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Abstract We consider the minimum affine separating committee (MASC) combinatorial
optimization problem, which is related to ensemble machine learning techniques on the class
of linear weak classifiers combined by the rule of simple majority. Actually, the MASC
problem is a mathematical formalization of the famous Vapnik–Chervonenkis principle of
structural risk minimization in the mentioned class of classifiers. According to this principle,
it is required to construct a best performance ensemble classifier belonging to a family of the
least possible VC-dimension. It is known that the MASC problem is NP-hard and remains
intractable in spaces of any fixed dimension n > 1 even under an additional constraint on
the separated sets to be in general position. This special case of the MASC problem called
MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time
approximation algorithms for a class of combinatorial optimization problems containing the
MASC problem, we propose a new framework, adjusting the well-known Multiple Weights
Updatemethod. Following this approach, we construct polynomial-time approximation algo-
rithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The
results obtained provide a theoretical framework for learning a high-performance ensembles
of affine classifiers.
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1 Introduction

A system of constraints (algebraic or differential equations, inequalities, inclusions, etc.) is
a mathematical model, which is widely involved in economic modeling, decision making,
machine learning, and data mining. In many cases, the formulation of an initial problem
contains contradictory conditions; this leads the corresponding system of constraints to be
infeasible; i.e., to have no solutions in the usual sense. To this end, before solving the problem,
it is required to generalize the concept of a solution itself. In machine learning, there are two
known significant approaches to such a generalization. Namely, they are: (i) the kernel trick
(Cortes and Vapnik 1995; Schölkopf and Smola 2002; Hofmann et al. 2008) resolving the
infeasibility of an initial instance of the SVM-classifier learning problem by an implicit
mapping (of this instance) into a new feature space and (ii) ensemble learning techniques,
among them are boosting (Schapire 1990; Freund 1995; Schapire and Freund 2012), bagging
(Breiman 1996, 2001), etc.

During past decades, along with the famous (Eremin et al. 1983; Cortes and Vapnik
1995; Eremin 2002) Chebyshev ε-relaxation continuous approach to the optimal correction
of infeasible systems, an alternative discrete approach to such a generalization has been
developed (Mazurov 1990; Khachai et al. 2002; Khachai 2006; Mazurov and Khachai 2004,
2007; Kobylkin 2012). According to this approach, the concept of a solution for a system of
constraints (in case of its infeasibility) is refined using the concept of a finite ensemble of
appropriately chosen quasi-solutions. The theory of committee generalized solutions based
on fundamental results of Vl. Mazurov (Mazurov 1990) provides a mathematical framework
for this generalization, where partial quasi-solutions, also known as committee members, are
combined by the majority voting.

We consider the Minimum Affine Separating Committee (MASC) combinatorial opti-
mization problem closely related to the special case of a two-class classification problem,
for which piecewise linear classifiers also take their decisions by the rule of simple majority
voting.

According to the classic setting of the classification problem, for a finite sample

(x1, y1), . . . , (xm, ym), (1)

where xi are points in an n-dimensional Euclidean feature space E , and yi ∈ {−1, 1}, it is
required to construct (learn) a committee piecewise linear classifier

h(x) = sign
k∑

j=1

α j sign(c
T
j x − d j ) (2)

for some integers α j ≥ 0. Since any partial classifier sign(cTj x − d j ) is a composition of an
affine and threshold functions, the classifier h is also called affine separating committee. If
a classifier h classifies correctly the instances of sample (1), we call such a classifier perfect
with respect to this sample.

In the context of Vapnik–Chervonenkis structural risk minimization framework, it is sig-
nificant to design learning algorithms, which, given sample (1), construct perfect committee
classifiers of form (2) belonging to a family of the minimum VC-dimension.

The motivation of our paper is based on the following two facts:

(i) for any non-contradictory sample (1) (i.e., a sample, for which inequality yi1 �= yi2
implies xi1 �= xi2 ), there exists a committee classifier h, which is perfect w.r.t. this
sample (Mazurov 1971);
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(ii) the family of classifiers (2) defined on the n-dimensional space E and sharing the property∑k
j=1 α j = q has VC-dimension O(qn) (Khachay and Poberii 2009).

In the MASC problem, the goal is to search for perfect committee (2) w.r.t. sample (1)
having the minimum value1 of the total weight

∑k
j=1 α j . Therefore, the MASC problem can

be considered as a mathematical formalization of the structural risk minimization principle
in the class of committee classifiers. Any optimal (or even a good approximate) solution of
this problem produces a classifier with a high generalization performance.

Unfortunately, the MASC problem is strongly NP-hard and remains intractable even in
a fixed-dimensional space (for any dimension n > 1) and under the additional constraint
of general position for a training set (Definition 2, Sect. 3). This special case denoted by
MASC-GP(n) is themain subject of interest of this paper. Since this problem is intractable, the
question of its effective approximability remains still open. To date, the best known (Khachay
and Poberii 2009) ratio (state-of-the-art) for polynomial-time approximation algorithms for
the MASC-GP(n) problem is O(m/n) (in the general case) and O(lnm) for some special
instances (in Sect. 4, we call them nice).

Using a suitable generalization of the famous boosting by sampling (Freund 1995) learning
strategy, we construct new polynomial-time approximation algorithms for this problem with
improved accuracy. In particular, we present an algorithm with a general approximation ratio
of O((m lnm

n )1/2) and a ratio of O(lnm) for the same nice instances, wherem is the length of
the training sample. Hereinafter, w.l.o.g., we suppose that m > n, since otherwise the initial
sample can be polynomially reduced to an equivalent one located in the (m−1)-dimensional
space.

The paper has the following structure. In Sect. 2, we give an overview of related work.
In Sect. 3, we introduce the basic notation and the Minimum Affine Separating Committee
(MASC) combinatorial optimization problem. Section 4 contains a brief survey of known
results our considerations are based on. These results stem from the theory of linear inequal-
ities and matrix games. In Sect. 5, we present our own results concerning the adaptation of
the Multiple Weights Update algorithm to finding approximate solutions of the MASC prob-
lem. Our approximation algorithms (one of which has the best known approximation ratio)
are proposed in Sect. 6. Finally, in Sect. 7, we summarize the results presented and discuss
questions that still remain open.

2 Related work

The notion of a committee solution for the pattern recognition problem (committee classifier,
committee machine, committee) was introduced in the middle of the 1960s (Ablow 1965;
Nilsson 1965). These kinds of learnable machines are closely related to the geometric sep-
aration problem for finite sets by ensembles of hyperplanes. The works above mostly deal
with illustrative examples of the committee concept and present several learning heuristics in
the class of committee piecewise linear classifiers. Arguably, the first theoretical result in this
field isMazurov’s theorem (Mazurov 1971) providing a criterion of the perfect learnability in
the class of affine committees in terms of properties of the given training sample. We discuss
this result in Sect. 3, where the criterion is referred as Theorem 1.

To the best of our knowledge, most of the related results come from several areas of
computer science, among them are neural networks, computational geometry, combinato-
rial optimization, and ensemble learning theory. Since an affine separating committee can

1 This value is also called committee length.

123



234 Mach Learn (2015) 101:231–251

be represented in terms of a simple feed-forward neural network (e.g., see Khachay 2007),
complexity results for the MASC problem can be considered as a progress in the complexity
analysis of more general learning problems for the class of k-layered perceptrons. In partic-
ular, the algorithms proposed in our paper improve the complexity results obtained in (Lin
and Vitter 1991; Blum and Rivest 1992) for the perceptron loading problem.

In computational geometry, the k-Polyhedral Separability Problem is studied from the
late 1980s (Megiddo 1988). In this problem, for a given boolean formula ϕ(ξ1, . . . , ξk) and
finite sets A and B located in an finite-dimensional space, it is required to find a collection
of k hyperplanes separating A and B according to the formula ϕ. It can be easily verified
(e.g., see Khachay and Poberii 2009) that an affine separating committee is a solution of this
problem for the special type of ϕ. Therefore, any affine committee construction algorithm
can be considered as an approximation algorithm for this special case of the k-Polyhedral
Separability Problem.

Also, the MASC problem is closely related to several geometrical problems. In particular,
in (Khachay and Poberii 2009), NP-hardness of the MASC and MASC-GP(n) problems is
proved by the reduction (to these problems) of the well-known Point Covering problem, for
which intractability was established in (Megiddo and Tamir 1982).

Further, the inapproximability of the MASC problem is proved in (Khachai 2006) on the
basis of intractability results for hypergraph coloring problems obtained in (Dinur et al. 2002)
and (Guruswami 2004), which are originated from the famous PCP theorem (Arora and Safra
1998) and approximation threshold bounds for NP-hard problems (Feige 1998).

The multi-stage game considered in Sect. 5 is extending the game-theoretic approach to
construction learning algorithms proposed in (Freund 1995) and adopted bymany researchers
(see, e.g. (Freund and Schapire 1999; Syed and Schapire 2007) and a survey in (Arora et al.
2012)). In turn, this approach is sourcing from the theory of positional statistical games
(Wald 1949) and, in particular, from the well-known fictitious play approximation method
(introduced in Brown 1951) for solving such games.

Learningmethods for affine committees are close to other learning techniques for ensemble
classifiers such as bagging (Breiman 1996) and boosting (Schapire and Freund 2012). Our
main contribution can be considered as an extension of the boosting by sampling technique
(Freund 1995) in a way proposed in (Arora et al. 2012).

3 Problem statement

We use the traditional mathematical notation N, Z, and R for the sets of natural, integer, and
real numbers, respectively; |S| for the cardinality of a set S; aff X and convX for the affine
and convex hulls of a subset X ⊂ R

n ; and dim L for the dimension of a linear or affine
subspace L ⊂ R

n . For convenience, we introduce subsets A, B ⊂ R
n consisting of xi from

sample (1) and defined by the equations

A = {xi : yi = 1}, B = {xi : yi = −1}. (3)

In addition, to any committee classifier h(x) (defined by equation (2)), we assign the finite
sequence K [h] = ( f1, . . . , fq) such that q = ∑k

j=1 α j and

f1(x) ≡ · · · ≡ fα1(x) ≡ cT1 x − d1,

fα1+1(x) ≡ · · · ≡ fα1+α2(x) ≡ cT2 x − d2,

· · ·
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fq−αk+1(x) ≡ · · · ≡ fq(x) ≡ cTk x − dk .

Definition 1 Let A and B be finite non-empty subsets of R
n , and f1, . . . , fq : R

n → R. A
finite sequence K = ( f1, . . . , fq) is called a committee separating the subsets A and B if

|{i ∈ Nq : fi (a) > 0}| >
q

2
(a ∈ A),

|{i ∈ Nq : fi (b) < 0}| >
q

2
(b ∈ B).

The number q is called a length and the functions f1, . . . , fq are called members of the
committee K . For brevity, we name a committee of length q as q-committee. In this paper,
we restrict ourselves to the case of affine committee members f j ; in this case, the committee
K is also called affine.

It can be easily seen that the classifier h(x) (defined by Eq. (2)) is perfect w.r.t. sample
(1) if and only if the sequence K [h] is an affine separating committee for the sets A and B.

The concept of an affine separating committee is a natural discrete generalization of the
concept of a separating hyperplane in Euclidean spaces. Indeed, by virtue of the famous
separability theorem (see, e.g., Elster et al. 1977), the equality

conv(A) ∩ conv(B) = ∅

implies the existence of some hyperplane

H = {x ∈ R
n : f (x) ≡ cT x − d = 0}

separating the sets A and B such that

f (a) > 0 (a ∈ A),

f (b) < 0 (b ∈ B).

Therefore, if sets A and B are separable in the usual sense, then there exists an affine 1-
committee separating them. In the general case, sets A and B, for which there exists an
affine separating q-committee, are called q-committee separable. The following Mazurov’s
criterion (Mazurov 1971) of separability by affine committees is a natural generalization of
the separability theorem2 mentioned above.

Theorem 1 Finite sets A and B can be separated by an affine committee if and only if
A ∩ B = ∅.

The proof of Theorem 1 is mostly constructive. In its sufficiency part, for the given sets A
and B, an affine q-committee with q ≤ |A ∪ B| is constructed.

Among all affine committees separating sets A and B, the committees of minimum length
are ofmost interest.Byvirtue of their extremality, these committees are calledminimum. Since
every q-committee separating A and B can be easily transformed into (q + 2t)-committee
for the same subsets and an arbitrary t ∈ N, the length of a minimum committee can be
considered as a quantitative characteristic of separability (or inseparability) of these sets.

Problem 1 (MinimumAffine SeparatingCommittee (MASC))For given sets A, B ⊂ R
n ,

it is required to find a minimum affine separating committee.

Hereinafter, we consider the special case MASC-GP(n) of the MASC problem, where the
dimension n > 1 is fixed in advance3 and the set A ∪ B is in general position.

2 In case of finite sets.
3 Is not an input entry of the problem.
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Definition 2 A set D ⊂ R
n , |D| > n, is said to be in general position, if, for any subset

D′ ⊆ D, |D′| = n + 1, the equality dim aff D′ = n is valid.

In particular, a set D ⊂ R
2 is in general position if there does not exist a subset D′ =

{x, y, z} ⊆ D such that the points x , y, and z belong to the same straight line.

4 Known complexity and approximability results

Known results concerning computational complexity and approximation issues of theMASC
problem and its subclasses can be divided into two types according to the involved theoretical
approach. The results of the first type (we present a brief survey in Sect. 4.1) are mostly based
on the theory of linear inequalities, the duality principle for linear programs, and recent results
in computational complexity theory (including the PCP theorem Arora and Safra 1998). The
results of the second type (we discuss it in Sect. 4.2) originated from the game-theoretic
foundations: the von Neumann MinMax theorem, fictitious play technique (Littlestone and
Warmuth 1994), etc.

4.1 Approach based on linear inequalities

We start with the overview of known complexity results. The Minimum Affine Separating
Committee problem is intractable and is inapproximable unless P �= N P .

Theorem 2 (Khachai 2008) The MASC problem is strongly NP-hard 4 and remains
intractable under the additional constraint

A ∪ B ⊂ {x ∈ {0, 1, 2}n : ‖x‖2 ≤ 2}.
The MASC problem does not belong to Apx approximability class 5 unless P �= N P.

TheMASC-GP(n) problem preserves the intractability in the worst case, but this problem
has untrivial polynomial-time solvable subclasses and can be approximated much better.

Theorem 3 (Khachay andPoberii 2009)TheMASC-GP(n)problem is polynomially solvable
for n = 1 and NP-hard for any fixed n > 1.

Further, we proceed with approximability the MASC problem and it’s descendants. As
mentioned above, Theorem 1 brings us an approximation algorithm for the MASC problem,
which is surprisingly efficient but has a poor accuracy in the worst case.

Remark 1 The proof of Theorem 1 provides an approximation algorithm finding a 2m-
approximate solution of the MASC problem in time of O(m × T2), where T2 is the running
time of solving a system of two linear equations.

A major part of known approximability results for the MASC-GP(n) problem is based on
Theorem 4 (which can be considered as an adaptation of Theorem 1 to the special case of
sets in general position).

4 i.e., The existence of a pseudo-polynomial time algorithm for the problem implies the equality P = NP.
5 The class of combinatorial optimization problems that can be approximated in polynomial time within a
fixed ratio.
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Theorem 4 (Khachai and Rybin 1998) Suppose A, B ⊂ R
n, A ∩ B = ∅, and A ∪ B is in

general position. For the sets A and B, there exists an affine q-committee with

q ≤ 2

⌈�(m − n)/2�
n

⌉
+ 1, (4)

where m = |A ∪ B|.
The proof of Theorem 4 is based on the following helpful properties of linear inequalities.

Property 1 For any n-subset Z ′ of a finite set Z located in the n-dimensional Euclidean space
E and being in general position, there are two open half-spaces L1 = {x ∈ E : cT1 x−d1 < 0}
and L2 = {x ∈ E : cT2 x − d2 < 0} such that Z ⊂ L1 ∪ L2 and Z ′ ⊂ L1 ∩ L2.

Property 2 Let A′ ⊂ A and B ′ ⊂ B, where A ∪ B is in general position and |A′ ∪ B ′| =
n ≤ m = |A ∪ B|. Then, there is an affine function f (x) = cT x − d such that

f (a) > 0, (a ∈ A′′), f (b) < 0, (b ∈ B ′′)

for some A′ ⊂ A′′ ⊂ A and B ′ ⊂ B ′′ ⊂ B, and

|A′′ ∪ B ′′| ≥
⌈
m + n

2

⌉
. (5)

Note that Property 2 easily follows from Property 1.

Algorithm 1Mazurov’s affine separating committee construction algorithm
Input: a finite set Z = A ∪ B ∈ R

n being in general position.
Output: an affine separating committee K for the sets A and B.
1: for an arbitrary n-subset A′ ∪ B′ of the given set A∪ B, find an affine function f0 according to Property 2;
2: assign Z = (A \ A′) ∪ (B \ B′) and k = 0;
3: while Z �= ∅ do
4: assign k = k + 2
5: for some (at most) n-subset Z ′′ = A′′ ∪ B′′, A′′ ⊂ A, B′′ ⊂ B, take an arbitrary pair of affine functions

fk−1 = cTk−1x − dk−1 and fk = cTk x − dk satisfying the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( fk−1(a) > 0) ∧ ( fk (a) > 0), (a ∈ A′′),
( fk−1(b) < 0) ∧ ( fk (b) < 0), (b ∈ B′′),
( fk−1(a) > 0) ∨ ( fk (a) > 0), (a ∈ A \ A′′),
( fk−1(b) < 0) ∨ ( fk (b) < 0), (b ∈ B \ B′′);

(the existence of such a pair is guaranteed by Property 1; for technical details, see Khachai and Rybin
1998);

6: assign Z = Z \ Z ′′;
7: end while
8: assign to K the affine committee ( f0, f1, . . . , fk ).

Actually, the proof of Theorem 4 presents the above Algorithm 1 constructing an affine
separating committee for the given sets A and B (an approximate solution of the MASC-
GP(n) problem). This algorithm appears to be a simple generalization of the algorithm
proposed by Vl.Mazurov much earlier (Mazurov 1971). So, we call Algorithm 1Mazurov’s,
as well.
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Remark 2 Algorithm 1 has the approximation guarantee of

2

⌈�(m − n)/2�
n

⌉
+ 1 = O(m/n) (6)

and running time of
O(m/n × Tn), (7)

where Tn is the time-complexity bound of solving a Kramer system of linear equations in
the n-dimensional Euclidean space.

Remark 3 There exists a non-trivial subclass of sets A and B, for which bounds (4) and (5)
are proved to be tight (Khachai 2006). These sets define a polynomial-time solvable subclass
of the MASC-GP(n) problem. Given some pair of such sets, Algorithm 1 finds a minimum
affine separating committee in time O(m/n × Tn) as shown in (7). These sets were invented
by Gale (1956) and named uniformly distributed sets. The formal definition adapted to our
purposes is as follows.

Definition 3 A pair of subsets A, B ⊂ R
n such that A ∩ B = ∅ and |A ∪ B| = 2k + n

for some k ∈ N is called uniformly distributed (by Gale) if, for any non-trivial hyperplane
H = {x ∈ R

n : cT x − d = 0}, there exist A′ ⊂ A and B ′ ⊂ B, for which

cT a − d > 0, (a ∈ A′), cT b − d < 0, (b ∈ B ′),

and |A′ ∪ B ′| ≥ k.

In (Gale 1956), it is proved that, for any natural numbers n and k, there exists a pair A, B ⊂ R
n

that is uniformly distributed by Gale.
Hence, in terms ofmachine learning,we can say that if a training sample induces uniformly

distributed subsets A and B, then Algorithm 1 provides a perfect affine committee classifier
of minimum length (i.e., making no misclassifications on this sample).

In (Khachay and Poberii 2009), the GreedyCommittee approximation algorithm is pro-
posed. This algorithm has the best known approximation ratio and a rather huge but
polynomial running time. For brevity, we skip its formal description but recall the main
properties of the algorithm in Theorem 5.

In sequel, we call an instance of theMASC-GP(n) problem nice if there exists a minimum
committee K = ( f0, f1, . . . , fq−1) such that, for any t = 1, . . . , (q − 1)/2, the following
conditions

( ft (a) > 0) ∨ ( ft+1(a) > 0), (a ∈ A),

( ft (b) < 0) ∨ ( ft+1(b) < 0), (b ∈ B),

are valid.

Theorem 5 The GreedyCommittee is an approximation algorithm for the MASC-GP(n)

problem with running time of O(m3n) and approximation ratio of O(lnm) if the instance to
be solved is nice and of O(m/n), otherwise.

In Sect. 6, we propose the new approximation algorithm BoostedGreedyCommittee with
a better upper bound of the approximation ratio and the same (by order of magnitude) time-
complexity bound.

123



Mach Learn (2015) 101:231–251 239

4.2 Game-theoretic approach

We start with a version of the Multiplicative Weights Update method (Arora et al. 2012)
sourcing from (Littlestone andWarmuth 1994) and adapted to Freund’s boosting by sampling
technique (Freund 1995). Recall that we have a finite sample ξ = ((x1, y1), . . . , (xm, ym)),
where yi are true values of an unknown function,which should be approximatedwithmajority
committees defined on some class F : [Rn → {−1, 1}] of weak classifiers (in our case,
F = {sign(cT x − d) : c ∈ R

n, d ∈ R}).
Without any additional prior information on a classifier to be constructed (besides the train-

ing sample ξ ), it is convenient to factorize the setF by this sample as follows.We assume that
two weak classifiers f1, f2 ∈ F are ξ -equivalent if f1(xi ) = f2(xi ) for each i = 1, . . . ,m.
It can be easily verified that the introduced binary relation is a true equivalence. Denote by
Φ = F/ξ the factor-set induced by this relation. By construction, Φ = {ϕ1, . . . , ϕk} is a
finite set, for which k ≤ 2m . For any pair ((xi , yi ), ϕ j ), we introduce a payoff gi j of the
classifier ϕ j on the pattern (xi , yi ) by the formula

gi j =
{
1, if ϕ j (xi ) = yi ,
−1, otherwise.

(8)

Following (Arora et al. 2012), we consider the iterative process (Algorithm 2).

Algorithm 2Multiplicative Weights Update algorithm
Input: parameters 0 < γ < 1/2 and q ∈ N.
Output: a sequence (ϕ j1 , . . . , ϕ jq ).

1: initiate a weight vector w0 = [w01, . . . , w0m ]T by the equation w0i = 1;
2: for all t = 1, . . . , q do
3: take any jt ∈ {1, . . . , k} such that

m∑

i=1

w(t−1)i gi jt ≥ 2γ
m∑

i=1

w(t−1)i ; (9)

4: define a new weight vector wt recurrently by the formula

wti = w(t−1)i (1 − γ · gi jt )
5: end for

It is easy to show that, given an arbitrary γ ∈ (0, 1/2), an accuracy level ε > 0, and the
appropriate q = q(γ, ε), Algorithm 2 produces a committee with the classification error on
the sample ξ less than ε. Indeed, consider the classifier

h(x) = sign
q∑

t=1

ϕ jt (x)

(of length q). Let I ′
h = {i ∈ Nm : h(xi ) �= yi } be the error-set of h. By the majority rule, for

any i ∈ I ′
h , at least a half of the weak classifiers ϕ jt determining h make a mistake at the i-th

pattern; i.e., ϕ jt (xi ) �= yi and therefore,

wqi ≥ (1 + γ )q/2(1 − γ )q/2 = (1 − γ 2)q/2 ≥ e−(γ 2+γ 4)q/2. (10)
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The last bound follows from the inequality 1 − z ≥ e−(z+z2)t , which is valid for any 0 ≤
z ≤ 1/2.

On the other hand, by construction,

m∑

i=1

wqi =
m∑

i=1

w(q−1)i
(
1 − γ · gi jt

) =
m∑

i=1

w(q−1)i − γ

m∑

i=1

w(q−1)i gi jt ≤

≤ (
1 − 2γ 2)

m∑

i=1

w(q−1)i ≤ (
1 − 2γ 2)q

m∑

i=1

w0i ≤ me−2γ 2q . (11)

Hence,

|I ′
h |e−γ 2q ≤ |I ′

h |e−(
γ 2+γ 4)q/2 ≤

∑

i∈I ′
h

wqi ≤
m∑

i=1

wqi ≤ me−2γ 2q

and

|I ′
h |
m

≤ e−γ 2q .

To provide the required accuracy level, it is sufficient to take

q = q(γ, ε) >

⌈
ln(1/ε)

γ 2

⌉
. (12)

Bound (12) is entirely equivalent to the claim of Freund’s Boosting theorem (Freund 1995).

Remark 4 Algorithm 2 can be applied to constructing a perfect committee classifier for any
non-contradictory sample ξ , for which A∩ B = ∅. Indeed, to construct a perfect committee
classifier w.r.t. the m-sample ξ , we can take any ε < 1/m (e.g., ε = 1/(m + 1)) and any
admissible value of γ ∈ (0, 1/2) (in Sect. 6, we discuss this in detail); then, we obtain a
committee of length

q =
⌈
ln(m + 1)

γ 2

⌉

in time of O(mq × T ′), where T ′ is the running time of step 3 of Algorithm 2.
Unfortunately, as it follows from Remark 3, the optimal value of the MASC-GP(n) prob-

lem can be equal to the right-hand side of (4) and, simultaneously,

γ ≤ m + n

2m
− 1

2
= n

2m
.

Therefore, the approximation ratio r of Algorithm 2 can be underestimated by

r ≥
⌈
4m2 ln(m + 1)

n2

⌉ / (
2

⌈�(m − n)/2�
n

⌉
+ 1

)
= Ω

(
m lnm

n

)
,

and the running time is of Ω(m3n−2 lnm × T ′).

Thus, for the MASC-GP(n) problem, Algorithm 2 is dominated by Algorithm 1, both in
the approximation ratio and running time.

In Sect. 6, we combine these algorithms and propose a new approximation algorithm with
an improved approximation ratio

O

((
m lnm

n

)1/2
)
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at the expense of an increase in the total running time. We call this algorithm BoostingCom-
mittee.

5 Multi-stage zero-sum two-player game

Here, we deal with the following simple observation on the scheme of Algorithm 2. To ensure
that Algorithm 2 succeeds, we should choose a value of γ such that, for each t ∈ {1, . . . , q},
there exists jt satisfying inequality (9). To make such a choice, Y.Freund proposes (Freund
1995) to examine a candidate value of γ w.r.t the set of all probability measures χ , which
are defined on the finite measurable space (I, 2I ), where I = {1, . . . ,m} is the index set of
the training sample ξ = ((x1, y1), . . . , (xm, ym)).

Namely, in (Freund 1995), it is proposed to choose a value of γ such that, for this value
and for any measure χ = [χ1, . . . , χm], there exists j = j (χ) ∈ {1, . . . , n} satisfying the
equation

m∑

i=1

χi gi j ≥ 2γ. (13)

Obviously, the above condition is sufficient for γ to be admissible forAlgorithm2, since every
weight vector wt induces an appropriate measure χt defined by values χti = wti/

∑m
l=1 wtl .

But this condition is not necessary, as Algorithm 2 might not examine overall possible mea-
sures during its runtime. Therefore, Algorithm 2 can succeed6 even for γ violating (13) for
some χ .

The main idea is as follows. We try to run Algorithm 2 with some value of γ taken in
advance. There are two alternatives, either the run is successful or Algorithm 2 fails at step
3. If Algorithm 2 succeeds, we obtain a perfect classifier, which can be passed on for further
processing.

There exists a way (in numerical optimization, this approach is known as backtracking,
see, e.g., Boyd andVandenberghe 2009) to overcome the failure of Algorithm 2 induced by an
overestimated value of γ . According to this approach, similarly to AdaBoost (Schapire and
Freund 2012), we can decrease the current value of γ each time equation (9) is violated; after
that, the computations are resumed until the desired accuracy is achieved. But, as proved
in (Arora et al. 2012), this approach could not improve the approximation guarantee of
Algorithm 2.

Relying on Lemma 1 and the following game, we propose another approach for construct-
ing an algorithm with a better approximation ratio.

Lemma 1 Suppose, for a sample ξ , there exists a perfect committee classifier of length q.
Then, γ0 = 1/(2q) satisfies Eq. (13) for this sample and for any discrete probability measure
χ .

We prove Lemma 1 in “Appendix 1”. It is easily seen that, each time Algorithm 2 fails at step
3, Lemma 1 yields us a new lower bound for the minimum length of any perfect committee
classifier for the sample ξ .

Below, we define a multi-round zero-sum game (Game 1) generalizing the scheme of
Algorithm 2. As above, we use the notation I = {1, . . . ,m} and J = {1, . . . , k}, and denote
by X the set of all discrete probability measures defined on (I, 2I ). To any measure χ ∈ X ,
we assign a subset J [χ] ⊂ J containing all numbers j , for which condition (13) is valid for

6 If we are lucky.
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the given γ ∈ (0, 1/2). Similarly to Algorithm 2, while playing the game, two sequences
σI = (χ0, χ1, . . .) and σI I = ( j1, j2, . . .) are constructed. We call σI and σI I strategies of
the 1st and 2nd players, respectively. The payoff function L : (σI , σI I ) �→ [0, 1] expresses
the loss of the 1st player (the gain of the 2nd one), its value is calculated at the end of the
game.

Game 1 Committee construction game
Input: an initial distribution χ0 and a trial value γ ∈ (0, 1/2).
Output: strategies σI and σI I of the players and the payoff L(σI , σI I ).

1: for t = 1, 2, . . . do
2: if J [χt−1] �= ∅ then
3: 2nd player takes any jt ∈ J [χt−1] and the turn passes to the 1st player;
4: 1st player either breaks the loop and proceeds to Step 9 or chooses a new measure χt ; then, the loop

continues with the next value of t ;
5: else
6: the 2nd player breaks the game with the gain L(σI , σI I ) = 1;
7: end if
8: end for
9: the resulting classifier h is defined by the formula

h(x) = sign
q∑

t=1

ϕ jt (x);

10: in turn, the value of the payoff function L(σI , σI I ) is defined by the equation

L(σI , σI I ) = χ0({i ∈ I : h(xi ) �= yi }).

We summarize the properties of Game 1 in Theorem 6.

Theorem 6 1. Ifγ satisfiesEq. (13) for anyprobabilitymeasureχ , then, for each ε ∈ (0, 1),
the 1st player has a minmax strategy σ ∗

I = σ ∗
I (ε) such that L(σ ∗

I , σI I ) < ε for any
feasible strategy σI I of the 2nd player.

2. If Game 1 stops at Step 5, then, for the sample ξ , there are no perfect committee classifiers
with length q ≤ 1/(2γ ).

The proof of Theorem 6 is closely related to the above reasoning concerning Algorithm 2
and partially follows from Lemma 1. We give the proof in “Appendix 2”.

Actually, to construct approximation algorithms for the MASC-GP(n) problem in Sect. 6,
we need the following straightforward Corollary 1.

Corollary 1 For any sample ξ = ((x1, y1), . . . , (xm, ym)) and any γ ∈ (0, 1/2), there are
two mutually exclusive alternatives:

(i) there exists a perfect committee classifier of length

q =
⌈
ln(m + 1)

γ 2

⌉
,

which can be constructed while playing Game 1;

(ii) every perfect committee classifier for the sample ξ (if any) has a length q > 1/(2γ ).
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ToproveCorollary 1, it is sufficient to apply the claimofTheorem6 forχ0 = [1/m, . . . , 1/m]
and recall that the inequality χ0(I ′) < 1/m implies I ′ = ∅ for any subset I ′ ⊂ I =
{1, . . . ,m}.

Remark 5 According to Remark 4, the time-complexity of Game 1 can be overestimated by
the running time of Algorithm 2, which is of O(mq × T ′).

6 Approximation algorithms

6.1 General scheme

We start with the description of Meta-Algorithm 1 providing a general scheme for all the
algorithms proposed below. As an outer parameter, Meta-Algorithm 1 uses some learning
algorithm A, which is required to construct a baseline perfect committee classifier hb (of
length qb) for the given sample ξ .

Meta-Algorithm 1 Approximation meta-algorithm
Input: a baseline committee construction algorithm A with upper bounds rA and TA of the approximation
ratio and running time, respectively; a training sample ξ ;
Output: a perfect classifier h for the sample ξ ;
1: construct a baseline perfect classifier hb of length qb = 2p − 1 using the learning algorithmA;
2: find a minimum 1 ≤ s ≤ p such that alternative (i) of Corollary 1 takes place for γs = γ = 1/(4s − 2);
3: if (4s − 2)2 ln(m + 1) < qb then
4: return the perfect committee constructed while playing Game 1 for γs ;
5: else
6: return hb .
7: end if

W.l.o.g., we assume that qb = 2p−1 is an odd number (since, otherwise, we can construct
another perfect classifier of length qb − 1 by removing any constituent weak classifier). As
it follows from Corollary 1, there is a perfect committee classifier of length

q0 = ⌈
4q2b ln(m + 1)

⌉
,

which can be constructed while playing Game 1 for γ = 1/(2qb). The main idea is to find
a minimum s, 1 ≤ s ≤ p, such that the same assertion is valid for a committee of length⌈
4(2s − 1)2 ln(m + 1)

⌉
. Theorem 7 summarizes the properties of Meta-Algorithm 1.

Theorem 7 Suppose,A outputs a baseline committee hb of length qb = 2p−1. Also, assume
that s is the value taken at Step 2 of Meta-Algorithm 1. Then, Meta-Algorithm 1 constructs
an r-approximation of a minimum perfect committee (for the sample ξ ) for

r ≤ min
{
2 (qb ln(m + 1))1/2 , rA

}
(14)

in time of
O

(
q3bm ln(m + 1)T ′′ + TA

)
, (15)

where T ′′ is the time of checking the condition at Step 2 in Game 1.

We prove Theorem 7 in “Appendix 3”.
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Remark 6 As follows fromTheorem 7, the approximation ratio provided byMeta-Algorithm
1 is not always better than the approximation guarantee of the original algorithm A. For
instance, if rA = O(1) then the algorithmA has the same accuracy bound and appears to be
much more preferable w.r.t. the running time, since

2 (qb ln(m + 1))1/2 = Ω(
√
lnm).

But, for any algorithm A, whose approximation ratio is highly overestimated (rA is far
from its tight bound), Meta-Algorithm 1 brings much more benefits. Indeed, since qb ≤
rA ·OPT (where OPT is an optimal value of the problem in question), substituting rA ·OPT
for qb in (14), we derive

2 (qb ln(m + 1))1/2 < rA ⇐⇒ rA > 4 · OPT · ln(m + 1).

In particular, this is the case for the MASC and the MASC-GP(n) problems, for which, as
shown above, the best known approximation ratio is O(m), whereas the lower bound for
OPT is 1.

6.2 Approximation algorithms for the MASC-GP(n) problem

In Sect. 6.2, we construct new polynomial-time approximation algorithms for the MASC-
GP(n) problem based on Meta-Algorithm 1.

To use the framework provided by Meta-Algorithm 1, for a given sample ξ , at the first
stage, we describe a factor-set Φ = {ϕ1, . . . , ϕk} induced by the sample ξ on the class of
affine classifiers. Then, we define a payoff-matrixG with entries (8), which sets up Game 1 in
our case. As was proved in Khachay and Poberii (2009), these calculations can be conducted
in the time

TΦ = O(|Φ|) = O

((
m

n

))
= O(mn). (16)

We proceed with the specialization of Meta-Algorithm 1, taking Algorithm 1 as a value
of the formal parameter A.

Algorithm 3 BoostedCommittee
Input: a training sample ξ

Output: an affine separating committee h
1: construct the set Φ and the matrix G defined by the sample ξ ;
2: apply Meta-Algorithm 1, using Algorithm 1 as a value of the parameter A;
3: assign to h the resulting committee of Meta-Algorithm 1.

Upper bounds for the approximation ratio and running time of Algorithm 3 are given in
Theorem 8.

Theorem 8 Algorithm 3 is an approximation algorithm for the MASC-GP(n) problem with
the approximation ratio of

O

((
m lnm

n

)1/2
)

and running time of O(mn+4/n3 lnm).

We prove Theorem 8 in “Appendix 4”.
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Remark 7 Comparing Algorithms 1 and 3, we can say that the latter outperforms the former
w.r.t. approximation ratio at the expense of a significant increase in running time.

Now, we propose a new approximation algorithm for the MASC-GP(n) problem by com-
bining our Meta-Algorithm 1 and the GreedyCommittee algorithm (mentioned in Sect. 4).

Algorithm 4 BoostedGreedyCommittee
Input: a training sample ξ

Output: an affine separating committee h
1: construct the set Φ and the matrix G defined by the sample ξ ;
2: apply Meta-Algorithm 1, using the GreedyCommittee algorithm as a value of the parameterA.
3: assign to h the resulting committee of Meta-Algorithm 1.

As for Algorithm 3, we formulate the properties of Algorithm 4 in Theorem 9.

Theorem 9 Algorithm 4 has the approximation ratio of

O

((
m lnm

n

)1/2
)

in general case and of O(ln(m)) for the nice instances. Its time-complexity is of O(m3n) for
any n > 2.

We prove Theorem 9 in “Appendix 5”.

Remark 8 Comparing GreedyCommittee and Algorithm 4, we reveal that the latter improves
the former w.r.t. approximation ratio without any increase in time-complexity, at least for
n > 2.

7 Conclusions and future work

We have considered the approximability issues of the MASC-GP(n) NP-hard combinatorial
optimization problem formalizing the machine learning strategy based on the structural risk
minimization principle in the class of majority voting piecewise linear classifiers. The desire
to improve the approximation ratios of the known approximation algorithms has led us to
the new game-theoretic framework (Game 1) extending the Multiplicative Weights Update
method and ‘boosting by sampling’ technique.

We have used the proposed framework to construct the new approximation algorithms
BoostedCommittee (Algorithm 3) and BoostedGreedyCommittee (Algorithm 4) with the
best known (state-of-the-art) approximation guarantees. Table 1 summarizes the properties
of both known and proposed algorithms.

Along with their contribution to computation complexity theory, the results obtained
provides a new approach to efficient learning for ensembles of affine classifiers having high
generalization ability.

However, some questions still remain open.

(i) As follows from Table 1, any time we succeed in improving an approximation ratio,
this implies a significant increase in time-complexity (except, maybe, the pair Greedy-
Committee and BoostedGreedyCommittee). The main reason for such an increase is
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the exhaustive search used at Step 2 of Game 1 to find admissible alternatives of the
2nd player. Therefore, the construction of more efficient search techniques for such
alternatives seems to be relevant.

(ii) Game 1 is entirely based on the scheme of the classic Multiplicative Weights Update
algorithm; i.e., at any round of the game, it is assumed that the 2nd player chooses a
pure strategy in an appropriate matrix game. To improve the overall running time, it
seems interesting to investigate an extension of Game 1 providing a wider subset of
mixed strategies for the 2nd player.

(iii) Game 1 seems to be extendable in order to describe of approximation algorithms for a
wider family of combinatorial optimization problems related to machine learning. We
plan to investigate this issue in future work.

(iv) Eventually, the issue marked in Table 1 by the question sign should be investigated, as
well.

Acknowledgments This research was supported by Russian Science Foundation, Grant No. 14-11-00109.

Appendix 1: Proof of Lemma 1

Consider the (m×k)-matrixG, whose entries gi j are defined in Sect. 4.2 for the given sample
ξ . This matrix induces the following pair of mutually dual linear programs

P : min α1 + . . . + αk

s.t.
Gα ≥ e, α ≥ 0,

D : max w1 + . . . + wm

s.t.
GTw ≤ f, w ≥ 0,

(17)

where e = [1, . . . , 1]T ∈ R
m and f = [1, . . . , 1]T ∈ R

k . Let a committee h =
sign

∑k
j=1 α0 jϕ j with

∑
α0 j = q be perfect for the sample ξ . Then, the vector α0 =

[α01, . . . , α0k] is a feasible solution of the program P. Therefore, by the duality theorem,
both programs P and D have optimal solutions and the same optimum value 0 < OPT ≤ q .
Using the transformation

γ =
m∑

i=1

wi , χ = 1

γ
w,

to program D, we assign the new equivalent linear program

D′ : min γ

s.t.
GTχ ≤ 2γ f,∑m

i=1 χi = 1,
χ ≥ 0, γ > 0,

with the optimum value OPT ′ = 1/(2 ·OPT ) ≥ 1/(2q). Therefore, for γ0 = 1/(2q), there
exists a number j0 ∈ {1, . . . , k} such that

m∑

i=1

χi gi j0 ≥ 2γ0.

Lemma 1 is proved.
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Appendix 2: Proof of Theorem 6

1. Let the given value of parameter γ satisfy Eq. (13) for any probability measure χ , which
is defined on (I, 2I ). In this case, J [χ] �= ∅ and Game 1 never stops at Step 5. W.l.o.g.,
we can assume that, for each t , the measure χt = [wt1/Wt , . . . , wtm/Wt ]T , where
Wt = ∑m

i=1 wti .

Let h be the committee classifier constructed at Step 9, and let

I ′
h = {i ∈ I : h(xi ) �= yi } .

Consider the 1st-player strategy σ ∗ = [χ0, χ1, . . . , χq−1]T , for which (as in Algorithm 2)
the measure χt is defined recurrently by the following equations

wti = (
1 − γ · gi jt

)
w(t−1)i , (i ∈ I ),

Wt =
∑

i∈I
wti ,

and

χti = wti/Wt , (i ∈ I ).

Similarly to the case of Eqs. (10) and (11), we can find a lower and an upper bounds for∑
i∈I ′

h
wti . Indeed, for any i ∈ I ′

h , the inequality ϕ jt (xi ) �= yi holds at least for a half of
t ∈ {1, . . . , q}. Therefore,

∑

i∈I ′
h

wqi ≥
∑

i∈I ′
h

w0i (1 − γ )q/2(1 + γ )q/2 ≥ e−γ 2q
∑

i∈I ′
h

w0i ,

since 0 < γ < 1/2.
On the other hand,

∑

i∈I ′
h

wqi ≤
m∑

i=1

wqi =
m∑

i=1

w(q−1)i
(
1 − γ · gi jq

) = Wq−1

(
1 − γ

m∑

i=1

χ(q−1)i gi jq

)
≤

≤ Wq−1(1 − 2γ 2) ≤ W0
(
1 − 2γ 2)q ≤ W0e

−2γ 2q .

Thus,

χ0(I
′
h) =

∑

i∈I ′
h

w0i/W0 ≤ e−γ 2 q ,

and, for any

q >
ln(1/ε)

γ 2 ,

the finite sequence σ ∗
I = (χ0, . . . , χq−1) is the requiredminmax strategy, sinceL(σ ∗

I , σI I ) <

ε for any feasible strategy σI I of the 2nd-player. The claim is proved.

2. This claim is a simple corollary of Lemma 1. Indeed, as it follows from Lemma 1, for
any q ≤ 1/(2γ ), the existence of a perfect committee classifier h = sign

∑q
t=1 ϕ jt for

the sample ξ implies the validity of Eq. (13) for γ and for any measure χ ; this contradicts
the stop condition of Game 1 at Step 5. Theorem 6 is proved.
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Appendix 3: Proof of Theorem 7

Indeed, let OPT be the length of a minimum perfect committee for the sample ξ and let s be
the value chosen at Step 2 of Meta-Algorithm 1. By Corollary 1, OPT ≥ 2s − 1 and there
exists a perfect committee classifier hs of length

qs = �(4s − 2)2 ln(m + 1)�.

Suppose, (4s − 2)2 ln(m + 1) < qb and Meta-Algorithm 1 returns hs . Then,

(4s − 2)2 ln(m + 1)

OPT
≤ 4(2s − 1)2 ln(m + 1)

2s − 1
≤ 4(2s − 1) ln(m + 1) <

< 2

(
qb

ln(m + 1)

)1/2

ln(m + 1) = 2 (qb ln(m + 1))1/2 .

On the other hand, if (4s − 2)2 ln(m + 1) ≥ qb then the resulting committee is hb of length
qb and

qb
OPT

≤ qb
2s − 1

≤ 2 (qb ln(m + 1))1/2 .

Thus, Eq. (14) is valid.
Step 2 of Meta-Algorithm 1 involves at most qb runs of Game 1 for γs = 1/(4s−2), each

of them has the running time of

O
(
m · (4s − 2)2 ln(m + 1) · T ′′) ≤ O

(
m · q2b ln(m + 1) · T ′′)

(see Remark 5). Therefore, the overall running time is of

O
(
m · q3b ln(m + 1) · T ′′ + TA

)
.

Theorem 7 is proved.

Appendix 4: Proof of Theorem 8

The claimed upper bound for the approximation guarantee of Algorithm 3 can be obtained
from Theorem 7 by replacing qb and rA in Eq. (14) with their bounds defined in Theorem 3
and Remark 2

qb = rA = 2

⌈�(m − n)/2�
n

⌉
+ 1.

Obviously, the running time of Algorithm 3 can be estimated by the sum of the running
time of Meta-Algorithm 1 (defined by Eq. 15) and the time TΦ , which is necessary for
constructing the factor-set Φ (see Eq. 16).

Assuming that Step 2 of Game 1 is performed by the exhaustive search against the set Φ,
we conclude that TΦ and T ′′ have the same upper bound of O(mn). Therefore, the overall
running time of Algorithm 3 is defined by the first term and is equal to O(mn+4/n3 lnm).

Theorem 8 is proved.
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Appendix 5: Proof of Theorem 9

The claim on the approximation ratio follows immediately from Theorems 5 and 7 (Eq. 14).
To prove the upper bound for the running time, it is sufficient to notice that Algorithm

4 differs from Algorithm 3 only in the way of finding a baseline committee classifier. In
Algorithm 4, such a committee is found by the GreedyCommittee algorithm, whereas in
Algorithm 3, by Mazurov’s algorithm (Algorithm 1).

While the time-complexity of Algorithm 1 is vanishingly small comparedwith the running
time of counter-parts of Meta-Algorithm 1, the GreedyCommittee algorithm with the time-
complexity of O(m3n) (see Theorem 5) prevails over them for any n > 2, since, in this case,
mn+4/n3 lnm = o(m3n). Theorem 9 is proved.
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