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Abstract For data with more variables than the sample size, phenomena like concentration
of pairwise distances, violation of cluster assumptions and presence of hubness often have
adverse effects on the performance of the classic nearest neighbor classifier. To copewith such
problems, somedimension reduction techniques like those basedon random linear projections
and principal component directions have been proposed in the literature. In this article, we
construct nonlinear transformations of the data based on inter-point distances, which also
lead to reduction in data dimension. More importantly, for such high dimension low sample
size data, they enhance separability among the competing classes in the transformed space.
When the classic nearest neighbor classifier is used on the transformed data, it usually yields
lower misclassification rates. Under appropriate regularity conditions, we derive asymptotic
results on misclassification probabilities of nearest neighbor classifiers based on the l2 norm
and the l p norms (with p ∈ (0, 1]) in the transformed space, when the training sample
size remains fixed and the dimension of the data grows to infinity. Strength of the proposed
transformations in the classification context is demonstrated by analyzing several simulated
and benchmark data sets.
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1 Introduction

Nearest neighbor classification (see, e.g., Cover and Hart 1967; Fix and Hodges 1989) is
a simple and popular nonparametric method in the machine learning literature. For a fixed
value of k, the k nearest neighbor classifier assigns an unlabeled observation z to the class
having the maximum number of representatives in the set of k labeled observations closest
to z. When the training sample size n (i.e., the number of labeled observations) is large
compared to the data dimension d , the k nearest neighbor classifier usually performs well.
For an appropriate choice of k (which increases with n), its misclassification probability
converges to the Bayes risk as n grows to infinity (see, e.g., Hall et al. 2008). However,
like other nonparametric methods, the classic nearest neighbor (NN) classifier suffers from
curse of dimensionality. So, it may yield poor performance for data in high dimensions.
Radovanovic et al. (2010) discussed the presence of hubs and the violation of the clus-
ter assumptions for such high-dimensional data. They further studied adverse effects of
hubness on supervised, semi-supervised and unsupervised learning based on nearest neigh-
bors.

For high-dimensional data, Francois et al. (2007) showed that pairwise distances between
all observations in a class (after appropriate scaling) concentrate around a single value. Hall
et al. (2005) also studied the geometry of a data cloud in high dimension, low sample size
(HDLSS) situations and proved results related to the concentration of pairwise distances
under appropriate conditions. Like Francois et al. (2007), their analysis showed that the
observations in each class have a tendency to lie deterministically at the vertices of a regular
simplex, and the randomness in the data appears only as a random rotation of that simplex.
Further, Hall et al. (2005) used this high-dimensional geometry of the data to analyze the
behavior of some popular classifiers including the classic NN classifier.

We now demonstrate adverse effects of concentration of pairwise distances on the per-
formance of the classic NN classifier in high dimensions. Consider a classification problem
between two d-dimensional normal distributions with mean vectors 0d = (0, . . . , 0)T and
νd = (ν, . . . , ν)T , and dispersion matrices σ 2

1 Id and σ 2
2 Id , respectively. Here, σ

2
1 �= σ 2

2 , and
Id denotes the d × d identity matrix. Now, if X = (X1, . . . , Xd)

T and X
′ = (X

′
1, . . . , X

′
d)

T

are two independent observations from class-1, ‖X − X
′ ‖2/2σ 2

1 ∼ χ2
d , the chi-square dis-

tribution with d degrees of freedom (df). Here, ‖ · ‖ denotes the usual Euclidean distance.
Since E(‖X − X

′ ‖2/d) = 2σ 2
1 and Var(‖X − X

′ ‖2/d) = 8σ 4
1 /d → 0 as d → ∞, we

have ‖X − X
′ ‖2/d P→ 2σ 2

1 as d → ∞. Similarly, if Y and Y
′
are two independent obser-

vations from class-2, we have ‖Y − Y
′ ‖2/d P→ 2σ 2

2 as d → ∞. Now, if X is from class-1
and Y is from class-2, ‖X − Y‖2/(σ 2

1 + σ 2
2 ) ∼ χ2

d (δ), the non-central chi-square distri-
bution with d df and the non-centrality parameter δ = ν2/(σ 2

1 + σ 2
2 ). One can show that

‖X − Y‖2/d P→ σ 2
1 + σ 2

2 + ν2 as d → ∞. Suppose that we have two sets of labeled
observations x1, . . . , xn1 and y1, . . . , yn2 from class-1 and class-2, respectively. Now, for

any future observation z from class-1, ‖z − xi‖/
√
d

P→ σ1
√
2 for all 1 ≤ i ≤ n1, while

‖z− y j‖/
√
d

P→
√

σ 2
1 + σ 2

2 + ν2 for all 1 ≤ j ≤ n2 as d → ∞. So, z is correctly classified

by the NN classifier if ν2 > σ 2
1 − σ 2

2 . Similarly, a future observation from class-2 is cor-
rectly classified if ν2 > σ 2

2 − σ 2
1 . Therefore, the classic NN classifier correctly classifies all

unlabeled observations if ν2 > |σ 2
1 − σ 2

2 | (also see Hall et al. (2005, p. 436)). Otherwise,
irrespective of the choice of k, it classifies all unlabeled observations to a single class. For
instance, if two high-dimensional normal distributions differ only in their scales (i.e., ν2 = 0
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Fig. 1 Misclassification rates for d = 2, 5, 10, 20, 50, 100, 200 and 500

and σ 2
1 �= σ 2

2 ), the classic NN classifier classifies all observations to the class having smaller
spread.

To illustrate this, we considered a classification problem involving Nd(0d , Id) and
Nd(0d , 1/4Id). We generated 10 observations from each class to form the training sam-
ple, and they were used to classify 200 unlabeled observations (100 from each class). This
procedure was repeated 250 times to compute the average misclassification rate of the NN
classifier. Figure 1 shows these misclassification rates and the corresponding Bayes risks for
various choices of d . For large values of d , while the Bayes risk was close to zero, the clas-
sic NN classifier failed to discriminate between the two classes and classified all unlabeled
observations to class-2.

Several attempts have been made in the literature to reduce dimension of the data, and use
the NN classifier on the reduced subspace. The simplest method of dimension reduction is by
projecting the data along some random directions (see, e.g., Fern and Brodley 2003). Another
popular approach is to use projections based on principal component analysis (see, e.g.,
Deegalla and Bostrom 2006). Other approaches to NN classification for high-dimensional
data include Goldberger et al. (2005), Weinberger et al. (2006), Tomasev et al. (2011). Chen
and Hall (2009) proposed a robust version of the NN classifier for high-dimensional data,
but it is applicable to a specific type of two-class location problem.

In this article, we propose some nonlinear transformations of the data that lead to sub-
stantial reduction in dimension for HDLSS data. These transformations are motivated from
theoretical results on the high-dimensional geometry of a data cloud. They are based on inter-
point distances, and enhance separability among the competing classes in the transformed
space. As a result, when the NN classifier is used on the transformed data, it usually yields
improved performance.We carry out a theoretical investigation on themisclassification prob-
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abilities of these classifiers, and show that concentration of pairwise distances can be used
to develop a ‘perfect learning machine’ for HDLSS data.

2 Transformation based on averages of pairwise distances

Consider a two class problem with labeled observations x1, . . . , xn1 from class-1 and
y1, . . . , yn2 from class-2. If the component variables in each class are independent and iden-
tically distributed (i.i.d.) Gaussian random variables, for any of these n = n1 + n2 labeled
observations, its distances from the observations in each class (after dividing by

√
d) con-

verge to a constant. These two constants (one for each class) depend on the class label of
the observation. So, if we transform all labeled observations based on average distances, we
expect to have two distinct clusters in the transformed two-dimensional space, one for each
class. For n1, n2 ≥ 2, these transformed data points are given as follows

x∗
i =

⎛
⎝ 1

n1 − 1

n1∑

j=1, j �=i

‖xi − x j‖√
d

,
1

n2

n2∑

j=1

‖xi − y j‖√
d

⎞
⎠

T

for 1 ≤ i ≤ n1 and

y∗
j =

⎛
⎝ 1

n1

n1∑

i=1

‖y j − xi‖√
d

,
1

n2 − 1

n2∑

i=1,i �= j

‖y j − yi‖√
d

⎞
⎠

T

for 1 ≤ j ≤ n2. (1)

Recall the two class classification problem involving the distributions Nd(0d , Id) and
Nd(0d , 1/4Id) discussed in Sect. 1. In this example, for higher values of d , the classic NN
classifier could not discriminate between the two classes and led to an average misclassi-
fication rate of almost 50% (see Fig. 1). Figure 2 shows the scatter plots of transformed
training sample observations for d = 50 and 500, where the black dots and the gray dots rep-
resent observations from class-1 and class-2, respectively. Clearly, the transformation based
on average distances not only reduces the data dimension, but enhances separability between
the two classes. This separability becomes more prominent as the dimension increases.

In a J class (J > 2) problem, we project an observation to a J -dimensional space,
where the i-th co-ordinate denotes its average distance from the observations in the i-th class
(1 ≤ i ≤ J ). Here, we expect to have J distinct clusters, one for each class (assume that there
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1
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Fig. 2 Scatter plots of training data points after transformation based on average distances
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are at least two labeled observations from each class). So, it is more meaningful to use the NN
classifier on the transformed data. The NN classifier, which is used after thisTRansformation
based onAverageDistances (henceforth referred to as NN-TRAD) possesses nice theoretical
properties, and we state them in the following sub-sections.

2.1 Distributions with independent component variables

We have observed that if the components of X and Y are i.i.d. Gaussian variables,
then the transformed labeled observations from the two classes converge to two points
in R

2 as the dimension increases. While the x∗
i ’s converge in probability to a1 =

(σ1
√
2,

√
σ 2
1 + σ 2

2 + ν2)T , the y∗
j ’s converge to a2 = (

√
σ 2
1 + σ 2

2 + ν2, σ2
√
2)T in prob-

ability. Here σ 2
1 = Var(X1), σ

2
2 = Var(Y1) and ν2 = E(X1 − Y1)2. This result continues

to hold if the the components of X and Y are not necessarily Gaussian, but they are
i.i.d. with finite second moments. In such cases, the distance convergence results fol-
low from the weak law of large numbers [WLLN] (see, e.g., Feller 1968). For instance,

‖X − Y‖2/d = ∑d
q=1(Xq − Yq)2/d

P→ E(X1 − Y1)2 = (σ 2
1 + σ 2

2 + ν2) as d → ∞. Now,

a1 and a2 are indistinguishable if and only if σ 2
1 = σ 2

2 and ν2 = 0. So, for high-dimensional
data, unless we have ν2 = 0 and σ 2

1 = σ 2
2 , the transformed observations x∗

1, . . . , x
∗
n1 and

y∗
1, . . . , y

∗
n2 form two distinct clusters.

Using this transformation on an unlabeled observation z, we get

z∗ =
⎛
⎝ 1

n1

n1∑

i=1

‖xi − z‖√
d

,
1

n2

n2∑

j=1

‖y j − z‖√
d

⎞
⎠

T

. (2)

For any z from class-1 (respectively, class-2), ‖z−xi‖/
√
d converges to σ1

√
2 (respectively,√

σ 2
1 + σ 2

2 + ν2) for 1 ≤ i ≤ n1, and ‖z − y j‖/
√
d converges to

√
σ 2
1 + σ 2

2 + ν2 (respec-

tively, σ2
√
2) for 1 ≤ j ≤ n2. So, z∗ converges to a1 (respectively, a2) if z comes from

class-1 (respectively, class-2). Therefore, z is correctly classified by the NN-TRAD classifier
with probability tending to one as d grows to infinity.

We can observe this concentration of pairwise distances and hence optimality of the
misclassification rate of the NN-TRAD classifier even when the components of X and Y are
independent, but not identically distributed. In such cases, one needs stronger assumptions.
For instance, we have the convergence of the pairwise distances if the fourth moments of
the component variables are uniformly bounded (see (A1) in Sect. 2.2). In this case, ‖X −
X

′ ‖2/d, ‖Y−Y
′ ‖2/d and ‖X−Y‖2/d converge in probability to 2σ 2

1 , 2σ 2
2 and (σ 2

1 +σ 2
2 +ν2),

respectively, where σ 2
1 , σ 2

2 and ν2 are defined as the limiting values (as d → ∞) of σ 2
1,d =∑d

q=1 Var(Xq)/d, σ 2
2,d = ∑d

q=1 Var(Yq)/d and ν212,d = ∑d
q=1{E(Xq)−E(Yq)}2/d (also

see (A2) in Sect. 2.2), respectively.

2.2 Distributions with dependent component variables

Under appropriate conditions (see (A1) and (A2) stated below), the distance convergence
holds for uncorrelatedmeasurement variables as well (follows from Lemma 1 in the “Appen-
dix”). However, Francois et al. (2007) observed that for high-dimensional data with highly
correlated or dependent measurement variables, pairwise distances are less concentrated than
if all variables are independent. They claimed that the concentration phenomenon depends
on the intrinsic dimension of the data, instead of the dimension of the embedding space.
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So, in order to have distance concentration in high dimensions, one needs high intrinsic
dimensionality of the data or weak dependence among the measurement variables. Hall et al.
(2005) assume such weak dependence (see (A3) stated below) for investigating the distance
concentration property in high dimensions. Motivated from Hall et al. (2005), we consider
the following assumptions:

(A1) In each of the J competing classes, fourth moments of the component variables are
uniformly bounded.

(A2) Let μi,d and �i,d be the d-dimensional mean vector and the d × d dispersion matrix
for the i-th class (1 ≤ i ≤ J ). There exists constants σ 2

i > 0 for all 1 ≤ i ≤ J
and νi j for all i �= j (1 ≤ i, j ≤ J ), such that (i)d−1trace(�i,d) → σ 2

i and
(i i)d−1‖μi,d − μ j,d‖2 → ν2i j , as d → ∞.

(A3) Let U = (U1,U2, . . .)
T and V = (V1, V2, . . .)T be two independent observations

either from the same class or from two different classes. Under some permutation of
the components variables (which is same in all classes), the ρ- mixing property holds
for the sequence {(Uq − Vq)2, q ≥ 1}, i.e.,

sup1≤q<q ′≤∞, |q−q ′ |>r

∣∣∣Corr
{
(Uq − Vq)

2, (Uq ′ − Vq ′ )2
}∣∣∣ ≤ ρ(r),

where ρ(r) → 0 as r → ∞.

Note that Jung and Marron (2009) assumed almost similar conditions to prove high-
dimensional consistency of estimated principal component directions. Biswas and Ghosh
(2014) and Biswas et al. (2014) used similar conditions to derive consistency of their two-
sample tests for HDLSS data.

Conditions (A1)–(A3) are quite general. The first two are moment conditions that ensure
some ‘regularity’ of the random variables. In classification problems, we usually get more
information about class separation as the sample size increases. But, in HDLSS set up, we
consider the sample size to be fixed, and under (A2), we expect information about class
separation to increase as d increases (unless σ 2

1 = σ 2
2 and ν2 = 0). Assumption (A3)

implies a form of weak dependence among the measurement variables so that WLLN holds
for the sequence of dependent random variables as well (see Lemma 1 in the “Appendix”).
For time series data, this indicates that the lag correlation shrinks to zero as the length of
the lag increases. In particular, for data generated from discrete ARMA processes, all these
conditions are satisfied. Importantly, stationarity of the time series is not required here. These
assumptions also hold for m-dependent processes and Markov processes over finite state
spaces. Recall that if the measurement variables are i.i.d., (A2) and (A3) hold automatically,
and instead of (A1), we only need existence of second moments for the weak convergence
of pairwise distances.

Under (A1) and (A3),
∣∣∑d

q=1(Uq − Vq)2/d − ∑d
q=1 E(Uq − Vq)2/d

∣∣ P→ 0 as d → ∞
(see Lemma 1). Now, depending on the choice of (U,V) = (X,X

′
), (Y,Y

′
) or (X,Y), under

(A2),
∑d

q=1 E(Uq − Vq)2/d converges to 2σ 2
1 , 2σ 2

2 or (ν2 + σ 2
1 + σ 2

2 ), respectively. Hence,
we have

(i)‖X − X
′ ‖/√d

P→ σ1
√
2, (i i)‖Y − Y

′ ‖/√d
P→ σ2

√
2 and

(i i i) ‖X − Y‖/√d
P→

√
σ 2
1 + σ 2

2 + ν2 as d → ∞. (3)

So, depending on whether z comes from class-1 or class-2, z∗ converges to a1 or a2 as before.
For large values of d, z∗ is expected to lie closer to the cluster formed by the transformed
observations from the same class as z. The same argument can be used for J class (with
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J > 2) problems as well. The following theorem shows the high-dimensional optimality of
the misclassification probability for the NN-TRAD classifier.

Theorem 1 Suppose that the J competing classes satisfy assumptions (A1)–(A3). Also
assume that σ 2

i �= σ 2
j or ν2i j > 0 for every 1 ≤ i < j ≤ J . Then the misclassification

probability of NN-TRAD classifier converges to 0 as d → ∞.

The proof of this theorem is given in the “Appendix”. Recall that under (A1)–(A3), the
classic NN classifier fails to achieve the optimal misclassification rate when ν2i j < |σ 2

i − σ 2
j |

for some 1 ≤ i < j ≤ J , but NN-TRAD works well even in such situations. Instead
of (A1)–(A3), Andrews (1988) and de Jong (1995) considered another set of assumptions
to derive weak and strong laws of large numbers for mixingales. One may also use those
assumptions to prove the distance convergence in high dimensions. Note that Francois et al.
(2007) assumed stronger conditions for almost sure convergence of the distances.

3 A new transformation based on inter-point distances

The transformation based on average distances (TRAD) may fail to extract meaningful dis-
criminating features from the data if one or more of the competing populations have some
hidden sub-populations (e.g., the class distribution is a mixture of two or more unimodal
distributions). In such cases, it may happen that (A1)–(A3) do not hold for the whole class
distribution, but they hold for each of the sub-class distributions. Consider an example where
each class is an equal mixture of two d-dimensional (we used d = 100) normal distributions,
each having the same dispersion matrix Id . For class-1, the location parameters of the two
distributions were taken to be 0d and (10T2 , 0Td−2)

T , while in class-2 they were (10, 0Td−1)
T

and (0, 10, 0Td−2)
T . Taking an equal number of observations from these two classes, we gen-

erated a training set of size 20 and a test set of size 200.When TRADwas applied to this data,
all transformed data points overlapped with each other (see Fig. 3). As a result, NN-TRAD
misclassified almost half of the test set observations.
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Fig. 3 Scatter plots of training (left) and test (right) data points after TRAD
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Fig. 4 The left panel shows different co-ordinates of the training (top row) and the test (bottom row) data
points after TRIPD. The right panel shows the joint structure of the 10-th and the 11-th co-ordinate of the
transformed observations

In order to overcome this limitation of TRAD and retain the discriminatory information
contained in pairwise distances, we propose the following transformation of the training data:

x∗∗
i =

(‖xi − x1‖√
d

, . . . ,
‖xi − xn1‖√

d
,
‖xi − y1‖√

d
, . . . ,

‖xi − yn2‖√
d

)T

and

y∗∗
j =

(‖y j − x1‖√
d

, . . . ,
‖y j − xn1‖√

d
,
‖y j − y1‖√

d
, . . . ,

‖y j − yn2‖√
d

)T

(4)

for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Note that the i-th component in x∗∗
i is 0, while the (n1+ j)-th

component in y∗∗
j is 0. For any new observation z, using this transformation we get

z∗∗ =
(‖z − x1‖√

d
, . . . ,

‖z − xn1‖√
d

,
‖z − y1‖√

d
, . . . ,

‖z − yn2‖√
d

)T

. (5)

Here, we get a (n1 + n2)-dimensional projection. In a J class problem, we consider a
n-dimensional projection, where n = n1 + · · · + nJ . In the HDLSS setup (where d is larger
than n), this transformation leads to substantial reduction in data dimension.

The plots in the left panel of Fig. 4 show co-ordinates of the transformed observations.
The training and the test set cases from the two classes are indicated using gray and black
dots, respectively. In each plot, we can observe two clusters of either black or gray dots along
each co-ordinate. This gives us an indication that discriminative information is contained in
almost all co-ordinates. It is more transparent from the scatter plots of the 10th and the 11th
co-ordinates of the transformed observations shown in the right panel of Fig. 4. When the
NN classifier was used after TRansformation based on Inter-Point Distances (henceforth
referred to as NN-TRIPD), it correctly classified almost all test set observations.

Good performance ofNN-TRIPD for classification among such high-dimensionalmixture
populations is asserted by Theorem 2(a) under assumption (A4) stated below.

(A4) Suppose that the distribution of the i-th (1 ≤ i ≤ J ) class is a mixture of
Ri (Ri ≥ 1) many sub-class distributions, where each of these sub-class distribu-
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tions satisfy (A1)–(A3). If X is from the s-th sub-class of the i-th class, and Y is
from the t- th sub-class of the j- th class (1 ≤ i �= j ≤ J, 1 ≤ s ≤ Ri , 1 ≤ t ≤
R j )

∑d
q=1 Var(Xq)/d,

∑d
q=1 Var(Yq)/d and

∑d
q=1{E(Xq) − E(Yq)}2/d converge

to 2σ 2
is
, 2σ 2

jt
and ν2is jt , respectively, as d → ∞.

If the competing classes satisfy (A1)–(A3), (A4) holds automatically. But, (A4) holds
in many other cases including the example involving mixture distributions discussed above,
where (A1)–(A3) fail to hold. The following theorem gives an idea about the asymptotic
(as d → ∞) behavior of the misclassification probability of the NN-TRIPD classifier under
this assumption. Throughout this article, we will assume that there are at least two labeled
observations from each of the sub-classes.

Theorem 2(a) Suppose that the J competing classes satisfy assumption (A4). Further
assume that for every i, j, s and t with 1 ≤ s ≤ Ri , 1 ≤ t ≤ R j , 1 ≤ i �= j ≤ J , we
either have ν2is jt > |σ 2

is
− σ 2

jt
| or 0 < ν2is jt < |σ 2

is
− σ 2

jt
| − 8(nis jt − 1)max{σ 2

is
, σ 2

jt
}/n2is jt ,

where nis jt is the total training sample size of these two sub-classes. Then themisclassification
probability of NN-TRIPD classifier based on the l2 norm converges to 0 as d → ∞.

The proof of the theorem is given in the “Appendix”. Let us now consider the case when
J = 2 and R1 = R2 = 1. Recall that NN-TRAD is optimal here in the sense that it
only requires σ 2

1 �= σ 2
2 or ν212 > 0 for the misclassification probability to go to zero.

But, NN-TRIPD possess this asymptotic optimality if 0 < ν212 < |σ 2
1 − σ 2

2 | − 8(n − 1)
max{σ 2

1 , σ 2
2 }/n2 or ν212 > |σ 2

1 − σ 2
2 |. For n > 2, we have a wide variety of examples (see,

e.g., Example-1 in Sect. 5) where ν212 < |σ 2
1 −σ 2

2 |−8(n−1)max{σ 2
1 , σ 2

2 }/n2 < |σ 2
1 −σ 2

2 |. In
such cases, the classic NN classifier fails, but NN-TRIPD works well. NN-TRIPD has better
theoretical properties if one uses the l1 norm or the l p norm with fractional p(0 < p < 1)
instead of the usual l2 norm for NN classification in the transformed space. Like NN-TRAD,
such a classifier requires only σ 2

1 �= σ 2
2 or ν212 > 0 to achieve asymptotic optimality. One

should note that both versions of NN-TRIPD usually outperform the NN-TRAD classifier if
the competing populations are mixtures of several sub-populations.

Theorem 2(b) Suppose that the J competing classes satisfy assumption (A4). Further
assume that either σ 2

is
�= σ 2

jt
or ν2is jt > 0 for every 1 ≤ s ≤ Ri , 1 ≤ t ≤ R j and

1 ≤ i �= j ≤ J . Then, for any p ∈ (0, 1], the misclassification probability of NN-TRIPD
classifier based on the lp norm converges to 0 as d → ∞.

The proof of the theorem is given in the “Appendix”. Aggarwal et al. (2001) carried out
an investigation on the performance of the l p norms for high-dimensional data with varying
choices of p. They observed that the l p norm is more relevant for p = 1 and p = 2 than
value of p ≥ 3, while fractional values of p(0 < p < 1) are quite effective in measuring
proximity of data points. The relevance of the Euclidean distance has also been questioned in
the past, and fractional norms were introduced to fight the concentration phenomenon (see,
e.g., Francois et al. 2007).

4 Some discussions on NN-TRAD and NN-TRIPD

Although TRAD and TRIPD are motivated from theoretical results on concentration of
pairwise distances, such transformations are not new in the machine learning literature
(see, e.g., Cazzanti et al. 2008 for more details). For transformations based on principal
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component directions (see, e.g., Deegalla and Bostrom 2006) or multi-dimensional scaling
(see, e.g., Young and Hoseholder 1938), one needs to compute pairwise distances among
training sample observations. Like these methods, the proposed transformations also embed
observations in a lower-dimensional subspace. Embedding of observations in Euclidean and
pseudo-Euclidean space was also considered by Goldfarb (1985) and Pekalska et al. (2001).

In similarity based classification (see, e.g., Cazzanti et al. 2008; Chen et al. 2009), an
index is defined to measure similarity of an observation with respect to training sample
observations, and those similarity measures are used as features to develop a classifier. For
instance, a nonlinear support vectormachine (SVM) (see, e.g., Vapnik 1998) can be viewed as
a similarity based classifier,where a kernel function is used tomeasure similarity/dissimilarity
between two observations. Graepel et al. (1999) and Pekalska et al. (2001) used several
standard learning techniques on these similarity based features. A discussion on similarity
based classifiers including SVM, kernel Fisher discriminant analysis and those based on
entropy can be found in Cazzanti et al. (2008). It has been observed in the literature that NN
classifiers on similarity measures usually yield lowmisclassification rates (see, e.g., Cost and
Salzberg 1993; Pekalska et al. 2001). One main goal of this paper is to provide a theoretical
foundation for these two similarity based NN classifiers, namely, NN-TRAD andNN-TRIPD
in the context of HDLSS data.

We now discuss the computational complexity of our methods. For transformation of
n labeled observations, both NN-TRAD and NN-TRIPD require O(n2d) computations to
calculate all pairwise distances. For the classic NN classifier, one need not compute these
distances unless a cross-validation type method is used to choose a value of k. However, this
is an off-line calculation. Given a test case z, all these methods need O(nd) computations
to calculate n distances. After the distance computation, the classic NN classifier with a
fixed k requires O(n) computations to find the k neighbors of z (see Aho et al. 1974). So,
classification of z requires O(nd) calculations. NN-TRAD performs NN classification in the
transformed J -dimensional space. So, re-computation of n distances in that space and finding
the k neighbors require O(n) calculations. Therefore, its computational complexity for a test
case is also O(nd). In the case of NN-TRIPD, since the transformed space is n-dimensional,
re-computation of distances and finding neighbors require O(n2) calculations. We deal with
HDLSS data (where d  n) where O(nd) dominates O(n2). In such situations, NN-TRIPD
also requires O(nd) computations to classify z.

5 Results from the analysis of simulated data sets

We analyzed some high-dimensional simulated data sets to compare the performance of the
classicNN,NN-TRADandNN-TRIPDclassifiers. ForNN-TRIPD,weused l p norms for sev-
eral choices of p to compute the distance in the transformed space. The overall performance
of NN-TRIPD classifiers for p > 2 was inferior compared with p = 2. The performance
for fractional values of p was quite similar to p = 1. So, we have reported results for p = 1
and p = 2 only. These two classifiers are referred to as NN-TRIPD1 and NN-TRIPD2,
respectively. In each example, we generated 10 observations from each of the two classes to
form the training sample, while a test set of size 200 (100 from each class) was used. This
procedure was repeated 250 times to compute the average test set misclassification rates of
different classifiers. Average misclassification rates were computed for a set of increasing
values of d (namely, 2, 5, 10, 20, 50, 100, 200 and 500).
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Recall that the classicNNclassifier needs the value of k to be specified. Existing theoretical
results (see, e.g., Hall et al. 2008) give us an idea about the optimal order of k when the sample
size n is large. But these results are not applicable toHDLSS data. In such situations (with low
sample sizes), Chen and Hall (2009) suggested the use of k = 1. Hall et al. (2008) reported
the optimal order of k to be n4/(d+4), which also tends to 1 as d grows to infinity. In practice,
when we deal with a fixed sample size, we often use the cross-validation technique on the
training data (see, e.g., Duda et al. 2000; Hastie et al. 2009) to choose the optimum value of
k. However, there is high variability in the cross-validation estimate of the misclassification
rate, and this method often fails to choose k appropriately (see, e.g., Hall et al. 2008; Ghosh
and Hall 2008). In most of our experiments with simulated and real data sets, cross-validation
led to inferior results compared to those obtained using k = 1. So, throughout this article,
we used k = 1 for the classic NN classifier. To keep our comparisons fair, we used the same
value of k for NN-TRAD, and for both versions of NN-TRIPD as well.

Let us begin with the following examples involving some normal distributions, and their
mixtures.
Example-1 : Class-1: Nd(0d , Id) and Class-2: Nd((10, 0Td−1)

T , Id).

Example-2 : Class-1: Nd(0d , Id) and Class-2: Nd(0d , 1
4 Id).

Example-3 : Class-1: 1
2 [Nd(0d , Id) + Nd((10, 10, 0Td−2)

T , 1
4 Id)] and

Class-2: 1
2 [Nd((10, 0Td−1)

T , Id) + Nd((0, 10, 0Td−2)
T , 1

4 Id)].
Example-4 : Class-1: Nd(0d , Id) and Class-2: Nd(0d , 0.81Id).

In Examples-1, 2, and 4, assumptions (A1)–(A3) hold for each of the competing classes.
In Example-3, all competing classes satisfy (A4) (i.e., (A1)–(A3) hold for each sub-class).
Average misclassification rates of different classifiers for varying values of d are shown in
Fig. 5.

For the location problem in Example-1, the two competing classes are widely separated,
and the Bayes risk is almost zero for any value of d . In this example, we have information
about class separability only in the first co-ordinate and accumulate noise as the value of
d increases. Surprisingly, the presence of noise did not have any significant effect on the
performance of any of these classifiers (see Fig. 5a). Except for d = 500, all the classifiers
correctly classified almost all test set observations.But, the picture changed completely for the
scale problem in Example-2. Since, all the co-ordinates have discriminatory information, one
should expect the misclassification rates of all classifiers to converge to zero as d increases.
However, the misclassification rate of the classic NN classifier dived a bit when we moved
from d = 2 to d = 5, but thereafter it gradually increased with d . In fact, it performed
as worse as a random classifier for values of d greater than 50. On the other hand, the
misclassification rates of NN-TRAD and both versions of NN-TRIPD decreased steadily as
d increased. For d ≥ 100, almost all test set observations were classified correctly. Recall
that for large d , the classic NN classifier correctly classifies all unlabeled observations if
ν212,d > |σ 2

1,d − σ 2
2,d |. In Example-1, we have σ 2

1,d = σ 2
2,d = 1 and ν212,d = 100/d for all d ,

and hence ν212,d > |σ 2
1,d − σ 2

2,d |. So, the classic NN classifier worked well. For high values
of d , since the difference was smaller, it misclassified some observations. In Example-2, we
have |σ 2

1,d − σ 2
2,d | = 3/4 but ν212,d is 0 for all d . So, the classic NN classifier yielded almost

50% misclassification rate even for moderately high values of d . In both these examples,
NN-TRAD had a slight edge over NN-TRIPD as none of the competing classes had any
further sub-classes.
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(b) Example−2
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Fig. 5 Misclassification rates of classic NN, NN-TRAD, NN-TRIPD1 and NN-TRIPD2 for different values
of d

In the presence of sub-populations in Example-3,NN-TRADyielded almost 50%misclas-
sification rate for all values of d , but NN-TRIPD led to substantial improvement (see Fig. 5c).
In fact, it correctly classified almost all the test set observations for any value of d . The clas-
sic NN classifier performed perfectly up to d = 50, but its misclassification rate increased
thereafter. The misclassification rate was 4.05% for d = 100, but it increased sharply to
42.26% for d = 200. To explain this behavior, let us consider the first sub-class in class-1
and the second sub-class in class-2. We have σ 2

11,d
= 1, σ 2

22,d
= 1/4 and ν21122,d = 100/d

for all d . Note that ν21122,d is larger than |σ 2
11,d

− σ 2
22,d

| for d ≤ 100, but it is smaller than

|σ 2
11,d

− σ 2
22,d

| for d ≥ 200. The same holds for the second sub-class of class-1 and the
first sub-class of class-2. This led to sharp increase in the misclassification rate when we
moved from d = 100 to d = 200. Example-4 shows the superiority of NN-TRIPD1 over
NN-TRIPD2. Unlike Example-1, the condition given in Theorem 2(a) (with R1 = R2 = 1)
fails to hold in this scale problem. NN-TRAD had good performance in this example because
of unimodality of the class distributions.
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(b) Example−6
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(c) Example−7
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Fig. 6 Misclassification rates of classical NN, NN-TRAD, NN-TRIPD1 and NN-TRIPD2 for different values
of d

We now consider some examples where the competing classes differ neither in their
locations nor in their scales (i.e., σ 2

1,d = σ 2
2,d and ν212,d = 0 for all d).

Example-5: Class-1: Nd(0d , 0.9Id + 0.1Jd) and Class-2: Nd(0d , 0.1Id+
0.9Jd), where Jd = 1d1Td and 1d = (1, . . . , 1)T is of length
d.

Example-6: Class-1: X1 ∼ N (0, σ 2) and Xi = 0.5Xi−1 + 0.5Ui−1 for i
≥ 2 and Class-2: X1 ∼ N (0, σ 2) and Xi = 0.5Vi−1 − 0.5
Xi−1 for i ≥ 2, where Ui’s and Vi’s are i.i.d.
N (0, 1).

Example-7: Class-1: Nd(0d , Id) and Class-2: t3,d(0d , 1
3 Id), where t3,d

denotes the d-dimensional t-distribution with
3 d.f.
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Figure 6 shows the performance of different classifiers for varying choices of d . In
Examples-5 and 6, the two competing classes differ in their correlation structure. They
have the same scatter matrix but differ in their shapes in Example-7. For Example-5, the
classic NN classifier failed to discriminate between the two classes. For higher values of
d , it misclassified almost half of the unlabeled observations. Performances of NN-TRIPD1

and NN-TRIPD2 were comparable, and both of them had lower misclassification rates than
NN-TRAD. In Example-6, NN-TRAD performed very poorly, but the performance of NN-
TRIPD was much better. In this example, NN-TRIPD2 outperformed all its competitors. For
d = 500, while NN-TRIPD1 had an average misclassification rate of 36%, NN-TRIPD2

yielded an average misclassification rate close to 26%. However, in Example-7 NN-TRIPD1

had the best performance closely followed by NN-TRAD. For d = 500, the average misclas-
sification rate of NN-TRIPD1 was almost half of NN-TRIPD2. We now consider an example
from Chen and Hall (2009).

Example-8: Class-1: X1, X2, . . . , Xd are i.i.d. N (0, 1) and Class-2:

Xi
indep∼ N (νi , 1) for 1 ≤ i ≤ d, where ε = d−β proportion

of νi’s are r log d and the rest are 0, with β = r = 0.75.

In this example, the robust NN classifier of Chen and Hall (2009) failed to improve upon
the performance of the classic NN classifier (see Chen and Hall (2009, p. 3201)), but NN-
TRAD and both versions of NN-TRIPD outperformed the classic NN classifier for large
values of d .

From the analysis of these simulated data sets, it is evident that both NN-TRIPD1 and
NN-TRIPD2 have a clear edge over NN-TRAD for classifying HDLSS data. But, there is
no clear winner among the first two. In practice, one needs to decide upon one of these two
classifiers.Weuse the training sample to compute the leave-one-out cross-validation estimates
of misclassification rates for both classifiers. The one with the lower misclassification rate is
chosen, and it is used to classify all the tests cases. For further data analysis, this classifier
will be referred to as the proposed classifier.

6 Comparison with other popular classifiers

We now compare the performance of our proposed classifier with some popular classifiers
available in the literature. Here, we consider the examples studied in Sect. 5 for the case d =
500. As before, we use training sets and test sets of sizes 20 and 200, respectively, and each
experiment is carried out 250 times. Table 1 shows the average test set misclassification rates
of the classic NN classifier and our proposed NN classifier along with their corresponding
standard errors reportedwithin parentheses. Results are also reported for NN classifiers based
on random projection (see, e.g., Fern and Brodley 2003) and principal component analysis
[PCA] (see, e.g., Deegalla and Bostrom 2006). These two classifiers will be referred to as
NN-RAND and NN-PCA, respectively. Misclassification rates are reported for linear and
nonlinear (with radial basis function (RBF) kernel Kγ (x, y) = exp{−γ ‖x − y‖2}) support
vector machines [SVM] (see, e.g., Vapnik 1998) as well. In the case of SVM-RBF, the results
are reported for the default value of the regularization parameter γ = 1/d as used in http://
www.csie.ntu.edu.tw/~cjlin/libsvm/. We also used the value of γ chosen by tenfold cross-
validation method, but that did not yield any significant improvement in the performance
of the resulting classifier. In fact, in more than half of the cases, γ = 1/d led to lower
misclassification rates than those obtained using the cross-validated choice of λ. In view of
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Table 1 Misclassification rates (in %) of different classifiers on simulated data sets for d = 500 with the
minimum indicated in bold

Classic NN NN-RAND NN-PCA RF SVM-LIN SVM-RBF GLMNET Proposed

Ex.- 1 2.58 20.76 26.50 24.84 43.01 43.69 0.00 0.43

(0.12) (0.33) (0.34) (0.33) (0.23) (0.23) (0.00) (0.04)

Ex.- 2 50.00 43.58 49.97 39.59 49.18 0.00 42.21 0.00

(0.00) (0.01) (0.00) (0.23) (0.01) (0.00) (0.02) (0.00)

Ex.- 3 49.85 5.86 0.23 24.23 40.72 41.84 0.00 0.30

(0.02) (0.17) (0.07) (0.39) (0.21) (0.20) (0.00) (0.03)

Ex.- 4 49.72 49.03 49.48 48.36 49.12 32.23 49.72 9.74

(0.07) (0.18) (0.23) (0.21) (0.21) (0.27) (0.22) (0.21)

Ex.- 5 50.13 50.07 40.82 50.35 50.02 9.27 42.05 5.57

(0.06) (0.06) (0.23) (0.28) (0.07) (0.50) (0.18) (0.28)

Ex.- 6 30.38 45.58 43.11 49.77 49.77 46.51 49.82 29.27

(0.32) (0.23) (0.25) (0.22) (0.24) (0.21) (0.22) (0.34)

Ex.- 7 50.06 50.56 46.04 44.83 49.29 19.82 46.32 11.14

(0.01) (0.04) (0.17) (0.21) (0.11) (0.52) (0.19) (0.33)

Ex.- 8 4.21 24.06 27.39 0.74 26.46 28.38 0.03 0.91

(0.13) (0.35) (0.41) (0.05) (0.14) (0.23) (0.01) (0.06)

high statistical instability of cross-validation estimates, this is expected in HDLSS situations,
GLMNET, a method of logistic regression that uses convex combination of lasso and ridge
penalties for dimension reduction (see, e.g., Simon et al. 2011), and a boosted version of
classification tree known as random forest [RF] (see, e.g., Breiman 2001; Liaw and Wiener
2002) have also been used. For all these methods, we used available R codes with default
tuning parameters.

Our proposed classifier had the best overall performance among the classification meth-
ods considered here. It yielded the best performance in five out of these eight data sets. In
other cases, its misclassification rates were quite close to the minimum. The NN classifiers
based on dimension reduction techniques (i.e., NN-RAND and NN-PCA) had substantially
higher misclassification rates than the classic NN classifier in Examples-1, 6 and 8. Only
in Example-3, they yielded much lower misclassification rates compared to the classic NN
classifier. Among other competitors, GLMNETyielded the best misclassification rate in three
data sets, but it had very poor performance in five other data. In Examples-1, 3 and 8, we
have discriminatory information only in a few components. GLMNET is a classification
method developed specifically for this type of sparse data, and hence it performed well in
these examples. The linear SVM classifier is expected to perform well when the population
distributions differ in their locations. However, in the presence of small training samples, it
failed to extract sufficient discriminating information. It yielded high misclassification rates
even for the location problem in Example-1. Its nonlinear version, SVM-RBF had better
performance. It led to the lowest misclassification rate in Example-2. RF had competitive
performance in Example-8, but in all other examples, its performance was not comparable
to our method.
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6.1 Comparison based on the analysis of benchmark data sets

We further analyzed twenty benchmark data sets for assessment of our proposed method.
The first fourteen data sets listed in the UCR Time Series Classification/Clustering Page
(http://www.cs.ucr.edu/~eamonn/time_series_data/) are considered. TheMadelon data set is
from the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets.html). We
also considered thefirst five data sets listed in theKentRidgeBio-medicalData SetRepository
(http://levis.tongji.edu.cn/gzali/data/mirror-ketridge.html). All these data sets have specific
training and test sets. However, instead of using those single training and test samples, we
used random partitioning of the whole data to form 250 training and test sets. The sizes
of the training and the test sets in each partition are reported in Table 2. Average
misclassification rates of different classifiers were computed over these 250 partitions, and
they are reported in Table 3 along with their corresponding standard errors inside
parentheses.

The overall performance of the proposedmethod was fairly competitive. In six out of these
twenty data sets, our proposed classifier yielded the lowest misclassification rate. It was either
in second or in third position in six other data sets. One should also notice that in twelve out
of these twenty data sets, the proposed method outperformed the classic NN classifier. In
majority of the cases, it had lower misclassification rates than NN-RAND and NN-PCA as
well.Amongother classifiers, the overall performanceofRF turnedout to be very competitive,
and it outperformed our proposed classifier in seven out of sixteen data sets. However, the
R code for RF was computationally infeasible on four data sets with dimension greater than
7000. NN-PCA had similar problems with memory as the data dimension was high. For
such high-dimensional data sets, GLMNET and linear SVM had competitive performance.
In many of these high-dimensional benchmark data sets, the measurement variables were
highly correlated. The intrinsic dimension of the data was low, and the pairwise distances
failed to concentrate. As a consequence, although our proposed method had competitive
performance, its superiority over other classifiers was not as prominent as it was in the
simulated examples.

Table 2 Brief description of benchmark data sets

Data set Dimension Class Train
size

Test
size

Data set Dimension Class Train
size

Test
size

Syn. contorl 60 6 60 540 Face (four) 350 4 40 72

Gun-point 150 2 20 180 Lightning-2 637 2 60 61

CBF 128 3 30 900 Lightning-7 319 7 70 73

Face (all) 131 14 250 2000 ECG 96 2 30 171

OSU leaf 427 6 120 322 Madelon 500 2 600 2000

Swedish leaf 128 15 150 975 ALL-AML luke 7129 2 36 36

50 Wors 270 50 450 455 Breast cancer 24,481 2 49 48

Trace 275 4 60 140 Cent. nerv. sys. 7129 2 30 30

Two patterns 128 4 1000 4000 Colon tumor 2000 2 30 32

Wafer 152 2 700 6474 MLL lukemia 12,582 3 36 36
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Table 3 Misclassification rates (in %) of different classifiers on benchmark data sets with the minimum
indicated in bold

Data set Classic NN NN-RAND NN-PCA RF SVM-LIN SVM-RBF GLMNET Proposed

Synthetic
control

18.45 21.11 21.38 14.14 14.93 10.11 24.04 6.74

(0.15) (0.19) (0.21) (0.14) (0.13) (0.20) (0.17) (0.14)

Gun-point 19.65 20.01 20.48 15. 37 19.97 24.28 20.56 21.21

(0.32) (0.34) (0.37) (0.36) (0.35) (0.30) (0.36) (0.30)

CBF 12.33 15.13 19.84 8.88 9.76 11.54 17.02 7.67

(0.24) (0.24) (0.26) (0.15) (0.17) (0.22) (0.21) (0.20)

Face (all) 20.09 22.94 23.17 17.84 22.00 20.20 28.69 25.54

(0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09)

OSU leaf 44.06 45.45 51.55 47.70 60.82 45.83 59.20 44.78

(0.18) (0.17) (0.20) (0.21) (0.19) (0.20) (0.20) (0.18)

Swedish
leaf

33.60 34.23 35.74 23.98 24.99 23.87 33.39 31.16

(0.11) (0.12) (0.14) (0.11) (0.11) (0.11) (0.13) (0.12)

50 Words 33.51 34.71 37.11 35.43 35.05 39.05 46.28 31.53

(0.10) (0.10) (0.11) (0.11) (0.10) (0.11) (0.15) (0.10)

Trace 29.26 29.24 33.94 19.29 18.48 27.00 23.50 28.66

(0.22) (0.22) (0.25) (0.27) (0.21) (0.19) (0.26) (0.24)

Two
patterns

9.61 12.73 10.16 15.76 19.89 10.78 20.08 9.59

(0.04) (0.06) (0.03) (0.08) (0.06) (0.05) (0.05) (0.04)

Wafer 28.93 34.18 29.70 22.98 27.07 26.00 28.32 29.48

(0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04)

Face (four) 14.75 16.27 18.02 5.77 7.96 8.74 12.18 18.89

(0.27) (0.28) (0.30) (0.17) (0.19) (0.18) (0.26) (0.28)

Lightning
2

28.11 28.60 28.16 22.08 35.64 27.83 33.72 21.97

(0.31) (0.31) (0.32) (0.32) (0.35) (0.32) (0.37) (0.28)

Lightning
7

37.33 39.12 39.75 27.19 34.59 37.37 47.30 32.86

(0.25) (0.30) (0.31) (0.28) (0.29) (0.24) (0.31) (0.26)

ECG 16.50 16.86 21.70 20.71 23.34 22.77 23.63 18.35

(0.22) (0.24) (0.42) (0.14) (0.40) (0.40) (0.39) (0.23)

Madelon 35.87 43.01 37.72 36.65 47.45 42.88 47.41 29.71

(0.08) (0.10) (0.09) (0.10) (0.10) (0.07) (0.08) (0.06)

ALL-AML
lukemia

10.23 11.12 – – 5.03 25.02 7.14 14.68

(0.26) (0.29) – – (0.30) (0.30) (0.27) (0.32)

Breast
cancer

43.36 45.38 – – 38.32 48.57 36.33 41.92

(0.36) (0.40) – – (0.40) (0.32) (0.41) (0.42)

123



74 Mach Learn (2016) 102:57–83

Table 3 continued

Data set Classic NN NN-RAND NN-PCA RF SVM-LIN SVM-RBF GLMNET Proposed

Cental nervous
system

38.70 42.09 – – 36.83 35.72 41.32 41.69

(0.42) (0.48) – – (0.48) (0.44) (0.46) (0.45)

Colon tumor 24.06 24.23 25.27 19.12 17.19 28.82 19.06 19.03

(0.36) (0.34) (0.35) (0.30) (0.28) (0.33) (0.30) (0.33)

MLL leukemia 9.93 10.47 – – 7.26 17.54 6.88 9.72

(0.26) (0.28) – – (0.29) (0.35) (0.25) (0.26)

7 Kernelized versions of NN-TRAD and NN-TRIPD

Observe that NN-TRAD and NN-TRIPD transform the data based on pairwise distances,
and use the NN classifier on the transformed data. Classifiers like nonlinear SVM (see, e.g.,
Vapnik 1998) also adopt a similar idea. Using a functionΦ : Rd → H, it projectsmultivariate
observations to the reproducing kernel Hilbert spaceH, and then constructs a linear classifier
on the transformed data. Inner product between any two observations Φ(x) and Φ(y) in H
is given by 〈Φ(x),Φ(y)〉 = Kγ (x, y), where Kγ is a positive definite (reproducing) kernel,
and γ is the associated regularization parameter. Kernel Fisher discriminant analysis (see,
e.g., Hofmann et al. 2008) is also based on this idea. The performance of these classifiers
depends on the choice of Kγ and γ . Although RBF kernel is quite popular in the literature, it
works well if γ is chosen appropriately. Unlike these methods, NN-TRAD and NN-TRIPD
does not involve any tuning parameter.

Now, let us investigate the performance of the classic NN classifier on the transformed data
inH. Assume the kernel Kγ to be isotropic, i.e., Kγ (x, y) = g(γ 1/2‖x−y‖), where g(t) > 0
for t �= 0 (see, e.g., Genton 2001). The squared distance between Φ(x) and Φ(y) in H is
given by ‖Φ(x)−Φ(y)‖2 = Kγ (x, x)+Kγ (y, y)−2Kγ (x, y) = 2g(0)−2g(γ 1/2‖x−y‖).
Clearly, if g ismonotonically decreasing in [0,∞) (for the RBF kernel, we have g(t) = e−t2 ),
the ordering of pairwise distances in H remains the same. So, the NN classifier in H will
inherit the same problems as the classic NN classifier in R

d .
To understand this better, assume (A1)–(A3) and let g be continuous with g(t) → 0 as

t → ∞. Suppose X,X
′
are two independent observations from class-1 and Y,Y

′
are two

independent observations from class-2. If γ remains fixed as d increases (or, γ decreases

slowly such thatγ d → ∞ as d → ∞), then g(γ 1/2‖X−Y‖) = g((γ d)1/2d−1/2‖X−Y‖) P→
0 as d → ∞. So, separability among the competing classes decreases in high dimensions.
Similarly, if γ d → 0 as d → ∞, g(γ 1/2‖X−X

′ ‖), g(γ 1/2‖Y−Y
′ ‖) and g(γ 1/2‖X−Y‖)

all converge in probability to g(0). The kernel transformation becomes non-discriminative
in both cases. Therefore, γ = O(1/d) seems to be the optimal choice, and this justifies the
use of γ = 1/d as a default value in http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Henceforth,
we will assume that γ d → a0 as d → ∞. Using (3), it can now be shown that

(i) ‖Φ(X) − Φ(X
′
)‖2 P→ 2g(0) − 2g

(
σ1

√
2a0

)
,

(i i) ‖Φ(Y) − Φ(Y
′
)‖2 P→ 2g(0) − 2g

(
σ2

√
2a0

)
and

(i i i) ‖Φ(X) − Φ(Y)‖2 P→ 2g(0) − 2g

(√
a0(σ 2

1 + σ 2
2 + ν212)

)
(6)
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Table 4 Misclassification rates (in %) of usual and kernelized version of proposed classifiers on simulated
data sets with the minimum indicated in bold

Ex-1 Ex-2 Ex-3 Ex-4 Ex-5 Ex-6 Ex-7 Ex-8

Usual 0.43 0.00 0.30 9.74 5.57 29.27 11.14 0.91

(0.04) (0.00) (0.03) (0.21) (0.28) (0.34) (0.33) (0.06)

Kernel 0.72 0.00 0.42 9.68 4.51 29.92 10.73 1.18

(0.06) (0.00) (0.04) (0.21) (0.24) (0.34) (0.34) (0.08)

as d → ∞. Since g is monotone, the NN classifier on the transformed observations in H
classifies all observations to a single class if ν212 < |σ 2

1 − σ 2
2 | (like the classic NN classifier

in R
d ).

The nonlinear SVM classifier constructs a linear classifier in the transformed space H.
Under (A1)–(A3), Hall et al. (2005, p. 434) showed that in a high-dimensional two class
problem, the linear SVM classifier classifies all observations to a single class if |σ 2

1 /n1 −
σ 2
2 /n2| exceeds ν212. Following their argument and replacing σ 2

1 , σ 2
2 and ν212 by g(0) −

g(σ1
√
2a0), g(0) − g(σ2

√
2a0) and g(σ1

√
2a0) + g(σ2

√
2a0) − 2g(

√
a0(σ 2

1 + σ 2
2 + ν212)),

respectively (compare Eq. (3) from p. 7 and Eq. (6)), one can derive a similar condition
when the nonlinear SVM classifier based on RBF classifies all observations to a single class.
However,NN-TRADandNN-TRIPDcanworkwell on the transformedobservations, andone
can derive results analogous to Theorems 1, 2(a) and 2(b). The results are summarized below.

Theorem 3 Assume that the reproducing kernel of the Hilbert spaceH is of the form Kγ =
g(γ 1/2‖x−y‖), where (i) g : [0,∞) → (0,∞) is continuous andmonotonically decreasing,
and (i i) γ d → a0(> 0) as d → ∞.

(a) Under the conditions of Theorem 1, the misclassification probability of the kernelized
version of NN-TRAD classifier converges to 0 as d → ∞.

(b) Suppose that the J competing classes satisfy (A4). Also assume the inequality in Theo-
rem 2(a) with σ 2

is
, σ 2

jt
and ν2is jt replaced by g(0) − g(σis

√
2a0), g(0) − g(σ jt

√
2a0) and

g(σis
√
2a0) + g(σ jt

√
2a0) − 2g(

√
a0(σ 2

is
+ σ 2

jt
+ ν2is jt )), respectively. Then, the mis-

classification probability of the kernelized version of NN-TRIPD classifier based on the
l2 norm converges to 0 as d → ∞.

(c) Under the conditions of Theorem 2(b), for any p ∈ (0, 1], the misclassification proba-
bility of the kernelized version of NN-TRIPD classifier based on the lp norm converges
to 0 as d → ∞.

We have used kernelized versions of NN-TRAD and NN-TRIPD classifiers on all the
simulated and benchmark datasets from Sect. 6. The overall performance of the latter turned
out to be better. Tables 4 and 5 present average misclassification rates of the kernelized NN-
TRIPD classifier along with their corresponding standard errors. Misclassification rates of
the usual NN-TRIPD classifier are also shown alongside to facilitate comparison.

For the kernelized version, we have used γ = 1/d for the first fourteen data sets. In the
other six cases, we used γ = 10−t/d (i.e., a0 = 10−t ), where the non-negative integer t was
chosen based on a small pilot survey. The overall performance of the kernelized version was
fairly competitive. In three out of eight simulated data sets, it had lower misclassification
rates than the usual version. The usual version had better performance in four out of eight
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examples. In Example-2, both versions correctly classified all test set observations. The
kernelized version performed better than the usual version in twelve out of twenty benchmark
data sets as well.

8 Concluding remarks

In this article, we have proposed some nonlinear transformations of the data for nearest
neighbor classification in the HDLSS setup. While the classic NN classifier suffers due to
distance concentration in high dimensions, these transformations use this property to their
advantage and enhance class separability in the transformed space. When the NN classifier is
used on the transformed data, the resulting classifiers usually lead to improved performance.
Using several simulated and real data sets, we have amply demonstrated this.We have derived
asymptotic optimality of the misclassification probabilities for the resulting classifiers in the
HDLSS asymptotic regime,where the sample size remains fixed and the dimension of the data
grows to infinity. Similar optimality results have been derived for kernelized versions of these
classifiers as well. As future work, it would be interesting to study the behavior of these clas-
sifiers in situations where the sample size increases simultaneously with the data dimension.

Throughout this article, we have used k = 1 for all nearest neighbor classifiers. However,
NN-TRAD and NN-TRIPD classifiers with other values of k had better performance in some
data sets. Due to high stochastic variation, the cross-validation method often failed to select
those values of k. Other re-sampling techniques could be helpful in such cases. Similarly,
other resampling methods can be used to choose between p = 1 and p = 2 in our proposed
classifier. Recall that NN-TRAD often performs poorly in the presence of sub-classes. So,
if we can identify these hidden sub-classes using an appropriate clustering algorithm, the
performance of NN-TRAD can be improved. Similarity based clustering methods (see, e.g.,
Ding et al. 2005; Arora et al. 2013) can be used for this purpose. In this article, a theoretical
investigation has been carried out on the good properties of the proposed transformations
in the case of the nearest neighbor classification. A study for other well-known classifiers
remains to be investigated.
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Appendix: Proofs and mathematical details

Lemma 1 If a sequence of random variables {Wq , q ≥ 1} has uniformly bounded second
moments and sup1≤q,q ′

<∞,|q−q ′ |>r |Corr(Wq ,Wq ′ )| < ρ(r), where ρ(r) → 0 as r → ∞,
then WLLN holds for the sequence {Wq , q ≥ 1}.
Proof of Lemma 1 Since the sequence of random variables {Wq , q ≥ 1} has uniformly
bounded second moments, we have sup1≤q<∞ V (Wq) < C for some constant C > 0. For
any fixed d , we have

V

⎡
⎣ 1

d

d∑

q=1

Wq

⎤
⎦ ≤ C

d
+ C

d2

⎡
⎣ ∑

q �=q ′
Corr(Wq ,Wq ′ )

⎤
⎦ .
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For every ε > 0, one can choose an integer Rε such that for every r > Rε, |ρ(r)| < ε/2C .
If we take d > 6CRε/ε, then

V

⎡
⎣ 1

d

d∑

q=1

Wq

⎤
⎦ ≤ C

d
+ C

d2

⎡
⎣ ∑

(q,q ′
):1≤|q−q ′ |≤Rε

Corr(Wq ,Wq ′ )

⎤
⎦

+ C

d2

⎡
⎣ ∑

(q,q ′
):|q−q ′ |>Rε

Corr(Wq ,Wq ′ )

⎤
⎦ ≤ C

d
+ 2CRε

d
+ ε

2
< ε. (7)

Equation (7) now implies E
[
1
d

∑d
q=1 Wq − 1

d

∑d
q=1 E[Wq ]

]2 → 0 as d → ∞, which in

turn proves that
∣∣∣ 1d

∑d
q=1 Wq − 1

d

∑d
q=1 E[Wq ]

∣∣∣ P→ 0 as d → ∞. ��
Proof of Theorem 1 We give the proof for J = 2. Suppose that x1, . . . , xn1 and y1, . . . , yn2
are observations from two classes. Assuming (A1)− (A3), recall the following from Eq. (3)

x∗
i

P→ a1 =
(

σ1
√
2,

√
σ 2
1 + σ 2

2 + ν212

)
for 1 ≤ i ≤ n1, and

y∗
j

P→ a2 =
(√

σ 2
1 + σ 2

2 + ν212, σ2
√
2

)
for 1 ≤ j ≤ n2 as d → ∞. (8)

Now, if a future observation z comes from the first class, we have z∗ P→ a1 as d → ∞.

So, ‖z∗ − x∗
i ‖2

P→ 0 for all 1 ≤ i ≤ n1, but ‖z∗ − y∗
j‖2

P→ ‖a1 − a2‖2 for all 1 ≤ j ≤ n2 as

d → ∞. Further, ‖a1 − a2‖2 = 0 if and only if σ 2
1 = σ 2

2 and ν212 = 0. Under the condition
of the theorem, we have ‖a1 − a2‖2 > 0. Therefore, NN-TRAD correctly classifies z with

probability tending to 1 as d → ∞. Again, if z comes from the second class, we have z∗ P→
a2 as d → ∞.While ‖z∗−x∗

i ‖2
P→ ‖a1−a2‖2 for all 1 ≤ i ≤ n1, ‖z∗−y∗

j‖2
P→ 0 for all 1 ≤

j ≤ n2. Therefore, NN-TRAD correctly classifies zwith probability tending to 1 as d → ∞.
Combining these above facts, now the proof follows from an application of the Dominated
Convergence Theorem. For J > 2, this result can be proved using similar arguments. ��
Proof of Theorem 2 (a) For the sake of simplicity, here we prove the result for the case when
J = 2 and R1 = R2 = 2. Let us assume that there are nis observations from the s-th sub-class
in the i-th class, denoted by Pis (i = 1, 2; s = 1, 2). Suppose that x1, . . . , xn1 are observa-
tions from a the first class and y1, . . . , yn2 are observations from the second class. Without
loss of generality, also assume that x1, . . . , xn11 are from P11 , while xn11+1, . . . , xn11+n12
are from P12(n11 + n12 = n1). Similarly, assume that y1, . . . , yn21 are from P21 , and
yn21+1, . . . , yn21+n22

are from P22(n21 + n22 = n2). Since these sub-classes satisfy (A1) −
(A3) (recall (A4)), for any observation xi (respectively, y j ), x∗∗

i
P→ axi (respectively, y

∗∗
j

P→
ay j ) as d → ∞, where axi (respectively, ay j ) is a point in the (n1 + n2)-dimensional space.

Consider an observation x1 from P11 . The third column in Table 6 shows the elements of
ax1 . The first element of ax1 is ‖x1 − x1‖ = 0. The next (n11 − 1) elements are σ11

√
2, and

they are the limiting values of scaled distances of x1 from other observations in P11 . Then we

have n12 scaled distances of x1 from the observations in P12 which are
√

σ 2
11

+ σ 2
12

+ ν21112 .

Similarly, the next n21 elements are
√

σ 2
11

+ σ 2
21

+ ν21121 , and they are followed by n22 ele-

ments all equal to
√

σ 2
11

+ σ 2
22

+ ν21122 . For any future observation z from P11 , az differs from
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Table 6 Elements of ax1 , ay1 and az, where z comes from P11

No. of elements Limiting distance from (after
re-scaling by d−1/2)

Elements of ax1 , ay1 and az

x1 y1 z from P11

1 x1 0 τ(11, 21) σ11

√
2

n11 − 1 xi for i = 2, . . . , n11 σ11

√
2 τ(11, 21) σ11

√
2

n12 xi for i = n11 + 1, . . . , n1 τ(11, 12) τ (12, 21) τ (11, 12)

1 y1 τ(11, 21) 0 τ(11, 21)

n21 − 1 yi for i = 2, . . . , n21 τ(11, 21) σ21

√
2 τ(11, 21)

n22 yi for i = n21 + 1, . . . , n2 τ(11, 22) τ (21, 22) τ (11, 22)

Here τ(is , jt ) =
√

σ 2
is

+ σ 2
jt

+ ν2is jt
for i, j = 1, 2, s = 1, 2 and t = 1, 2

ax1 only in one place (see the fifth column in Table 6). The limiting value of its scaled distance
from x1 is not 0, but σ11

√
2. So, we have ‖ax1 −az‖2 = 2σ 2

11
. For the other xi s (2 ≤ i ≤ n11 )

from P11 , the first n11 elements of axi has one 0 (with 0 at the i-th place) and (n11 − 1) many
σ11

√
2s. The rest of its elements are same as ax1 . So, az differs from axi only at the i-th place,

and ‖az − axi ‖2 = 2σ 2
11

as before. Therefore, we get

‖z∗∗ − x∗∗
i ‖2 P→ ‖az − axi ‖2 = 2σ 2

11 for all 1 ≤ i ≤ n11 as d → ∞. (9)

We now compute the distances of z∗∗ from the transformed observations of the second

class. Let us begin with y1 belonging to the sub-class P21 . As d → ∞, we get y∗∗
1

P→ ay1
(this is shown in the fourth column in Table 6). It contains the first n11 elements equal to√

σ 2
11

+ σ 2
21

+ ν21121 [limiting scaled distances from observations in P11 ], next n12 elements

equal to
√

σ 2
12

+ σ 2
21

+ ν21221 [distances from observations in P12 ], followed by one 0 [dis-

tance from itself], (n21 − 1) elements equal to σ21
√
2 [distances from other observations in

P21 ] and n22 elements equal to
√

σ 2
21

+ σ 2
22

+ ν22122 [distances from observations in P22 ]. For

other values of 2 ≤ i ≤ n11 , ayi can be obtained by interchanging the (n1 + 1)-th and the
(n1 + i)-th elements of ay1 .

So, for all 1 ≤ j ≤ n21 ,

‖z∗∗ − y∗∗
j ‖2 P→ ‖az − ay j ‖2

= n11

[
σ11

√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

]2

+ n12

[√
σ 2
11

+ σ 2
12

+ ν21112 −
√

σ 2
12

+ σ 2
21

+ ν22112

]2

+ [
σ 2
11 + σ 2

21 + ν21121

] + (n21 − 1)

×
[√

σ 2
11

+ σ 2
21

+ ν21121 − σ21

√
2

]2

+ n22

[√
σ 2
11

+ σ 2
22

+ ν21122 −
√

σ 2
21

+ σ 2
22

+ ν22122

]2
(10)
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as d → ∞. Now, consider this as a two class problem, where we want to classify z either to
P11 or to P21 . Clearly, zwill be correctly classified to P11 if ‖az −ay1‖2 exceeds ‖az −ax1‖2.
From Eqs. (9) and (11), we get

‖az − ay1‖2 − ‖az − ax1‖2 ≥
[
σ11

√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

]2

+ [
σ 2
21 + ν21121 − σ 2

11

] + (n21 − 1)

[√
σ 2
11

+ σ 2
21

+ ν21121 − σ21

√
2

]2
. (11)

To obtain (12), we drop some non-negative terms from the expression of ‖az −ay1‖2 in (11).
Let us consider two separate cases.
Case 1 If σ 2

21
+ ν21121 ≥ σ 2

11
, from (12), we get ‖az − ay1‖2 − ‖az − ax1‖2

≥
[
σ11

√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

]2 + (n21 − 1)
[√

σ 2
11

+ σ 2
21

+ ν21121 − σ21
√
2
]2
.

Here, the right hand side is 0 if and only if σ 2
11

= σ 2
21

and ν21121 = 0, So, under the

condition of the theorem, we have ‖az − ay1‖2 − ‖az − ax1‖2 > 0.
Case 2 If σ 2

21
+ ν21121 < σ 2

11
, it is easy to check that

∣∣∣∣σ11
√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

∣∣∣∣ <

∣∣∣∣σ21
√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

∣∣∣∣ . (12)

So, from (12), we have

‖az − ay1‖2 − ‖az − ax1‖2

≥ (n11 + n21 − 1)

[√
σ 2
11

+ σ 2
21

+ ν21121 − σ11

√
2

]2
+ [

σ 2
21 + ν21121 − σ 2

11

]
. (13)

If we define u1 =
√

σ 2
11

+ σ 2
21

+ ν21121 , u2 = σ11
√
2 andm = (n11 +n21 −1) = n1122 −1,

the right hand side of (14) can be expressed as

m(u1 − u2)
2 + (u21 − u22) = (u1 − u2)[m(u1 − u2) + (u1 + u2)].

Here, we have u2 > u1 > 0. So, the right hand side of (14) is positive if

{m(u1 − u2) + (u1 + u2)} < 0 ⇔ m >
(u2 + u1)

(u2 − u1)
⇔ u1 <

(
1 − 2

m + 1

)
u2. (14)

Squaring both sides and substituting u1, u2 and m with their original expressions, we get

u1
2 <

(
1 − 2

m + 1

)2

u22 ⇔ σ 2
21 + ν21121 + σ 2

11 < 2σ 2
11

(
1 + 4

n21121
− 4

n1121

)

⇔ ν21121 < (σ 2
11 − σ 2

21) − (n1121 − 1)8σ 2
1 /n21121 . (15)

We can argue for the other sub-classes in a similar way. More general cases can be handled
using these arguments but with extra notations. ��

Proof of Theorem 2 (b) For any x = (x1, . . . , xd)T and p > 0, the l p norm of x is defined
as ‖x‖p = (|x1|p + · · · + |xd |p)1/p . Like the proof of Theorem 2(a), here also we consider
the simpler case when J = 2 with R1 = R2 = 2, and we continue to use the same notations.
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From the expressions of ax1 , ay1 and az given in Table 6, we get

‖az − axi ‖p
p = (σ11

√
2)p for all 1 ≤ i ≤ n11 and (16)

‖az − ay j ‖p
p ≥ n11

∣∣∣∣σ11
√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

∣∣∣∣
p

+
∣∣∣∣
√

σ 2
11

+ σ 2
21

+ ν21121

∣∣∣∣
p

+(n21 − 1)

∣∣∣∣σ21
√
2 −

√
σ 2
11

+ σ 2
21

+ ν21121

∣∣∣∣
p

for all 1 ≤ j ≤ n21 . (17)

Note that (18) is analogous to (12) used in the proof of Theorem 2(a).

Definew1 =
√

σ 2
11

+ σ 2
21

+ ν21121 , w2 = σ11
√
2−

√
σ 2
11

+ σ 2
21

+ ν21121 andw3 = σ21
√
2−√

σ 2
11

+ σ 2
21

+ ν21121 . Using (17) and (18), we can show that

‖az − ay1‖p
p − ‖az − ax1‖p

p ≥ (|w1|p + |w2|p − |w1 + w2|p)
+ (n11 − 1)|w2|p + (n21 − 1)|w3|p. (18)

Note that |w1|p + |w2|p ≥ |w1 + w2|p for all p ∈ (0, 1], and w2 = w3 = 0 if and only
if σ 2

11
= σ 2

21
and ν21121 = 0. Under the conditions assumed in the theorem, we always have

‖az − ay1‖p
p > ‖az − ax1‖p

p , or ‖az − ay1‖p > ‖az − ax1‖p . In fact, we have ‖az − ay j ‖p >

‖az − axi ‖p for all 1 ≤ i ≤ n11 and 1 ≤ j ≤ n21 . So, the NN-TRIPD classifier based on the
l p norm with p ∈ (0, 1] correctly classifies any z from P11 with probability tending to 1. We
can prove this result for observations from other sub-classes as well. ��
Proof of Theorem 3 (a) Under (A1)–(A3), and the conditions on Kγ and γ as stated in the
theorem, we have convergence of the pairwise distances for the transformed observations.
Define β11 = 2g(0) − 2g(σ1

√
2a0), β22 = 2g(0) − 2g(σ2

√
2a0) and β12 = 2g(0) −

2g(
√
a0(σ 2

1 + σ 2
2 + ν212)).

If x1, . . . , xn1 are independent observations from class-1, and y1, . . . , yn2 are independent
observations from class-2, using (6) we have

Φ∗(xi ) =
⎛
⎝ 1

n1 − 1

n1∑

j=1, j �=i

‖Φ(xi ) − Φ(x j )‖, 1

n2

n2∑

j=1

‖Φ(xi ) − Φ(y j )‖
⎞
⎠

T

P→ β1 = (
√

β11,
√

β12)
T for all i = 1, . . . , n1 and

Φ∗(y j ) =
⎛
⎝ 1

n1

n1∑

i=1

‖Φ(y j ) − Φ(xi )‖, 1

n2 − 1

n2∑

i=1,i �= j

‖Φ(y j ) − Φ(yi )‖
⎞
⎠

T

P→ β2 = (
√

β12,
√

β22)
T for all i = 1, . . . , n2, as d → ∞. (19)

For a new observation z from the first class, we have

Φ∗(z) =
⎛
⎝ 1

n1

n1∑

i=1

‖Φ(xi ) − Φ(z)‖, 1

n2

n2∑

j=1

‖Φ(y j ) − Φ(z)‖
⎞
⎠

T

P→ β1, (20)

as d → ∞. While ‖Φ∗(z)−Φ∗(xi )‖ P→ 0 for 1 ≤ i ≤ n1, ‖Φ∗(z)−Φ∗(y j )‖ P→ ‖β1−β2‖
for 1 ≤ j ≤ n2 as d → ∞. Since g is strictly monotone, ‖β1 − β2‖ = 0 if and only if
σ 2
1 = σ 2

2 and ν212 = 0. Therefore, the kernelized version of NN-TRAD correctly classifies
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z with probability tending to 1 as d → ∞. A similar argument can be obtained for any
observation from class-2. ��
Proof of Theorem 3 (b) We prove the result for J = 2 and R1 = R2 = 2 as in the proof of
Theorem 2(a). Instead of x∗∗

i (1 ≤ i ≤ n1), y∗∗
j (1 ≤ j ≤ n2) and z∗∗ (see Eqs. (4) and (5)

in Sect. 3), we now use TRIPD on Φ∗∗(xi ),Φ∗∗(y j ) and Φ∗∗(z). Here Φ∗∗ is defined as
follows:

Φ∗∗(z) =
(
‖Φ(z) − Φ(x1)‖, . . . , ‖Φ(z) − Φ(xn1)‖,

‖Φ(z) − Φ(y1)‖, . . . , ‖Φ(z) − Φ(yn2)‖
)T

.

Wecontinue to use the same notations as in the proof of Theorem2(a). Since all sub-classes

satisfy (A1)–(A3), if x and y both are from Pis (i = 1, 2, s = 1, 2), ‖Φ(x) − Φ(y)‖2 P→
2g(0)−2g(σis

√
2a0) asd → ∞.Again, ifx is from Pis andy is from Pjt (Pis �= Pjt ) for i, j =

1, 2, s = 1, 2, t = 1, 2, ‖Φ(x)−Φ(y)‖2 P→ 2g(0)−2g(
√
a0(σ 2

is
+ σ 2

jt
+ ν2is jt )) now, repeat-

ing the arguments used in the proof of Theorem 2(a) with σ 2
is
, σ 2

jt
and ν2is jt replaced by g(0)−

g(σis
√
2a0), g(0)−g(σ jt

√
2a0) and g(σis

√
2a0)+g(σ jt

√
2a0)−2g(

√
a0(σ 2

is
+ σ 2

jt
+ ν2is jt )),

respectively, we have the proof. ��
Proof of Theorem 3 (c) Consider x to be from Pis , and y to be from Pjt (i, j = 1, 2 and
s, t = 1, 2). If a future observation z comes from Pis , following the arguments used in
Eq. (19) of Theorem 2(b), one can show that ‖Φ∗∗(z) − Φ∗∗(x)‖p

p − ‖Φ∗∗(z) − Φ∗∗(y)‖p
p

converges to a quantity greater than or equal to

(|w̃1|p + |w̃2|p − |w̃1 + w̃2|p) + (n11 − 1)|w̃2|p + (n21 − 1)|w̃3|p,
where w̃1 = [2g(0)−2g(

√
a0(σ 2

is
+ σ 2

jt
+ ν2is jt ))]1/2, w̃2 = [2g(0)−2g(σis

√
2a0)]1/2−w̃1

and w̃3 = [2g(0) − 2g(σ jt
√
2a0)]1/2 − w̃1 (analogous to Eq. (19)). Note that a0 > 0, and

g is a positive, decreasing function. The result can be proved using the same argument as in
Theorem 2(b). ��
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