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Abstract Application of machine learning to medical diagnosis entails facing two major
issues, namely, a necessity of learning comprehensible models and a need of coping with
imbalanced data phenomenon. The first one corresponds to a problem of implementing inter-
pretable models, e.g., classification rules or decision trees. The second issue represents a
situation in which the number of examples from one class (e.g., healthy patients) is signifi-
cantly higher than the number of examples from the other class (e.g., ill patients). Learning
algorithms which are prone to the imbalance data return biased models towards the majority
class. In this paper, we propose a probabilistic combination of soft rules, which can be seen
as a probabilistic version of the classification rules, by introducing new latent random vari-
able called conjunctive feature. The conjunctive features represent conjunctions of values of
attribute variables (features) and we assume that for given conjunctive feature the object and
its label (class) become independent random variables. In order to deal with the between class
imbalance problem, we present a new estimator which incorporates the knowledge about data
imbalanceness into hyperparameters of initial probability of objects with fixed class labels.
Additionally, we propose a method for aggregating sufficient statistics needed to estimate
probabilities in a graph-based structure to speed up computations. At the end, we carry out
two experiments: (1) using benchmark datasets, (2) using medical datasets. The results are
discussed and the conclusions are drawn.
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1 Introduction

Machine learning algorithms have been successfully applied to many complex problems in
recent years, including intelligent analysis in medical diagnosis (Lavra¢ 1999; Kononenko
2001). There are different medical fields which have especially benefited from the machine
learning methods, e.g., oncology diagnosis (Michalski et al. 1986), the diagnosis of breast
cancer recurrence (gtrurnbelj et al. 2010), lung cancer diagnosis (Zigba et al. 2014), cDNA
microarray data analysis (Pearson et al. 2003), toxicology analysis (Blinova et al. 2003),
supporting diabetes treatment (Tomczak and Gonczarek 2013). Among others, there are two
crucial issues in extracting diagnostic models from medical data. First, there is a need of
learning comprehensible models which provide interpretable knowledge to human doctors
(Lavra¢ 1999). Second, medical data are recognized to be imbalanced (Mac Namee et al.
2002) which means that the number of examples from one class (e.g., healthy patients) is
significantly higher than the number of examples from the other class (e.g., ill patients). In
the imbalanced data phenomenon we can distinguish two subproblems (Japkowicz 2001; He
and Garcia 2009): (i) the between-class imbalanced problem—data set exhibits an unequal
distribution between its classes, (ii) the within-class imbalanced data problem—an unequal
distribution of examples among subconcepts within a class. Here we discuss the imbalanced
data phenomenon in medical domain only, however, this problem is widely encountered in
other applications like credit scoring (Brown and Mues 2012) or fraud detection in telecom-
munication (Fawcett and Provost 1997).

In order to obtain comprehensible models classification rules or classification trees are
typically used. There are different approaches to learning classification rules from data. One
of the most traditional rules induction approaches is based on a separate-and-conquer strategy
(see Fiirnkranz 1999 for more details), e.g., AQ (Michalski et al. 1986), RIPPER (Cohen 1995)
and OneR (Holte 1993). Another traditional approach to rules extraction uses searching in
version (hypotheses) space which was applied in Candidate Elimination Algorithm (CEA)
(Mitchell 1997) or in JSM method (Blinova et al. 2003).

A different approach to learning rules is based on taking advantage of association rules.
The core of this approach exploits the idea of mining a special subset of associations rules
whose right-hand-side are restricted to the class label (Liu et al. 1998). This line of research
has been extended by applying fuzzy set theory (Chen and Chen 2008) or generalizing to
multiple class problem and imbalanced data (Cerf et al. 2013).

The problem of the rules induction can be gently cast in the framework of rough sets
(Pawlak et al. 1995). The general idea is to utilize rough set theory in order to obtain certain
and approximate decision rules on the basis of approximations of decision classes, e.g., LEM1
and LEM?2 (Stefanowski 1998) and their extension VC-DomLEM (Btaszczynski et al. 2011),
or a dedicated method for imbalanced data (Stefanowski and Wilk 2006).

The accuracy of learning the classification rules can be increased by analyzing their
statistical properties. The research in this direction has lead to many interesting methods, e.g.,
finding rules minimizing the difference between the rules margin and variance (Riickert and
Kramer 2008), obtaining data dependent generalization bounds (Vorontsov and Ivahnenko
2011) or by applying Minimum Description Length paradigm (Vreeken et al. 2011).

In the machine learning community, it has been shown that the classification rules (trees)
provide rather mediocre predictive performance in comparison to the strong classifiers such
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as Support Vector Machines (SVMs), Neural Networks or deep learning models (Kotsiantis
2007). One possible fashion of improving their accuracy and maintaining their comprehen-
sibility at the same time is application of ensemble learning techniques. First approaches
tried to combine classification rules with various decision making procedures, e.g., majority
voting (Kononenko 1992) and bagging (Breiman 1996). A different technique aimed at prob-
abilistic combination of decision trees by using tree averaging (Buntine 1992). More recently,
Bayesian Model Averaging (BMA) of the classification rules was applied (Domingos 1997,
2000). The main idea of this approach was to combine several sets of classification rules which
were induced using well-known rules induction algorithms (e.g., extracting rules from a deci-
sion tree C4.5). Nevertheless, it was noticed that the BMA of the classification rules suffered
from overfitting (Domingos 2000). This result was further explained that the BMA cannot be
applied as a model combination (Minka 2000) and thus a different approach should be used.
We will propose a new fashion of a probabilistic combination for the classification rules.

Most of standard learning methods assume balanced datasets and/or equal misclassifi-
cation costs. However, in the case of imbalanced datasets they fail in learning regularities
within data which results in biased predictions across classes. Hitherto, a number of attempts
to deal with the imbalanced data problem has been proposed (He and Garcia 2009; Jap-
kowicz and Stephen 2002), i.e., sampling methods for imbalanced data (Kubat and Matwin
1997), cost-sensitive solutions (Elkan 2001), such as, cost-sensitive Naive Bayes (Gama
2000), cost-sensitive SVMs (Masnadi-Shirazi and Vasconcelos 2010). Recently, a number
of ensemble learning methods designed for imabalanced datasets has been proposed (Wang
and Japkowicz 2010; Galar et al. 2012; Zigba et al. 2014).

In this paper, we present the probabilistic combination of classification rules for dealing
with the both stated issues. The problem of interpretability of the model is solved by applying
the classification rules. In order to increase its predictive performance we use probabilistic
reasoning for combination of if-then rules. Next, we reduce the imbalanced data phenomenon
by modifying the Bayesian estimator for categorical features, also known as m-estimate
(Cestnik 1990; Dzeroski et al. 1993; Fiirnkranz and Flach 2003; Lavrac¢ 1999; Zadrozny and
Elkan 2001), with different misclassification costs.

Another issue we would like to consider in this paper is a method for aggregating the data
for further reasoning. Typically, observations are stored with their number of occurrences.
However, such approach implemented naively may be very cumbersome and requires a lot of
computational resources. In order to increase the efficiency of data aggregation process, we
propose a modification of a graph-based data aggregation (Tomczak and Gonczarek 2013).

The contribution of the paper is as follows:

— Conjunctive features as latent variables representing hidden relationships among features
are presented.

— Soft rules, a probabilistic version of the classification rules, are proposed.

— The manner of the combination of the soft rules is outlined.

— The modification of the m-estimate for imbalanced data problem is introduced.

— The modification of graph-based data aggregation (later referred to as graph-based mem-
orization) for reducing memory complexity of storing observations is outlined.

— The proposed approach is applied to the medical diagnosis.

The paper is organized as follows. In Sect. 2.1 a combination of the classification rules is
outlined. In Sect. 2.2 a new approach to the probabilistic combination of the classification
rules is described, including introduction of conjunctive features and soft rules. Next, Sect. 2.3
explains estimation of probabilities including the proposition of m-estimate for imbalanced
data, object probability, and prior probability for conjunctive features. In Sect. 2.4 the graph-
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based memorization process is described and the fashion of using it in the estimation process
is outlined. In Sect. 3 we study our model’s performance in a simulation study (Sect. 3.1)
and on benchmark datasets (Sect. 3.2), medical datasets (Sect. 3.3), and discuss the results
(Sect. 3.4). Finally, conclusions are drawn in Sect. 4.

2 Methodology
2.1 Combination of crisp rules

Let x € X be an object described by D attributes, where each x4, d = 1, ..., D, can take
only one of K, possible values. We will write xfj if x4 = k. We denote the total number of
all possible values of attributes by K, i.e., >, K4 = K. Let y € {—1, 1} be a class label of
x. We refer to the examples with class label y = —1 as negative, and the ones with the label
y = 1 are called positive. Additionally, we assume that the minority class (less frequent in
the training data) is labeled with y = 1.

A classification rule r can be defined in two equivalent manners (Mitchell 1997). First
fashion represents the classification rule as a binary-valued functionr : X — {—1, 1}. Onthe
other hand, the classification rule can be defined as an if-then rule in which the antecedent,
ar, is a conjunction of features’ values, and the consequent, ¢,, is a specific value of the
class label. For example, for x € {1, 2, 3} x {1, 2}, an exemplary if-then classification rule is
IF xll A x2] THEN y = 1, where a, = “x} /\le” and ¢, = 1. The key advantage of applying
the classification rules to a prediction problem is that they are easily interpretable, i.e., they
form a comprehensible model, and the final decision can be straightforwardly explained.
Further, we assume a finite set of if-then rules or a space of all possible if-then rules for given
feature space X. In both cases we denote this set as R.

In theory, the set of classification rules should cover the whole feature space and the rules
should not contradict themselves, i.e., for the same features’ values two (or more) different
rules must return the same class label. However, in practice this condition may be false
because of, e.g., several sets of rules are combined together (Kononenko 1992). Therefore,
it is convenient to treat the set of classification rules as an ensemble classifier (sometimes
called a model combination) (Dembczyriski et al. 2008). Before introducing the combination
of rules let us re-define the classification rule which we refer to as a crisp rule. The crisp
rule is a function f : X x {—1, 1} x R — {0, 1} in the following form:

1, ifxiscovered bya, andy = ¢,
f&y,r) = 0, otherwise M

where r € R is a rule in the set of all possible if-then rules. For further simplicity we will

denote f(x, y,r) 2 fr(x, y).

In fact, the crisp rule is a standard boolean-valued function but it takes also the class
label as an argument. This definition could be useful in multi-class problem, i.e., when there
are more than two possible values of the class label. Moreover, the crisp rule represents a
transformation of the if-then rule to a form which will be useful in the combined classifier.

An ensemble classifier is a weighted combination of base models. If we consider the crisp
rules as the base models, then we can combine all crisp rules in R which yields the following
ensemble classifier:

' We call the classification rules crisp in analogy to fuzzy sets and crisp sets.
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g(x.y) = D w fr(x, ), 2

reR

where w, € R4 is a tunable parameter which denotes a weight of the rth rule. The final
decision is the class label with the highest value of the combination g(x, y):

y* = arg max g(x,y). 3)

Application of combination of crisp rules remains interpretability of the classification
rules where the weights can be seen as confidence levels of rules. However, there are three
problems associated with learning combination of the crisp rules. First, the crucial issue is how
to determine the set of rules R. The simplest approach is to apply a rule induction algorithm
or several such algorithms in order to obtain R. However, it has been shown that such a
technique may give unsatisfactory results (Domingos 1997). On the other hand, summing
over all possible crisp rules for all possible class labels is practically intractable. Second issue
concerns learning the tunable parameters. There are different ensemble learning methods,
e.g., bagging (Breiman 1996), boosting (Freund and Schapire 1997). Nonetheless, since the
base learners corresponds to fixed, i.e., non-learnable, crisp rules it is more appropriate to
apply other techniques for learning such as stacking (Wolpert 1992) or combinations based
on statistical properties of the rules (Kononenko 1992). However, these learning procedures
do not result in satisfactory predictive performance because in some cases they can decrease
classification accuracy (Kononenko 1992) or even lead to overfitting (Domingos 2000). Third
problem is that crisp rules assign only one class label to all objects they cover. This may be
problematic in decision support systems in which human expert may would like to know
the class label with its certainty level. These three issues are addressed in our probabilistic
approach to the classification rules combination, which we refer to as soft rules combination.

2.2 Combination of soft rules

Let us consider the object x and the class label y as random variables. Additionally, we
introduce a new random variable, which we refer to as conjunctive feature, ¢, that corresponds
to a conjunction of at least one feature with fixed value. Moreover, we assume that each of
the features can take only one value within the conjunctive feature. The set of all possible
conjunctive features is denoted by F. For example, for x € {1, 2, 3} x {1, 2}, a conjunctive
feature can be ¢ = )cl1 A xé, but the conjunction (x]1 \Y x12) A xé is not the conjunctive feature
according to our definition. The conjunctive feature ¢ defines a set, that is:

Xy, = {x € X' : xis covered by ¢}. 4)

For example, for x € {1, 2, 3} x {1, 2} and the conjunctive feature ¢ = )cl1 one gets X, =

(chad). @l D)

We assume that an object is described by the features and the class label which are
observable random variables, while conjunctive features are treated as latent variables. The
goal of our model is to use conjunctive features as a common structure that relates attributes
and the class label, i.e., the conjunctive features consolidate two separate but related concepts.
Since a conjunctive feature is a latent variable shared by the attributes and the class value,
it generates both object x and its label y. As a consequence, for given ¢ random variables
x and y become stochastically independent [see the model represented as a probabilistic
graphical model (Cooper and Herskovits 1992) in Fig. 1], i.e., p(y, X|@) = p(y]|@) p(x|@).
The assumption about the independence allows to easier estimate the probabilities p(y|¢)
and p(x|¢) instead of the joint probability p(y, X|¢). Moreover, it is an unorthodox approach
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Fig. 1 Probabilistic graphical

model for the considered model 2

with latent conjunctive features.

We assume that the conjunctive

feature ¢ generates both object x

and its label y. Latent variable is

represented by white node and

observable variables by gray X Yy
nodes

comparing to the classification rules in which rules are deterministically associated with the
class label. Here, we make a soft assumption about conjunctive feature’s label. The proposed
model is a specific kind of a shared model (Damianou et al. 2012) because a single hidden
variable shares the information about both observable variables.

The idea of shared model is to introduce latent variables which capture common structure
between two or more concepts. In the literature, there are different kinds of shared models.
In one approach single shared latent structure is proposed to capture mutual information of
observable variables (Shon et al. 2005). A different shared model introduces additional hidden
variables which are typical for one of the concepts (Ek et al. 2008). Recently, fully Bayesian
treatment of the shared model was proposed where the latent representation is marginalized
out (Damianou et al. 2012). In our case, we aim at finding common hidden representation
which allows reasoning about both the attributes and the class label. Therefore, the idea of
our approach is very similar to the one presented in Shon et al. (2005) where there is one
single common latent structure.

Hitherto, we have introduced new random variable, the conjunctive feature, that in fact
corresponds to the antecedent of the if-then rule. However, we take advantage of probabilistic
approach, and thus, the classification rules should be reformulated. We define a soft rule as
a function which returns probability for the class label y and the features x conditioned on
the conjunctive feature ¢, f : X x {—1, 1} x F — [0, 1], that is:

[ pOyle) pxlp), ifxis covered by ¢
F&y.0) = 0, otherwise ®)

where p(y|¢) is the probability of label y for all objects generated by ¢, p(x|¢) is the
probability of the object x given ¢. In fact, in (5) we should write the joint distribution for
x and y, p(y, Xx), instead of p(y|l¢) p(x|e), but we have already applied the assumption
about the conditional independence of x and y given ¢. For further simplicity we will write
F&y.0) 2 fox. ).

In order to make decisions we need to obtain a predictive distribution p(y|x) which
enforces application of the summation rule, i.e., summation over all conjunctive features ¢
for the distribution p(y, ¢|x). However, we observe that there is no need to sum over all
possible conjunctive features because only the ones covering x are important, and for all
others we get p(x|¢) = 0. Therefore, the predictive distribution takes the following form:

> (. elx)
f

p(y[x)

1
> —— (. xlo) p(p)

p:xeX, p(X)

o > pOle) p(xle) pe), 6)

p:XEX)
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Y1
|
72 | X ¢s3 P2
Ty

Fig. 2 An exemplary application of soft rules. For x € {1, 2, 3} x {1, 2}, new object (xll, x%) (black cross)
is covered by three conjunctive features: ¢ = xll (light gray rectangle), oo = x% (gray rectangle), and

@3 = xl1 A x% (dark gray rectangle). Other conjunctive features, e.g., ¢4 = le or g5 = x%, do not cover the

object and thus are irrelevant in the prediction

where p(¢) is a priori probability of a conjunctive feature. Notice that p(x) is the same for
all conjunctive features and hence can be omitted in further prediction. The final decision is
the most probable class label. An application of exemplary conjunctive features is presented
in Fig. 2.

Taking a closer look at the predictive distribution one can notice that it formulates the
combination of soft rules (CSR) given by (5) with weights w, equal p(¢), and the set
of possible rules determined by the conjunctive features which cover X, R = {¢ : X €
Xy}. Below, we indicate which parts of the Eq. (6) correspond to elements in the ensemble
classifier:

s = D p@) pOle) ple). @)

XeX,
PxEXy Wy f¢:(xyy)

The final decision is the class label with the highest value of the combination, i.e., y* =
arg max, g(y|x), which takes exactly the same form as for the crisp rules (3) but with the
interpretation of unnormalized probabilities.

Note that the soft rules remain interpretable because it is a soft version of the crisp rule
which in turn is the if-then rule. Hence, the soft rule can be represented as the if-then rule but
with the soft consequent, i.e., the consequent consists the information about the class label
and its probability p. For example, for x € {1, 2, 3} x {1, 2}, the soft rule for ¢ = xll and the
considered object x is as follows:

IF x} THEN y = 1 with p = p(y = 1|x}) p(x|x])
OR

y=—lwith p = p(y = —1x}) p(xlx)
The application of the soft rules and their combination has the following advantages:

1. The set of soft rules used in the summation is determined automatically for given x.

2. The weights of the soft rules in the combination are related to the prior for the con-
junctive features. Hence, there is no need to propose an additional procedure for their
determination.

3. The application of the probabilistic reasoning allows to utilize all information provided
by the conjunctive features covering new object in contrary to the combination of the
crisp rules which uses only a subset of all possible rules. Similar argument was also used
in previous studies about the classification rules (Viswanathan and Webb 1998).
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3. The soft rule can be represented as the crisp rule but with different consequent which
returns probabilities of class labels instead of crisp assignment. In other words, the soft
rule remains interpretability of the crisp rule and additionally assigns probabilities to the
class labels.

The disadvantage associated with application of the conjunctive features is that their total
number grows exponentially with the number of features D. Assuming for a while that the
number of values of all features are equal, we can give an exact relationship between the
number of the conjunctive features and the number of features:

Lemma 1 Assuming K; = k ford =1, ..., D, the number of all conjunctive features is
equal (k + nP —1.

The justification of the relationship is trivial. Let us consider an object x which has D
distinct features with number of values equal «. Then, we need to consider all possible
combinations of these distinct features except the empty conjunctive feature (i.e. ¢ = ¢)
which results in:

D

D) d D
E k“—1=k&+1)" —1.
d=1(d

As we can see, the application of soft rules combination may be problematic when one
deals with high-dimensional problems. Let us consider specifically the case of classifying
new object. The object has D features and each attribute takes only one value (according to
the Lemma 1 « is equal 1). Therefore, in order to classify new object one needs to calculate the
sum of 22 —1 soft rules. For given N objects the general time complexity can be estimated by
O(N 2P). Hence, application of (6) can be performed in an exact form for approximately up
to 20 features. For higher-dimensional problems the time needed to perform the classification
can be too long or the computational demands cannot meet computer requirements. In order
to overcome these limitations a feature selection method can be applied or an approximate
inference should be utilized. A different approach aims at faster computations via better
coding schemes. In Sect. 2.4 we will show how to store sufficient statistics for calculating
probabilities p(y|¢) efficiently.

2.3 Probabilities calculation

In the following, we present the plug-in estimators of probabilities used in the classification
rule (6) for given training data D = {(x1, y1), ..., (Xn, yn)}. First, we propose the modi-
fication of the m-estimate for imbalanced data which is used in estimating p(y|¢). Second,
we define the probability of the object given the conjunctive feature p(x|¢). Next, we give
the function for evaluating complexity of a conjunctive feature which is later applied to
formulating a priori probability of conjunctive features p(¢p).

2.3.1 Modified m-estimate for class label

It has been shown that estimating probabilities with relative frequencies is troublesome and
results in unreliable estimators (Cestnik 1990; Mitchell 1997). In Cestnik (1990) it has been
proposed to take advantage of conjugate distributions, that is, Categorical and Dirichlet
distributions, which gives the Bayesian estimator, called also m-estimate. In the considered
case of the binary classification we deal with Bernoulli distribution and its conjugate prior
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Beta distribution. There are different possible choices of priors (Jaynes 1968), e.g., Jeffreys
prior (Jeffreys 1946), however, we aim at reducing imbalanceness of data through prior. For
this purpose Beta distribution suits well because it allows us to put more probabilistic mass on
probability associated with minority class, which is not the case for any non-informative prior
(e.g., Jeffreys prior). The application of m-estimate to p(y|¢) yields the following estimate:

Ny +mmy
Zy Ny +m’

where Ny , is the number of occurrences of objects with the class label y covered by ¢, m
is the non-negative tunable parameter of the estimator, and 7y is the initial probability of an
object in the class y.

In the context of the between-class imbalance problem the estimation of probability p(y|¢)
should not be burden by one class, i.e., the proper estimator should eliminate the influence of
the majority class on the minority class. In the m-estimate we can modify 7y and m, which
have the following interpretations. The former determines the initial probability of objects
covered by ¢ in the class y and the latter is the number of objects that should be observed
initially, i.e., before observing any data.

In order to eliminate the imbalanced data phenomenon we propose to weight each obser-
vation using the following proportion:

pOQyle) ~ (3)

- N 9

Ty = ) Ny ) ©)]
where Ny is the number of observations in the class y. The weight of an observation in the
minority class is >1 while in the majority class—<1. Such proportion was used in learning
SVMs in order to reduce imbalanced data phenomenon (Cawley 2006; Daemen and De Moor
2009). This proposition can be justified twofold:

1. It has been noted in (Cawley 2006) that the weighting (9) is asymptotically equivalent to
re-sampling the data so that there is an equal number of positive and negative examples.
2. If we sum over all the observations weighted with (9) we get

=N. (10)

In other words, such weighting preserves the number of training examples.
The initial probability can be obtained by normalizing the proportions:

Ty
Ty = >
Zy’ Ty
N_
y
_ Ny (11)
N
where N_, is the number of occurrences of objects with the opposite classto y,i.e., 7| = %

andm_;| = % Hence, the application of (11) can eliminate the imbalanced data phenomenon
by increasing initial probability of sampling initial objects in the minority class.

Typically, the tunable parameter m is determined experimentally (DZeroski et al. 1993;
Zadrozny and Elkan 2001). Later in the work the m-estimate with the prior (11) is referred
to as imbalanced m-estimate (or shorter im-estimate).
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2.3.2 Object probability

In the proposed model we assume that the conjunctive feature can generate both the class label
and the object. In the simplest approach the probability of the object given the conjunctive
feature can be 1 if the object is covered by the conjunctive feature and 0—otherwise. However,
such fashion of assigning probabilities do not distinguish conjunctive features and their
possible generative capabilities. Instead, we would prefer to assume that the object is sampled
from a uniform distribution over the domain determined by ¢:
ifx € A

) (12)
0, otherwise

e
p(xlp) = ( el

where | X, | is the cardinality of the set determined by the conjunctive feature ¢. Such approach
is very similar to the strong sampling assumption (Tenenbaum and Griffiths 2001).

The object probability can be seen as a realization of a semantic principle of simplicity
(semantic Occam’s razor) because the larger the domain of the conjunctive feature is the
more it is penalized. In other words, the larger domain determined by ¢, the lower the
probability of the object. The semantic comes from the interpretation of the probability, i.e.,
we consider the meaning of covering the object by the conjunctive feature. For example, for
x € {1,2,3} x {1, 2}, for the conjunctive feature ¢ = x/ one gets X, = {(x], x}), x},x3)}
and thus for x = (xll, le) the object probability equals p(x|¢) = %

The philosophical considerations can be cast in a more formal justification by observing
that the probability p(x|¢) defined as in (12) is monotonic. In the counting inference-based
literature a rule descriptive measure d : R — R is said to be monotonic in rule , if for any
two rules r1 and r;, such that antecedent of | has more formulae than antecedent of r;, one
obtains d(r1) > d(rp) (Brzezinska et al. 2007; Ceglar and Roddick 2006).2 In the considered
case it is indeed true because the more formulae there are in the conjunctive feature, the
higher value takes the probability (12).

Notice that the proposed fashion the object probability is calculated eliminates the within-
class imbalanced data problem. Usually, the unequal distribution of examples within a class
leads to biased estimates. Here, our assumption about the dependencies in the graphical model
results in vanishing dependency between the class and the object for given conjunctive feature.
Therefore, we calculate the object probability (12) using the cardinality of the set of objects
X, determined by the conjunctive feature independent on the class label.

2.3.3 Conjunctive feature prior

The probability of the conjunctive features represents prior beliefs. One possible proposition
of prior beliefs is the following: The conjunctive features that contain less features are more
probable. In other words, the prior of the conjunctive features can be seen as a realization of a
syntactic principle of simplicity (syntactic Occam’s razor) which states that shorter (simpler)
conjunctive features are a priori more probable than the longer ones. We say syntactic because
we consider the meaning of the structure of the conjunctive feature. Hence, we propose the
following function for measuring conjunctive feature’s complexity:

h(g) = exp(=aDy), 13)

where a is a free parameter, D, denotes the number of features in ¢. Further in the paper we
arbitrarily use a = % which turned to work well in practice.

2 The descriptive measure is said to be anti-monotonic it d(r1) < d(r;) for the same assumptions.

@ Springer



Mach Learn (2015) 101:105-135 115

Table 1 The summary of probabilities calculation used in the experiments

Probability Estimate Tunable parameters
N_y
Nyp+m —* . .
r(yle) % m-determined experimentally
y B

Ly
) e HXE A -

0, otherwise
r(®) o exp(—aDy) a= %

We get the prior over conjunctive features by normalizing the complexity function which
results in the Gibbs distribution:

h(p)
> @)

On the contrary to the object probability, the conjunctive feature prior probability p(¢)
defined as in (14) is anti-monotonic. Extending the conjunctive feature by adding an appro-
priate formula (i.e. preserving it is still the conjunctive feature according to our definition)
results in decreasing the probability in (13).

plp) = (14)

2.3.4 Probability calculation: summary

In Table 1 we give a summary of our considerations about how the probabilities used in
the combination of the soft rules are calculated and indicate the final forms we use in the
experiments. In the conjunctive feature prior we can omit calculating denominator since it is
constant for all conjunctive features and does not influence final prediction. Hence, we use
wy, = h(yp) instead of the probability (14) in the combination of the soft rules (7).

2.4 Graph-based memorization

As we have pointed out earlier, for equal number of features’ values, there are (k + l)D —1of
all conjunctive features (see Lemma 1). In order to calculate probability estimators for p(y|¢),
we need to store the number of sufficient statistics (parameters) proportional to the number
of all possible conjunctive features. In practice, such approach can be troublesome or even
impossible to keep in computer’s memory because of the exponential complexity. However,
to speed-up calculations and limit the number of parameters, we can take advantage of the
data aggregation method with the graph-based representation which we call graph-based
memorization.

Let us define the graph G, = (Vy, &£y) for the given class label y in the following manner.
The set of vertices Vy, consists of the nodes that represent considered features with all values,
i.e., a node is a pair v = (d,i) where d states for feature’s index and i denotes value
of the feature. Nodes corresponding to one feature form a layer. We add a ferminal node
vr = (D + 1, 1) to the set of vertices and it forms a separate layer. Moreover, the terminal
node is added to every example as an additional feature which always takes value 1. The
set of edges &, consists of all connections between any two nodes (including the terminal
node) from different layers, e.g., the edge in the class y connecting ith value in sth layer,
u = (s,1i), and jth value in tth layer, v = (¢, j), is denoted by e,{,v. Additionally, all nodes
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(a)

Fig. 3 a Exemplary graph for x € {1, 2)2 in the class y. The gray vertex denotes the terminal node. The
light gray rectangle represents first layer and the darker one—second layer. b Exemplary conjunctive feature
0= xl1 A x% represented as a graph Gy, , forx € {1, 2)2

are connected with the terminal node. A weight of an edge represents the number of co-
occurrences of two nodes in the training data, e.g., the weight of an edge in the class y
connecting ith value in sth layer, u = (s, i), and jth value in rth layer, v = (¢, j), is denoted
by w;,_,. An exemplary graph is presented in Fig. 3a. All complete subgraphs which consist
of at most one node from each layer and the terminal layer constitute conjunctive features in
the class y, Gy , = (Vy, £y,¢). Note that the set of vertices is the same as in the graph G but
the set of edges consists of only those edges which connect nodes included in the conjunctive
feature ¢. Additionally, we assume that the terminal node is included in each observation.
An exemplary conjunctive feature as a graph is presented in Fig. 3b.

For given data D we can propose the following weights’ updating procedure. If a pair of
nodes u = (s, i) and v = (¢, j) co-occurs in nth observation, (X,, y,), then

wyyi=wi + 1 (15)

We need to perform updating for all co-occurrences of pairs of nodes in the observation
X, and proceed the procedure for all examples in D. Remember that the terminal node
is included in the observation, thus we always update w;",, for all features. Initially, all
weights are set to zero. It is worth noting that the updating procedure is independent on the
order of upcoming observations which means that the updating process is performed in an
incremental manner and can be applied to a datastream. The procedure of the graph-based
memorization is presented in Algorithm 1.

Graph-based memorization allows us to aggregate data in graphs G, for classes y €
{—1, 1}, and thus we can approximate the count of objects with the class label y which are
covered by ¢ as follows:

Ny < rnvin Wi . (16)
(u,v):ey,vE€Ey o
The im-estimator can be determined using graph-based memorization by inserting (16) into
(8).

The application of the graph-based memorization indeed allows to decrease the number

of stored sufficient statistics according to the following Lemma:

Lemma 2 Assuming Kg =« ford =1,...,D,k >2and D >3 ork =2and D > 4,
the number of sufficient statistics stored by the graph G is equal (Dk + 1)2.

Proof Let us use the adjacency matrix to represent the considered graph G. Because there are
K + 1 nodes, i.e., there are K nodes corresponding to features with values plus the terminal
node, we need less than (K + 1)2 weights in one class, because we do not allow edges within
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Algorithm 1: Graph-based memorization.

Input : training data consisting of N examples, D is the number of features, y € {—1, 1}.
Output: For each class y the graph G which contains aggregated training data.

1 Initialize: Vy V¥, yep, w;f.v «~—0;
2for n=1—> Ndo

3 for d from 1 to D do

4 Set i to be the value of the d'! attribute of the nth observation;

5 u<«— (d,i);

6 for é fromd + 1to D + 1 do

7 Set j to be the value of the s attribute of the n™ observation;
8
9

v <— (3, ));

wi“"fv «— w,{f’u +1;
10 end
1 end
12 end

one layer, i.e., among nodes representing values of the same feature. Moreover, we notice that
weights are symmetric, i.e., for any two nodes u and v, w,f,v = wly,, «» because we calculate
co-occurrence of two nodes. Hence, we need less than (K + l)2 /2 weights in one class. Next,
once we assume equality of features” domains and binary classification problem, we get the

number of sufficient statistics to be equal (D« + 1)2. ]

2.4.1 Example

Let us consider a toy example for graph-based memorization. The object is described by two
variables which can take two values, i.e., x € {1,2} x {1,2},and y € {—1, 1}. We assume
there are three examples: 1) (xlz, x%) and y = —1, ii) (xlz, x%) and y = —1, iii) ()cl1 , x;) and
y=1

According to the graph-based memorization, we begin with the first example and update
each edge which is encountered in the example (line 9 in Algorithm 1). We have to remember
that the terminal node is added to every example and that is why one needs to iterate to D + 1
instead of D (line 6 in Algorithm 1). The resulting graphs after including the first two and
the last datum are presented in Fig. 4a, b, respectively.

For graphs as in Fig. 4b we are able to calculate probability of y for given counts Ny ,
determined by (16), the conjunctive feature ¢, initial probabilities and fixed value of m using
(8). Let us assume that m = 1 and 71 = 0.5. Then, for instance, for ¢ = xll A x21 we
have Ny, = min{l, 1} = 1 and N_; , = min{0, 1} = 0, and consequently p(y = ll¢p) =

L3 = 0.75 and p(y = —1]p) = 42 = 0.25.

2.5 Multi-class case

In our considerations we have assumed only two possible class labels. However, the presented
approach can be straightforwardly generalized to the multi-class case. First of all, let us notice
that in the presented equations for calculating the combination of soft rules, i.e., Egs. (5) and
(7), as well as in the equation for final prediction (3), there is no restriction for the number
of classes. Similarly, in calculating the probability of class label [see Eq. (6)] the number of
classes is not determined. We have only used the assumption of two classes in calculating
weighting of observations in the Eq. (9). However, it is easy to generalize it to any number of
classes by replacing 2 in the denominator with the number of classes. Finally, the graph-based
memorization is also independent on the number of class labels because we build a graph
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1

1
ur ur

Graph for y = —1 Graph for y = —1

(a) (b)

Fig.4 An exemplary performance of the graph-based memorization for x € {1, 2} x {1,2}, y € {—1, 1} and
three observations. Numbers above edges represent values of weights. More details can be found in text

for each class separately. Therefore, the whole process of storing sufficient statistics in the
graph-based representation can be performed in the multi-class case.

3 Experiments

Data We carry out one simulation study on synthetic data and two experiments: Experiment 1
on synthetic benchmark datasets® (see Table 2), Experiment 2 on medical datasets” (see Table
3) including one real-life medical dataset provided by the Institute of Oncology, Ljubljana
(Strumbelj et al. 2010):

— breast cancer: the goal is the prediction of a recurrence of a breast cancer,

— breast cancer Wisconsin: the goal is the classification of a breast cancer as benign or
malignant,

— diabetes: the goal is to classify the patient as tested positive for diabetes or not,

— hepatitis: the goal is to predict whether the patient suffering hepatitis will survive or die,

— indian liver: the goal is to classify the patient as healthy or with a liver issue,

— liver disorders: the goal is to classify the patient as healthy or with a liver disorder,

— postoperative patient: the goal is to classify the patient to be sent to hospital or home,

— oncology: the goal is to predict whether the patient will have a recurrence of a breast
cancer or not.

The datasets are summarized in Tables 2 and 3 in which the number of features and the
number of examples for each dataset are given. Additionally, we provide the imbalance ratio
defined as the number of negative class examples divided by the number of positive class
examples (Galar et al. 2012).

3 Datasets are built-in the KEEL software (Alcala et al. 2010).
4 Datasets are taken from the UCI Machine Learning Repository (Frank and Asuncion 2010).
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Table 2 The number of examples, the number of features and the imbalance ratio for benchmark datasets

Dataset Number of examples Number of features Imbalance ratio
abalonel9 4174 8 128.87
abalone9-18 731 8 16.68
car-2class 1728 5 2.25
ecoli-0-1-3-7vs2-6 281 7 39.15
ecoli-Ovs1 220 7 1.86
ecolil 336 7 3.36
ecoli2 336 7 5.46
ecoli3 336 7 8.77
ecoli4 336 7 13.84
glass-0123vs456 214 9 3.19
glass-016vs5 184 9 19.44
glassO 214 9 2.06
glass1 214 9 1.82
glass4 214 9 15.47
glass5 214 9 22.81
glass6 214 9 6.38
habermanImb 306 3 2.68
irisO 150 4 2.00
new-thyroid1 215 5 5.14
new-thyroid2 215 5 4.92
page-blocks13vs4 472 10 15.85
page-blocks0 5472 10 8.77
pimalmb 768 8 1.90
shuttle-c0-vs-c4 1829 9 13.87
shuttle-c2-vs-c4 129 9 20.5
vowel0 988 13 10.10
wisconsinlmb 683 9 1.86
yeast-05679vs4 528 8 9.35
yeast-1289vs7 947 8 30.56
yeast-1vs7 459 8 13.87
yeast-2vs4 514 8 9.08
yeast-2vs8 482 8 23.10
yeastl 1484 8 2.46
yeast3 1484 8 8.11
yeast4 1484 8 28.41
yeast5 1484 8 32.78
yeast6 1484 8 39.15

Evaluation methodology. The proposed method, Combination of Soft Rules (CSR), was eval-
uated on the synthetic data and further was compared in two experiments with the following
non-rule-based methods:
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Table 3 The number of examples, the number of features and the imbalance ratio for medical datasets used
in the experiments

Dataset Number of examples Number of features Imbalance ratio
Breast cancer 286 9 2.62

Breast wisconsin 699 9 2

Diabetes 768 8 1.90

Hepatitis 155 19 2.78

Indian liver 583 10 1.87

Liver disorders 345 6 1.52

Post operative patient 90 8 543

Oncology 949 15 2.92

— AdaBoost (AB) (Freund and Schapire 1997),

— Bagging (Bag) (Breiman 1996),

— SMOTEBagging (SBag): Modified Bagging by learning base learners using SMOTE
sampling technique (Chawla et al. 2002),

— SMOTEBoost (SBoost): Modified AdaBoost by learning base learners using SMOTE
sampling technique (Chawla et al. 2002),

— Naive Bayes classifier (NB),

— Cost-sensitive SVM (CSVM) with linear kernel (Cortes and Vapnik 1995),

— Neural Network (NN),

and rule-based methods:

— C.45 tree learner (Quinlan 1993),

— RIPPER classification rules learner (Cohen 1995),

— OneR classification rules learner (Holte 1993),

— CFAR classification rules learner based on fuzzy association rules (Chen and Chen 2008),

— SGERD fuzzy classification rules learner based on steady-state genetic algorithm (Man-
soori et al. 2008),

— ART classification rules learner based on association rule tree (Berzal et al. 2004).

In order to evaluate the methods we applied the following assessment metrics:®

— Gmean (Geometric mean) which is defined as follows (Kubat and Matwin 1997; Kubat
et al. 1997; He and Garcia 2009; Wang and Japkowicz 2010):

TP TN
Gmean = \/ ) )
TP + FN TN + FP

— AUC (Area Under Curve of the ROC curve) which is expressed in the following form (He
and Garcia 2009):

1 + _rr__ _ _FP
AUC = TP+FN IN+FP (1 8)

5 )

5 In the experiment we treat C.45 as a rule-based method because all paths in the decision tree can be
represented as a set of decision rules.

6 TP is a number of positive examples classified as positive, FN is a number of positive examples classified
as negative, FP is a number of negative examples classified as positive, TN is a number of negative examples
classified as negative.
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— Precision specifies how many examples from minority class were correctly classified

comparing to the incorrectly labeled majority objects as minority ones (Fawcett 2006):

. TP
Precision = ——, (19)
TP + FP
— Recall denotes the fraction of correctly classified objects from minority class to all exam-

ples labeled as minority class (Fawcett 2006):

Recall = L (20)

TP + FN

It is advocated to use Gmean for imbalanced datasets because this metric punishes low
classification accuracy of the minority class (Kubat and Matwin 1997; Kubat et al. 1997; He
and Garcia 2009; Wang and Japkowicz 2010). Comparing to AUC the Gmean enforces high
predictive accuracy on majority and minority classes. For further comparison of methods we
calculated average ranks over benchmark and medical datasets according to Gmean and AUC
which is a simple fashion of evaluating classification algorithms (Demsar 2006; Brazdil et al.
2003).

In the experiment Precision and Recall were also examined because these two measures
give a thorough insight into the classifier’s predictive performance exclusively for minority
class. For better understanding of the obtained results, we present graphically the Pareto
frontier (Brzezinska et al. 2007; Vamplew et al. 2011) with respect to Precision and Recall
for the considered methods.

In order to verify our claims about the time complexity of the proposed approach, we
measured the average execution time of five folds, expressed in miliseconds. We examined
the dependency between time and the number of attributes and the number of examples
separately.

The presented approach uses categorical variables only, therefore, we applied discretizer
which utilizes entropy minimization heuristics (Fayyad and Irani 1993). Additionally, we
performed feature selection using correlation-based feature extraction with exhaustive search
(Hall 1999) to the selected datasets. In the Experiment 2, the feature selection on hepatitis
dataset resulted in ten features, and in the Experiment 3 (oncology dataset)—five features
were selected.

The experiments were conducted in KEEL software’ (Alcald et al. 2010). In order to
obtain results we applied fivefold cross validation. For each dataset the value of m in CSF
was determined using a validation set.

3.1 Simulation study: synthetic data

In order to get better insight of the proposed approach, in the simulation study we want to
state and verify two issues: (i) the behavior of CSR for different distributions and given
examples, (ii) the time complexity of CSR with varying number of attributes or examples.
The questions are verified with the following simulation set-ups:

(1) It is assumed that the considered phenomenon is described by 8 binary attributes,
x € {0, 1}8. The attributes are generated independently with the Bernoulli distribu-
tion with py; = 0.5, ford = 1, ..., 8. Further, we consider four possible rule-based
descriptions of the phenomenon (in the brackets we give the imbalance ratio of all pos-
sible configurations of x), namely, a conjunction xll = y = 1 (1:1), a more specific

7 http://www.keel.es/.
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Table 4 Results of the simulation study in terms of Gmean and AUC for CSR

Rules N =50 N =200

e=0 =001 =005 =01 =0 =001 £=0.05 ¢=0.1
Gmean
X=y=1 1 1 1 0997 1 1 1 1
xdaxi=y=1 0.900 0.863 0.708 0520 1 0.996 0.666 0.594
vl =y=1 0.914 0.808 0.758 0521 1 1 0.803 0.542
ciaxhval=y=1 0965 0924 0.902 0837 1 1 0.986 0.980
AUC
X=y=1 1 1 1 0997 1 1 1 1
xMAaxi=y=1 0.893 0.852 0.796 0662 1 0.996 0.650 0.530
vl =y=1 0.924 0.866 0.817 0.665 1 1 0.843 0.713
ciaxhvxl=y=1 0966 0927 0.908 0.879 1 1 0.986 0.981

The first column Rules indicates what is the underlying description of the phenomenon

(i)

conjunction x]1 A xé =y =1 (3:1), a disjunction xl1 \Y xé = y =1(3:1), and a more
specific disjunction (xl1 A xsl) \% xé = y = 1(5:3).% Additionally, during generating
data we inject noise to the class label, i.e., we switch the class label with probability
e € {0,0.01, 0.05, 0.1}. Eventually, we evaluate CSR with all possible configurations
without noise, while learning is performed with 50 and 200 examples. In learning the
im-estimate was used withm = 1.

In order to check the time complexity we chose two datasets from the benchmark datasets,
namely, vowelO (13 attributes, 990 examples) and page-blocksO (10 attributes, 5000
examples). The first of the mentioned datasets was used to evaluate CSR in the case
of varying number of attributes, while the second one was applied to assess the time
complexity for varying number of examples.

All simulations were repeated 5 times.

The averaged results for the first issue are presented in Table 4 and the averaged results
for the second issue are given in Fig. 5.

We can draw the following conclusions from the simulation study:

(@)

(i)

In general, we conclude that CSR can be used to learn different descriptions of the phe-
nomenon but for the sufficient number of observations, see Table 4. A quite unexpected
conclusion of the simulation experiment is that CSR can handle both conjunctions and
disjunctions. A main disadvantage of the CSR is its sensitivity of the value of the para-
meter m. In the simulation runs we used fixed m = 1 which is an inappropriate value for
imbalanced data. Therefore, it is needed to apply a model selection of this parameter.
As we presumed (see Lemma 1), CSR allows to handle up to 10 attributes in a reasonable
time but for more than 10 attributes the computation time starts increasing drastically,
see Fig. 5a. On the other hand, the time complexity in the case of the growing number of
examples is linear, see Fig. 5b. This is an important fact which shows that CSR scales
well for large datasets but with a moderate number of attributes.

8 We consider the closed-world assumption, i.e., any X which is not covered by the given rule is presumed to
belong to the class y = —1.
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(a) Varying number of attributes (b) Varying number of examples
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Fig. 5 Average execution time: a for varying number of attributes (vowelO dataset), b for varying number of
examples (page-blocks0 dataset)

3.2 Experiment 1: Benchmark data

In the first experiment we consider 37 benchmark datasets. These are generated from the
benchmark datasets available in UCI ML Repository (Frank and Asuncion 2010) and are
built-in the KEEL software. The classification problem for them is demanding because the
datasets are highly imbalanced (see Table 2).

3.3 Experiment 2: Medical data

First, in the second experiment we evaluate our method on benchmark medical datasets (Frank
and Asuncion 2010). It was noticed that medical problems associated with illnesses or post-
operative prediction are typical examples of imbalanced data phenomenon (Mac Namee et al.
2002). In the considered medical datasets the issue of imbalanced data is observed, i.e., on
average the imbalance ratio equals 2.6, varying from 1.52 to 5.43 (see Table 3).

Next, we took a closer look at the 949-case dataset provided by the Institute of Oncology
Ljubljana (Strumbelj et al. 2010). Each patient is described by 15 features:

— menopausal status;

— tumor stage;

— tumor grade;

— histological type of the tumor;

— level of progesterone receptors in tumor (in fmol per mg of protein);
— invasiveness of the tumor

— number of involved lymph nodes

— medical history

— lymphatic or vascular invasion;

— level of estrogen receptors in tumor (in fmol per mg of protein);
— diameter of the largest removed lymph node;

— ratio between involved and total lymph nodes removed;

— patient age group;

— application of a therapy (cTherapy);

— application of a therapy (hTherapy).
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All the features were discretized by oncologists, based on how they use the features in
everyday medical practice, see (Strumbelj et al. 2010). The goal in the considered problem
is the prognosis of a breast cancer recurrence within 10 years after surgery.

The oncology dataset, similarly to the benchmark medical datasets, suffers from the imbal-
ance data phenomenon. The imbalance ratio for this dataset equals 2.92. It is a value which
forces the application of techniques for preventing overfitting to the majority class.

For the oncology dataset we used an additional assessment metric, that is, the classification
accuracy (CA) which is defined as follows:

TP +TN

CA = .
TP+ FN + FP + TN

@2y

The CA was applied because the authors of (Strumbelj et al. 2010) have obtained results for
randomly chosen 100 cases which were analyzed by two human doctors (O7 and O2 in Fig.
6). The oncologists were asked to predict the class value for these cases and then the CA value
was calculated (Strumbelj et al. 2010). The obtained quantities do not lead to a conclusion
that the classifiers have significantly higher accuracy. However, they can give an insight in
the usefulness of the application of machine learning methods in the medical domain.

3.4 Results of the experiments and discussion

The results of the Experiment 1 are presented in Table 5 (for ranks of Gmean and AUC)),
and Fig. 7a (for Pareto frontier with respect to Precision and Recall). The results of the
Experiments 2 are presented in Table 5 (for ranks of Gmean and AUC), and Fig. 7b (for
Pareto frontier with respect to Precision and Recall). Additionally, in Fig. 6 we provide a
comparison of machine learning methods and human doctors in terms of CA. More detailed
results of the experiments are given in Electronic Supplementary Material; Experiment 1: in
Table A1 (for Gmean), Table A3 (for AUC)), Table A5 (for Precision and Recall), Experiment

Table 5 Detailed test results for

CSR versus considered methods Method Gmean AUC

using ranks of Gmean and AUC Benchmark Medical Benchmark Medical

for benchmark and medical

datasets CSR 3.730 3.250 3.770 3.313
AB 7.378 7.375 7.230 7.625
BAG 8.081 9.000 7.905 7.750
SBAG 3.608 4.500 3.703 5.500
SBoost 3.986 4.438 3.905 5.375
CSVM 6.878 6.438 6.689 5.813
C45 4.608 8.125 4.608 9.125
NN 8.284 6.500 8.973 8.375
NB 7.351 3.938 7.162 3.188
RIPPER 6.608 6.875 6.608 7.625
IR 11.068 10.500 11.027 9.563

Best results in bold and second CFAR 11.878 12.125 11.851 11.313

results in bold and italic SGERD 11.432 9.625 11.365 9.375
ART 10.108 12.313 10.203 11.063
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CSF  AB  Bag SBag SBoostCSVM C.45 NN NB Ol 02

Fig. 6 Summary performance comparison of all algorithms and human oncologists, O/ and O2. The perfor-
mance is expressed by classification accuracy (21). Note both the human oncologists as well as the classifiers
performed the classification for the same test set consisting of 100 examples

2: Table A2 (for Gmean), Table A4 (for AUC), Table A6 (for Precision and Recall). The
results of time complexity analysis are gathered in Table A7 (see Electronic Supplementary
Material) and more detailed results are presented in Figs. 8, 9, 10, and 11.

The results obtained within the carried out experiments show that according to the Gmean
and the AUC metrics the proposed approach performs comparably with the best ensemble-
based classifiers, that is, SMOTEBagging (SBAG) and SMOTEBoosting (SBoost), and
slightly better than the best non-ensemble predictor, i.e., Naive Bayes classifier (NB), see
Tables A1, A2, A3, A4 in Electronic Supplementary Material, and the ranks in Table 5. How-
ever, it outperforms all rule-based methods where, for instance, the best rule-based methods
C45 and RIPPER achieved results worst by several ranks.

It is interesting that the combination of soft rules performed very good on datasets with
small number of examples, e.g., ecoli-0-1-3-7vs2-6, glass-016vs5, new-thyroid2, hepatitis,
postoperative patient. This effect can be explained twofold. First, in general the idea of
combining models increases robustness to overfitting phenomenon. Second, it is possible
that the application of the im-estimate allows to counteract the small size of the dataset. On
the other hand, it can be noticed that the CSR achieved slightly worst results on datasets
with higher number of attributes, e.g., page-blocks0, vowel0. The plausible explanation of
this effect is due to the wrong assumption that the data are generated by one conjunctive
feature. Perhaps, other kind of the shared model, e.g., with some kind of disjunction of the
conjunctive features, would better represent hidden representation of data.

In terms of Precision and Recall it turned out that CSR is Pareto-optimal in case of both
benchmark and medical datasets (see Fig. 7a, b), where methods forming Pareto frontier are
denoted by triangular marks and our method is represented by a star). On medical datasets our
method achieved balanced values of Precision and Recall. However, on benchmark datasets
CSR has very high value of Recall but lower value of Precision which means that it is able
to detect most of positive objects but is prone to label negatives as positives. In the case of
medical domain such fact is less dangerous from the patient point of view where it is less
harmful to classify a healthy patient as ill (Recall) than in the opposite manner (Precision).
Nonetheless, comparing our approach to other rule-based methods it turns out that only C45
and RIPPER are comparable (on benchmark datasets they are close the Pareto frontier, and
on medical datasets C45 is Pareto-optimal and RIPPER is close to the Pareto frontier).
Additionally, the OneR is Pareto-optimal on medical datasets.

Quite surprising results were obtained by the Naive Bayes which achieved second rank
in terms of Gmean and first rank in terms of AUC on medical datasets (see Table 5).
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Fig. 7 Pareto frontier for: a benchmark datasets, b medical datasets. Methods denoted by triangular mark
constitutes the Pareto frontier. Rules-based methods are denoted by diamonds. Notice that in both cases the
CSR (denoted by a star) is Pareto-optimal

Nevertheless, it is a well-known fact that this Bayesian classifier with features independence
assumption behaves extremely good in the medical domain (Kononenko 2001). The general
properties of the Naive Bayes classifier has been thoroughly studied in (Domingos and
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Fig. 8 Execution time comparison between CSR and non-rule-based methods with respect to the number of

attributes

Pazzani 1997) and theoretical justification for its good performance has been given. However,
we notice that our method performs better than NB classifier and obtains less varying values
(see standard deviations Tables A1, A2, A3, A4 in Electronic Supplementary Material). It is
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Fig. 10 Execution time comparison between CSR and non-rule-based methods with respect to the number

of examples

an important result because both NB and our method try to approximate the optimal Bayes

classifier.
In the paper, we have claimed that main disadvantage of our approach is the exponential

growth of soft rules with increasing number of attributes (see Lemma 1). In the experiment
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Fig. 11 Execution time comparison between CSR and rule-based methods with respect to the number of
examples

we verified this claim empirically by calculating the average execution time of five cross-
validation folds. In Figs. 8 and 9 the times with respect to the number of attributes for
non-rules-based and rules-based methods, respectively, are presented. In Figs. 10 and 11 the
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times with respect to the growing number of examples for non-rules-based and rules-based
methods, respectively, are given. We can notice that the execution time of CSR grows as the
number of attributes increases, as expected. The same effect is observed in the case of the
number of examples. However, we believe that this result can be a consequence of the testing
procedure which is more time-consuming for any combination of models (see Fig. 10a—d)
for ensemble classifiers). Comparing CSR to the non-rule-based methods we notice that our
approach performs similarly or even takes less time than other combinations of models, i.e.,
AB, BAG, SBAG, and SBoost. It is especially evident for the ensemble classifiers which
apply additional procedure of SMOTE (see Fig. 10c, d). However, CSR utilizes noticeably
much more time than any of the rule-based methods. The only exception is CFAR which
performs longer with respect to the number of attributes than our approach (see Fig. 9 c¢) and
comparably with respect to the number of examples (see Fig. 11c).

Last but not least, we would like to address the results obtained by the classifiers in the
oncology dataset to the ones received by oncologists. The human experts have been pre-
sented with 100 cases only and their relatively mediocre performance cannot be exaggerated.
Nonetheless, it can be stated that the predictions of the machine learning methods are at least
comparable with those of expert oncologists (see Fig. 6).

3.5 Exemplary knowledge for oncology data

At the end of the experimental section we would like to demonstrate exemplary knowledge
in terms of soft rules. Let us consider the oncology data and one randomly chosen patient
which is described as follows:

Menopausal status false.

Tumor stage less than 20 mm.

Tumor grade medium.

Histological type of the tumor ductal.

Level of progesterone receptors in tumor (in fmol per mg of protein) more than 10.
Invasiveness of the tumor no.

Number of involved lymph nodes 0.

Application of a therapy (cTherapy) false.

Application of a therapy (hTherapy) false.

10. Medical history 1st generation breast, ovarian or prostate cancer.

11. Lymphatic or vascular invasion false.

12. Level of estrogen receptors in tumor (in fmol per mg of protein) more than 30.
13. Diameter of the largest removed lymph node less than 15 mm.

14. Ratio between involved and total lymph nodes removed 0.

15. Patient age group under 40.

PN R LD

b

Each sentence corresponds to medical history of the patient.

Further, let us assume that we have performed the graph-based memorization basing on
the training data. Then we are able to generate soft rules for the given patient’s description,
for example:

1. IF application of a therapy (cTherapy) false AND lymphatic or vascular invasion false
THEN y = 1 with p = 0.030 or y = —1 with p = 0.226.
. IF lymphatic or vascular invasion false
THEN y = 1 with p = 0.107 or y = —1 with p = 0.353.
. IF menopausal status false AND tumor grade medium
THEN y = 1 with p = 0.036 or y = —1 with p = 0.028.
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. IF application of a therapy (hTherapy) false
THEN y = 1 with p = 0.125 or y = —1 with p = 0.316.

We can notice that the second and fourth rule would significantly contribute to the final
prediction (see (7)). Nonetheless, it is instructive to examine how class probabilities vary for
given antecedent. Including both information about cTheraphy and lymphatic or vascular
invasions drastically decreases probability of y = 1 in comparison to information about
lymphatic or vascular invasions only (see rules 1 and 2). Therefore, one can easily generate
the most important rules, i.e., the rules which are the most contributory to the final decision,
and present them in form of an interpretable report to the physician or the patient. Moreover,
in comparison to the crisp rules, the soft rules enrich the report by additional information
about the probability of the class label in the consequent of the rule.

4 Conclusion

We have proposed the combination of soft rules in the application to the medical domain.
The approach relies on probabilistic decision making with latent relationships among features
represented by the conjunctive features and a new manner of estimating probabilities in case
of imbalanced data problem, which is the modified m-estimator (im-estimator). Moreover,
we have presented the graph-based memorization, a technique for aggregating data in the
form of a graph. This technique enables an efficient fashion of memorizing observations. We
would like also to emphasize that the combination of soft rules is the comprehensible model
and can be useful in supporting medical diagnosis.

In the ongoing research we develop the Bayesian approach to the presented problem.
Moreover, we focus on establishing a sampling method basing on Markov Chain Monte
Carlo technique for approximate inference in high-dimensional spaces. In this paper, we
have assumed that data is generated from one conjunctive feature which in fact approximates
the true concept representation. Therefore, we leave investigating the inference with a set of
conjunctive features as future research.
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