department.

– The WebKB dataset consists of Web pages from the computer science departments of
four universities (Mihalkova and Mooney 2007). The data has information about labels
of pages (e.g., student and course). There are four folds, one for each university.

– The synthetic dataset comes from the friends and smokersmodel fromExample 1 (Singla
and Domingos 2005).

In all domains, we perform cross-validation by holding out one fold as test set and learning
a model on the remaining folds. Each fold serves as test set once.

6.1.2 Models

We compare tractable models learned by LSL with both tractable and intractable models
learned by the bottom-up structure learner BUSL (Mihalkova and Mooney 2007) and the
top-down structure learner MSL (Kok and Domingos 2005). We learned these models as
follows:

– Tractable LSLmodels:LSL is run with all valid “connected”MLN formulas containing
up to three literals and three distinct object variables as input. LSL discards any candidate
theory for which the LWL subroutine fails to find weights within the allotted time limit
of 5min.

– Tractable BUSL and MSL models: To enforce tractability, we found it is sufficient to
restrict BUSL and MSL to learn formulas containing up to four literals and three distinct
object variables.

– Intractable BUSL and MSL models: BUSL and MSL are run with their default para-
meter settings, which allows them to learn formulas containing up to five literals and five
distinct object variables.

6.1.3 Inference setup

In each domain, we predict the marginal probabilities of each predicate given evidence about
all other predicates. Since lifted inference approaches cannot efficiently handle arbitrary
binary evidence (Van den Broeck and Darwiche 2013), we use MC-SAT, which is part of
the Alchemy package, to compute the probabilities. We use a burn-in of 10,000 samples and
compute the probabilities with the following 100,000 samples. We measure the area under
the precision-recall curve (AUC) and the test-set conditional log-likelihood (CLL) for the
predicate of interest. AUC is insensitive to the large number of true negatives in the datasets,
whereas CLL measures the quality of the probability estimates.

In our evaluation, we report the number of wins, losses, and ties for each algorithm.
Since AUC and CLL are both skew-dependent metrics and the skew of a predicate varies
across different predicates and different databases, simply averaging AUCs and CLLs, as has
commonly been done in the past, is incorrect (Boyd et al. 2012).

123



Mach Learn (2016) 103:27–55 43

Fig. 2 Learning time for an increasing number of people in the friends–smokers dataset

6.2 Weight learning questions

6.2.1 Q1: How well does lifted weight learning scale with respect to database size?

The goal of this question is to explore how LWL scales with the database size. In this
experiment, we use the synthetic dataset as a controlled environment. We vary the number of
people in the domain from 100 to 30,000 and randomly generate a training database for each
size. The largest database, for domain size 30,000, assigns truth values to 30, 0002 +30, 000
or approximately 900 million ground atoms. Figure 2 shows the comparison of LWL with
WFOMC and two other exact inference methods: variable elimination (VE) and FOVE.4

Lifted learning with VE benefits from a reduced number of inference tasks (Sect. 3.1),
yet each query still runs in time exponential in the database size. Lifted learning with FOVE
additionally benefits from domain-lifted inference (Sect. 3.2). Finally, lifted weight learning
with WFOMC additionally benefits from knowledge compilation (Sect. 4) and outperforms
the other approaches. The MLN structure is fully liftable, which means that the training time
for FOVE andWFOMC is polynomial in the domain size. From the results for VE, it is clear
that maximum-likelihood learning without lifting is highly intractable.

6.2.2 Q2: Does exactly optimizing the likelihood result in more accurate weights?

The goal of this question is to investigate whether exactly optimizing the likelihood yields
better models than optimizing the approximated likelihood during weight learning. We use
the tractable BUSL and MSL models to address this question. For each structure, we learn
the weights with the following three algorithms:

– PLL: This approach optimizes the pseudo-likelihood of the weights via the limited-
-memory BFGS algorithm (Liu and Nocedal 1989). We use the implementation that is
available in the Alchemy package (Kok et al. 2008).

– PSCG: The discriminative weight learning approach of Lowd and Domingos (2007)
optimizes the log-likelihood of the data by making all the predicates query atoms and
hence leaving the evidence set empty. We use the implementation that is available in the
Alchemy package (Kok et al. 2008).

4 We use the BLOG implementation (Milch et al. 2008): http://bayesianlogic.github.io.
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Table 1 Test-set log-likelihoods for all three methods in all three domains for the models learned by BUSL

IMDb UWCSE WebKB

PSCG PLL LWL PSCG PLL LWL PSCG PLL LWL

F1 −566 −548 −378 −1774 −1860 −1524 −863 −858 −778

F2 −548 −689 −390 −601 −594 −535 −1422 −1422 −1331

F3 −1223 −1157 −851 −1415 −1462 −1245 −717 −717 −702

F4 −425 −415 −285 −2781 −2820 −2510 −1224 −1224 −1052

F5 −423 −413 −267 −2634 −2763 −2357

LWL consistently outperforms both PLL and PSCG for all 14 models. The best result for each fold in each
domain is in bold

Table 2 Test-set log-likelihoods for all three methods in all three domains for the models learned by MSL

IMDb UWCSE WebKB

PSCG PLL LWL PSCG PLL LWL PSCG PLL LWL

F1 −558 −831 −440 −1761 −1705 −1469 −869 −868 −797

F2 −561 −944 −477 −594 −574 −509 −1426 −1426 −1324

F3 −1336 −1576 −909 −1382 −1358 −1198 −711 −711 −677

F4 −442 −393 −315 −2745 −2758 −2449 −1207 −1207 −1054

F5 −443 −388 −353 −2616 −2582 −2254

LWL consistently outperforms both PLL and PSCG for all 14 models. The best result for each fold in each
domain is in bold

– LWL: This is the approach that is proposed in this paper. It uses the WFOMC package
(Van den Broeck et al. 2011) for computing the gradient and the limited-memory BFGS
algorithm that is part of the Breeze system.

First, each weight learning algorithm learns the weights for the given structures using
the same data that produced each structure. Second, we compute the test-set log-likelihood
for each model. Since we use WFOMC to compute the test-set log-likelihoods, the only
difference among the three algorithms is how the formula weights are learned.

Table 1 reports the test-set log-likelihoods for all three methods in all three domains for
the models learned by BUSL. LWL consistently outperforms both PLL and PSCG. Table 2
reports the test-set log-likelihoods for all three methods in all three domains for the models
learned byMSL. LWLconsistently outperforms both PLL and PSCG. These empirical results
confirm our hypothesis that exactly optimizing the training-set log-likelihood results in more
accurate formula weights.

For completeness, we adapted this experiment to also compare with learning by means
of (generalized) belief propagation for factor graphs. We use the FastInf toolbox because it
supports a relational factor graph representation (Jaimovich et al. 2010).5 With a time-out of
24 hours, all 14 LWL tasks converged while only 3 out of 14 FastInf tasks converged. For
each of the converged tasks, we compute the test-set log-likelihood of the parameters using

5 Because FastInf learns each parameter in the factor graph, we cannot compare directly with learning the
parameters of an MLN because one formula and associated parameter can represent multiple parameters in
a factor. Therefore, the tractable MLNs learned by BUSL were transformed to have the same parameters (by
adding weighted formulas). The resultingMLNs now have identical parameters to the equivalent factor graphs
we give to FastInf.
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Table 3 Test-set log-likelihoods for all methods when learning tractable models

IMDb UWCSE WebKB

BUSL MSL LSL BUSL MSL LSL BUSL MSL LSL

F1 −378 −440 −274 −1524 −1469 −1407 −778 −797 −777

F2 −390 −477 −311 −535 −509 −543 −1331 −1324 −1341

F3 −851 −909 −737 −1245 −1198 −1157 −702 −677 −662

F4 −285 −315 −222 −2510 −2449 −2409 −1052 −1054 −1049

F5 −267 −353 −220 −2357 −2254 −2089

LSL outperforms both BUSL and MSL in terms of test-set log-likelihood in 12 of the 14 settings, doing only
marginally worse than MSL on the second fold of the UWCSE and WebKB dataset. The best result for each
fold in each domain is in bold

WFOMC. The test-set log-likelihood of the LWL parameters was consistently 100 times
better than the log-likelihoods of the FastInf parameters.

6.3 Structure learning questions

6.3.1 Q3: How does lifted structure learning compare to the off-the-shelf structure
learners in terms of log-likelihood when learning tractable models?

The goal of this question is to investigate whether models learned by LSL yield better test-set
log-likelihoods than tractable models learned by the off-the-shelf structure learning algo-
rithms. We compare the tractable LSL models to the tractable BUSL and MSL models to
address this question. We use LWL to learn the weights for the BUSL andMSLmodels since
this approach outperforms the traditional weight learning algorithms (see Q1).

Table 3 reports the test-set log-likelihoods for tractable models learned by BUSL, MSL,
and LSL. LSL outperforms both BUSL and MSL in terms of test-set log-likelihood in 12 of
the 14 settings, doing only marginally worse than MSL on the second fold of the UWCSE
andWebKB dataset. These results show there is no reason to prefer an off-the-shelf structure
learner to our lifted structure learning approach for learning tractablemodelswhen optimizing
the test-set log-likelihood.

6.3.2 Q4: How does lifted structure learning compare to the off-the-shelf structure
learners in terms of AUC and CLL when learning tractable models?

The goal of this question is to investigate whethermodels learned by LSL are better at answer-
ing queries than tractable models learned by the off-the-shelf structure learning algorithms.
We compare the tractable LSL models to the tractable BUSL and MSL models to address
this question. We use LWL to learn the weights for the BUSL and MSL models since this
approach outperforms the traditional weight learning algorithms (see Q1).

Table 4 reports the number of times LSL wins, loses, and ties against the off-the-shelf
structure learners BUSL and MSL in terms of both AUC and CLL. In terms of AUC, LSL
beats BUSL in 61 of the 95 settings, ties in 6 settings, and loses in 28 settings. In terms of
CLL, LSL beats BUSL in 72 of the 95 settings and loses in 23 settings. In terms of AUC,
LSL beats MSL in 50 of the 95 settings, ties in 13 settings, and loses in 32 settings. In terms
of CLL, LSL beats MSL in 70 of the 95 settings and loses in 25 settings.
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Table 4 Comparison of AUC and CLL results when learning tractable models in all three domains

IMDb UWCSE WebKB

Win Loss Tie Win Loss Tie Win Loss Tie

LSL versus BUSL AUC 20 5 5 14 6 0 27 17 1

LSL versus MSL AUC 10 8 12 12 8 0 28 16 1

LSL versus BUSL CLL 25 5 0 15 5 0 32 13 0

LSL versus MSL CLL 23 7 0 15 5 0 32 13 0

In comparison to BUSL, LSL wins in 133 of the 190 settings, ties in 6 settings, and loses in 51 settings. In
comparison to MSL, LSL wins in 120 of the 190 settings, ties in 13 settings, and loses in 57 settings. The most
frequent result for each comparison is in bold

Table 5 Comparison of AUC and CLL results when learning intractable models in all three domains

IMDb UWCSE WebKB

Win Loss Tie Win Loss Tie Win Loss Tie

LSL versus BUSL AUC 12 7 11 12 8 0 26 18 1

LSL versus MSL AUC 7 11 12 9 11 0 31 14 0

LSL versus BUSL CLL 17 12 1 15 5 0 33 12 0

LSL versus MSL CLL 16 14 0 11 9 0 28 17 0

In comparison to BUSL, LSL wins in 115 of the 190 settings, ties in 13 settings, and loses in 62 settings. In
comparison to MSL, LSL wins in 102 of the 190 settings, ties in 12 settings, and loses in 76 settings. The most
frequent result for each comparison is in bold

LSL is consistently leading to better models: it achieves more wins than both BUSL and
MSL for both metrics. Although we used LWL (and thus exact likelihood) to relearn the
weights for the BUSL and MSL models, during structure learning these algorithms initially
optimize WPLL, which has a very similar objective to CLL, and thus should be to their
advantage on that metric. This makes it surprising that LSL does particularly well at CLL
compared to BUSL and MSL.

“Appendix 1” provides an extensive overview of per-predicate results.

6.3.3 Q5: How does lifted structure learning compare to the off-the-shelf structure
learners in terms of AUC and CLL when learning intractable models?

The goal of this question is to investigate whether models learned by LSL are better at
answering queries than models learned by the off-the-shelf structure learning algorithms. We
compare the tractable LSL models to the intractable BUSL and MSL models to address this
question. We use PLL to relearn the weights for the BUSL and MSL models. We cannot use
LWL to relearn the weights since these models cannot be compiled.

Table 5 reports the number of times LSL wins, loses, and ties against the off-the-shelf
structure learners BUSL and MSL in terms of both AUC and CLL. In terms of AUC, LSL
beats BUSL in 50 of the 95 settings, ties in 12 settings, and loses in 33 settings. In terms of
CLL, LSL beats BUSL in 65 of the 95 settings, ties in 1 setting, and loses in 29 settings. In
terms of AUC, LSL beats MSL in 47 of the 94 settings, ties in 12 settings, and loses in 36
settings. In terms of CLL, LSL beats MSL in 55 of the 95 settings and loses in 40 settings.
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Table 6 Test-set log-likelihoods for LSL with three different time-out values: 1, 2, and 5min

IMDb UWCSE WebKB

1 min 2 min 5 min 1 min 2 min 5 min 1 min 2 min 5 min

F1 −276 −275 −274 −1454 −1421 −1407 −777 −794 −777

F2 −309 −310 −311 −594 −562 −543 −1341 −1341 −1341

F3 −739 −739 −737 −1209 −1162 −1157 −664 −663 −662

F4 −222 −222 −222 −2434 −2406 −2409 −1049 −1043 −1049

F5 −219 −220 −220 −2089 −2142 −2089

In most settings, the time-out value has either a small impact or no impact at all on the test-set log-likelihood.
The best result for each fold in each domain is in bold

Surprisingly, BUSL and MSL do only slightly better at answering queries when they are
no longer bound to learning tractable models. Their performance remains roughly the same.
These results show that learning longer, more complex formulas does not necessarily lead
to much better inference results. A possible explanation is that more complex models may
fit the data better but also lead to more complicated inference tasks, which in turn leads to a
decreased predictive performance.

“Appendix 2” provides an extensive overview of per-predicate results.

6.3.4 Q6: What is the effect of our clause evaluation time-out on the complexity and
quality of the models for each of the algorithms?

The goal of this question is to investigate whether a restriction on the clause evaluation
time leads to simpler models. To answer this question, we modify the off-the-shelf structure
learners such that they can only spend a specified amount of time to evaluate each candidate
clause. We run all three structure learning algorithms with three different clause evaluation
time-outs: 1, 2, and 5min. Keeping all other parameter values unchanged, we learn both
tractable and intractable models with the off-the-shelf structure learners.

Table 6 reports the test-set log-likelihoods for the models learned by LSL for all three
clause evaluation time-outs. In most settings, the time-out has either a small impact or no
impact at all on the test-set log-likelihood. The only domain that seems to benefit from a
longer run time is UWCSE, which is the most complicated domain in terms of number of
predicates and facts. These results show that LSL is robust to the clause evaluation time-out
value and confirm our observation that most structures can be compiled either relatively
quickly or not at all. Hence, restricting the clause evaluation time for LSL does not lead to
simpler models.

Furthermore, the clause evaluation time-out also does not have an impact on the complexity
of the models learned by the off-the-shelf structure learners. Both BUSL and MSL learn the
same structures for all three time-out values. Since these algorithms do not need to run
inference to evaluate a candidate clause, they require only little time per clause evaluation.
Hence, restricting the clause evaluation time for the off-the-shelf structure learners does not
lead to simpler models either.

Tables 7 and 8 report the average number of clauses in a learned theory and the average
clause length for all learning methods in each domain. We compute these metrics because
they are indicative of model complexity and allow us to further explore if LSL has a bias
towards simpler models. Note that both BUSL and MSL include a complexity penalty based
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Table 7 The average number of clauses in a theory for each algorithm in each domain

IMDb UWCSE WebKB

LSL (5-min time-out) 5.40 ± 1.14 10.20 ± 0.45 4.75 ± 1.50

BUSL tractable 1.40 ± 0.55 7.60 ± 3.21 3.25 ± 0.50

MSL tractable 3.00 ± 0.00 6.80 ± 0.45 4.00 ± 1.15

BUSL intractable 6.60 ± 3.36 18.60 ± 10.55 8.50 ± 4.20

MSL intractable 4.20 ± 0.84 4.60 ± 1.95 4.00 ± 1.15

Table 8 The average length of the clauses for each algorithm in each domain

IMDb UWCSE WebKB

LSL (5-min time-out) 2.69 ± 0.14 2.69 ± 0.09 2.85 ± 0.17

BUSL tractable 3.00 ± 0.35 2.18 ± 0.25 2.35 ± 0.31

MSL tractable 2.67 ± 0.00 2.65 ± 0.07 2.53 ± 0.22

BUSL intractable 3.12 ± 0.51 2.71 ± 0.22 3.02 ± 0.37

MSL intractable 4.23 ± 0.33 3.27 ± 0.48 2.53 ± 0.22

on clause length. The results show that all approaches tend to learn similarly sized theories.
The exception is that BUSL, in the intractable setting, learns more clauses than the other
approaches, and its clauses tend to be slightly longer on average.

These results give some evidence that LSL does not offer better performance simply
because it has a preference for simpler models. Instead, regularization by liftability and
support for maximum-likelihood learning can explain this success.

7 Related work

Jaimovich et al. (2007) describe a formalism for relationalMarkov randomfields and propose
a form of lifted belief propagation for generative parameter learning in that language. This
is related to Markov logic in that logic variables are used to express templates that generate
the underlying factor graph. Markov logic, however, uses first-order logic, or constraints, to
define the weights in the factors whereas relational Markov random fields require all weights
in a factor template to be given explicitly. Overall, our work provides a much more detailed
treatment of the subject. We looked at using exact lifted inference for learning, as opposed to
approximate,which furthermore guarantees liftability of the learnedmodels.Our experiments
provide some initial evidence that generative parameter learning with belief propagation can
provide sub-optimal results (Sect. 6.2).

Ahmadi et al. (2012) recently proposed using lifted belief propagation (Singla and
Domingos 2008; Kersting et al. 2009), in a stochastic gradient optimization approach to
piecewise discriminativeweight learning. They show that the lifted learning approach reaches
the same quality solution that can be achieved by propositional, approximate parameter
learning with belief propagation, but converges to a solution over an order of magnitude
faster.
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Learning tractable probabilistic models, that is, models that always permit efficient infer-
ence for certain queries, is an emerging area of research. The largest body of work restricts
the structure of the learned models (e.g., Chechetka and Guestrin 2007). One way to do this is
to only consider models with a low tree-width (Narasimhan and Bilmes 2004; Chechetka and
Guestrin 2007). Another body of work looks at simultaneously learning either a Bayesian
network or a Markov network as well as an alternative representation (typically an arithmetic
circuit) of the model that permits efficient inference. Then the model is penalized by the cost
of inference, which can be calculated based on well-defined properties of the representation.
By penalizing the circuit size of the associated model, it is possible to bias the learning algo-
rithm towardsmodels where efficient inference is possible (Lowd andDomingos 2008; Lowd
and Rooshenas 2013). Our work fits within this framework since we have proposed tractable
structure learning towards models that allow lifted inference. This guarantees tractable infer-
ence for certain types of queries (see Sect. 2.3).While tractable statistical relational languages
have been investigated before (Domingos and Webb 2012), we believe our work is among
the first to consider the problem of learning such tractable representations.

8 Conclusions

We investigated the effect of lifted inference for parameter and structure learning in the sta-
tistical relational learning setting. Specifically, we investigate generative learning, where the
goal is to maximize the probability of observing the data, in the context of Markov logic
networks (MLNs). We present four contributions. Our first contribution is a generic lifted
parameter learning algorithm that can use exact lifted inference approaches to efficiently
learn weights that maximize the exact training-set likelihood. We employ the concept of
equiprobable random variables to characterize the reduced cost of computing the gradient
given a lifted inference oracle. Our second contribution is a concrete lifted parameter learn-
ing algorithm based on first-order knowledge compilation. Its most appealing property for
parameter learning is that compilation only needs to be performed once per MLN struc-
ture. Our third contribution is a lifted structure learning algorithm that learns liftable MLN
theories. In contrast to existing MLN structure learners, which resort to optimizing pseudo-
likelihood, it optimizes the exact likelihood using our lifted parameter learning algorithm as
a subroutine. Our fourth contribution is an extensive empirical evaluation of lifted parameter
and structure learning on three real-world SRL data sets. We find that our lifted parameter
learning algorithm learns models with better test-set likelihood than competing approaches
and scales well with the amount of training data. Our lifted structure learning algorithm out-
performs existing learners in terms of likelihood as well as conditional likelihood and area
under the precision-recall curve on prediction tasks. More surprisingly, we found that liftable
models outperformed unliftable ones on prediction tasks. This provides some evidence that
liftable models are a powerful hypothesis space that are suitable for modeling commonly
used domains.
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Appendix 1: Detailed experimental results for research question Q4

This section provides per-predicate inference results for research question Q4, where we
investigate how lifted structure learning compares to off-the-shelf structure learners BUSL
and MSL in terms of AUC and CLL when learning tractable models (Tables 9, 10, 11, 12,
13, 14).

Table 9 AUC results for
learning tractable IMDb models

In comparison to BUSL, LSL
wins in 20 of the 30 settings,
loses in 5 settings, and ties in 5
settings. In comparison to MSL,
LSL wins in 10 of the 30 settings,
loses in 8 settings, and ties in 12
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Actor 5 0 0 0 0 5

Director 0 0 5 0 0 5

Genre 5 0 0 2 1 2

Male 3 2 0 2 3 0

Movie 2 3 0 3 2 0

WorkedUnder 5 0 0 3 2 0

Total 20 5 5 10 8 12

Table 10 CLL results for
learning tractable IMDb models

In comparison to BUSL, LSL
wins in 25 of the 30 settings,
loses in 5 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 23 of the 30 settings,
loses in 7 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Actor 5 0 0 4 1 0

Director 5 0 0 5 0 0

Genre 5 0 0 5 0 0

Male 5 0 0 4 1 0

Movie 0 5 0 0 5 0

WorkedUnder 5 0 0 5 0 0

Total 25 5 0 23 7 0

Table 11 AUC results for
learning tractable WebKB models

In comparison to BUSL, LSL
wins in 14 of the 20 settings,
loses in 6 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 12 of the 20 settings,
loses in 8 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

CourseProf 1 3 0 3 1 0

CourseTA 4 0 0 3 1 0

Faculty 1 3 0 1 3 0

Project 4 0 0 3 1 0

Student 4 0 0 2 2 0

Total 14 6 0 12 8 0
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Table 12 CLL results for
learning tractable WebKB models

In comparison to BUSL, LSL
wins in 15 of the 20 settings,
loses in 5 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 15 of the 20 settings,
loses in 5 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

CourseProf 4 0 0 4 0 0

CourseTA 4 0 0 4 0 0

Faculty 1 3 0 1 3 0

Project 4 0 0 4 0 0

Student 2 2 0 2 2 0

Total 15 5 0 15 5 0

Table 13 AUC results for
learning tractable UWCSE
models

In comparison to BUSL, LSL
wins in 27 of the 45 settings,
loses in 17 settings, and ties in 1
setting. In comparison to MSL,
LSL wins in 28 of the 45 settings,
loses in 16 settings, and ties in 1
setting
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Advisedby 5 0 0 3 2 0

Courselevel 2 3 0 3 2 0

Phase 1 4 0 3 2 0

Professor 2 2 1 2 2 1

Publication 5 0 0 4 1 0

Ta 2 3 0 4 1 0

Taughtby 3 2 0 4 1 0

Tempadvisedby 5 0 0 5 0 0

Yearsinprogram 2 3 0 0 5 0

Total 27 17 1 28 16 1

Table 14 CLL results for
learning tractable UWCSE
models

In comparison to BUSL, LSL
wins in 32 of the 45 settings,
loses in 13 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 32 of the 45 settings,
loses in 13 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Advisedby 5 0 0 5 0 0

Courselevel 4 1 0 4 1 0

Phase 0 5 0 1 4 0

Professor 1 4 0 1 4 0

Publication 5 0 0 5 0 0

Ta 4 1 0 4 1 0

Taughtby 5 0 0 5 0 0

Tempadvisedby 5 0 0 5 0 0

Yearsinprogram 3 2 0 2 3 0

Total 32 13 0 32 13 0
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Appendix 2: Detailed experimental results for research question Q5

This section provides per-predicate inference results for research question Q5, where we
investigate how lifted structure learning compares to off-the-shelf structure learners BUSL
and MSL in terms of AUC and CLL when learning intractable models (Tables 15, 16, 17,
18, 19, 20).

Table 15 AUC results for
learning IMDb models

In comparison to BUSL, LSL
wins in 12 of the 30 settings,
loses in 7 settings, and ties in 11
settings. In comparison to MSL,
LSL wins in 7 of the 30 settings,
loses in 11 settings, and ties in 12
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Actor 1 0 4 0 0 5

Director 0 0 5 0 0 5

Genre 3 0 2 2 1 2

Male 1 4 0 1 4 0

Movie 4 1 0 2 3 0

WorkedUnder 3 2 0 2 3 0

Total 12 7 11 7 11 12

Table 16 CLL results for
learning IMDb models

In comparison to BUSL, LSL
wins in 17 of the 30 settings,
loses in 12 settings, and ties in 1
setting. In comparison to MSL,
LSL wins in 16 of the 30 settings,
loses in 14 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Actor 2 2 1 3 2 0

Director 5 0 0 3 2 0

Genre 5 0 0 3 2 0

Male 3 2 0 2 3 0

Movie 0 5 0 2 3 0

WorkedUnder 2 3 0 3 2 0

Total 17 12 1 16 14 0

Table 17 AUC results for
learning WebKB models

In comparison to BUSL, LSL
wins in 12 of the 20 settings,
loses in 8 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 9 of the 20 settings,
loses in 11 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

CourseProf 2 2 0 2 2 0

CourseTA 2 2 0 3 1 0

Faculty 1 3 0 0 4 0

Project 4 0 0 3 1 0

Student 3 1 0 1 3 0

Total 12 8 0 9 11 0
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Table 18 CLL results for
learning WebKB models

In comparison to BUSL, LSL
wins in 15 of the 20 settings,
loses in 5 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 11 of the 20 settings,
loses in 9 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

CourseProf 4 0 0 3 1 0

CourseTA 4 0 0 4 0 0

Faculty 2 2 0 0 4 0

Project 3 1 0 3 1 0

Student 2 2 0 1 3 0

Total 15 5 0 11 9 0

Table 19 AUC results for
learning UWCSE models

In comparison to BUSL, LSL
wins in 26 of the 45 settings,
loses in 18 settings, and ties in 1
setting. In comparison to MSL,
LSL wins in 31 of the 45 settings,
loses in 14 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Advisedby 3 2 0 4 1 0

Courselevel 1 4 0 3 2 0

Phase 2 3 0 5 0 0

Professor 0 4 1 1 4 0

Publication 5 0 0 4 1 0

Ta 4 1 0 3 2 0

Taughtby 2 3 0 3 2 0

Tempadvisedby 4 1 0 5 0 0

Yearsinprogram 5 0 0 3 2 0

Total 26 18 1 31 14 0

Table 20 CLL results for
learning UWCSE models

In comparison to BUSL, LSL
wins in 33 of the 45 settings,
loses in 12 settings, and ties in 0
settings. In comparison to MSL,
LSL wins in 28 of the 45 settings,
loses in 17 settings, and ties in 0
settings
The most frequent outcome is in
bold

BUSL MSL

Win Loss Tie Win Loss Tie

Advisedby 5 0 0 5 0 0

Courselevel 5 0 0 4 1 0

Phase 0 5 0 1 4 0

Professor 1 4 0 1 4 0

Publication 4 1 0 4 1 0

Ta 5 0 0 4 1 0

Taughtby 5 0 0 2 3 0

Tempadvisedby 5 0 0 5 0 0

Yearsinprogram 3 2 0 2 3 0

Total 33 12 0 28 17 0
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