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Abstract There has been a growing interest in mutual information measures due to their
wide range of applications in machine learning and computer vision. In this paper, we present
a generalized structured regression framework based on Sharma–Mittal (SM) divergence, a
relative entropy measure, which is introduced to in the machine learning community in this
work. SM divergence is a generalizedmutual informationmeasure for the widely used Rényi,
Tsallis, Bhattacharyya, and Kullback–Leibler (KL) relative entropies. Specifically, we study
SM divergence as a cost function in the context of the Twin Gaussian processes (TGP) (Bo
and Sminchisescu 2010), which generalizes over the KL-divergence without computational
penalty. We show interesting properties of Sharma–Mittal TGP (SMTGP) through a theoret-
ical analysis, which covers missing insights in the traditional TGP formulation. However, we
generalize this theory based on SM-divergence instead of KL-divergence which is a special
case. Experimentally, we evaluated the proposed SMTGP framework on several datasets.
The results show that SMTGP reaches better predictions than KL-based TGP, since it offers
a bigger class of models through its parameters that we learn from the data.
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1 Introduction

Since 1950s, a lot of work has been done to measure information and probabilistic metrics.
Claude Shannon (Shannon 2001) proposed a powerful framework tomathematically quantify
information, which has been the foundation of the information theory and the development in
communication, networking, and a lot of Computer Science applications. Many problems in
Physics and Computer Science require a reliable measure of information divergence, which
have motivated many mathematicians, physicists, and computer scientists to study different
divergence measures. For instance, Rényi (Rényi 1960), Tsallis (Tsallis 1988) and Kullback–
Leibler divergences (Gray 1990) have been applied in many Computer Science applications.
They have been effectively used inmachine learning formany tasks including subspace analy-
sis (Learned-Miller and Fisher-III 2003; Póczos and Lõrincz 2005; Van Hulle 2008; Szab
et al. 2007), facial expression recognition (Shan et al. 2005), texture classification (Hero et al.
2001), image registration (Kybic 2006), clustering (Aghagolzadeh et al. 2007), non-negative
matrix factorization (Wang and Zhang 2013) and 3D pose estimation (Bo and Sminchisescu
2010).

In the Machine Learning community, a lot of attempts have been done to understand
information and connect it to uncertainty. Many of proposed terminologies turns out to be
different views of the same measure. For instance, Bregman Information (Banerjee et al.
2005), Statistical Information (DeGroot 1962), Csiszr–Morimoto f-divergence, and the gap
between the expectations in Jensen’s inequality (i.e., the Jensen gap) (Jensen 1906) turn out
to be equivalent to the maximum reduction in uncertainty for convex functions, in contrast
with the prior probability distribution (Reid and Williamson 2011).

A lot of work has been proposed in order to unify divergence functions (Amari and
Nagaoka 2000; Reid and Williamson 2011; Zhang 2007, 2004). Cichocki and Ichi Amari
(2010) considered explicitly the relationships between Alpha-divergence (Cichocki et al.
2008), Beta-divergence (Kompass 2007) and Gamma-divergence (Cichocki and Ichi Amari
2010); each of them is a single-parameter divergence measure. Then, Cichocki et al. (2011)
introduced a two-parameter family. However, we study here a two-parameter divergence
measure (Sharma 1975), investigated in the Physics community, which is interesting to be
considered in the Machine Learning community.

Akturk et al. (2007), physicists,1 studied an entropy measure called Sharma–Mittal on
theormostatics in 2007, which was originally introduced by Sharma BD et al. (Sharma 1975).
Sharma–Mittal (SM) divergence has two parameters (α and β), detailed later in Sect. 2.
Akturk et al. (2007) discussed that SM entropy generalizes both Tsallis (β → α) and Rényi
entropy (β → 1) in the limiting cases of its two parameters; this was originally showed by
(Masi 2005). In addition, it can be shown that SM entropy converges to Shannon entropy as
α, β → 1. Aktürk et al also suggested a physical meaning of SM entropy, which is the free
energy difference between the equilibrium and the off-equilibrium distribution. In 2008, SM
entropy was also investigated in multidimensional harmonic oscillator systems (Aktürk et al.
2008). Similarly, SM relative entropy (mutual information) generalizes each of the Rényi,
Tsallis and KL mutual information divergences. This work in physics domain motivated us
to investigate SM Divergence in the Machine Learning domain.

A closed-form expression for SM divergence between two Gaussian distributions was
recently proposed (Nielsen and Nock 2012), which motivated us to study this measure in
structured regression setting. In this paper, we present a generalized framework for structured

1 This work was proposed four years before Cichocki et al. (2011) and it was not considered either as a prior
work in the Machine learning community as far as we know.
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regression utilizing a family of divergence measures that includes SM divergence, Rényi
divergence, Tsallis divergence and KL divergence. In particular, we study SM divergence
within the context of Twin Gaussian processes (TGP), a state-of-the-art structured-output
regression method. Bo and Sminchisescu (2010) proposed TGP as a structured prediction
approach based on estimating theKL divergence from the input to output Gaussian Processes,
denoted by KLTGP.2 Since KL divergence is not symmetric, Bo and Sminchisescu (2010)
also studied TGP based on KL divergence from the output to the input data, denoted by
IKLTGP (Inverse KLTGP). In this work, we present a generalization for TGP using the
SM divergence, denoted by SMTGP. Since SM divergence is a two-parameter family, we
study the effect of these parameters and how they are related to the distribution of the data.
In the context TGP, we show that these two parameters, α and β, could be interpreted as
distribution bias and divergence order in the context of structured learning. We also highlight
probabilistic causality direction of the SM objective function.3 More specifically, there are
six contributions to this paper

1. The first presentation of SM divergence in the Machine Learning Community
2. A generalized version of TGP based on of SM divergence to predict structured outputs;

see Sect. 3.2.
3. A simplification to theSMdivergence closed-formexpression in (Nielsen andNock2012)

forMulti-variate GaussianDistribution,4 which reduced both the cost function evaluation
and the gradient computation, used in our prediction framework; see Sects. 3.3 and 3.4.

4. Theoretical analysis of TGP under SM divergence in Sect. 4.
5. A certainty measure, that could be associated with each structured output prediction, is

argued in Sect. 4.2.
6. An experimental demonstration that SM divergence improves on KL divergence under

TGP prediction by correctly tuning α and β through cross validation on two toy examples
and three real datasets; see Sect. 5.

The rest of this paper is organized as follows: Sect. 2 presents background on SM Diver-
gence and its available closed-form expression for multivariate Gaussians. Section 3 presents
the optimization problem used in our framework and the derived analytic gradients. Section 4
presents our theoretical analysis on TGP under our framework from spectral perspective.
Section 5 presents our experimental validation. Finally, Sect. 6 discusses and concludes our
work.

2 Sharma–Mittal divergence

This section addresses a background on SM-divergence and its closed form for the multi-
variate Gaussian distribution.

2 That is why it is called Twin Gaussian processes.
3 This is mainly detailed in Sect. 4.
4 This simplification could be useful out of the context TGP, while computing SM-divergence between two
multi-variate distributions.
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2.1 SM family divergence measures

The SM divergence, Dα,β(p : q), between two distributions p(t) and q(t) is defined
as (Sharma 1975)

Dα,β(p : q) = 1

β − 1

(∫ ∞

−∞
p(t)αq(t)1−αdt)

1−β
1−α − 1

)
, ∀α > 0, α �= 1, β �= 1. (1)

It was shown in (Akturk et al. 2007) that most of the widely used divergence measures are
special cases of SM divergence. Each of the Rényi, Tsallis andKL divergences can be defined
as limiting cases of SM divergence as follows:

Rα(p : q) = lim
β→1

Dα,β(p : q) = 1

α − 1
ln

(∫ ∞

−∞
p(t)αq(t)1−αdt)

)
, ∀α > 0, α �= 1.

Tα(p : q) =Dα,α(p : q) = 1

α − 1

(∫ ∞

−∞
p(t)αq(t)1−αdt − 1

)
, ∀α > 0, α �= 1,

K L(p : q) = lim
β→1,α→1

Dα,β(p : q) =
∫ ∞

−∞
p(t).ln

(
p(t)

q(t)
dt

)

(2)
where Rα(p : q), Tα(p : q) and K L(p : q) denotes Rényi, Tsallis, KL divergences respec-
tively. We also found that Bhattacharyya divergence (Kailath 1967), denoted by B(p : q) is
a limit case of SM and Rényi divergences as follows

B(p : q) = 2 · lim
β→1,α→0.5

Dα,β(p : q) = 2 · lim
α→0.5

Rα(p : q)

= −ln

( ∫ ∞

−∞
p(x)0.5q(x)0.5dx

)
.

While SM is a two-parameter generalized entropy measure originally introduced
by Sharma (1975), it is worth to mention that two-parameter family of divergence functions
has been recently proposed in the machine learning community since 2011 (Cichocki et al.
2011; Zhang 2013). It is shown in (Cichocki and Ichi Amari 2010) that the Tsallis entropy
is connected to the Alpha-divergence (Cichocki et al. 2008), and Beta-divergence (Kompass
2007),5 while the Rényi entropy is related to the Gamma-divergences (Cichocki and Ichi
Amari 2010). The Tsallis and Rényi relative entropies are two different generalization of the
standard Boltzmann–Gibbs entropy (or Shannon information). However, we focus here on
SM divergence for three reasons (1) It generalizes over a considerable family of functions
suitable for structured regression problems (2) Possible future consideration of this measure
in works that study entropy and divergence functions, (3) SM divergence has a closed-form
expression, recently proposed for multivariate Gaussian distributions (Nielsen and Nock
2012), which is interesting to study.

Anothermotivations of thiswork is to study how the two parameters of the SMDivergence,
as a generalized entropymeasure, affect the performance of the structured regression problem.
Herewe showan analogy in the physics domain thatmotivates our study.As indicated byMasi
(2005) in physics domain, it is important to understand that Tsallis and Rényi entropies are
two different generalizations along two different paths. Tsallis generalizes to non-extensive

5 Alpha and Beta divergence should not be confused with α and β parameters of Sharma Mittal divergence.
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systems,6 while Rényi to quasi-linear means.7 SM entropy generalizes to non-extensive sets
and non-linear means having Tsallis and Rényi measures as limiting cases. Hence, in TGP
regression setting, this indicates resolving the trade-off of having a control of the direction of
bias towards one of the distributions (i.e. input and output distributions) by changing α. It also
allows higher-order divergence measure by changing β. Another motivation from Physics is
that SM entropy is the only entropy that gives rise to a thermostatistics based on escort mean
values8 and admitting of a partition function (Frank and Plastino 2002).

2.2 SM-divergence closed-form expression for multivariate Gaussians

In order to solve optimization problems efficiently over relative entropy, it is critical to
have a closed-form formula for the optimized function, which is SM relative entropy in
our framework. Prediction over Gaussian Processes (Rasmussen and Williams 2005) is
performed practically as a multivariate Gaussian distribution. Hence, we are interested in
finding a closed-form formula for SM relative entropy of distributionNq fromNp , such that
Np = N (μp,Σp), and Nq = N (μq ,Σq). In 2012, Frank Nielsen proposed a closed form
expression for SM divergence (Nielsen and Nock 2012) as follows

Dα,β(Np : Nq) = 1

β − 1

[( |Σp|α|Σq |1−α

|(αΣp
−1 + (1 − α)Σq

−1)−1|
)− 1−β

2(1−α)

·

e− α(1−β)
2 ΔμT (αΣp

−1+(1−α)Σq
−1)−1Δμ − 1

] (3)

where 0 ≤ α ≤ 1,Δμ = μp − μq , αΣp
−1 + (1− α)Σq

−1 is a positive definite matrix, and
| · | denotes the matrix determinant. The following section builds on this SM closed-form
expression to predict structured output under TGP, which leads an analytic gradient of the
SMTGP cost function with cubic computational complexity. We then present a simplified
expression of the closed-form expression in Eq. 3, which results in an equivalent SMTGP
analytic gradient of quadratic complexity.

3 Sharma–Mittal TGP

In prediction problems, we expect that similar inputs produce similar predictions. This notion
was adopted in (Bo and Sminchisescu 2010; Yamada et al. 2012) to predict structured output
based on KL divergence between two Gaussian Processes. This section presents TGP for
structured regression by minimizing SM relative entropy. We follow that by our theoretical
analysis of TGPs in Sect. 4.We begin by introducing some notation. Let the joint distributions
of the input and the output be defined as follows

p(X, x) = NX (0, KX∪x ), p(Y, y) = NY (0, KY∪y),

KX∪x =
[
KX K x

X
K x

X
T KX (x, x)

]
, KY∪y =

[
KY K y

Y

K y
Y
T
KY (y, y)

]
(4)

6 i.e., In Physics, Entropy is considered to have an extensive property if its value depends on the amount of
material present; Tsallis is an non-extensive entropy.
7 i.e., Rényi entropy is could be interpreted as an averaging of quasi-arithmetic function Akturk et al. (2007).
8 Escort mean values are useful theoretical tools, used in thermostatistics,for describing basic properties of
some probability density function (Tsallis et al. 2009).
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where x(dx×1) is a new input test point, whose unknown outcome is y(dy×1) and the training
set is X(N×dx ) and Y(N×dy) matrices. KX is an N ×N matrix with (KX )i j = kX (xi , x j ), such
that kX (xi , x j ) is the similarity kernel between xi and x j . K x

X is an N × 1 column vector
with (K x

X )i = kX (xi , x). Similarly, KY is an N × N matrix with (KY )i j = kY (yi , y j ), such
that kY (yi , y j ) is the similarity kernel between yi and y j , and K y

Y is an N × 1 column vector
with (K y

Y )i = kY (yi , y). By applying Gaussian-RBF kernel functions, the similarity kernels

for inputs and outputs will be in the form of kX (xi , x j ) = exp(
−‖xi−x j‖2

2ρ2
x

) + λX δi j and

kY (yi , y j ) = exp(
−‖yi−y j‖2

2ρ2
y

) + λY δi j , respectively, where ρx and ρy are the corresponding

kernel bandwidths, λX and λY are regularization parameters to avoid overfitting and to handle
noise in the data, and δi j = 1 if i = j, 0 otherwise.

3.1 KLTGP and IKLTGP prediction

Bo and Sminchisescu (2010) firstly proposed TGP which minimizes the Kullback–Leibler
divergence between the marginal GP of inputs and outputs. However, they were focusing on
the Human Pose Estimation problem. As a result, the estimated pose using TGP is given as
the solution of the following optimization problem (Bo and Sminchisescu 2010)

ŷ = argmin
y

[LK L(x, y) = kY (y, y) − 2K y
Y
T
ux − ηx log(kY (y, y) − K y

Y
T
(KY )−1K y

Y )]
(5)

where ux = (KX )−1K x
X , ηx = kX (x, x) − K x

X
T uX . The analytical gradient of this cost

function is defined as follows (Bo and Sminchisescu 2010)

∂LK L(x, y)

∂y(d)
= ∂kY (y, y)

∂y(d)
− 2uTx

∂K y
Y

∂y(d)
− ηx

log

(
∂kY (y,y)

∂y(d) − 2K y
Y
T
(KY )−1 ∂K y

Y
∂y(d)

)

kY (y, y) − K y
Y
T
(KY )−1K y

Y

(6)

where d is the dimension index of the output y. For Gaussian kernels, we have

∂kY (y, y)

∂y(d)
= 0,

∂K y
Y

∂ y(d)
=

⎡
⎢⎢⎢⎢⎢⎣

− 1
ρ2
y
(y(d) − y(d)

1 )kY (y, y1)

− 1
ρ2
y
(y(d) − y(d)

2 )kY (y, y2)

...

− 1
ρ2
y
(y(d) − y(d)

N )kY (y, yN )

⎤
⎥⎥⎥⎥⎥⎦

.

This optimization problem can be solved using a second order BFGS quasi-Newton opti-
mizer with cubic polynomial line search for optimal step size selection. Since KL divergence
is not symmetric, Bo and Sminchisescu (2010) also studied inverse KL-divergence between
the output and the input distribution under TGP; we denote this model as IKLTGP. Equations
7 and 8 show the IKLTGP cost function and its corresponding gradient.9

9 We derived this equation since it was not provided in (Bo and Sminchisescu 2010).
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ŷ =argmin
y

[L I K L(x, y) = −2K x
X
T uy + uTy KXuy + ηy(log(ηy) − log(ηx ))],

uy = K−1
Y K y

Y , ηy = kY (y, y) − K y
Y
T
uy

(7)

∂L I K L(x, y)

∂y(d)
= −2K x

X
T K−1

Y

∂K y
Y

∂ y(d)
+ 2uTy KX K

−1
Y

∂K y
Y

∂ y(d)

− 2(log(ηy) − log(ηx ) + 1)K y
Y
T
K−1
Y

∂K y
Y

∂ y(d)

(8)

From Eqs. 6 and 8, it is not hard to see that the gradients of KLTGP and IKLTGP can be
computed in quadratic complexity, given that K−1

X and K−1
Y are precomputed once during

training and stored, as it depends only on the training data. This quadratic complexity of
KLTGP gradient presents a benchmark for us to compute the gradient for SMTGP in O(N 2).
Hence, we address this benchmark in our framework, as detailed in the following subsections.

3.2 SMTGP prediction

By applying the closed-form in Eq. 3, SM divergence between p(X, x) and p(Y, y) becomes
in the following form

Dα,β(p(X, x) : p(Y, y)) = 1

β − 1

[( |KX∪x |α|KY∪y |1−α

|(αK−1
X∪x + (1 − α)KY∪y

−1)−1|
)− 1−β

2(1−α)

− 1

]
(9)

From matrix algebra, |KX∪x | = |KX |(kX (x, x) − K x
X
T KX

−1K x
X ). Similarly, |KY∪y | =

|KY |(kY (y, y) − K y
Y
T
KY

−1K y
Y ). Hence, Eq. 9 could be rewritten as follows

Dα,β(p(X, x) : p(Y, y)) =|KX | −α(1−β)
2(1−α) |KY | −(1−β)

2

β − 1
· (kX (x, x) − K x

X
T KX

−1K x
X )

−α(1−β)
2(1−α) ·

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

−(1−β)
2 · |αK−1

X∪x + (1 − α)KY∪y
−1| −(1−β)

2(1−α) − 1

β − 1
(10)

|KX | −α(1−β)
2(1−α) |KY | −(1−β)

2 is a positive constant, since KX and KY are positive definite matri-
ces. Hence, it could be removed from the optimization problem. Same argument holds for
|KX∪x | = |KX |(kX (x, x)− K x

X
T KX

−1K x
X ) > 0, so (kX (x, x)− K x

X
T KX

−1K x
X ) > 0 could

be also removed from the cost function. Having removed these constants, the prediction
function reduces to minimizing the following expression

Lα,β(p(X, x) : p(Y, y)) = 1

β − 1
(kY (y, y) − K y

Y
T
KY

−1K y
Y )

−(1−β)
2 ·

|αK−1
X∪x + (1 − α)KY∪y

−1| −(1−β)
2(1−α)

(11)

It is worth mentioning that K−1
X∪x is quadratic to compute, given that K−1

X is precomputed
during the training; see Appendix 1.

To avoid numerical instability problems in Eq. 11 (introduced by determinant of the
large matrix (αK−1

X∪x + (1 − α)KY∪y
−1), we optimized log(Lα,β(NX : NY )) instead of

Lα,β(NX : NY ). We derived the gradient of log(Lα,β(NX : NY )) by applying the matrix
calculus directly on the logarithm of Eq. 11, presented below; the derivation steps are detailed
in Appendix 2.
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∂Lα,β(p(X, x) : p(Y, y))

∂y(d)
= (1 − β)

[ K y
Y
T
KY

−1 ∂K y
Y

∂y(d)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

+ μT
y · ∂K y

Y

∂y(d)

]
(12)

μy is computed by solving the following linear system of equations (αKY∪y K
−1
X∪x KY∪y +

(1 − α)KY∪y)μ
′
y = [0, 0, . . . 0, 1]T , μy is the first N elements in μ

′
y , which is a vector of

N +1 elements. The computational complexity of the gradient in Eq. 12 is cubic at test time,
due to solving this system. On the other hand, the gradient for KLTGP is quadratic. This
problem motivated us to investigate the cost function to achieve a quadratic complexity of
the gradient computation for SMTGP.

3.3 Quadratic SMTGP prediction

We start by simplifying the closed-form expression introduced in (Nielsen and Nock 2012),
which led to the O(N 3) gradient computation.

Lemma 3.1 SM-divergence between two N-dimensional multivariate Gaussians Np =
N (0,Σp) and Nq = N (0,Σq) can be written as

D′
α,β(Np : Nq) = 1

β − 1

[( |Σp|1−α|Σq |α
|αΣq + (1 − α)Σp|

) (1−β)
2(1−α)

− 1

]
(13)

Proof Under TGP setting, the exponential term in Eq. 3 vanishes to 1, since Δμ = 0 (i.e.

μp = μq = 0). Then, |Σp |α |Σq |1−α

|(αΣ−1
p +(1−α)Σq

−1)−1| could be simplified as follows:

= |Σp|α|Σq |1−α

|(αΣ−1
p + (1 − α)Σq

−1)|−1
, since |A−1| = 1

|A|

= |Σp|α|Σq |1−α

|Σ−1
p (αΣq + (1 − α)Σp)Σ

−1
q |−1

, by factorization

= |Σp|α|Σq |1−α

|Σp||αΣq + (1 − α)Σp|−1|Σq | , since |AB| = |A||B|

= |αΣq + (1 − α)Σp|
|Σp|1−α|Σq |α

, by rearrangement

(14)


�
Wedenote the original closed-formexpression as Dα,β(Np,Nq),while the simplified form

as D′
α,β(Np,Nq). After applying the simplified SM expression in Lemma 3.1 to measure the

divergence between p(X, x) and p(Y, y), the new cost function becomes in the following
form

D′
α,β(p(X, x) : p(Y, y)) = 1

β − 1

[( |KX∪x |1−α|KY∪y |α
|(1 − α)KX∪x + αKY∪y | )

1−β
2(1−α) − 1

]

= 1

β − 1

(
|KX∪x | 1−β

2 |KY∪y |
α(1−β)
2(1−α) |(1 − α)KX∪x + αKY∪y |

−(1−β)
2(1−α) ) − 1

β − 1
,

|KY∪y |
α(1−β)
1−α = |KY | α(1−β)

(1−α) · (kY (y, y) − K y
Y
T
KY

−1K y
Y )

α(1−β)
(1−α) ,

|(1 − α)KX∪x + αKY∪y |
−(1−β)
2(1−α) = |(1 − α)KX + αKY | −(1−β)

2(1−α) ·
(Kxy

α − K xy
XY

T
((1 − α)KX + αKY )−1K xy

XY )

−(1−β)
2(1−α) (15)
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where Kxy
α = (1 − α)kX (x, x) + αkY (y, y), K xy

XY = (1 − α)K x
X + αK y

Y . Since

|KX∪x | 1−β
2 , |KY | α(1−β)

(1−α) , and |(1− α)KX + αKY | −(1−β)
2(1−α) are multiplicative positive constants

that do not depend on y, they can be dropped from the cost function. Also, − 1
β−1 is an

additive constant that can be ignored under optimization. After ignoring these multiplicative
positive constants and the added constant, the improved SMTGP cost function reduces to

L ′
α,β(p(X, x) : p(Y, y)) = 1

β − 1

[
(kY (y, y) − K y

Y
T
KY

−1K y
Y )

α(1−β)
2(1−α) ·

(Kxy
α − K xy

XY
T
((1 − α)KX + αKY )−1K xy

XY )

−(1−β)
2(1−α)

] (16)

In contrast to Lα,β in Eq. 11, L ′
α,β does not involve a determinant of a large matrix.

Hence, we predict the output y by directly10 minimizing L ′
α,β in Eq. 16. Since the cost

function has two factors that does depend on y, we follow the rule that if g(y) =
c · f (y) · r(y) where c is a constant, f (y) and r(y) are functions, then ∂g(y)

∂y =
c · (

∂ f (y)
∂y r(y)+ f (y) ∂r(y)

∂y ), which interprets the two terms of the derived gradient below,

where f (y) = (kY (y, y)−K y
Y
T
KY

−1K y
Y )

α(1−β)
2(1−α) , r(y) = (Kxy

α − K xy
XY

T
((1 − α)KX +

αKY )−1K xy
XY )

−(1−β)
2(1−α) , c = 1

β−1

∂L ′(α, β)

∂y(d)
(p(X, x) : p(Y, y))= 1

β − 1

[ α(1−β)

2(1 − α)
(kY (y, y)−K y

Y
T
KY

−1K y
Y )

α(1−β)
2(1−α)

−1·

(
∂kY (y, y)

∂y(d)
− 2 · K y

Y
T
KY

−1 ∂K y
Y

∂y(d)
)·

(Kxy
α − K xy

XY
T
((1 − α)KX + αKY )−1K xy

XY )

−(1−β)
2(1−α)

+ (kY (y, y) − K y
Y
T
KY

−1K y
Y )

α(1−β)
2(1−α) · −(1 − β)

2(1 − α)

(Kxy
α − K xy

XY
T
((1 − α)KX + αKY )−1K xy

XY )

−(1−β)
2(1−α)

−1·

(α
∂kY (y, y)

∂y(d)
−2·K xy

XY
T
((1−α)KX +αKY )−1 · α

∂K y
Y

∂y(d)
)
]

(17)
The computational complexity of the cost function in Eq. 16 and the gradient in Eq. 17

is quadratic at test time (i.e. O(N 2)) on number of the training data. Since KY
−1 and

(αKX + (1−α)KY )−1 depend only on the training points, they are precomputed in the train-
ing time. Hence, our hypothesis, about the quadratic computational complexity of improved
SMTGP prediction function and gradient, is true since the remaining computations are
O(N 2). This indicates the advantage of using our closed-form expression for SM diver-
gence in Lemma 3.1 against the closed-form proposed in (Nielsen and Nock 2012) with
cubic complexity. However, both expression are equivalent, it is straight forward to compute
the gradient in quadratic complexity from D′(α, β) expression.

3.4 Advantage of D′
α,β

(N p,Nq) against Dα,β(N p,Nq) out of SMTGP context

The previous subsection shows that the computational complexity of SMTGP prediction
was decreased significantly using our D′

α,β at test time to be quadratic, compared to cubic

10 There is no need to optimize over the logarithm of L ′
α,β because there is no numerical stability problem.
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complexity for Dα,β . Out of the TGP context, we show here another general advantage of
using our proposed closed-form expression to generally compute SM-divergence between
two Gaussian distributions Np and Nq . D′

α,β(Np,Nq) is 1.67 times faster to compute than

Dα,β(Np,Nq) under Δμ = 0 condition. This is since D′
α,β(Np,Nq) needs N 3 operations

which is much less than 5N 3/3 operations needed to compute D′
α,β(Np,Nq)(i.e., requires

less matrix operations); see Appendix 3 for the proof. We conclude this section by a general
form of Lemma 3.1 in Eq. 18, where Δμ �= 0. This equation was achieved by refactorizing
the exponential term and using matrix identities.

D′
α,β(Np : Nq) = 1

β − 1

[( |Σp|1−α|Σq |α
|αΣq + (1 − α)Σp|

) (1−β)
2(1−α)

·

e− α(1−β)
2 ΔμT Σq (αΣq+(1−α)Σq )−1ΣpΔμ − 1

] (18)

In case Δμ �= 0, D′
α,β(Np,Nq) is 1.5 times faster than computing Dα,β(Np,Nq). This is

since D′
α,β(Np,Nq) needs 4N 3/3 operations in this case which is less than 2N 3 operations

needed to compute D′
α,β(Np,Nq) under Δμ �= 0; see Appendix 3. This indicates that the

simplifications, we provided in this work, could be used to generally speedup the computation
of SM divergence between two Gaussian Distributions, beyond the context of TGPs.

4 Theoretical analysis

In order to understand the role of α and β parameters of SMTGP, we performed an eigen
analysis of the cost function inEq. 15.Generally speaking, the basic notion of TGPprediction,
is to extend the dimensionality of the divergence measure from N training examples to
N + 1 examples, which involves the test point x and the unknown output y. Hence, we start
by discussing the extension of a general Gaussian Process from KZ (e.g. KX and KY ) to
KZ∪z (e.g. KX∪x and KY∪y), where Z is any domain and z is the point that extends KZ to
KZ∪z , detailed in Sect. 4.1. Based on this discussion, we will derive two lemmas to address
some properties of the SMTGP prediction in Sect. 4.2, which will lead to a probabilistic
interpretation that we provide in Sect. 4.3.

4.1 A Gaussian process from N to N + 1 points

In this section, we will use a superscript to disambiguate between the kernel matrix of size N
and N +1, i.e. K N and K N+1. Let f (z) = GP(m(z) = 0, k(z, z′)) be a Gaussian process on
an arbitrary domain Z . Let GPN = N (0, K N ) be the marginalization of the given Gaussian
process over the N training points (i.e. {zi }, i = 1 : N ). Let GPN+1 = N (0, K N+1) be
the extension of the GPN be the marginalization of f (z) over N + 1 points after adding the
N + 1th point (i.e. z).11 The kernel matrix K N+1 is written in terms of K N as follows

K N+1 =
[
K N v

vT k(z, z)

]
(19)

where v = [k(z, z1) . . . k(z, zN )]T . The matrix determinant of K N+1 is related to K N by

|K N+1| =η · |K N |, η = k(z, z) − vT (K N )−1v. (20)

11 This is linked to the extending p(X) to p(X, x) and p(Y ) to p(Y, y) by x and y respectively.
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Since multivariate Gaussian distribution is a special case of the elliptical distributions, the
eigen values of any covariance matrix (e.g. K N , K N+1 ) are interpreted as variance of the
distribution in the direction of the corresponding eigen vectors. Hence, the determinant of
the matrix (e.g. |K N |, |K N+1|) generalizes the notion of the variance in multiple dimensions
as the volume of this elliptical distribution, which is oriented by the eigen vectors. From
this notion, one could interpret η as the ratio by which the variance (uncertainty) of the
marginalized Gaussian process is scaled, introduced by the new data point z. Looking closely
at η, we can notice

(1) 0 ≤ η ≤ k(z, z), since |K N | > 0, |K N+1| > 0, and vT (K N )−1v ≥ 0.
(2) In the case of the regularized Gaussian kernel, we used in our work, k(z, z) = 1+λ, and

hence 0 ≤ η ≤ 1 + λ

(3) η decreases as the new data point get closer to the N points. This situation makes v

highly correlated with the eigen vectors of small eigen values of K N , since the term
vT (K N )−1v is maximized as v points to the smallest principal component of K N (i.e.
the direction of the maximum certainty). Hence, η is an uncertainty measure, which is
minimized as the new data point z produces a vector v, that maximizes the certainty
of the data under N (0, K N ), which could be thought as a measurement proportional to
1/p(z|z1 : zN ). Computing η on the input space X makes it equivalent to the predictive
variance of Gaussian Process Regression (GPR) prediction (Rasmussen and Williams
2005) (Chapter 2), which depends only on the input space. However, we are discussing η

as an uncertainty extension from N to N + 1 on an arbitrary domain, which is beneficial
for SMTGP analysis that follows.

4.2 TGP cost function analysis

We start by the optimization function of the SMTGP prediction, defined as

ŷ(α, β) = argmin
y

[
D′

α,β

(
GPX∪x : GPY∪y

)

= 1

β − 1

(( |KX∪x |1−α|KY∪y |α
|(1 − α)KX∪x + αKY∪y |

) 1−β
2(1−α) − 1

))] (21)

where D′
α,β(·, ·) is as defined in Eq. 15. As detailed in Sect. 3, SM divergence, involves the

determinant of three matrices of size N + 1 × N + 1, namely KX∪x , KY∪y , and αKY∪y +
(1 − α)KX∪x . Hence, We have three uncertainty extensions from N to N + 1, as follows

|KX∪x | = ηx · |KX |, |KY∪y | =ηy · |KY |
|αKY∪y + (1 − α)KX∪x | = ηx,y(α) · |αKY + (1 − α)KX |,

where ηx,y(α) = αKY (y, y) + (1 − α)KX (x, x) − vxy(α)T (αKY + (1 − α)KX )−1vxy(α),

vxy(α) = αK y
Y + (1 − α)K x

X
(22)

It might not be straightforward to think about αKY∪y+(1−α)KX∪x within TGP formulation
as a kernel matrix defined on X × Y space in Eq. 22. This gives an interpretation of the
constraint that 0 ≤ α ≤ 1 in Eqs. 3 and 13. Since αkY (yi , y j ) + (1 − α)kX (xi , x j ) is a
weighted sum of valid kernels with positive weights, then αKY∪y + (1− α)KX∪x is a valid
kernel matrix on X × Y space. From Eqs. 21 and 22, we derived with the following two
Lemmas.
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Lemma 4.1 Under SMTGP, ϕα(x, y) = η1−α
x ηα

y
ηx,y(α)

≤ (
∫ ∞
−∞ pY (t)α pX (t)1−αdt)−2,

(
∫ ∞
−∞ pY (t)α pX (t)1−αdt)−2 = |αKY+(1−α)KX |

|KX |1−α |KY |α ≥ 1

Proof Directly from the definition of SM TGP in Eqs. 21 and 22, SM TGP cost function
could be written as,

ŷ(α, β) = argmin
y

[
D′

α,β(p(X, x) : p(Y, y))

= 1

β − 1

(( |KX |1−α.η1−α
x .|KY |α.ηα

y

|αKY + (1 − α)KX |.ηx,y(α)

) (1−β)
2(1−α)

− 1

)] (23)

Comparing Eq. 1 to Eq. 23, then

( |KX |1−α|.η1−α
x .KY |α.ηα

y

|αKY + (1 − α)KX |.ηx,y(α)

) 1
2

=
∫ ∞

−∞
pX,x (t)

α pY,y(t)
1−αdt ≤ 1,

and since ηx,y(α) > 0 and ηy > 0, then

ϕα(x, y) = η1−α
x ηα

y

ηx,y(α)
≤ |αKY + (1 − α)KX |

|KX |1−α|KY |α ,

and since
∫ ∞
−∞ pX (t)α pY (t)1−αdt =

(
|KX |1−α |KY |α

|αKY+(1−α)KX |
) 1

2

and

∫ ∞
−∞ pX (t)α pY (t)1−αdt ≤ 1, then |KX |1−α |KY |α

|αKY+(1−α)KX | ≤ 1. 
�

Lemma 4.2 Under SMTGP and 0 < α < 1, ŷ(α, β) maximizes ϕα(x, y) = η1−α
x .ηα

y
ηx,y(α)

≤
|αKY+(1−α)KX |

|KX |1−α |KY |α and it does not depend on β theoretically.

Proof We start by the claim that ŷ(α, 1 − τ) = ŷ(α, 1 + ζ ), 0 < α < 1, τ > 0, ζ >

0 and both predictions are achieved by maximizing (
∫ ∞
−∞ p(Y,y)(t)α p(X,x)(t)1−αdt)2 =

|KX |1−α |KY |αη1−α
x ηα

y
|αKY+(1−α)KX |ηx,yα ≤ 1, which is ∝ ϕα(x, y), where p(X,x) = N (0, KX∪x ) and p(Y, y) =
N (0, KY∪y), p(X) = N (0, KX ) and p(Y ) = N (0, KY ). This claim indicates that the cost
functions D′

α,1−τ (p(X, x) : p(Y, y)) and D′
α,1+ζ (p(X, x) : p(Y, y)) are equivalent.

Let us introduce Zα(y) = |KX∪x |1−α |KY∪y |α
|αKY∪y+(1−α)KX∪x | = (

∫ ∞
−∞ pX,x (t)α pY,y(t)1−αdt)2 ≤ 1.

From this notation, D′
α,1−τ (p(X, x) : p(Y, y)) and D′

α,1+ζ (p(X, x) : p(Y, y)) could be
re-written as

Dα,1−τ (p(X, x) : p(Y, y)) = 1

−τ

[(
Zα(y)

) τ
2(1−α)

− 1

]
,

Dα,1+ζ (p(X, x) : p(Y, y)) = 1

ζ

[(
Zα(y)

) −ζ
2(1−α)

− 1

] (24)

From Eq. 24 and under the assumption that 0 < α < 1 and Zα(y) ≤ 1, then
Dα,1−τ (p(X, x) : p(Y, y)) ≥ 0, Dα,1+ζ (p(X, x) : p(Y, y)) ≥ 0. Both are clearly mini-
mized as Zα(y) approaches 1 (i.e. maximized, since Zα(y) ≤ 1). Comparing Eqs. 23 and 24,

Zα(y) = (
∫ ∞
−∞ pX,x (t)α pY,y(t)1−αdt)2 = |KX∪x |1−α |KY∪y |α

|αKY∪y+(1−α)KX∪x | = |KX |1−α |.η1−α
x .KY |α.ηα

y
|αKY+(1−α)KX |.ηx,y(α)

∝
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ϕα(x, y) = η1−α
x ηα

y
ηx,y(α)

, since |αKY + (1 − α)KX |, |KX |, and |KY | do not depend on the pre-

dicted output ŷ. This indicates that SMTGP optimization function is inversely proportional to
ϕα(x, y), we upper-bounded in Lemma 4.1. Hence, it is not hard to see that ζ and τ controls

whether to maximize ϕα(x, y)
τ

1−α or maximize −ϕα(x, y)
−ζ
1−α , which are equivalent. This

directly leads to that ŷ(α, β) maximizes
η1−α
x .ηα

y
ηx,y(α)

≤ |αKY+(1−α)KX |
|KX |1−α |KY |α and it does not depend on

β theoretically. 
�

The proof of Lemma 4.2 shows the relationship between ϕα(x, y) and SM divergence
through a derivation that starts from SMTGP cost function. From Lemmas 4.1 and 4.2, the

term |KX |1−α |KY |α
|αKY+(1−α)KX | ≤ 1 represents an agreement function between p(X) and p(Y ). Sim-

ilarly,
|KX∪x |1−α |KY∪y |α

|αKY∪y+(1−α)KX∪y | = |KX |1−α |KY |αη1−α
x ηα

y
|αKY+(1−α)KX |ηx,yα ≤ 1 is an agreement function between

the extended distributions p(X, x) and p(Y, y). This agreement function increases as
the weighted volume of the input and the output distributions (i.e..|KX∪x |1−α|KY∪y |α ,
weighted by α) is as close as possible to the volume of the joint distribution (i.e.
|αKY∪y + (1 − α)KX∪x |). This function reaches 1 (i.e. maximized) when the two dis-
tributions are identical, which justifies maximizing ϕα(x, y) as indicated in Lemma 4.2.
From another view, maximizing ϕα(x, y) prefers minimizing ηx,y(α), which maximizes the
p((x, y)|(x1, y1), .., (xN , yN )), that we abbreviate as p(x, y); this is motivated by our intu-

ition in Sect. 4.1. However, SMTGP maximizes ϕα(x, y) = η1−α
x ηα

y
ηx,y(α)

, this gives a probabilistic
sense for the cost function when we follow our intuition that ηx ∝ 1/p(x), ηy ∝ 1/p(y)

and ηx,y(α) ∝ 1/p(x, y). Hence ϕα(x, y) could be seen as p(x,y)
p(x)1−α p(y)α

, discussed in
the following subsection. This understanding motivated us to plot the relation between
ϕα(x, y) and the test error on SMTGP prediction. Figure 1 shows a clear correlation
between ϕα(x, y) and the prediction error. Hence, it introduces a clear motivation to study
it as a certainty measure, which could be associated with each structured output predic-
tion.

4.3 Probabilistic interpretation of maximizing ϕα(x, y) = η1−α
x .ηα

y
ηx, y(α)

As detailed in the previous subsection, one can interpret ηx,y(α) ∝ 1/p(x, y), ηx ∝
1/p(x), ηy ∝ 1/p(y). Hence, ηx,y(α)

ηy
∝ p(y|x), ηx

ηx,y(α)
∝ p(x |y). Hence, what does η1−α

x .ηα
y

ηx,y(α)

mean? Since 0 < α < 1, it is obvious thatmin(ηx , ηy) < f1(α) = η1−α
x .ηα

y < max(ηx , ηy).
Figure 2 shows the behavior of f1(α) against f2(α) = (1 − α) · ηx + α · ηy , which
is also bounded between min(ηx , ηy) and max(ηx , ηy). According to this figure, f1(α)

behaves very similar to f2(α) as |ηx − ηy | approaches zero, where linear approximation
is accurate. However, as |ηx − ηy | gets bigger, f1(α) gets biased towards min(ηx , ηy) as

indicated in the left column of Fig. 2. Hence, ηx,y(α)

η1−α
x .ηα

y
is interpreted depending on the values

of ηx ∝ 1
p(x) , ηy ∝ 1

p(y) , and ηx,y(α) ∝ 1
p(x,y) as follows:

1. If ηx << ηy,
η1−α
x .ηα

y
ηx,y(α)

≈̂12 ηx
ηx,y(α)

∝ p(y|x)
2. If ηy << ηx ,

η1−α
x .ηα

y
ηx,y(α)

≈̂ ηy
ηx,y(α)

∝ p(x |y)

12 ≈̂ indicates equivalence for optimization/prediction.
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Fig. 1 log(ϕα(x, y)) against test error on USPS dataset using SMTGP, α = 0.8, β = 0.5

3. If ηy ≈ ηx ,
η1−α
x .ηα

y
ηx,y(α)

≈̂ ηy
ηx,y(α)

∝ p(x |y) ≈ ηx
ηx,y(α)

∝ p(y|x) ; This is less likely to happen
since p(x) = p(y) in this case.

4. If |ηy−ηx | < ε, in this caseα linearly control
η1−α
x .ηα

y
ηx,y(α)

≈̂ (1−α)ηx+αηy
ηx,y(α)

∝ ( 1−α
p(y|x)+ α

p(x |y) )
−1

Hence, SMTGP regression predicts the output of maximum certainty on p(x, y) =
N (0, (1 − α)KX∪x + αKY∪y), conditioned on the uncertainty extension on p(x) =
N (0, KX∪x ) and p(y)=GP(0, KY∪y). The conditioning is biased towardsmax(p(x), p(y)),
which gives best discrimination relative to p(x, y) and hence, maximize the certainty of the
prediction. In case the difference between p(x) and p(y) is not high, the prediction is based
on a weighted sum of p(y|x) and p(x |y), as shown in point 4 above.

5 Experimental results

In this section, we evaluate SMTGP on two Toy examples, USPS dataset in an image
reconstruction task, and both Poser dataset (Agarwal and Triggs 2006) and HumanEva
dataset (Sigal et al. 2010) for a 3D pose estimation task. It is shown in (Bo and Sminchisescu
2010; Yamada et al. 2012), that TGP outperforms Kernel Regression (KR), Gaussian Process
Regression (GPR), Weighted K-Nearest Neighbor regression (Rasmussen and Williams
2005), Hilbert Schmidt independence criterion (HSIC) (Gretton et al. 2005), and Ker-
nel Target Alignment method(KTA) (Cristianini and Kandola 2001) on a Toy example,
HumanEva dataset, and Poser Dataset (i.e. Pose Estimation datasets). Hence, we extended
our evaluation beyond pose estimation datasets. We compared our SMTGP with KLTGP
and IKLTGP. IKLTGP stands for inverse KLTGP, which predicts the output by minimiz-
ing the KL divergence of the output probability distribution from the input probability
distribution (Bo and Sminchisescu 2010). The main motivation behind this comparison
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Fig. 2 Left plot functions are in the form f1(α) = η1−α
D1

ηα
D2

and their corresponding f2(α) = (1 − α) ·
ηD1 + α · ηD2 are on the right; rows indicate different values of ηD1 , ηD2 , where D1 and D2 are arbitrary
two domains

is that KLTGP and IKLTGP are biased to one of the distributions, and therefore the
user has to choose either to use KLTGP or IKLTGP based on the problem. In contrast,
SMTGP could be adapted by α and β on the validation set, such that the prediction error
is minimized. From this point, we denote the set of KLTGP, IKLTGP and SMTGP as
TGPs. Our presentation of the results starts by the specification of the toy examples and
the datasets in Sect. 5.1. Then, we present our parameter settings and how α and β are
selected in Sect. 5.2. Finally, we show our argument on the performance on these tasks in
Sect. 5.3.
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5.1 Specification of the toy examples and the datasets

5.1.1 Toy example 1 (Bo and Sminchisescu 2010)

The training set for the first toy problem predict a 1D output variable y given a 1D control
x (the input). It consists of 250 values of y generated uniformly in (0,1), for which x =
y+0.3sin(2yπ)+ε is evaluatedwith ε such that ε = N (μ = 0, σ = 0.005); see Fig. 3. Stars
correspond to examples whereKNN regression andGPR suffer from boundary/discontinuous
effects as indicated in (Bo and Sminchisescu 2010). The TGPs were tested with 250 equally
spaced inputs x in (0, 1). We used the mean prediction error to measure the performance on
this example.

5.1.2 Toy example 2

In order to introduce a more challenging situation, we generate a double S shape; see Fig. 4.
Toy example 2 is constructed by concatenated two S shapes, which makes the overall predic-

Fig. 3 Toy example 1
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Fig. 4 Toy example 2
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tion error more challenging to reduce. In addition, we down-sampled the points by 2, such
that the total number of points is the same as Toy example 1. Hence, there is less information
in the training data compared to Toy example 1. Similarly, the TGPs were tested with 500
equally spaced inputs x in (−1, 1). We used the same error-measure in Toy Example 1.

5.1.3 Image reconstruction task on USPS dataset (Hull 1994)

The image reconstruction problem (Bo and Sminchisescu 2009) is that given outer 240 pixel
values of a handwritten digit (16x16) from USPS data set, the goal is to predict the 16 pixel
values lying in the center. We split the dataset into in 4649 test examples and 4649 training
samples (No knowledge is assumed for the label of the digit). The range of the pixel values in
this dataset is in (−1, 1). The error measure amounts to the root mean-square error averaged
over the 16 gray-scales in the center. Errorpose(ŷ, y∗) = ‖ŷ − y∗‖, where ŷ ∈ R16 is the
predicted 16-values’ vector lying in the center, y∗ is the true 16-colors of the given outer 240
pixels values x .

5.1.4 3D pose estimation task on Poser dataset (Agarwal and Triggs 2006)

Poser dataset consists of 1927 training and 418 test images, which are synthetically gener-
ated and tuned to unimodal predictions. The image features, corresponding to bag-of-words
representation with silhouette-based shape context features. The TGPs requires inversion of
N × N matrices during the training, so the complexity of the solution is O(N 3), which is
impractical when N is larger. Hence, in both Poser and Human Eva datasets, we applied the
TGPs by finding the Ktr nearest neighbors to each test point (Ktr ≈ 800 in our experiments).
This strategy was also adopted in (Bo and Sminchisescu 2010; Yamada et al. 2012). Poser
dataset was generated using Poser software package, from motion capture (Mocap)data (54
joint angles per frame). The error is measured by the root mean square error (in degrees),
averaged over all joints angles, and is given by:Errorpose(ŷ, y∗) = 1

54

∑54
m=1 ‖ŷm − y∗mmod

360◦‖ , where ŷ ∈ R54 is an estimated pose vector, and y∗ ∈ R54 is a true pose vector.

5.1.5 3D pose estimation task on HumanEva dataset (Sigal et al. 2010)

HumanEva datset contains synchronized multi-view video and Mocap data. It consists of
3 subjects performing multiple activities. We use the histogram of oriented gradient (HoG)
features (∈ R270) proposed in (Bo and Sminchisescu 2010). We use training and validations
sub-sets ofHumanEva-I and only utilize data from3 color cameraswith a total of 9630 image-
pose frames for each camera. This is consistent with experiments in (Bo and Sminchisescu
2010; Yamada et al. 2012). We use half of the data (4815 frames) for training and half (4815
frames) for testing. InHumanEva, pose is encoded by (20) 3D jointmarkers defined relative to
the torsoDistal joint in camera-centric coordinate frame, so y = [y(1), y(2), . . . , y(20)] ∈ R60

and y(i) ∈ R3. Error (in mm) for each pose is measured as average Euclidean distance:
Errorpose(ŷ, y∗) = 1

20

∑20
m=1 ‖ŷm − y∗m‖, where ŷ is an estimated pose vector, and y∗ is a

true pose vector.

5.2 Parameter settings and learning α and β

Each SMTGP prediction is done by optimizing equation 15 by gradient descend with max
steps of 50 (like Bo and Sminchisescu 2010). Since, we proved that β is mainly changing the
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Table 1 Parameter settings for TGPs

2ρ2x 2ρ2y λx λy α β

Toy 1 5 0.05 10−4 10−4 0.9 1.5

Toy 2 5 0.05 10−4 10−4 0.6 0.99

USPS 2 2 0.5 × 10−3 0.5 × 10−3 0.9 0.99

Poser 5 5000 10−4 10−4 0.7 0.5

Heva 5 500,000 10−3 10−3 0.99 0.99

power of the cost function, which theoretically does not affect the prediction, as detailed in
Sect. 4. Hence, this motivated us to only consider only three values, which are actually edge
cases (β = 0.99), (β = 0.5 for β < 1), (β = 1.5 for β > 1). We found that that the role of β

in practice is mainly affecting the convergence rate and the purpose of cross validation on β

is to find β that converges faster. We found that there is no specific value of β that gives the
best performance for all the datasets. Hence, we suggest selecting β from only the suggested
three values by cross validation like α but for a different purpose.

We performed five fold cross validation on α parameters ranging from 0 to 1 step 0.05.
While, we selected three values for β. β → 1 = 0.99 in practice, β = 1.5 (i.e. β > 1),
β = 0.5 (i.e. β < 1). Our learning of the parameters covers different divergence measures
and select the setting that minimize the error on the validation set. Finally, we initialize y in
SMTGP by KLTGP prediction in (Bo and Sminchisescu 2010). Regarding λX , λY , ρX and
ρy , we use the values selected during the training of KLTGP (Bo and Sminchisescu 2010).
Table 1 shows the parameter setting, we used for KLTGP, IKTGP, and SMTGP models.
All these models share ρx , ρy , λx , and λy parameters. However, SMTGP has α and β as
additional parameters.

5.3 Results

As can be noticed from Figs. 5 and 6, SMTGP improved on KLTGP on Toy 1 dataset. Further
improvement has been achieved on Toy 2 dataset, which is more challenging; see Figs. 7
and 8. These results indicate the advantages of the parameter selection of α and β. From
Table 2, we can notice that SMTGP improved on KLTGP by 12.70% and also on IKLTGP
by 3.51% in Toy 2, which shows the adaptation behavior of SMTGP by tuning α and β. It
was argued in (Bo and Sminchisescu 2010) that KLTGP performs better than IKLTGP in
pose estimation. While, they reported that they gave almost the same performance on a toy
example which we denote here by Toy 1. We presented Toy 2 to draw two conclusions. First,
KLTGP does not always outperform IKLTGP as argued in (Bo and Sminchisescu 2010) in
HumanEva dataset. Second, SMTGP could be tuned by cross-validation to outperform both
KLTGP and IKLTGP.

Another important observation in Table 2 is that KLTGP outperforms IKLTGP on Poser
and HumanEva datasets, while IKLTGP outperform KLTGP in the toy examples (slightly
in the first and significantly in the second). The interesting behavior is that SMTGP per-
forms at least as good as the best of KLTGP and IKLTGP in all of the datasets. KLTGP
and IKLTGP are biased towards one of the input and the output distributions. However,
SMTGP learns from the training data the bias factor (using α) towards the input or the
output distributions. These results could also be justified by the fact that SM divergence
is a generalization of a family of divergence measure. A powerful property in SMTGP is
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Fig. 5 Toy1: KLTGP error = 0.116(±0.152)
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Fig. 6 Toy1:SMTGP error = 0.113(±0.158)

that by controlling α and β, SMTGP provides a set of divergence functions to optimize
for prediction. However, a member of this set is selected during training by tuning α and
β on a validation set. Hence, SMTGP learns α and β to make better predictions. Finally,
SMTGP has a desirable generalization on the test set; see Table 2. Table 2 also shows that
SMTGP does not only have same complexity as KLTGP but also it has a similar constant
factor. In four of the datasets, SMTGP is faster than IKLTGP and KLTGP. 13 We opti-
mized the matrix operations in the three methods as possible. SMTGP and KLTGP have
similar number of matrix operations; this justifies why they have similar computational
times.

13 For KLTGP, we used the implementation provided by Bo and Sminchisescu (2010).
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Fig. 7 Toy2:KLTGP error = 0.126(±0.14)
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Fig. 8 Toy2: SMTGP error = 0.110(±0.15)

Table 2 Regression error and time of SMTGP, KLTGP, and IKLTGP, and error reduction of SMTGP against
KLTGP and IKLTGP on the five datasets, imp. denotes the reduction

SMTGP KLTGP Imp.% IKLTGP Imp%
(Bo and Sminchisescu 2010) (Bo and Sminchisescu 2010)

Toy1 0.1126 (18.6 s) 0.116 (19.9 s) 2.93 0.115 (25.8 s) 2.09

Toy2 0.11 (20.1 s) 0.126 (19.2 s) 12.70 0.114 (25.1 s) 3.51

USPS 0.2587 (1001.7 s) 0.2665 (945 s) 2.93 0.2683 (1154 s) 3.58

Poser (deg) 5.4296 (104.3 s) 5.4296 (121.6 s) 0.00 6.484 (146.3 s) 16.26

HEva (mm) 37.59 (1631.6 s) 37.64 (2028.4 s) 0.13 55.622 (2344 s) 32.42
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Table 3 Regression error of GPR, HSIC-KNN, KTA-KNN, and W-KNN regression models

GPR WKNN HSICKNN KTAKNN
(Rasmussen and
Williams 2005)

(Rasmussen and
Williams 2005)

(Gretton et al.
2005)

(Cristianini and
Kandola 2001)

Toy1 0.17603 0.15152 0.18396 0.19333

Toy2 0.19011 0.16986 0.21294 0.19134

USPS 0.31504 0.2731 0.26832 0.26679

Poser (deg) 6.0763 5.62 7.1667 8.4739

HEva (mm) 46.6987 53.0834 57.8221 57.8733

We conclude our results by reporting the performance of GPR, HSIC-KNN, KTA-KNN,
and W-KNN on the five datasets;14 see Table 3. Comparing Tables 2 and 3, it is obvious that
TGPs outperforms GPR, HSIC-KNN, KTA-KNN, and W-KNN.

6 Discussion

We proposed a framework for structured output regression based on SM-divergence. We
performed a theoretical analysis to understand the properties of SMTGP prediction, which
helped us learn α and β parameters of SM-divergence. As a part of our analysis, we argued
on a certainty measure that could be associated with each prediction. We here discuss these
main findings of our work.

A critical theoretical aspect that is missing in the KL-based TGP formulation is under-
standing the cost function from regression-perspective. We cover this missing theory not
only by analyzing the cost function based on KL, but instead, by providing an understand-
ing of SMTGP cost function, which covers (KL, Renye, Tsallis, Bhattacharyya as special
cases of its parameters). Our claims are supported by a theoretical analysis, presented in
Sect. 4. The main theoretical result is that SM-based TGP (SMTGP) prediction maximizes
a certainty measure, we call ϕα(x, y), and the prediction does not depend on β theoretically.
A probabilistic interpretation of ϕα(x, y) was discussed as part of our analysis and it was
shown to have a negative correlation with the test error, which is an interesting result; see
Fig. 1. The figure highlights the similarity between this SMTGP certainty measure and pre-
dictive variance provided by Gaussian Process Regression (GPR) (Rasmussen and Williams
2005) for single output prediction. A computationally efficient closed-form expression for
SM-divergence was presented, which leads to reducing SMTGP prediction complexity from
O(N 3) to O(N 2);15 this makes SMTGP and KLTGP computationally equivalent. More-
over, it reduces the number of operations to compute SM-divergence between two general
Gaussian distributions, out of TGP context; see Sect. 3. Practically, we achieve structured
output regression by tuning α and β parameters of SM-divergence through cross validation
under SMTGP cost function. We performed an intensive evaluation of different tasks on five

14 These baseline approaches was also compared in (Bo and Sminchisescu 2010) against KLTGP, and our
results is consistent with the conclusion that we reached from the comparison but only on Toy Example 1 and
HumanEva dataset; see (Bo and Sminchisescu 2010) for more about the parameters of these baselines and its
selection. KNN indicates that these methods were applied to training data in K-neighborhood of the testing
point.
15 N is the number of the training points.
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datasets and we experimentally observed a desirable generalization property of SMTGP. Our
experiments report that our resultant approach, SMTGP, outperformed KLTGP, IKLTGP,
GPR, HSIC, KTA, and W-KNN methods on two toy examples and three datasets.

We conclude by highlighting a practical limitation of SMTGP, which is that it requires an
additional time for tuning α and β by cross validation. However, we would like to indicate
that this cross validation time is very short for the datasets (0.9h for poser dataset and 14h for
Human Eva dataset). Using a smaller grid could significantly decrease this validation time.
We used a grid of 20 steps for α. However, we found that in our experiments it is enough to
use grid of size 10 (step 0.1 instead of 0.05). In addition, selecting a single randomly selected
validation set like Neural networks models could save a lot of time instead of selecting α and
β on the entire training set by cross validation, which we performed in our experiment.

7 Conclusion

We presented a theoretical analysis of a two-parameter generalized divergence measure,
named Sharma–Mittal(SM), for structured output prediction.We proposed an alternative, yet
equivalent, formulation for SMdivergencewhose computation is quadratic compared to cubic
for the structured output prediction task (Lemma 3.1). We further investigated theoretical
properties which is concluded by a probabilistic causality direction of our SM objective
function; see Sect. 4.Weperformed extensive experiments to validate our findings on different
tasks and datasets (two datasets for pose estimation, one dataset for image reconstruction and
two toy examples).

Appendix 1: Relationship between K−1
X∪x and K−1

X

K−1
X∪x is O(N 2) to compute, given that the singular value decomposition of KX is precom-

puted during the training, from which K−1
X and K−2

X are computed as well. Then, applying
the matrix inversion Lemma (Alvarado 1999), K−1

X∪x could be related to K−1
X as follows

KX∪x−1 =
[
K−1

X + 1
cx
K−1

X K x
X K

x
X
T K−1

X
−1
cx

K−1
X K x

X−1
cx

K x
X
T K−1

X
1
cx

]
(25)

where cx = KX (x, x)− K x
X
T K−1

X K x
X . Given that K

−1
X and K−2

X are already computed, then
computing K−1

X∪x becomes O(N 2) using Eq. 25. This equation applies to any kernel matrix
(i.e., relating K−1

Y∪y to K−1
Y ) .

Appendix 2: SM D TGP

In this “Appendix”, we show mainly the gradient derivation of SMTGP Lα,β(p(X, x) :
p(Y, y)) (presented in Sect. 3.2). The derivations in Appendix 2 and 3 were mainly based on
matrix calculus rules in (Petersen and Pedersen 2008); please refer to this reference for the
rules.

123



Mach Learn (2015) 100:399–424 421

Cost function

Dα,β(p(X, x) : p(Y, y)) = 1

β − 1

[( |KX∪x |α|KY∪y |1−α

|(αK−1
X∪x + (1 − α)KY∪y

−1)−1|
)− 1−β

2(1−α)

− 1

]
(26)

Lα,β(p(X, x) : p(Y, y)) = 1

β − 1
(kY (y, y) − K y

Y
T
KY

−1K y
Y )

−(1−β)
2 ·

|(αK−1
X∪x + (1 − α)KY∪y

−1)| −(1−β)
2(1−α)

(27)

From the matrix inversion Lemma (Alvarado 1999),

KX∪x−1 =
[
K−1

X + 1
cx
K−1

X K x
X K

x
X
T K−1

X
−1
cx

K−1
X K x

X−1
cx

K x
X
T K−1

X
1
cx

]

KY∪y
−1 =

⎡
⎣K−1

Y + 1
cy
K−1
Y K y

Y K
y
Y
T
K−1
Y

−1
cy

K−1
Y K y

Y
−1
cy

K y
Y
T
K−1
Y

1
cy

⎤
⎦

where cx = KX(x, x) − Kx
X
TK−1

X Kx
X , cy = KY (y, y) − Ky

Y
T
K−1
Y Ky

Y . KX∪x−1 and KX∪x−1

could be computed in O(N 2) where N is the number of points in the training set.

logLα,β(p(X, x) : p(Y, y)) =−(1 − β)

2
· log(kY (y, y) − K y

Y
T
KY

−1K y
Y )

+ −(1 − β)

2(1 − α)
· log|(αK−1

X∪x + (1 − α)KY∪y
−1)|

(28)

Gradient calculation

Following matrix calculus, ∂logL(α,β)
∂y(d)

could be expressed as follows

∂logLα,β(p(X, x) : p(Y, y))

∂y(d)
= −(1 − β)

2

(
∂kY (y,y)

∂y(d)
− 2K y

Y
T
KY

−1 ∂K y
Y

∂y(d)
)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

+ −(1 − β)

2(1 − α)
(1 − α)Tr

(
∂KY∪y

−1

∂y(d)
·
(

αK−1
X∪x + (1 − α)KY∪y

−1
)−1) (29)

Since ∂kY (y,y)
∂y(d)

= 0 for rbf-kernels and −(1−β)
2(1−α)

(1 − α) = −(1−β)
2 , then

∂logLα,β(p(X, x) : p(Y, y))

∂y(d)
= −(1 − β)

2

(−2K y
Y
T
KY

−1 ∂K y
Y

∂y(d)
)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

− −(1 − β)

2
Tr

((
αK−1

X∪x + (1 − α)KY∪y
−1

)−1

· KY∪y
−1 ∂KY∪y

∂y(d)
KY∪y

−1
) (30)

By factorization, the gradient could be further simplified into the following form.

∂logLα,β(p(X, x) : p(Y, y))

∂y(d)
= −(1 − β)

2

(−2K y
Y
T
KY

−1 ∂K y
Y

∂y(d)
)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

− −(1 − β)

2
Tr

(
KY∪y

−1
(

αK−1
X∪x + (1 − α)KY∪y

−1
)−1

· KY∪y
−1 ∂KY∪y

∂y(d)

) (31)
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Since (AB)−1 = B−1A−1, where A and B are invertible matrices, then

∂logLα,β(p(X, x) : p(Y, y))

∂y(d)
= −(1 − β)

2

(−2K y
Y
T
KY

−1 ∂K y
Y

∂y(d)
)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

− −(1 − β)

2
Tr

((
KY∪y

(
αK−1

X∪x + (1 − α)KY∪y
−1

)
KY∪y

)−1

· ∂KY∪y

∂y(d)

) (32)

After applying matrix multiplications, then

∂logLα,β(p(X, x) : p(Y, y))

∂y(d)
= −(1 − β)

2

(−2K y
Y
T
KY

−1 ∂K y
Y

∂y(d)
)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

− −(1 − β)

2
Tr

((
αKY∪y K

−1
X∪x KY∪y + (1 − α)KY∪y

)−1

· ∂KY∪y

∂y(d)

) (33)

where
∂KY∪y
∂y(d)

=
⎡
⎣ 0

∂K y
Y

∂y(d)

∂K y
Y
T

∂y(d)
0

⎤
⎦

After analyzing Eq. 33, it is not hard to see that

Tr

((
αKY∪y K

−1
X∪x KY∪y + (1 − α)KY∪y

)−1

· ∂KY∪y

∂y(d)

)
= 2 · μT

y · ∂K y
Y

∂y(d)
(34)

where (αKY∪y K
−1
X∪x KY∪y + (1 − α)KY∪y)μ

′
y = [0, 0, . . . 0, 1]T , μy is a vector of all

elements in μ
′
y except the last element. Hence,

∂logLα,β(p(X, x) : p(Y, y))

∂y(d)
=−(1 − β)

2

(−2 · K y
Y
T
KY

−1 ∂K y
Y

∂y(d)
)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

− −(1 − β)

2
· 2 · μT

y · ∂K y
Y

∂y(d)

(35)

which directly leads to the final form of ∂ log Lα,β (p(X,x):p(Y,y))
∂y(d)

∂ log L(α, β)

∂y(d)
= (1 − β)

[ K y
Y
T
KY

−1 ∂K y
Y

∂y(d)

(kY (y, y) − K y
Y
T
KY

−1K y
Y )

+ μT
y · ∂K y

Y

∂y(d)

]
(36)

Appendix 3: Advantage of computing SM divergence between two
multivariate Gaussians using Lemma 3.1

As far as we know, an efficient way to compute Dα,β(Np,Nq) in Eq. 3 where Δμ = 0,16

requires ≈ 5N3

3 operations; we illustrate as follows. Cholesky decompistion of Σp and Σq

requires 2N3

3 operations, with additional 2N3

3 operations for computing Σ−1
p and Σ−1

q from
the computed decompositions (Trefethen and Bau 1997). Then, choseskly decompition of

16 derived directly from the closed form in (Nielsen and Nock 2012).
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αΣ−1
p +(1−α)Σ−1

q is computed in additional N3

3 operations. From the computed decompo-
sitions, |Σp|, |Σq | and |αΣ−1

p +(1−α)Σ−1
q |−1 = |(αΣ−1

p +(1−α)Σ−1
q )−1| are computed

in 3N operations, which we ignore. Hence, the required computations for Dα,β(Np,Nq) are
2N3

3 + 2N3

3 + N3

3 = 5N3

3 operations ifΔμ = 0. In caseΔμ �= 0, an additional N3

3 operations

are required to compute (αΣ−1
p + (1 − α)Σ−1

q )−1, which leads to total of 6N3

3 = 2N 3

operations.17

In contrast to Dα,β(Np,Nq), D′
α,β(Np,Nq) in Lemma 3.1 could be computed similarly

in only N 3 operations, if Δμ = 0, required to compute the determinants of Σp,Σq , and

αΣq + (1−α)Σp by Cholesky decomposition. In caseΔμ �= 0, an additional N3

3 operations

are needed to compute (αΣq + (1 − α)Σq)
−1.18 So, total of 4N3

3 operations are needed if

Δμ �= 0. Accordingly, D′
α,β(Np,Nq) is 1.67 = ( 5N2

3 /N 3) times faster to compute than

Dα,β(Np,Nq) if Δμ = 0, and 1.5 = ( 2N 3/ 4N3

3 ) times faster, otherwise.
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