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Abstract A multitude of different probabilistic programming languages exists today, all
extending a traditional programming language with primitives to support modeling of
complex, structured probability distributions. Each of these languages employs its own prob-
abilistic primitives, and comes with a particular syntax, semantics and inference procedure.
This makes it hard to understand the underlying programming concepts and appreciate the
differences between the different languages. To obtain a better understanding of probabilistic
programming, we identify a number of core programming concepts underlying the primi-
tives used by various probabilistic languages, discuss the execution mechanisms that they
require and use these to position and survey state-of-the-art probabilistic languages and their
implementation. While doing so, we focus on probabilistic extensions of logic programming
languages such as Prolog, which have been considered for over 20 years.

Keywords Probabilistic programming languages · Probabilistic logic programming ·
Statistical relational learning · Inference in probabilistic languages

1 Introduction

The substantial interest in statistical relational learning (Getoor et al. 2007), probabilistic
(inductive) logic programming and probabilistic programming languages (Roy et al. 2008)
has resulted in a wide variety of different formalisms, models and languages, with applica-
tions in structured, uncertain domains such as natural language processing, bioinformatics,
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and activity recognition. The multitude of probabilistic languages that exists today provides
evidence for the richness and maturity of the field, but on the other hand, makes it hard to get
an appreciation and understanding of the relationships and differences between the differ-
ent languages. Furthermore, most arguments in the literature about the relationship amongst
these languages are about the expressiveness of these languages, that is, they state (often
in an informal way) that one language is more expressive than another one (implying that
the former could be used to emulate the latter). By now, it is commonly accepted that the
more interesting question is concerned with the underlying concepts that these languages
employ and their effect on the inference mechanisms, as their expressive power is often very
similar. However, a multitude of different probabilistic primitives exists, which makes it hard
to appreciate their relationships.1

To alleviate these difficulties and obtain a better understanding of the field we identify
a number of core probabilistic programming concepts and relate them to one another. We
cover the basic concepts representing different types of random variables, but also general
modeling concepts such as negation or time and dynamics, and programming constructs such
asmeta-calls andways to handle sets.While doing so, we focus on probabilistic extensions of
logic programming languages because this is (arguably) the first and best studied probabilistic
programming paradigm. It has been studied for over 20 years starting with the seminal work
of David Poole (1992) and Taisuke Sato (1995), and now includes languages such as the inde-
pendent choice logic (ICL) (Poole 1995, 2008), stochastic logic programs (SLPs) (Muggleton
1996), PRISM (Sato and Kameya 1997, 2001), Bayesian logic programs (BLPs) (Kersting
and De Raedt 2001, 2008), CLP(BN ) (Santos Costa et al. 2003, 2008), logic programs with
annotated disjunctions (LPADs) (Vennekens et al. 2004), P-log (Baral et al. 2004, 2009),
Dyna (Eisner et al. 2005), CP-logic (Vennekens et al. 2006, 2009), ProbLog (De Raedt et al.
2007), and programmingwith personalized Pagerank (PROPPR) (Wang et al. 2013). Another
reason for focussing on probabilistic extensions of logic programming languages is that the
concepts are all embedded within the same host language, so we can focus on semantics
rather than syntax. At the same time, we also relate the concepts to alternative probabilistic
programming languages such as IBAL (Pfeffer 2001), Bayesian logic (BLOG) (Milch et al.
2005), Church (Goodman et al. 2008) and Figaro (Pfeffer 2009) and to some extent also to
statistical relational learning models such as relational Bayesian networks (RBNs) (Jaeger
1997, 2008), probabilistic relational models (PRMs) (Koller and Pfeffer 1998; Getoor et al.
2007) and Markov logic (Richardson and Domingos 2006). Most statistical relational learn-
ing approaches employ a knowledge-based model construction approach (Wellman et al.
1992), in which the logic is used as a template for constructing a graphical model. Typical
probabilistic programming languages, on the other hand, employ a variant of Sato’s dis-
tribution semantics (Sato 1995), in which random variables directly correspond to ground
facts and a traditional program specifies how to deduce further knowledge from these facts.
This difference explains why we introduce the concepts in the context of the distribution
semantics, and discuss approaches to knowledge-based model construction separately.

Inference, that is, evaluating the probability distribution defined by a program or model,
is a key challenge in probabilistic programming and statistical relational learning. Further-
more, the choice of inference approach often influences which probabilistic primitives can be
supported. Enormous progress has been made in the past few years w.r.t. probabilistic infer-
ence and numerous inference procedures have been contributed. Therefore, we also identify

1 Throughout the paper we use the term primitive to denote a particular syntactic and semantic construct that
is available in a particular probabilistic programming language, and the term concept to denote the underlying
notion. Different primitives may hence realize the same concept.
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some core classes of inference mechanisms for probabilistic programming and discuss which
ones to use for which probabilistic concept. Inference in probabilistic languages also is an
important building block of approaches that learn the structure and/or parameters of such
models from data. Given the variety of approaches that exist today, a discussion of learning
is beyond the scope of this paper.

To summarize, the key contributions of this paper are (1) the identification of a number
of core concepts that are used by various probabilistic languages, (2) a discussion of the
execution mechanisms that they require, and (3) a positioning of state-of-the-art probabilis-
tic languages and implementations w.r.t. these concepts. Although many of the concepts we
discuss are well-described in the literature, some even in survey papers (De Raedt and Ker-
sting 2003; Poole 2008), we believe a new and up-to-date survey is warranted due to the
rapid developments of the field which rapidly renders existing surveys incomplete and even
outdated. To the best of our knowledge, this is also the first time that such a wide variety
of probabilistic programming concepts and languages, also in connection to inference, is
discussed in a single paper.

We expect the reader to be familiar with basic language concepts and terms of Pro-
log (Lloyd 1989; Flach 1994); a quick summary can be found in Appendix 1.

This paper is organized as follows. We first discuss the distribution semantics (Sect. 2)
and classify corresponding inference approaches according to their logical and probabilistic
components (Sect. 3). Section 4 identifies the probabilistic programming concepts. In Sect. 5,
we discuss the relation with statistical relational modeling approaches rooted in graphical
models. Section 6 relates the different inference approaches to the probabilistic programming
concepts.We touch upon applications of probabilistic logic programming in Sect. 7. Section 8
concludes the survey and summarizes a number of key open questions.

2 Distribution semantics

Sato’s distribution semantics (Sato 1995) is a well-known semantics for probabilistic logics
that has been considered many times and under varying names, cf. (Dantsin 1991; Poole
1993, 2000; Fuhr 2000; Sato and Kameya 2001; Dalvi and Suciu 2004; De Raedt et al.
2007). It generalizes the least model semantics of logic programming to a distribution over
(the least models of) a set of logic programs that share their definite clauses, but differ in
the set of facts. This is achieved based on a joint distribution over truth value assignments
to these facts, cf. Eq. (4) below. Prominent examples of Prolog-based languages using this
semantics include ICL (Poole 2008), PRISM (Sato and Kameya 2001) and ProbLog (De
Raedt et al. 2007; Kimmig et al. 2011b), even though there exist subtle differences between
these languages as we will illustrate later. Sato has defined the distribution semantics for a
countably infinite set of random variables and a general class of distributions. We focus on
the finite case here, discussing the two most popular instances of the semantics, based on a
set of independent random variables and independent probabilistic choices, respectively, and
refer to Sato (1995) for details on the general case.

2.1 Probabilistic facts

The arguably most basic instance of the distribution semantics uses a finite set of Boolean
random variables that are all assumed to be independent. We use the following running
example inspired by the well-known alarm Bayesian network (Pearl 1988):
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0.1 : :burglary. 0.7 : :hears_alarm(mary).

0.2 : :earthquake. 0.4 : :hears_alarm(john).

alarm :−earthquake.

alarm :−burglary.

calls(X) :−alarm,hears_alarm(X).

call :−calls(X). (1)

The program consists of a set R of definite clauses or rules,2 and a set F of ground facts
f , each of them labeled with a probability p, written as p : : f . We call such labeled facts
probabilistic facts. Each probabilistic fact corresponds to a Boolean random variable that is
truewith probability p and falsewith probability 1− p. We use b, e, hm and hj to denote the
random variables corresponding to burglary, earthquake, hears_alarm(mary)
and hears_alarm(john), respectively. Assuming that all these random variables are
independent, we obtain the following probability distribution PF over truth value assignments
to these random variables and their corresponding sets of ground facts F ′ ⊆ F :

PF (F ′) =
∏

fi∈F ′
pi ·

∏

fi∈F\F ′
(1 − pi ) (2)

For instance, the truth value assignment burglary = true, earthquake = false,
hears_alarm(mary) = true, hears_alarm(john) = false, which we will abbreviate
as b∧¬e∧hm∧¬hj , corresponds to the set of facts {burglary,hears_alarm(mary)},
and has probability 0.1 ·(1−0.2) ·0.7 ·(1−0.6) = 0.0336. The corresponding logic program
obtained by adding the set of rules R to the set of facts, also called a possible world, is

burglary.

hears_alarm(mary).

alarm :−earthquake.

alarm :−burglary.

calls(X) :−alarm,hears_alarm(X).

call :−calls(X). (3)

As each logic program obtained by choosing a truth value for every probabilistic fact has a
unique least Herbrandmodel (i.e., a unique leastmodel using only symbols from the program;
cf. Appendix 1), PF can be used to define the success probability P(q) of a query q , that is,
the probability that q is true in a randomly chosen such program, as the sum over all programs
that entail q:

P(q):=
∑

F ′⊆F
∃θF ′∪R|�qθ

PF (F ′) (4)

=
∑

F ′⊆F
∃θF ′∪R|�qθ

∏

fi∈F ′
pi ·

∏

fi∈F\F ′
(1 − pi ) . (5)

2 Rules are deterministic and no further constraints on R are imposed in general; an exception is the exclusive
explanation assumption discussed in Sect. 3.1. Probabilistic rules can be modeled in this setting by adding a
fresh probabilistic fact to the body; an alternative is presented in Sect. 2.2.
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Table 1 The possible worlds of program (1) where calls(mary) is true

World calls(john) Probability

b ∧ ¬e ∧ hm ∧ ¬hj False 0.1 · (1 − 0.2) · 0.7 · (1 − 0.4) = 0.0336

b ∧ ¬e ∧ hm ∧ hj True 0.1 · (1 − 0.2) · 0.7 · 0.4 = 0.0224

b ∧ e ∧ hm ∧ ¬hj False 0.1 · 0.2 · 0.7 · (1 − 0.4) = 0.0084

b ∧ e ∧ hm ∧ hj True 0.1 · 0.2 · 0.7 · 0.4 = 0.0056

¬b ∧ e ∧ hm ∧ ¬hj False (1 − 0.1) · 0.2 · 0.7 · (1 − 0.4) = 0.0756

¬b ∧ e ∧ hm ∧ hj True (1 − 0.1) · 0.2 · 0.7 · 0.4 = 0.0504

Naively, the success probability can thus be computed by enumerating all sets F ′ ⊆ F ,
for each of them checking whether the corresponding possible world entails the query, and
summing the probabilities of those that do. As fixing the set of facts yields an ordinary logic
program, the entailment check can use any reasoning technique for such programs.

For instance, forward reasoning, also known as applying the TP operator, starts from
the set of facts and repeatedly uses rules to derive additional facts until no more facts
can be derived. In our example possible world (3), we thus start from {burglary,
hears_alarm(mary)}, and first add alarm due to the second rule based on burglary.
This in turn makes it possible to add calls(mary) using the third rule and substitution
X=mary, and finally, call is added using the last rule, resulting in the least Herbrand
model {burglary, hears_alarm(mary), alarm, calls(mary), call}. This pos-
sible world thus contributes to the success probabilities of alarm, calls(mary) and
call, but not to the one of calls(john). Similarly, starting from the world where all
probabilistic facts are false, we obtain the empty set as the least Herbrand model, and this
world thus does not contribute to the probability of any atom.

An alternative to forward reasoning is backward reasoning, also known as SLD-resolution
or proving, which we again illustrate for our example possible world (3). It starts from a given
query, e.g.,call, anduses the rules in the opposite direction: in order to prove a fact appearing
in the head of a clause, we have to prove all literals in the clause’s body. For instance, based
on the last rule, to prove call, we need to prove calls(X) for some instantiation of X.
Using the third rule, this means proving alarm, hears_alarm(X). To prove alarm,
we could use the first rule and prove earthquake, but this fails for our choice of facts,
as there is no rule (or fact) for the latter. We thus backtrack to the second rule for alarm,
which requires proving burglary, which is proven by the corresponding fact. Finally, we
prove hears_alarm(X) using the fact hears_alarm(mary), substituting mary for
X, which completes the proof for call.

Going over all possible worlds in this way, we obtain the success probability of
calls(mary), P(calls(mary)) = 0.196, as the sum of the probabilities of six pos-
sible worlds (listed in Table 1).

Clearly, enumerating all possible worlds is infeasible for larger programs; we will discuss
alternative inference techniques from the literature in Sect. 3.

For ease of modeling (and to allow for countably infinite sets of probabilistic facts),
probabilistic languages such as ICL and ProbLog use non-ground probabilistic facts to define
sets of random variables. All ground instances of such a fact are mutually independent and
share the same probability value. As an example, consider a simple coin game which can be
won either by throwing two times heads or by cheating. This game can be modeled by the
program below. The probability to win the game is then defined by the success probability
P(win).
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0.5 : :heads(X). 0.2 : :cheat_successfully.

win :−cheat_successfully.

win :−heads(1),heads(2).

Legal groundings of such facts can also be restricted byproviding a domain, as in the following
variant of our alarm example where all persons have the same probability of independently
hearing the alarm:

0.1 : :burglary. 0.2 : :earthquake
0.7 : :hears_alarm(X) :−person(X).

person(mary). person(john). person(bob). person(ann).

alarm :−earthquake.

alarm :−burglary.

calls(X) :−alarm,hears_alarm(X).

call :−calls(X).

If such domains are defined purely logically, without using probabilistic facts, the basic
distribution is still well defined.

It is often assumed that probabilistic facts do not unify with other probabilistic facts
or heads of rules. This ensures that the label of a probabilistic fact equals the fact’s success
probability, and achieves a clean separation between the facts F used to define the distribution
PF and their logical consequences given by the set of rules R. We discuss dropping this
assumption by using independent causation below.

2.2 Probabilistic choices

As already noted by Sato (1995), probabilistic facts (or binary switches) are expressive
enough to represent a wide range of models, including Bayesian networks, Markov chains
and hidden Markov models. However, for ease of modeling, it is often more convenient to
use multi-valued random variables instead of binary ones. The concept commonly used to
realize such variables in the distribution semantics is a probabilistic choice, that is, a finite set
of ground atoms exactly one of which is true in any possible world. Examples of primitives
implementing the concept of a probabilistic choice are the probabilistic alternatives of the
independent choice logic (ICL) (Poole 2000) and probabilistic Horn abduction (PHA) (Poole
1993), the multi-ary random switches of PRISM (Sato and Kameya 2001), the probabilistic
clauses of stochastic logic programs (SLPs) (Muggleton 1996), and the annotated disjunc-
tions of logic programs with annotated disjunctions (LPADs) (Vennekens et al. 2004), or the
CP-events of CP-logic (Vennekens 2007). We restrict the following discussion to annotated
disjunctions (Vennekens et al. 2004), using the notation introduced below, and return to the
relation between these languages in Sect. 2.3.

An annotated disjunction (AD) is an expression of the form

p1 : :h1; ... ;pN : :hN :−b1, ... ,bM.

where b1, ... ,bM is a possibly empty conjunction of literals, the pi are probabilities and∑N
i=1 pi ≤ 1. Considered in isolation, an annotated disjunction states that if the body

b1, ... ,bM is true at most one of the hi is true as well, where the choice is governed by
the probabilities (see below for interactions between multiple ADs with unifying atoms in
the head). If the pi in an annotated disjunction do not sum to 1, there is also the case that
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nothing is chosen. The probability of this event is 1 − ∑n
i=1 pi . A probabilistic fact is thus

a special case of an AD with a single head atom and empty body.
For instance, consider the following program:

0.4 : :draw.

1

3
: :color(green); 1

3
: :color(red); 1

3
: :color(blue) :−draw.

The probabilistic fact states that we draw a ball from an urn with probability 0.4, and the
annotated disjunction states that if we draw a ball, the color is picked uniformly among
green, red and blue. The program thus has four possible worlds, the empty one (with
probability 0.6), and three that each contain draw and one of the color atoms (each with
probability 0.4/3). As for probabilistic facts, a non-ground AD denotes the set of all its
groundings, and for each such grounding, choosing one of its head atoms to be true is seen
as an independent random event. That is, the annotated disjunction

1

3
: :color(B,green); 1

3
: :color(B,red); 1

3
: :color(B,blue) :−ball(B).

defines an independent probabilistic choice of color for each ball B.
As noted already by Vennekens et al. (2004), the probabilistic choice over head atoms in

an annotated disjunction can equivalently be expressed using a set of logical clauses, one for
each head, and a probabilistic choice over facts added to the bodies of these clauses, e.g.

color(B,green) :−ball(B),choice(B,green).

color(B,red) :−ball(B),choice(B,red).

color(B,blue) :−ball(B),choice(B,blue).

1

3
: :choice(B,green); 1

3
: :choice(B,red); 1

3
: :choice(B,blue).

This example illustrates that annotated disjunctions define a distribution PF over basic facts
as required in the distribution semantics, but can simplify modeling by directly expressing
probabilistic consequences.

Independent Causes Some languages, e.g. ICL (Poole 2008), assume that head atoms in the
same or different annotated disjunctions cannot unify with one another, while others, e.g.,
LPADs (Vennekens et al. 2004), do not make this restriction, but instead view each annotated
disjunction as an independent cause for the conclusions to hold. In that case, the structure of
the program defines the combined effect of these causes, similarly to how the two clauses for
alarm in our earlier Example (1) combine the two causes burglary and earthquake.
We illustrate this on the Russian roulette example by Vennekens et al. (2009), which involves
two guns.

1
6 : :death:− pull_trigger(left_gun).
1
6 : :death:− pull_trigger(right_gun).

Each gun is an independent cause for death. Pulling both triggers will result in death being
true with a probability of 1 − (1 − 1

6 )
2, which exactly corresponds to the probability of

death being proven via the first or via the second annotated disjunction (or both). Assuming
independent causes closely corresponds to the noisy-or combining rule that is often employed
in the Bayesian network literature, cf. Sect. 5.
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2.3 Discussion

While we have distinguished probabilistic facts and probabilistic choices here for ease of
exposition, both views are closely connected and exchangeable from the perspective of
expressivity. Indeed, asmentioned above, a probabilistic factp : :f directly corresponds to an
annotated disjunction p : :f :−true with a single atom in the head and an empty (or true)
body. Conversely, each annotated disjunction can—for the purpose of calculating success
probabilities—be equivalently represented using a set of probabilistic facts and deterministic
clauses, which together simulate a sequential choice mechanism; we refer to Appendix 2 for
details.

Annotated disjunctions are one of many primitives that implement probabilistic choices.
In ICL, a probabilistic choice is implemented as a probabilistic alternative of the form

prob a1 : p1, ... ,an : pn.

As pointed out by Vennekens et al. (2004), the probabilistic alternatives of ICL map onto
annotated disjunctions (and vice versa), that is, the alternative above rewrites as

p1 : :a1; ... ;pn : :an :−true.

Similarly, for PRISM, amulti-ary random switchmsw(term,V)with identifier term, values
v1, ... ,vn and probabilities p1, ... ,pn directly corresponds to an annotated disjunction

p1 : :msw(term,v1); ... ;pn : :msw(term,vp) :−true.

However, a key distinguishing feature of PRISM is its use of stochastic memoization, that
is, the fact that different occurrences of the same msw atom denote independent random
variables; we will discuss this aspect in more detail in Sect. 4.4. Finally, it is well-known
that the probabilistic clauses of SLPs map onto the switches of PRISM (Cussens 2005).
The correspondence is direct in the case of a predicate in an SLP being defined by a set
of probabilistic clauses that all have an empty body, and uses the same idea of explicitly
representing a choice in the body of a clause as illustrated for annotated disjunctions above
(page 7) else. An example can be found in Sect. 4.4.

2.4 Inference tasks

In probabilistic programming and statistical relational learning, the following inference tasks
have been considered:

– In the SUCC(q) task, a ground query q is given, and the task is to compute

SUCC(q) = P(q),

the success probability of the query as specified in Eq. (4).3

– In the MARG(Q | e) task, a set Q of ground atoms of interest, the query atoms, and a
ground query e, the evidence, are given. The task is to compute the marginal probability
distribution of each atom q ∈ Q given the evidence,

MARG(Q | e) = P(q|e) = P(q ∧ e)

P(e)
.

The SUCC(q) task corresponds to the special case of the MARG(Q | e) task with
Q = {q} and e = true (and thus P(e) = 1).

3 Non-ground queries have been considered as well, in which case the success probability corresponds to the
probability that qθ is true for some grounding substitution θ .
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– The MAP(Q | e) task is to find the most likely truth-assignment v to the atoms in Q
given the evidence e, that is, to compute

MAP(Q | e) = argmax
v

P(Q = v|e)

– The MPE(e) task is to find the most likely world where the given evidence query e
holds. Let U be the set of all atoms in the Herbrand base that do not occur in e. Then,
the task is to compute the most likely truth-assignment u to the atoms in U ,

MPE(e) = MAP(U | e).
– In the V IT (q) task, a query q (but no evidence) is given, and the task is to find a Viterbi

proof of q . Let E(q) be the set of all explanations or proofs of q , that is, of all sets F ′
of ground probabilistic atoms for which q is true in the corresponding possible world.
Then, the task is to compute

V IT (q) = arg max
X∈E(q)

P

⎛

⎝
∧

f ∈X
f

⎞

⎠ .

To illustrate, consider our initial alarm Example (1) with e = calls(mary) and Q =
{burglary,calls(john)}. The worlds where the evidence holds are listed in Table 1,
together with their probabilities. The answer to the MARG task is

P(burglary|calls(mary)) = 0.07/0.196 = 0.357

P(calls(john)|calls(mary)) = 0.0784/0.196 = 0.4

The answer to the MAP task is burglary=false, calls(john)=false, as its probability
0.0756/0.196 is higher than 0.028/0.196 (for true, true), 0.042/0.196 (for true, false) and
0.0504/0.196 (for false, true). The world returned by MPE is the one corresponding to the
set of facts {earthquake, hears_alarm(mary)}. Finally, the Viterbi proof of query
calls(john), which does not take into account evidence, is e∧hj , as 0.2 ·0.4 > 0.1 ·0.4
(for b ∧ hj), whereas the Viterbi proof for query burglary is its only proof b.

3 Inference

We now provide an overview of existing inference approaches in probabilistic (logic) pro-
gramming.Asmost existingwork adresses the SUCC task of computing success probabilities,
cf. Eq. (4), we focus on this task here, and mention other tasks in passing where appropriate.
For simplicity, we assume probabilistic facts as basic building blocks. Computing marginals
under the distribution semantics has to take into account bothprobabilistic and logical aspects.
We therefore distinguish between exact inference and approximation using either bounds or
sampling on the probabilistic side, and between methods based on forward and backward
reasoning and grounding to CNF on the logical side. Systems implementing (some of) these
approaches include the ICL system AILog2,4 the PRISM system,5 the ProbLog implementa-

4 http://artint.info/code/ailog/ailog2.html.
5 http://sato-www.cs.titech.ac.jp/prism/.
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Fig. 1 Forward reasoning
example

tions ProbLog16 and ProbLog2,7 and the LPAD implementations cplint8 and PITA.9 General
statements about systems in the following refer to these six systems.

3.1 Exact inference

As most methods for exact inference can be viewed as operating (implicitly or explicitly) on
a propositional logic representation of all possible worlds that entail the query q of interest,
we first note that this set of possible worlds is given by the following formula in disjunctive
normal form (DNF)

DNF(q) =
∨

F ′⊆F
∃θF ′∪R|�qθ

⎛

⎝
∧

fi∈F ′
fi ∧

∧

fi∈F\F ′
¬ fi

⎞

⎠ (6)

and that the structure of this formula exactly mirrors that of Eq. (5) defining the success
probability in the case of probabilistic facts, where we replace summation by disjunction,
multiplication by conjunction, and probabilities by truth values of randomvariables (or facts).

In our initial alarm Example (1), the DNF corresponding to calls(mary) contains the
worlds shown in Table 1, and thus is

(b ∧ e ∧ hm ∧ hj) ∨ (b ∧ e ∧ hm ∧ ¬hj) ∨ (b ∧ ¬e ∧ hm ∧ hj)

∨ (b ∧ ¬e ∧ hm ∧ ¬hj) ∨ (¬b ∧ e ∧ hm ∧ hj) ∨ (¬b ∧ e ∧ hm ∧ ¬hj). (7)

Forward Reasoning: Following the definition of the semantics of CP-logic (Vennekens et al.
2009), forward reasoning can be used to build a tree whose leaves correspond to possible
worlds, on which success probabilities can be calculated. Specifically, the root of the tree is
the empty set, and in each node, one step of forward reasoning is executed, creating a child
for each possible outcome in the case of probabilistic facts or annotated disjunctions. For
instance, consider the program

0.4 : :draw.

0.2 : :green; 0.7 : :red; 0.1 : :blue :−draw.

As illustrated in Fig. 1, the first step using the probabilistic fact draw adds two children
to the root, one containing draw, and one containing not(draw). In the latter case, the

6 included in YAP Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/.
7 http://dtai.cs.kuleuven.be/problog/.
8 included in YAP Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/.
9 included in XSB Prolog, http://xsb.sourceforge.net/.
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body of the AD is false and thus no further reasoning steps are possible. For the world where
draw is true, the AD introduces three children, adding green, red and blue, respectively,
and no further reasoning steps are possible in the resulting worlds. Thus, each path from the
root to a leaf constructs one possible world, whose probability is the product of assignments
made along the path. Domains for non-ground facts have to be explicitly provided to ensure
termination. While this approach clearly illustrates the semantics, even in the finite case, it
suffers from having to enumerate all possible worlds, and is therefore not used in practice.
A possible solution to this could be based on the magic set transformation (Bancilhon et al.
1986), which restricts forward reasoning to atoms relevant for deriving a query.

Backward Reasoning: Probably the most common inference strategy in probabilistic logic
programming is to collect all possible proofs or explanations of a given query using backward
reasoning, represent them in a suitable data structure, and compute the probability on that
structure. As discussed in Sect. 2.4, an explanation is a partial truth value assignment to
probabilistic facts that is sufficient to prove the query via SLD-resolution.

For instance, b ∧ hm is the explanation for calls(mary) given by the derivation
discussed in Sect. 2.1 (p. 5), as it depends on burglary and hears_alarm(mary) being
true, but not on any particular truth values of earthquake and hears_alarm(john).
This query has a second proof, e ∧ hm, obtained by using the first clause for alarm during
backward reasoning. We can describe the set of possible worlds where calls(mary) is
true by the disjunction of all proofs of the query,

(b ∧ hm) ∨ (e ∧ hm)

which is more compact than the disjunction (7) explicitly listing the six possible worlds.
We cannot, however, calculate the probability of this more compact DNF by simply

replacing conjunction by multiplication and disjunction by addition as we did for the longer
DNF above. The reason is that the two proofs are not mutually exclusive, that is, they can be
true in the same possible world. Specifically, in our example this holds for the two worlds
b ∧ e ∧ hm ∧ hj and b ∧ e ∧ hm ∧ ¬hj , and the probability of these worlds,

0.1 · 0.2 · 0.7 · 0.4 + 0.1 · 0.2 · 0.7 · (1 − 0.4) = 0.014

is exactly the difference between 0.21 as obtained by the direct sum of products 0.1 · 0.7 +
0.2 ·0.7 and the true probability 0.196. This is also known as the disjoint-sum-problem, which
is #P-complete (Valiant 1979).

Existing languages and systems approach the problem from different angles. PHA (Poole
1992) and PRISM (Sato and Kameya 2001) rely on the exclusive explanation assumption,
that is, they assume that the structure of the program guarantees mutual exclusiveness of
all conjunctions in the DNF, which allows one to evaluate it as a direct sum of products (as
done in the PRISM system). This assumption allows for natural modeling of many models,
including e.g., probabilistic grammars and Bayesian networks, but prevents direct modeling
of e.g., connection problems over uncertain graphswhere each edge independently existswith
a certain probability, or simple variations of Bayesian network models such as our running
example.

ICL (Poole 2000) is closely related to PHA, but does not assume exclusive explanations.
Poole instead suggests symbolic disjoining techniques to split explanations into mutually
exclusive ones (implemented in AILog2). The ProbLog1 implementation of ProbLog (De
Raedt et al. 2007; Kimmig et al. 2011b) has been the first probabilistic programming system
representing DNFs as Binary Decision Diagrams (BDDs), an advanced data structure that
disjoins explanations. This technique has subsequently also been adopted for ICL and LPADs
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in the cplint and PITA systems (Riguzzi 2009; Riguzzi and Swift 2011). AILog2 and cplint
also support computing conditional probabilities.

Riguzzi (2014) has introduced an approach called PITA(OPT) that automatically recog-
nizes certain independencies that allow one to avoid the use of disjoining techniques when
computing marginal probabilities.

Given its focus on proofs, backward reasoning can easily be adapted to solve the VIT task
of finding most likely proofs, as done in the PRISM, ProbLog1 and PITA systems.

Reduction to Weighted Model Counting: A third way to approach the logic side of inference
in probabilistic logic programming has been suggested by Fierens et al. (2011, 2013), who
use the propositional logic semantics of logic programming to reduce MARG inference to
weighted model counting (WMC) and MPE inference to weighted MAX-SAT. The first step
again builds a Boolean formula representing all models where the query is true, but this
time, using conjunctive normal form (CNF), and associating a weight with every literal in
the formula. More specifically, it grounds the parts of the logic program relevant to the
query (that is, the rule groundings contributing to a proof of the query, as determined using
backward reasoning), similar to what happens in answer set programming, transforms this
ground program into an equivalent CNF based on the semantics of logic programming, and
defines the weight function for the second step using the given probabilities. The second step
can then use any existing approach to WMC or weighted MAX-SAT, such as representing
the CNF as an sd-DNNF, a data structure on which WMC can be performed efficiently.

For instance, the relevant ground program for calls(mary) in our initial alarm example
(1) is

0.1 : :burglary. 0.7 : :hears_alarm(mary).

0.2 : :earthquake.

alarm :−earthquake.

alarm :−burglary.

calls(mary) :−alarm,hears_alarm(mary).

Next, the rules in the ground program are translated to equivalent formulas in propositional
logic, taking into account that their head atoms can only be true if a corresponding body is
true:

alarm ↔ earthquake ∨ burglary

calls(mary) ↔ alarm ∧ hears_alarm(mary)

The conjunction of these formulas is then transformed into CNF as usual in propositional
logic. The weight function assigns the corresponding probabilities to literals of probabilistic
facts, e.g., w(burglary) = 0.1, w(¬burglary) = 0.9, and 1.0 to all other literals, e.g.,
w(calls(mary)) = w(¬calls(mary)) = 1.0. The weight of a model is the product of the
weights of the literals in the model, and the WMC of a formula the sum of weights of all its
models. As a full truth value assignment F ′ to probabilistic facts F uniquely determines the
truth values of all other literals, there is a single model extending F ′, with weight PF (F ′) ·
1.0 · ... · 1.0 = PF (F ′). The WMC of a formula thus exactly corresponds to the success
probability. Evidence can directly be incorporated by conjoining it with the CNF. Exact
MARG inference using this approach is implemented in ProbLog2.
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Lifted Inference is a central research topic in statistical relational learning today (Kersting
2012; Poole 2003). Lifted inference wants to realize probabilistic logic inference at the lifted,
that is, non-grounded level in the same way that resolution realizes this for logical inference.
The problem of lifted inference can be illustrated on the following example (cf. also Poole
2008):

p : :famous(Y).

popular(X) :−friends(X,Y),famous(Y).

In this case P(popular(john)) = 1 − (1 − p)m where m is the number of friends of
john, that is, to determine the probability that john is popular, it suffices to know how
many friends john has. We do not need to know the identities of these friends, and hence,
need not ground the clauses.

Various techniques for lifted inference have been obtained over the past decade. For
instance, Poole (2003) shows how variable elimination, a standard approach to probabilistic
inference in graphicalmodels, can be lifted andVan denBroeck et al. (2011) studiedweighted
model counting for first order probabilistic logic using a generalization of d-DNNFs for first
order logic. Lifted inference techniques are—to the best of our knowledge—not yet supported
by current probabilistic logic programming language implementations, which explains why
we do not provide more details in this paper. It remains a challenge for further work; but see
Van den Broeck et al. (2014), Bellodi et al. (2014) for recent progress. A recent survey on
lifted inference is provided by Kersting (2012).

3.2 Approximate inference using bounds

As the probability of a set of possible worlds monotonically increases if more models are
added, hard lower and upper bounds on the success probability can be obtained by considering
a subset or a superset of all possible worlds where a query is true. For instance, let W be the
set of possible worlds where a query q holds. The success probability of q thus is the sum
of the probabilities of all worlds in W . If we restrict this sum to a subset of W , we obtain
a lower bound, and an upper bound if we sum over a superset of W . In our example, as
calls(mary) is true in b ∧ e ∧ hm ∧ hj , but false in b ∧ e ∧ ¬hm ∧ hj , we have

0.1 · 0.2 · 0.7 · 0.4 ≤ P(calls(mary)) ≤ 1 − (0.1 · 0.2 · (1 − 0.7) · 0.4).
In practice, this approach is typically used with the DNF obtained by backward reasoning,

that is, the set of proofs of the query, rather than with the possible worlds directly. This has
initially been suggested for PHA by Poole (1992), and later also been adapted for ProbLog
(De Raedt et al. 2007; Kimmig et al. 2008) and LPADs (Bragaglia and Riguzzi 2010). The
idea is to maintain a set of partial derivations during backward reasoning, which allows one
to, at any point, obtain a lower bound based on all complete explanations or proofs found so
far, and an upper bound based on those together with all partial ones (based on the assumption
that those will become proofs with probability one). For instance, (e ∧ hm) ∨ b provides
an upper bound of 0.226 for the probability of calls(mary) based on the proof e ∧ hm
(which provides the corresponding lower bound 0.14) and the partial derivation b (which
still requires to prove hears_alarm(mary)). Different search strategies are possible
here, including e.g., iterative deepening or best first search. Lower bounds based on a fixed
number of proofs have been proposed as well, either using the k explanations with highest
individual probabilities (Kimmig et al. 2011b), or the k explanations chosen by a greedy
procedure that maximizes the probability an explanation adds to the one of the current set
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(Renkens et al. 2012). Approximate inference using bounds is available in ProbLog1, cplint,
and ProbLog2.

3.3 Approximate inference by sampling

While probabilistic logic programming often focuses on exact inference, approximate infer-
ence by sampling is probably the most popular approach to inference in many other
probabilistic languages. Sampling uses a large number of random executions or randomly
generated possibleworlds, fromwhich the probability of a query is estimated as the fraction of
sampleswhere the query holds. For instance, samples can be generated by randomly choosing
truth values of probabilistic facts as needed during backward reasoning, until either a proof is
found or all options are exhausted (Kimmig et al. 2008; Bragaglia and Riguzzi 2010; Riguzzi
2013b). Fierens et al. (2013) have used MC-SAT (Poon and Domingos 2006) to perform
approximate WMC on the CNF representing all models. Systems for languages that specify
generative models, such as BLOG (Milch et al. 2005) and distributional clauses (Gutmann
et al. 2011), cf. Sect. 4.2, often use forward reasoning to generate samples.Apopular approach
to sampling are MCMC algorithms, which, rather than generating each sample from scratch,
generate a sequence of samples by making random modifications to the previous sample
based on a so-called proposal distribution. This approach has been used e.g., for the proba-
bilistic functional programming language Church (Goodman et al. 2008), for BLOG (Arora
et al. 2010), and for the probabilistic logic programming languages PRISM (Sato 2011) and
ProbLog (Moldovan et al. 2013). ProbLog1 and cplint provide inference techniques based
on backward sampling, and the PRISM system includes MCMC inference.

4 Probabilistic programming concepts

While probabilistic programming languages based on the distribution semantics as discussed
so far are expressive enough for a wide range of models, an important part of their power is
their support for additional programming concepts. Based on primitives used in a variety of
probabilistic languages, we discuss a range of such concepts next, also touching upon their
implications for inference.

4.1 Flexible probabilities

A probabilistic fact with flexible probability is of the form P : :atom where atom contains
the logical variable P that has to be instantiated to a probability when using the fact. The
following example models drawing a red ball from an urn with R red and G green balls,
where each ball is drawn with uniform probability from the urn:

Prob : :red(Prob).

draw_red(R,G):− Prob is R/(R + G),

red(Prob).

The combination of flexible probabilities and Prolog code offers a powerful tool to compute
probabilities on-the-fly, cf. e.g., (Poole 2008). Flexible probabilities have also been used in
extended SLPs (Angelopoulos and Cussens 2004), and are supported by the probabilistic
logic programming systems AILog2, ProbLog1, cplint and ProbLog2. For such facts to be
meaningful, their probabilities have to be bound at inference time. Probabilistic facts with
flexible probabilities are thus easily supported by backward inference as long as these facts
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are ground on calling. In the example, this holds for ground queries such asdraw_red(3,1),
which binds Prob to 0.75. They however cannot directly be used with exact forward infer-
ence, as they abbreviate an infinite set of ground facts and thus would create an infinite tree
of possible worlds.10

4.2 Distributional clauses

Annotated disjunctions—as specified in Sect. 2.2—are of limited expressivity, as they can
only define distributions over a fixed, finite number of head elements. While more flexible
discrete distributions can be expressed using a combination of flexible probabilities and
Prolog code, thismay require significant programming effort.Gutmann et al. (2010) introduce
Hybrid ProbLog, an extension of ProbLog to continuous distributions, but their inference
approach based on exact backward reasoning and discretization severely limits the use of
such distributions. To alleviate these problems, distributional clauses were introduced by
Gutmann et al. (2011), whom we closely follow.

A distributional clause is a clause of the form

h ∼ D:−b1, ... ,bn.

where ∼ is a binary predicate used in infix notation. Similarly to annotated disjunctions, the
head (h ∼ D)θ of a distributional clause is defined for a grounding substitution θ whenever
(b1, ... ,bn)θ is true in the semantics of the logic program. Then the distributional clause
defines the random variable hθ as being distributed according to the associated distribution
Dθ . Possible distributions include finite discrete distributions such as a uniform distribution,
discrete distributions over infinitely many values, such as a Poisson distribution, and con-
tinuous distributions such as Gaussian or Gamma distributions. The outcome of a random
variable h is represented by the term 
(h). Both random variables h and their outcome 
(h)

can be used as other terms in the program. However, the typical use of terms 
(h) is inside
comparison predicates such as equal/2 or lessthan/2.11 In this case these predicates
act in the same way as probabilistic facts in Sato’s distribution semantics. Indeed, depending
on the value of 
(h) (which is determined probabilistically) they will be true or false.

Consider the following distributional clause program.

color(B) ∼ discrete((0.7 : green), (0.3 : blue)):−ball(B).

diameter(B,MD) ∼ gamma(MD1,20):−mean_diameter(
(color(B)),MD),

MD1 is 1/20 ∗ MD.

mean_diameter(green,15).

mean_diameter(blue,25).

ball(1). ball(2). ... ball(k).

The first clause states that for every ball B, there is a random variable color(B) whose
value is either green (with probability 0.7) or blue (with probability 0.3). This discrete
distribution directly corresponds to the one given by the annotated disjunction

0.7 : :color(B,green);0.3 : :color(B,blue):−ball(B).

The seconddistributional clause in the example defines a randomvariablediameter(B,MD)
for each ball B. This random variable follows a Gamma distribution with parameters MD/20
and 20, where the mean diameter MD depends on the color of the ball.

10 If only finitelymany different instances of such a fact are relevant for any possible world of a given program,
a mechanism similarly to the magic set transformation (Bancilhon et al. 1986) may circumvent this problem.
11 p/n denotes a predicate p with n arguments, cf. Appendix 1.
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Distributional clauses are the logic programming equivalent of the mechanisms employed
in statistical relational languages such as Bayesian Logic (BLOG) (Milch et al. 2005),
Church (Goodman et al. 2008) and IBAL (Pfeffer 2001), which also use programming con-
structs to define generative process that can define new variables in terms of existing one.

As we have seen in the example, annotated disjunctions can easily be represented as
distributional clauses with finite, discrete distributions. However, distributional clauses are
more expressive than annotated disjunctions (and the standard distribution semantics) as they
can also represent continuous distributions.

Performing inference with distributional clauses raises some extra difficulties (see (Gut-
mann et al. 2011) for more details). The reason for this is that continuous distributions (such
as a Gaussian or a Gamma-distribution) have uncountable domains. Typical inference with
constructs such as distributional clauses will therefore resort to sampling approaches in order
to avoid the need for evaluating complex integrals. It is quite natural to combine sampling
for distributional clauses with forward reasoning,12 realizing a kind of generative process,
though more complex strategies are also possible, cf. (Gutmann et al. 2011).

4.3 Unknown objects

One of the key contributions of Bayesian Logic (BLOG) (Milch et al. 2005) is that it allows
one to drop two common assumptions, namely the closed world assumption (all objects in
the world are known in advance) and the unique names assumption (different terms denote
different objects), which makes it possible to define probability distributions over outcomes
with varying sets of objects. This is achieved by defining generative processes that construct
possible worlds, where the existence and the properties of objects can depend on objects
created earlier in the process.

As already shown by Poole (2008), such generative processes with an unknown number
of objects can often be modeled using flexible probabilities and Prolog code to specify a
distribution over the number of objects as done in BLOG. Distributional clauses simplify this
modeling task, as they make introducing a random variable corresponding to this number
straightforward. We can then use the between/3 predicate to enumerate the objects in
definitions of predicates that refer to them, cf. also Poole (2008). Below, the random variable
nballs stands for the number of balls, which is Poisson distributed with λ = 6. For each
possible value 
 (nballs), the corresponding number of balls are generated which are
identified by the numbers 1, 2, ... ,
(nballs).

nballs ∼ poisson(6).

ball(N) : −between(1,
(nballs),N).

4.4 Stochastic memoization

A key concept in the probabilistic functional programming language Church (Goodman et al.
2008) is stochastic memoization. If a random variable in Church is memoized, subsequent
calls to it simply look up the result of the first call, similarly to tabling in logic program-
ming (Warren 1992). On the other hand, for random variables that are not memoized, each
reference to the variable corresponds to an independent draw of an outcome. In contrast
to Church, probabilistic logic programming languages and their implementations typically
do not leave this choice to the user. In ICL, ProbLog, LPADs and the basic distribution
semantics as introduced in (Sato 1995), each ground probabilistic fact directly corresponds

12 Valid distributional clause programs are required to have finite support, which ensures termination.
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to a random variable, i.e., within a possible world, each occurrence of such a fact has the
same truth value, and the fact is thus memoized. Furthermore, the probability of the fact is
taken into account once when calculating the probability of a proof, independently of the
number of times it occurs in that proof. While early versions of PRISM (Sato 1995; Sato and
Kameya 1997) used binary or n-ary probabilistic choices with an argument that explicitly
distinguished between different calls, this argument has been made implicit later on (Sato
and Kameya 2001), meaning that the PRISM implementation never memoizes the outcome
of a random variable.

The difference between the two approaches can be explained using the following example.
For the AD

1

3
: :color(green); 1

3
: :color(red); 1

3
: :color(blue),

there are three answers to the goal (color(X),color(Y)), one answer X = Y = c for
each color cwith probability 1

3 , as exactly one of the facts color(c) is true in each possible
world when memoizing color (as in ProbLog and ICL). Asking the same question when
color is not memoized (as in PRISM) results in 9 possible answers with probability 1

9 each.
The query then—implicitly—corresponds to an ICL or ProbLog query (color(X,id1),
color(Y,id2)), where the original AD is replaced by a non-ground variant

1

3
: :color(green,ID); 1

3
: :color(red,ID); 1

3
: :color(blue,ID)

and id1 and id2 are identifiers that are unique to the call.
Avoiding the memoization of probabilistic facts is necessary in order to model stochastic

automata, probabilistic grammars, or stochastic logic programs (Muggleton 1996) under the
distribution semantics. There, a new rule is chosen randomly for each occurrence of the same
nonterminal state/symbol/predicate within a derivation, and each such choice contributes to
the probability of the derivation. The rules for a nonterminal thus forma family of independent
identically distributed random variables, and each choice is automatically associated with
one variable from this family.

Consider the following stochastic logic program. It is in fact a fragment of a stochastic
definite clause grammar; the rules essentially encode the probabilistic context free grammar
rules defining 0.3 : vp → verb, 0.5 : vp → verb, np and 0.2 : vp → verb, pp. There are
three rules for the non-terminal vp and each of them is chosen with an associated probability.
Furthermore, the sum of the probabilities for these rules equals 1.

0.3 : vp(H,T) :−verb(H,T).

0.5 : vp(H,T) :−verb(H,H1),np(H1,T).

0.2 : vp(H,T) :−verb(H,H1),pp(H1,T).

This type of stochastic grammar can easily be simulated in the distribution semantics
using one dememoized AD (or switch) for each non-terminal, a rule calling the AD to make
the selection, and a set of rules linking the selection to the SLP rules:13

13 The dememoize keyword is used for clarity here; it is not supported by existing systems.
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dememoize 0.3 : :vp_sel(rule1);0.5 : :vp_sel(rule2);0.2 : :vp_sel(rule3).

vp(H,T) :−vp_sel(Rule),vp_rule(Rule,H,T).

vp_rule(rule1,H,T) :−verb(H,T).

vp_rule(rule2,H,T) :−verb(H,H1),np(H1,T).

vp_rule(rule3,H,T) :−verb(H,H1),pp(H1,T).

All inference approaches discussed here naturally support stochastic memoization; this
includes the ones implemented in AILog2, ProbLog1, ProbLog2, cplint and PITA. The
PRISM system uses exact inference based on backward reasoning in the setting without
stochastic memoization. In principle, stochastic memoization can be disabled in backward
reasoning by automatically adding a unique identifier to each occurrence of the same ran-
dom variable. However, for techniques that build propositional representations different from
mutually exclusive DNFs (such as the DNFs of BDD-based methods and the CNFs when
reducing to WMC), care is needed to ensure that these identifiers are correctly shared among
different explanations when manipulating these formulas. Backward sampling can easily
deal with both memoized and dememoized random variables. As only one possible world is
considered at any point, each repeated occurrence of the same dememoized variable is simply
sampled independently, whereas the first result sampled within the current world is reused
for memoized ones. Forward sampling cannot be used without stochastic memoization, as it
is unclear up front how many instances are needed. MCMC methods have been developed
both for ProbLog (with memoization; implementation not available) and PRISM (without
memoization; included in the PRISM system).

4.5 Constraints

In knowledge representation, answer set programming and databases, it is common to allow
the user to specify constraints on the possiblemodels of a theory. In knowledge representation,
one sometimes distinguishes inductive definitions (such as the definite clauses used in logic
programming) from constraints. The former are used to define predicates, the latter impose
constraints on possible worlds.While the use of constraints is still uncommon in probabilistic
logic programming it is conceptually easy to accommodate this when working with the
distribution semantics, cf. Fierens et al. (2012). While such constraints can in principle be
any first-order logic formula, we will employ clausal constraints here.

A clausal constraint is an expression of the form

h1; ... ;hN :−b1, ... ,bM.

where the hi and b j are literals. The constraint specifies that whenever (b1 ... bM )θ is true
for a substitution θ grounding the clause at least one of the hiθ must also be true. All worlds
in which a constraint is violated become impossible, that is, their probability becomes 0.
Constraints are very useful for specifying complex properties that possible worlds must
satisfy.

To illustrate constraints, reconsider the alarmexample and assume that itmodels a situation
in the 1930s where there is only one phone available in the neighborhood implying that at
most one person can call. This could be represented by the constraint

X = Y :−calls(X),calls(Y).
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Imposing this constraint would exclude all worlds in which both Mary and John hear the
alarm and call. The total probability mass for such worlds is 0.4 · 0.8 = 0.32. By exclud-
ing these worlds, one loses probability mass and thus has to normalize the probabilities of
the remaining possible worlds. For instance, the possible world corresponding to the truth
value assignment burglary=true, earthquake=false, hears_alarm(mary)=true,
hears_alarm(john)=false yielded a probability mass of 0.1 · (1 − 0.2) · 0.7 · (1 −
0.6) = 0.0336 without constraints. Now, when enforcing the constraint, one obtains
0.0336/(1 − 0.32). Thus the semantics of constraints correspond to computing conditional
probabilities where one conditions on the constraints being satisfied.

Handling constraints during inference has not been a focus of inference in probabilistic
logic programming, and—to the best of our knowledge—no current system provides explicit
support for both logic programming (or inductive definitions) and constraints.

Nevertheless, the constraints discussed here are related to Markov Logic (Richardson
and Domingos 2006), where first order logic formulas express soft and hard constraints. In
Markov Logic, possible worlds or interpretations (i.e., truth value assignments to ground
atoms) become less likely as they violate more groundings of soft constraints, and have
probability zero if they violate some grounding of a hard constraint. It is well known that the
transitive closure of a binary relation cannot be represented in first order logic, but requires
second order constructs; see Huth and Ryan (2004) for a detailed formal discussion. Thus,
the hard constraints in aMarkov Logic network (MLN), which form a first order logic theory,
cannot enforce probability zero for all worlds that do not respect the transitive closure of a
binary relation.

On the other hand, the least Herbrand semantics of definite clause logic (i.e., pure Prolog)
naturally represents such transitive closures. For instance, under the leastHerbrand semantics,

path(A,C) :−edge(A,C).

path(A,C) :−edge(A,B),path(B,C).

inductively defines path as the transitive closure of the relation edge, that is, a ground
atom path(a,c) is true if and only if there is a sequence of true edge atoms connecting
a and c. As an example, consider the case of two nodes 1 and 2 and a single edge pointing
from 1 to 2, i.e., the edge relation is fully given by {edge(1,2)}. Under least Herbrand
semantics, there is a singlemodel {edge(1,2),path(1,2)}, as the first clause requires that
path(1,2) is true, and no other facts can be derived. Thus, the probability of path(1,2)

is one, and the other three ground path atoms all have a probability of zero.
Note that an MLN that maps the definition above to the hard constraints

edge(A,C) → path(A,C)

edge(A,B) ∧ path(B,C) → path(A,C)

enforces the transitivity property, as these rules are violated if there is a sequence of edges
connecting two nodes, but the corresponding path atom is false. Still, these hard constraints
do not correspond to the transitive closure, as they can for instance be satisfied by setting all
ground path atoms to true, independently of the truth values of edge atoms. For our example
with the single edge, the only ground MLN constraints that are not trivially satisfied based
on the edge relation alone are

true → path(1, 2)

true ∧ path(2, 1) → path(1, 1)

true ∧ path(2, 2) → path(1, 2)
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Any model of the first constraint has to contain path(1, 2), and thus trivially satisfies the third
constraint as well. The second constraint then rules out all interpretations where path(2, 1) is
true, but path(1, 1) is false, leading to a total of six possible models of the hard constraints:

{edge(1, 2), path(1, 2)}
{edge(1, 2), path(1, 2), path(1, 1)}
{edge(1, 2), path(1, 2), path(2, 1), path(1, 1)}
{edge(1, 2), path(1, 2), path(2, 2)}
{edge(1, 2), path(1, 2), path(2, 2), path(1, 1)}
{edge(1, 2), path(1, 2), path(2, 2), path(2, 1), path(1, 1)}

The only difference with the first order logic case is that an MLN assigns a probability to
each of the models of its hard constraints based on which soft constraints hold in the model,
and a probability of zero to all other interpretations. As there are no soft constraints in our
example MLN, it assigns the same probability to each of the six models. Each ground path
atom appears in a different number of models, and thus has a different, non-zero probability
according to the MLN, whereas under Prolog’s least Herbrand semantics, where transitive
closure puts the full probability mass on the first of the MLN models, three such atoms have
probability zero.

4.6 Negation as failure

So far, we have only considered probabilistic programs using definite clauses, that is, pro-
grams that only use positive literals in clause bodies, as those are guaranteed to have a unique
model for any truth value assignment to basic probabilistic events. It is however possible
to adopt Prolog’s negation as failure on ground literals under the distribution semantics, as
long as all truth values of derived atoms are still uniquely determined by those of the basic
facts, cf., e.g., (Poole 2000; Sato et al. 2005; Kimmig et al. 2009; Riguzzi 2009; Fierens
et al. 2013). Then, in each possible world, any ground query q either succeeds or fails, and
its negation not(q) succeeds in exactly those worlds where q fails. Thus, the probability
of a ground query not(q) is the sum of the probabilities of all possible worlds that do not
entail q. Consider the following variant of our alarm example, where people also call if there
is no alarm, but they have gossip to share:

0.1 : :burglary. 0.7 : :hears_alarm(mary).

0.2 : :earthquake. 0.4 : :hears_alarm(john).

0.3 : :has_gossip(mary). 0.6 : :has_gossip(john).

alarm :−earthquake.

alarm :−burglary.

calls(X) :−alarm,hears_alarm(X).

calls(X) :−not(alarm),has_gossip(X).

call :−calls(X).

The new rule for calls(X) can only possibly apply in worlds where not(alarm) suc-
ceeds, that is, alarm fails, which are exactly those containing neither burglary nor
earthquake. Using gm as shorthand for has_gossip(mary)= true, we obtain the
additional explanation ¬e ∧ ¬b ∧ gm for calls(mary). Thus, in the presence of nega-
tion, explanations no longer correspond to sets of probabilistic facts as in the case of definite
clause programs, but to sets of positive and negative literals for probabilistic facts. While
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not(alarm) has a single explanation in this simple example, in general, explanations for
negative literals can bemuchmore complex, as they have to falsify every possible explanation
of the corresponding positive literal by flipping the truth value of at least one probabilistic
fact included in the explanation.

Negation as failure can be handled in forward and backward reasoning both for exact
inference and for sampling, though forward reasoning has to ensure to proceed in the right
order. Exact inference with backward reasoning often benefits from tabling. Negation as
failure complicates approximate inference using bounds, as explanations for failing goals
have to be considered (Renkens et al. 2014). AILog2, ProbLog1, ProbLog2, cplint and PITA
all support negation as failure in their exact and sampling based approaches. The PRISM
system follows the approach proposed by Sato et al. (2005) and compiles negation into a defi-
nite clause program with unification constraints. Current MCMC approaches in probabilistic
logic programming do not support negation beyond that of probabilistic facts.

4.7 Second order predicates

When modeling relational domains, it is often convenient to reason over sets of objects
that fullfil certain conditions, for instance, to aggregate certain values over them. In logic
programming, this is supported by second order predicates such as findall/3, which
collects all answer substitutions for a given query in a list. In the following example, the
query sum(S) will first collect all arguments of f/1 into a list and then sum the values
using predicate sum_list/2, thus returning S=3.

f(1).

f(2).

sum(Sum) :−findall(X,f(X),L),sum_list(L,Sum).

Note that in Prolog, the list returned byfindall/3 is unique. Under the distribution seman-
tics, however, this list will be different depending on which possible world is considered. To
illustrate this, we replace the definition of f/1 in our example with probabilistic facts:

0.1 : :f(1).

0.2 : :f(2).

sum(Sum) :−findall(X,f(X),L),sum_list(L,Sum).

We now have four sets of facts—{f(1),f(2)}, {f(1)}, {f(2)}, and { }—leading to
the four possible worlds {f(1),f(2),sum(3)}, {f(1),sum(1)}, {f(2),sum(2)},
and {sum(0)}, as the answer list L is different in each case.

This behavior of second order predicates in the probabilistic setting can pose a challenge
to inference. In principle, all inference approaches could deal with second order predicates.
However, exact approaches would suffer from a blow-up, as they have to consider all possible
lists of elements—and thus all possible worlds—explicitly, whereas in sampling, each sample
only considers one such list. As far aswe know, the only systemswith some support for second
order predicates are cplint, which allows bagof and setof with one of its backward
reasoning modules (Riguzzi 2013a), and ProbLog1, whose backward sampling technique
supports the second order predicates of the underlying YAP Prolog engine.
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4.8 Meta-calls

One of the distinct features of programming languages such as Prolog and Lisp is the possi-
bility to use programs as objects within programs, which enables meta-level programming.
For their probabilistic extensions, this means reasoning about the probabilities of queries
within a probabilistic program, a concept that is central to the probabilistic programming
language Church, which builds upon a Lisp dialect (Goodman et al. 2008), and has also been
considered with ProbLog (Mantadelis and Janssens 2011). Possible uses of such a feature
include filtering of proofs based on the probability of subqueries, or the dynamic definition
of probabilities using queries, e.g., to implement simple forms of combining rules as in the
following example, where max_true(G1,G2) succeeds with the success probability of
the more likely argument.

P : :p(P).

max_true(G1,G2) :−prob(G1,P1),prob(G2,P2),max(P1,P2,P),p(P).

% rest of program (omitted)

In this section, we will use prob(Goal,Prob) to refer to an atom returning the success
probability Prob of goal Goal, that is, implementing Eq. (4). Note that such atoms are
independent queries, that is, they do not share truth values of probabilistic facts with other
atoms occurring in a derivation they are part of. Finally, if the second argument is a free
variable upon calling, the success probability of prob(goal,Prob) is 1. For the sake of
simplicity, we will assume here that the second argument will always be free upon calling.14

We extend the example above with the following program.

0.5 : :a. 0.7 : :b. 0.2 : :c.

d :−a,not(b).

e :−b,c.

Querying formax_true(d,e)usingbackward reasoningwill execute twocalls toprob/2
in sequence:prob(d,P1) and prob(e,P2). Note that if multiple calls toprob/2 atoms
occur in a proof, they are independent, i.e., even if they use the same probabilistic facts, those
will (implicitly) correspond to different copies of the corresponding random variables local to
that specific prob/2 call. Put differently, prob/2 encapsulates part of our possible worlds.
In the example, b is thus a different random variable in prob(d,P1) and prob(e,P2).
The reason for this encapsulation is twofold: first, the probability of a goal is not influenced
by calculating the probability of another (or even the same) event before, and second, as
prob/2 summarizes a set of possible worlds, the value of a random variable cannot be
made visible to the outside world, as it may be different in different internal worlds. Indeed,
in our example, b needs to be false to prove d, but true to prove e, so using the same
random variable would force the top level query to be unprovable. We thus obtain a kind of
hierarchically organized world: some probabilistic facts are used in the top level query, others
are encapsulated in prob/2 atoms, whose queries might in turn rely on both directly called
probabilistic facts and further calls to prob/2. In our example, prob(d,P1) uses random
variables corresponding to probabilistic facts a and b, returning P1 = 0.5 · (1−0.7) = 0.15,
prob(e,P2) uses random variables corresponding to probabilistic facts b and c, returning
P2 = 0.7 · 0.2 = 0.14, and the top level query max_true(d,e) uses probabilistic fact
p(0.15) and has probability P(more_likely_is_true(d,e)) = 0.15.

14 This is not a restriction, as prob(Goal,c) is equivalent to prob(Goal,P),P=c.
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The probability of a derivation is determined by the probabilities of the probabilistic facts
it uses outside all prob/2 calls. Those facts define the possible worlds from the point of
view of the top level query. In thoseworlds, the random variables of the encapsulated parts are
hidden, as they have been aggregated by prob/2. Returning to our example and abstracting
from the concrete remainder of the program, we observe that for any given pair of goals
g1,g2 and suitable program defining those goals, max_true(g1,g2) has exactly one
proof: the first two body atoms always succeed and return the probabilities of the goals, the
third atom deterministically finds the maximum m of the two probabilities, and the proof
finally uses a single random variable p(m) with probability m. Thus, the query indeed
succeeds with the probability of the more likely goal.

Another example for the use of prob/2 is filtering goals based on their probability:

almost_always_false(G) :−prob(G,P),P < 0.00001.

% rest of program (omitted)

Note that in contrast to the previous example, this is a purely logical decision, that is, the
success probability will be either 0 or 1 depending on the goal G.

To summarize, using meta-calls to turn probabilities into usable objects in probabilistic
logic programming is slightly different from the other probabilistic programming concepts
considered in this paper: it requires a notion of encapsulation or hierarchical world structure
and cannot be interpreted directly on the level of individual possible worlds for the entire
program.

Mantadelis and Janssens (2011) introduce MetaProbLog,15 a prototype implementation
for ProbLog supporting nestedmeta-calls based on exact backward inference.As they discuss,
meta-calls can be supported by any inference mechanism that can be suspended to perform
inference for the query inside themeta-call. Such suspending is natural in backward reasoning,
where the proof of a subgoal becomes a call to inference rather than a continuation of
backward reasoning.With forward reasoning, such non-ground prob(goal,P) goals raise
the same issues as other non-ground facts. Meta-calls of the form prob(goal,P) compute
the grounding of P as the goal’s probability, and using approximate inference to compute
the latter will thus influence the grounding of such a fact, and therefore potentially also the
consequences of this fact. This may affect the result of inference in unexpected ways, and it is
thus unclear in how far approximation approaches are suitable for meta-calls. Goodman et al.
(2008) state that supporting meta-calls (or nested queries) in MCMC inference in Church
is expected to be straightforward, but do not provide details. AILog2, PRISM, ProbLog1,
ProbLog2, cplint and PITA do not support nested meta-calls, i.e., querying for probabilities
is only possible at the top level.

4.9 Time and dynamics

Among themost popular probabilisticmodels are those that dealwith dynamics and time such
asHiddenMarkovModels (HMMs) andDynamicBayesianNetworks. Dynamicmodels have
received quite some attention within probabilistic logic programming. They can naturally be
represented using logic programs through the addition of an extra “time” argument to each
of the predicates. We illustrate this by giving two encodings of the Hidden Markov Model
shown in Fig. 2, where we restrict sequences to a given length (10 in the example). Following
Vennekens et al. (2004), this model can be written as a set of annotated disjunctions:

15 http://people.cs.kuleuven.be/~theofrastos.mantadelis/tools/metaproblog.tar.gz, also supports flexible
probabilities, stochastic memoization, and negation as failure.
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Fig. 2 Example HMM

s0 s1
a : 0.2
b : 0.8

a : 0.9
b : 0.1

0.7 0.6

0.3

0.5 0.5

0.4

length(10).

0.5 : :state(s0,0);0.5 : :state(s1,0).

0.7 : :state(s0,T1); 0.3 : :state(s1,T1):−state(s0,T),length(L),T < L,T1 is T + 1.

0.4 : :state(s0,T1); 0.6 : :state(s1,T1):−state(s1,T),length(L),T < L,T1 is T + 1.

0.2 : :out(a,T); 0.8 : :out(b,T):−state(s0,T).

0.9 : :out(a,T); 0.1 : :out(b,T):−state(s1,T).

Alternatively, following Sato and Kameya (1997), but writing PRISM’s multi-valued
switches as unconditional annotated disjunctions,16 the model can be written as follows:

0.2 : :output(s0,a,T) ; 0.8 : :output(s0,b,T).

0.9 : :output(s1,a,T) ; 0.1 : :output(s1,b,T).

0.5 : :init(s0) ; 0.5 : :init(s1).

0.7 : :trans(s0,s0,T) ; 0.3 : :trans(s0,s1,T).

0.4 : :trans(s1,s0,T) ; 0.6 : :trans(s1,s1,T).

length(10).

hmm(List) :−init(S), hmm(1,S,List).

% last time T :
hmm(T,S, [Obs]) :−length(T), output(S,Obs,T).

% earlier time T : output Obs in state S,transit from S to Next

hmm(T,S, [Obs|R]) :−length(L), T < L,

output(S,Obs,T), trans(S,Next,T),

T1 is T + 1, hmm(T1,Next,R).

Forward and backward sampling naturally deal with a time argument (provided time is
bounded in the case of forward reasoning). Naively using such a time argument with exact
inference results in exponential running times (in the number of time steps), though this
can often be avoided using dynamic programming approaches and principles, as shown by
the PRISM system, which achieves the same time complexity for HMMs as corresponding
special-purpose algorithms (Sato and Kameya 2001).

Other approaches that have devoted special attention tomodeling and inference for dynam-
ics include Logical HMMs (Kersting et al. 2006), a language for modeling HMMs with
structured states, CPT-L (Thon et al. 2011), a dynamic version of CP-logic, and the work on
a particle filter for dynamic distributional clauses (Nitti et al. 2013).

16 In this example, the program structure causes the time argument to act as a unique identifier for different
calls to the same AD, thus making memoized ADs and dememoized switches equivalent.

123



Mach Learn (2015) 100:5–47 29

a

b

c

d

T T

T

T T

a

b

c

d

7

5

4

13

9

Fig. 3 Example graph illustrating generalized labels: Boolean case (left), shortest path (right)

4.10 Generalized labels for facts and queries

As we have seen in Sect. 3, computing success probabilities in probabilistic logic program-
ming is closely related to evaluating the truth value of a logical formula. Weighted logic
programming languages such as Dyna (Eisner et al. 2005)17 and aProbLog (Kimmig et al.
2011a) take this observation a step further and replace probabilities (or Boolean truth values)
by elements from a semiring and corresponding combination operators.18

More specifically, Dyna assigns labels to ground facts in a logic program and computes
weights of atoms in the heads of clauses as follows: conjunction (,) in clause bodies is
replaced by semiring multiplication ⊗, that is, the weight of a body is the ⊗-product of the
weights of its atoms, and if multiple clauses share the same head atom, this atom’s weight
is the ⊕-sum of the corresponding bodies, that is, :− is replaced by semiring addition ⊕.
We illustrate the idea with a logic program defining reachability in a directed graph adapted
from Cohen et al. (2008):

reachable(S) :−initial(S).

reachable(S) :−reachable(R),edge(R,S).

which in Dyna is interpreted as a system of (recursive) semiring equations

reachable(S) ⊕ = ini tial(S).

reachable(S) ⊕ = reachable(R) ⊗ edge(R, S).

To get the usual logic programming semantics, we can combine this program with facts
labeled with values from the Boolean semiring (with ⊗ = ∧ and ⊕ = ∨), as illustrated on
the left of Fig. 3:

initial(a) = T

edge(a,b)=T edge(a,d) = T edge(b,c)=T edge(d,b) = T edge(d,c) = T

17 Dyna is currently being extended into a more general language (Eisner and Filardo 2011), but we consider
the initial version here, as that one is more closely related to the probabilistic programming languages we
discuss.
18 A semiring is a structure (A, ⊕, ⊗, e⊕, e⊗), where addition ⊕ is an associative and commutative binary
operation over the set A, multiplication ⊗ is an associative binary operation over the set A, ⊗ distributes
over ⊕, e⊕ ∈ A is the neutral element of ⊕, i.e., for all a ∈ A, a ⊕ e⊕ = a, e⊗ ∈ A is the neutral element
of ⊗, i.e., for all a ∈ A, a ⊗ e⊗ = a, and for all a ∈ A, e⊕ ⊗ a = a ⊗ e⊕ = e⊕. In a commutative semiring,
⊗ is commutative as well.
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which means that the weights of reachable atoms are computed as follows:

reachable(a) = ini tial(a) = T

reachable(d) = reachable(a) ∧ edge(a, d) = T

reachable(b) = reachable(a) ∧ edge(a, b) ∨ reachable(d) ∧ edge(d, b) = T

reachable(c) = reachable(b) ∧ edge(b, c) ∨ reachable(d) ∧ edge(d, c) = T

Alternatively, one can label facts with non-negative numbers denoting costs, as illustrated on
the right of Fig. 3, and use ⊗ = + and ⊕ = min to describe single-source shortest paths:

initial(a) = 0

edge(a,b)=7 edge(a,d)=5 edge(b,c)=13 edge(d,b) = 4 edge(d,c) = 9

resulting in evaluation

reachable(a) = ini tial(a) = 0

reachable(d) = reachable(a) + edge(a, d) = 5

reachable(b) = min(reachable(a) + edge(a, b), reachable(d) + edge(d, b)) = 7

reachable(c) = min(reachable(b) + edge(b, c), reachable(d) + edge(d, c)) = 14

That is, the values of reachable atoms now correspond to the length of the shortest path
rather than the existence of a path.

Given its origins in natural language processing, Dyna is closely related to PRISM in
two aspects. First, it does not memoize labeled facts, but takes into account their weights
each time they appear in a derivation, generalizing how each use of a rule in a probabilistic
grammar contributes to a derivation. Second, again as in probabilistic grammars, it sums the
weights of all derivations, but in contrast to PRISM or grammars does not require them to
be mutually exclusive to do so.

The inference algorithm of basic Dyna as given by Eisner et al. (2005)19 computes weights
by forward reasoning, keeping intermediate results in an agenda and updating them until a
fixpoint is reached, though other execution strategies could be used as well, cf. (Eisner and
Filardo 2011).

AsDyna, aProbLog (Kimmig et al. 2011a) replaces probabilistic facts by semiring-labeled
facts, with the key difference that it bases the labels of derived facts on the labels of their
models rather than those of their derivations. It thus directly generalizes the success probabil-
ity (5) and the possible world DNF (6). As, in contrast to derivations, models do not provide
an order in which labels of facts have to be multiplied, aProbLog requires semirings to be
commutative. This restriction ensures that labels of derived facts are uniquely defined, and
allows one to use inference approaches based on BDDs or sd-DNNFs, which may reorder
facts when constructing the efficient representation. ProbLog inference algorithms based on
BDDs have been directly adapted to aProbLog.20

Rather than replacing probabilities with semiring labels, one can also combine them with
utilities or costs, and use the resulting language for decision making under uncertainty, as
done in DTProbLog (Van den Broeck et al. 2010).21

19 Implementation available at http://dyna.org/.
20 A prototype implementation of aProbLog is included in ProbLog1, cf. Footnote 6.
21 An implementation of DTProbLog is included in ProbLog1 and ProbLog2, cf. Footnotes 6 and 7.
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5 Knowledge-based model construction

So far, we have focused on probabilistic logic languages with strong roots in logic, where
the key concepts of logic and probability are unified, that is, a random variable corresponds
to a ground fact (or sometimes a ground term, as in distributional clauses), and standard
logic programs are used to specify knowledge that can be derived from these facts. In this
section, we discuss a second important group of probabilistic logic languages with strong
roots in probabilistic graphical models, such as Bayesian or Markov networks. These for-
malisms typically use logic as a templating language for graphical models in relational
domains, and thus take a quite different approach to combine logic and probabilities, also
known as knowledge-based model construction (KBMC). Important representatives of this
stream of research include probabilistic logic programs (PLPs) (Haddawy 1994), relational
Bayesian networks (RBNs) (Jaeger 1997), probabilistic relational models (PRMs) (Koller
and Pfeffer 1998; Getoor et al. 2007), Bayesian logic programs (BLPs) (Kersting and De
Raedt 2001, 2008), CLP(BN ) (Santos Costa et al. 2003, 2008), logical Bayesian networks
(LBNs) (Fierens et al. 2005), Markov Logic (Richardson and Domingos 2006), chain logic
(Hommersom et al. 2009), and probabilistic soft logic (PSL) (Bröcheler et al. 2010). A recent
survey of this field is provided by Kimmig et al. (2015).

In the following, we relate the key concepts underlying the knowledge-based model con-
struction approach to those discussed in the rest of this article. We again focus on languages
based on logic programming, such as PLPs, BLPs, LBNs, chain logic, and CLP(BN ), but
mostly abstract from the specific language. These representation languages are typically
designed so that implication in logic (“: −”) corresponds to the direct influence relation
in Bayesian networks. The logical knowledge base is then used to construct a Bayesian
network. So inference proceeds in two steps: the logical step, in which one constructs
the network, and the probabilistic step, in which one performs probabilistic inference on
the resulting network. We first discuss modeling Bayesian networks and their relational
counterpart in the context of the distribution semantics, and then focus on CLP(BN ) as
an example of a KBMC approach whose primitives clearly expose the separation between
model construction via logic programming and probabilistic inference on the propositional
model.

5.1 Bayesian networks and conditional probability tables

ABayesiannetwork (BN)defines a joint probability distributionover a set of randomvariables
V = {V1, ... , Vm} by factoring it into a product of conditional probability distributions, one
for each variable Vi given its parents par(Vi ) ⊆ V . The parent relation is given by an
acyclic directed graph (cf. Fig. 4), where the random variables are the nodes and an edge
Vi → Vj indicates that Vi is a parent of Vj . The conditional probability distributions are
typically specified as conditional probability tables (CPTs), which form the key probabilistic
concept of BNs. For instance, the CPT on the left of Fig. 4 specifies that the random variable
sprinkler takes value true with probability 0.1 (and false with 0.9) if its parent cloudy
is true, and with probability 0.5 if cloudy is false. Formally, a CPT contains a row for each
possible assignment x1, ... , xn to the parent variables X1, ... , Xn specifying the distribution
P(X |x1, ... , xn). As has been shown earlier, e.g., byPoole (1993) andVennekens et al. (2004),
any Bayesian network can be modeled in languages based on the distribution semantics by
representing every row in a CPT as an annotated disjunction

p1 : :X (w1); · · · ; pk : :X (wk) :−X1(v1), · · · , Xn(vn)
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Fig. 4 The sprinkler network is a Bayesian network modeling an environment where both the sprinkler and
the rain can cause the grass getting wet (Russell and Norvig 2003)

where X (v) is true when v is the value of X . The body of this AD is true if the parent
nodes have the values specified in the corresponding row of the CPT, in which case the AD
chooses a value for the child from the corresponding distribution. As an example, consider
the sprinkler network shown in Fig. 4. The CPT for the root node cloudy corresponds to
an AD with empty body

0.5 : :cloudy(t); 0.5 : :cloudy(f).

whereas the CPTs for sprinkler and rain require the state of their parent node cloudy
to be present in the body of the ADs

0.1 : :sprinkler(t); 0.9 : :sprinkler(f) :−cloudy(t).

0.5 : :sprinkler(t); 0.5 : :sprinkler(f) :−cloudy(f).

0.8 : :rain(t); 0.2 : :rain(f) :−cloudy(t).

0.2 : :rain(t); 0.8 : :rain(f) :−cloudy(f).

The translation for the CPT of grass_wet is analogous.

5.2 Relational dependencies

Statistical relational learning formalisms such as BLPs, PLPs, LBNs and CLP(BN ) essen-
tially replace the specific random variables in the CPTs of Bayesian networks by logically
defined random variable templates, commonly referred to as parameterized random variables
or par-RVs for short (Poole 2003), though the actual syntax amongst these systems differs
significantly. We here use annotated disjunctions to illustrate the key idea. For instance, in
a propositional setting, the following annotated disjunctions express that a specific student’s
grade in a specific course probabilistically depends on whether he has read the corresponding
textbook or not:

0.6 : :grade(high); 0.4 : :grade(low) :−reads(true).

0.1 : :grade(high); 0.9 : :grade(low) :−reads(false).

Using logical variables, this dependency can directly be expressed formany students, courses,
and books:
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0.6 : :grade(S,C,high); 0.4 : :grade(S,C,low) :−book(C,B),reads(S,B).

0.1 : :grade(S,C,high); 0.9 : :grade(S,C,low) :−book(C,B),not(reads(S,B)).

More concretely, the annotated disjunctions express that P(grade(S,C) = high) = 0.6
if the student has read the book of the course and P(grade(S,C) = high) = 0.1 other-
wise. Thus the predicate grade depends on book/2 and reads/2. The dependency holds
for all instantiations of the rule, that is, it acts as a template for all persons, courses, and
books. This is what knowledge-based model construction approaches all share: the logic
acts as a template to generate dependencies (here CPTs) in the graphical model. This also
introduces a complication that is not encountered in propositional Bayesian networks or
their translation to annotated disjunctions. To illustrate this, let us assume the predicate
book/2 is deterministic and known. Then the propositional case arises when for each
course there is exactly one book. The annotated disjunctions then effectively encode the
conditional probability table P(Grade|Reads). However, if there are multiple books, say
two, for one course, then the above template would specify two CPTs: one for the first
book, P(Grade|Reads1), and one for the second, P(Grade|Reads2). In Bayesian net-
works, these CPTs need to be combined and there are essentially two ways for realizing
this.

The first is to use a so-called combining rule, that is, a function that maps these CPTs into
a single CPT of the form P(Grade|Reads1, Reads2). The most popular combining rule is
noisy-or, for which

P(Grade=high|Reads1, ... , Readsn)=1−
n∏

i=1

(1 − P(Grade = high|Readsi = true))

where n is the number of books for the course. Using annotated disjunctions, this combining
rule is obtained automatically, cf. Sect. 2.2. In the statistical relational learning literature,
this approach is followed for instance in RBNs and BLPs, and several other combining rules
exist, cf., e.g., (Jaeger 1997; Kersting and De Raedt 2008; Natarajan et al. 2005). While
combining rules are an important concept in KBMC, using them in their general form under
the distribution semantics requires one to change the underlying logic, which is non-trivial.
Hommersom and Lucas (2011) introduce an approach that models these interactions by
combining the distribution semantics with default logic. Alternatively, one could use meta-
calls, cf. Sect. 4.8.

The second way of dealing with the two distributions uses aggregation. In this way, the
random variable upon which one conditions grade is the number of books the person read,
rather than the reading of the individual books. This approach is taken for instance in PRMs
and CLP(BN ). In the context of the distribution semantics, aggregation can be realized
within the logic program using second order predicates, cf. Sect. 4.7. For instance, the fol-
lowing programmakes a distinction between reading more than two, two, one, or none of the
books:

0.9 : :grade(S,C,high); 0.1 : :grade(S,C,low) :−nofbooksread(S,C,N),N > 2.

0.8 : :grade(S,C,high); 0.2 : :grade(S,C,low) :−nofbooksread(S,C,2).

0.6 : :grade(S,C,high); 0.4 : :grade(S,C,low) :−nofbooksread(S,C,1).

0.1 : :grade(S,C,high); 0.9 : :grade(S,C,low) :−nofbooksread(S,C,0).

nofbooksread(S,C,N) :−findall(B, (book(C,B),reads(S,B)),List),length(List,N).
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5.3 Example: CLP(BN )

An example of a KBMC approach that clearly exposes the separation between model con-
struction and probabilistic inference in the resulting model is CLP(BN )(Santos Costa et al.
2008), which we now discuss in more detail.22 CLP(BN ) uses constraint programming prin-
ciples to construct Bayesian networks. The key inference task in CLP(BN ) is to compute
marginal distributions of query variables, conditioned on evidence if available. Syntactically,
CLP(BN ) extends logic programming with constraint atoms that (a) define random vari-
ables together with their CPTs and (b) establish constraints linking these random variables
to logical variables used in the logic program.

The first phase of inference in CLP(BN ) uses backward reasoning in the logic program
to collect all relevant constraints in a constraint store. These constraints define the relevant
Bayesian network, onwhich the second phase computes the requiredmarginals. Conditioning
on evidence is straightforward, as it only requires to add the corresponding constraints to the
store.23

We first illustrate this for the propositional case, using the following model24 of the
sprinkler Bayesian network as given in Fig. 425:

cloudy(C) :-
{ C = cloudy with p([f,t],[0.5,0.5],[]) }.

sprinkler(S) :-
cloudy(C), % C = f , t
{ S = sprinkler with p([f,t], [0.5,0.9, % S = f

0.5,0.1], % S = t
[C])

}.
rain(R) :-

cloudy(C), % C = f , t
{ R = rain with p([f,t], [0.8,0.2, % R = f

0.2,0.8], % R = t
[C])

}.
wet_grass(W) :-

sprinkler(S),
rain(R),
{ W = wet with p([f,t],

/* S/R = f/f, f/t, t/f, t/t */
[1.0, 0.1, 0.1, 0.01, % W = f
0.0, 0.9, 0.9, 0.99], % W = t

[S,R])
}.

In the clause for the top node cloudy, the body consists of a single constraint atom (delim-
ited by curly braces) that constrains the logical variable C to the value of the random variable

22 implementation included in YAP Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/.
23 The implementation adds evidence declared in the input program to the store at compile time.
24 Taken from the examples in the CLP(BN ) system.
25 We include comments for better readability, as CLP(BN ) swaps rows and columns of CPTs compared to
the notation in Fig. 4.
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cloudy. The term p([f,t],[0.5,0.5],[]) specifies that this random variable takes
values f or t with probability 0.5 each, and has an empty parent list. Note that within con-
straint atoms, the= sign does not denote Prolog unification, but an equality constraint between
a logical variable and the value of a random variable. The clause for sprinkler first calls
cloudy(C), which as discussed sets up a constraint between C and the cloudy random
variable, and then uses C as the only parent of the random variable sprinkler it defines.
The first column of the CPT corresponds to the first parent value, the first row to the first
child value, and so on, i.e., in case of cloudy=f, the probability of sprinkler=f is 0.5,
whereas for cloudy=t, it is 0.9. The remaining two random variables rain and wet are
defined analogously, with their clauses again first calling the predicates for the parent vari-
ables to include the corresponding constraints. To answer the query sprinkler(S), which
asks for the marginal of the random variable sprinkler, CLP(BN ) performs backward
reasoning to find all constraints in the proof of the query, and thus the part of the Bayesian
network relevant to compute themarginal. This first callscloudy(C), adding the constraint
C=cloudy to the store (and thus the cloudy node to the BN), and then adds the constraint
S=sprinkler to the store, and the sprinkler node with parent cloudy to the BN.
Any BN inference algorithm can be used to compute the marginal in the second phase.

In general, a CLP(BN ) clause (in canonical form) is either a standard Prolog clause, or
has the following structure:

h(A1, ... ,An,V) :−body, {V = sk(C1, ... ,Ct) with CPT}.
Here, body is a possibly empty conjunction of logical atoms, and the part in curly braces
is a constraint atom. The term sk(C1, ... ,Ct) is a Skolem term not occurring in any other
clause of the program. Its arguments Ci are given via the input variables Aj and the logical
body. CPT is a term of the form p(Values,Table,Parents), where Values is a list
of possible values for sk(C1, ... ,Ct), Parents is a list of logical variables specifying the
parent nodes, and Table the probability table given as a list of probabilities. The order of
entries in this list corresponds to the valuations obtained by backtracking over the parents’
values in the order given in the corresponding definitions. This CPT term can be given either
directly (as in the example above) or via the use of logical variables and unification (see
below).

When defining relational models, random variables can be parameterized by logical vari-
ables as in the following clause from the school example included in the implementation:

registration_grade(R, Grade) :-
registration(R, C, S),
course_difficulty(C, Dif),
student_intelligence(S, Int),
grade_table(Int, Dif, Table),
{ Grade = grade(R) with Table }.

grade_table(I, D,
p([a,b,c,d],

/* I,D = h h h m h l m h m m m l l h l m l l */
[ 0.20, 0.70, 0.85, 0.10, 0.20, 0.50, 0.01, 0.05, 0.10,

0.60, 0.25, 0.12, 0.30, 0.60, 0.35, 0.04, 0.15, 0.40,
0.15, 0.04, 0.02, 0.40, 0.15, 0.12, 0.50, 0.60, 0.40,
0.05, 0.01, 0.01, 0.20, 0.05, 0.03, 0.45, 0.20, 0.10 ],

[I,D])).
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Here, registration/3 is a purely logical predicate linking a registration R to
a course C and a student S. We omit the clauses for course_difficulty and
student_intelligence; these define distributions over possible values h(igh),
m(edium), and l(ow) for the difficulty Dif of course C and the intelligence Int of
student S, respectively. For each grounding r of the variable R in the database of registra-
tions, the clause above defines a random variable grade(r) with values a, b, c and d that
depends on the difficulty of the corresponding course and the intelligence of the correspond-
ing student. In this case, the CPT itself is not defined within the constraint atom, but obtained
from the Prolog predicate grade_table via unification.

Defining aggregation using second order predicates is straightforward in CLP(BN ), as
random variables and constraints are part of the object level vocabulary. For instance, the
following clause defines the performance level of a student based on the average of his grades:
student_level(S,L) :-

findall(G,(registration(R,_,S),registration_grade(R,G)),Grades),
avg_grade(Grades,Avg),
level_table(T),
{ L = level(S) with p([h,m,l],T,[Avg])}.

First, the list Grades of all grade random variables for student S is obtained using the Prolog
predicatefindall. Then,avg_grade/2 constrainsAvg to a new randomvariable defined
as the average of these grades (with a deterministic CPT). Finally, the CPT specifying how
the performance level depends on this average is obtained from the deterministic predicate
level_table, and the corresponding random variable and constraint are set up in the
constraint atom. We refer to Santos Costa et al. (2008) for a discussion of the inference
challenges aggregates raise.

Despite the differences in syntax, probabilistic primitives, and inference between
CLP(BN ) and probabilistic extensions of Prolog following the distribution semantics, there
are also many commonalities between those. As we discussed above, conditional probability
tables can be represented using annotated disjunctions, and it is thus possible to transform
CLP(BN ) clauses into Prolog programs using annotated disjunctions. On the other hand,
Santos Costa and Paes (2009) discuss the relation between PRISM and CLP(BN ) based on
a number of PRISM programs that they map into CLP(BN ) programs.

6 Probabilistic programming concepts and inference

We complete this survey by summarizing the relations between the dimensions of SUCC
inference as discussed in Sect. 3 and the probabilistic programming concepts identified in
Sect. 4. On the probabilistic side, we focus on exact inference versus sampling, as conclusions
for exact inference carry over to approximate inference with bounds in most cases. On the
logical side, we focus on forward versus backward reasoning, as conclusions for backward
reasoning carry over to the approach usingweightedmodel counting.We provide an overview
in Table 2, where we omit the concepts unknown objects, as those are typically simulated
via flexible probabilities and/or continuous distributions, and constraints, as those have not
yet been considered during inference. For generalized labels, we focus on aProbLog, as it is
closer to the distribution semantics than Dyna, due to its semantics based on worlds rather
than derivations. We do not include MCMC here, as existing MCMC approaches in the
context of the distribution semantics are limited to the basic case of definite clause programs
without additional concepts.
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Dimensions of inference: The main difference between exact inference and sampling is that
the former has to consider all possible worlds or all proofs of the query, whereas the latter
always considers one possibleworld or proof in isolation.As second order predicates and time
and dynamics can increase the number of proofs exponentially (in the length of the answer
list or the number of time steps), they aremore easily handled by sampling-based approaches,
though tabling can significantly improve performance of exact inference in dynamic domains.
Sampling based approaches do not directly apply for generalized labels, as sampling exploits
the probabilistic semantics of fact labels.

The main difference between forward and backward reasoning is that the former gener-
ates all consequences of the probabilistic logic program, whereas the latter is query-driven
and only considers relevant consequences, which can drastically improve efficiency. This
difference is well-known in logic programming, and becomes even more important in the
probabilistic setting, where we are interested in not just a single world or proof, but in all
possible worlds or all proofs. The fact that backward reasoning is query-driven makes it
well-suited for flexible probabilities and meta-calls, which cannot directly be handled in
forward reasoning. The reason is that the corresponding subgoals have an infinite number of
groundings, among which backward reasoning easily picks the relevant ones, which forward
reasoning cannot do. The same effect makes it necessary to use stochastic memoization in
forward reasoning, while backward reasoning can support dememoization (as in PRISM) as
well as memoization (as in the various ICL, ProbLog and LPAD systems).

The roots of the distribution semantics in logic programming become apparent when
considering inference for the two remaining key concepts, negation as failure and continuous
distributions as provided by distributional clauses. While the logic concept of negation as
failure is naturally supported in all combinations of exact inference or sampling and forward
or backward reasoning, the probabilistic concept of continuous distributions is much more
challenging, and only practical in sampling-based approaches.

Inference approaches: More specifically, exact inference using forward reasoning in the form
discussed in Sect. 3.1 can be used for all programs with finitely many finite worlds, which (a)
excludes the use of non-ground facts without explicitly given domains, flexible probabilities,
meta-calls and continuous probabilities, and (b) requires stochastic memoization. As this
approach additionally suffers from having to enumerate all possible worlds, it is not used in
practice.26

Exact inference using backward reasoning is the most widely supported inference tech-
nique in probabilistic logic programming, provided by AILog2, PRISM, ProbLog1, cplint,
PITA and MetaProbLog. PRISM never uses stochastic memoization, whereas the other sys-
tems always use it. Only very limited forms of continuous distributions can be supported,
cf. the work on Hybrid ProbLog (Gutmann et al. 2010). All other concepts can be supported,
but implementations differ in the ones they cover. Negation as failure is supported in all
implementations. In addition, AILog2 and cplint support flexible probabilities,MetaProbLog
supports flexible probabilities and meta-calls, and ProbLog1 supports flexible probabilities,
limited use of continuous distributions (Hybrid ProbLog) and generalized labels (aProbLog).
Approximate inference with bounds using backward reasoning is available in ProbLog1 and
cplint, but restricted to definite clause programs, as the use of negation as failure compli-
cates proof finding (as discussed in Sect. 4.6). As the WMC approach as implemented in
ProbLog2 uses backward inference to determine the relevant grounding, that is, the ground-

26 Dyna’s exact inference is based on forward reasoning, but uses a different type of algorithm that propagates
value updates using forward reasoning based on an agenda of pending updates.
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ings of clauses that appear in some proof of a query, the same observations as for exact
backward inference apply in this case as well. ProbLog2 supports flexible probabilities and
negation as failure.

Forward sampling in its simplest form as discussed in Sect. 3.1 can be used with programs
whose worlds are all finite, which excludes the use of non-ground facts without explicitly
given domains, flexible probabilities, andmeta-calls, and requires stochastic memoization. In
contrast to exact forward inference, forward sampling does support continuous distributions,
as only one value is considered at a time.None of the probabilistic logic programming systems
discussed here implement forward sampling.

Backward sampling is themost flexible approach and can in principle dealwith all concepts
except generalized labels. Backward sampling approaches are provided by ProbLog1 and
cplint, which both support flexible probabilities and negation as failure. PRISM has a builtin
for sampling the outcome of a query using backward reasoning, but does not use it for
probability estimation.

7 Applications

Probabilistic programming has been applied in many domains, including natural language
processing, bioinformatics, action- and activity recognition, robotics,web analysis, andmusic
analysis.Wenowpresent a selectionof such applications, again focusingonprobabilistic logic
programming languages; examples using other paradigms include the works of Mansinghka
et al. (2013), Gerstenberg and Goodman (2012), and Stuhlmueller et al. (2010).

Several probabilistic logic languages, including PRISM, SLPs and Dyna, have their roots
in natural language processing and sequence analysis; they directly upgrade representations
and techniques from probabilistic grammars or were designed with natural language appli-
cations in mind; cf. (Sato et al. 2008; Eisner et al. 2005). Sneyers et al. (2010) developed
CHR(PRISM), a constraint-based version of PRISM that has been applied to music analysis.

By far the most popular and successful application area of probabilistic logic program-
ming is bioinformatics. For instance, PRISM has been used for biological sequence analysis
(Mørk and Holmes 2012) in the LOST project, ProbLog for interpreting gene interaction net-
works (De Maeyer et al. 2013), Stochastic Logic Programs for inferring metabolic pathways
(Lodhi and Muggleton 2005), and a combination of CP-logic and Allen’s interval calculus
for modeling progress of diseases (van der Heijden and Lucas 2013).

Another key application area of probabilistic programs are action- and activity recognition
and planning. For instance, Thon et al. (2011) buildCPT-Lmodels of Travian, a popularmulti-
player online strategy game, whereas Skarlatidis et al. (2015) apply their probabilistic event
calculus based on ProbLog to event recognition in surveillance videos. In the closely related
area of robotics, distributional clauses have been applied to, for instance, tracking (Nitti et al.
2013).

Probabilistic logic programming is also strongly connected to (probabilistic) databases
(Suciu et al. 2011) and reasoning over the web. For instance, Fuhr (1995) introduced prob-
abilistic Datalog in the context of information retrieval and the web. A variation called
WHIRL was developed by Cohen (2000) as an information representation language that
synergistically combines properties of logic-based and text-based representation systems.
More recently, the work on Never-Ending Language Learning (Nell) (Carlson et al. 2010)
associates probabilities or confidences with instances of relations automatically extracted
from the web, and the probabilistic logic programming system ProPPR (Wang et al. 2013)
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has been designed for reasoning and learning with the resulting large, uncertain knowledge
bases.

8 Conclusions and open questions

Probabilistic programming is a rapidly developing field of research as witnessed by the many
probabilistic programming languages and primitives that have been introduced over the past
few years. In this paper, we have attempted to provide a gentle introduction to this field by
focussing on probabilistic logic programming languages and identifying the underlying prob-
abilistic concepts that these languages support. The same concept (e.g., probabilistic choice)
can be realized using different syntactic primitives (e.g., switches, annotated disjunctions,
etc.) leading to differences in the probabilistic programming languages. Probabilistic pro-
gramming implementations not only differ in the primitives they provide but also in the way
they perform probabilistic inference. Inference is a central concern in these languages, as
probabilistic inference is computationally expensive. We have therefore also presented var-
ious probabilistic inference mechanisms and discussed their suitability for supporting the
probabilistic programming concepts. This in turn allowed us to position different languages
and implementations, leading to a broad survey of the state-of-the-art in probabilistic logic
programming.

This work also reveals a number of challenges and directions for future work. First, there
is an ongoing quest for efficient inference approaches for languages that support a broad
range of programming concepts. Promising directions include lifted inference, which aims
at exploiting symmetries and abstraction over individuals to speed up inference, knowledge
compilation, which has contributed many data structures for compactly representing and
efficiently querying various types of knowledge, and approximate methods such as MCMC,
which is used in many probabilistic programming languages, but still requires proposal
functions to be custom made for the program at hand. There also is a need for a clear
understanding of the relative computational complexity of the various probabilistic languages
and concepts that exist to date. Another question that has only seen partial answers so far
is how to efficiently deal with evidence and constraints in different inference techniques.
Adapting and extending program transformation and analysis techniques to the probabilistic
setting promises opportunities to recognize and exploit program parts that are amenable to
more efficient inference. Concepts such as time and dynamics require inference approaches
that on the one hand exploit repeated structure, but on the other hand can also deal with
changing structure over time. Last but not least, it still is a challenge to learn probabilistic
programs, although a wide variety of learning techniques for probabilistic programming
has already been developed. Many key challenges for both parameter and structure learning
remain, many of which are related to efficient inference, as learning requires inference.

Acknowledgments The authors are indebted to Bernd Gutmann and Ingo Thon for participating in many
discussions, and contributing several ideas during the early stages of the research that finally led to this paper.
Angelika Kimmig is supported by the Flemish Research Foundation (FWO-Vlaanderen).

Appendix 1: Logic programming basics

The basic building blocks of logic programs are variables (denoted by strings starting with
upper case letters), constants, functors and predicates (all denoted by strings starting with
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lower case letters). A term is a variable, a constant, or a functor f of arity n followed by n
terms ti, i.e., f(t1, ... ,tn). An atom is a predicate p of arity n followed by n terms ti,
i.e., p(t1, ... ,tn). A predicate p of arity n is also written as p/n. A literal is an atom or
a negated atom not(p(t1, ... ,tn)). A definite clause is a universally quantified expression
of the form h :−b1, ... , bn where h and the bi are atoms. h is called the head of the clause,
and b1, ... , bn its body. Informally, the meaning of such a clause is that if all the bi are true,
h has to be true as well. A normal clause is a universally quantified expression of the form
h :−b1, ... , bn where h is an atom and the bi are literals. If n = 0, a clause is called fact
and simply written as h. A definite clause program or logic program for short is a finite set
of definite clauses. A normal logic program is a finite set of normal clauses. A substitution
θ is an expression of the form {V1/t1, ... , Vm/tm} where the Vi are different variables and
the ti are terms. Applying a substitution θ to an expression e (term or clause) yields the
instantiated expression eθ where all variables Vi in e have been simultaneously replaced by
their corresponding terms ti in θ . If an expression does not contain variables it is ground.
Two expressions e1 and e2 can be unified if and only if there are substitutions θ1 and θ2 such
that e1θ1 = e2θ2. In Prolog, unification is written using = as an infix predicate.

The Herbrand base of a logic program is the set of ground atoms that can be constructed
using the predicates, functors and constants occurring in the program.27 Subsets of the Her-
brand base are called Herbrand interpretations. A Herbrand interpretation is a model of a
clause h : −b1, ... ,bn. if for every substitution θ such that all biθ are in the interpretation,
hθ is in the interpretation as well. It is a model of a logic program if it is a model of all clauses
in the program. The model-theoretic semantics of a definite clause program is given by its
smallest Herbrand model with respect to set inclusion, the so-called least Herbrand model
(which is unique). We say that a logic program P entails an atom a, denoted P |� a, if and
only if a is true in the least Herbrand model of P .

The main inference task of a logic programming system is to determine whether a given
atom, also called query (or goal), is true in the least Herbrand model of a logic program. If
the answer is yes (or no), we also say that the query succeeds (or fails). If such a query is not
ground, inference asks for the existence of an answer substitution, that is, a substitution that
grounds the query into an atom that is part of the least Herbrand model.

Normal logic programs use the notion of negation as failure, that is, for a ground atom
a, not (a) is true exactly if a cannot be proven in the program. They are not guaranteed to
have a unique minimal Herbrand model. Various ways to define the canonical model of such
programs have been studied; see, e.g., (Lloyd, 1989, Chapter 3) for an overview.

Appendix 2: Annotated disjunctions and probabilistic facts

Asmentioned in Sect. 2.2, each annotated disjunction can be equivalently represented using a
set of probabilistic facts and deterministic clauses. Using probabilistic facts is not sufficient,
as those correspond to independent random variables. For instance, using probabilistic facts

1
3 : :color(green). 1

3 : :color(red). 1
3 : :color(blue).

the probability of color(green), color(red) and color(blue) all being true is
1/27, whereas it is 0 for the annotated disjunction

1

3
: :color(green); 1

3
: :color(red); 1

3
: :color(blue).

27 If the program does not contain constants, one arbitrary constant is added.
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On the other hand, we can exploit the fact that negation of probabilistic facts is easily han-
dled under the distribution semantics28 to encode an AD by simulating a sequential choice
mechanism.29 With this encoding, the three possible outcomes are mutually exclusive as in
the AD and exactly one will be true in any possible world:
1
3 : :sw_1(color(green)). 1

2 : :sw_1(color(red)). 1 : :sw_1(color(blue)).

color(green) :− sw_1(color(green)).

color(red) :− not(sw_1(color(green))),sw_1(color(red)).

color(blue) :− not(sw_1(color(green))),not(sw_1(color(red))),sw_1(color(blue)).

Note that the probabilities have been adapted to reproduce the probabilities of the different
head atoms; we discuss the details of this adaptation below.30 This mapping follows the
general idea of representing a probabilistic model in an augmented space where random
variables can be assumed independent, while capturing the dependencies in the deterministic
part of the program (Poole 2010).

For non-ground ADs, all logical variables have to be included in the probabilistic facts to
ensure that all groundings correspond to independent random events. For instance, the AD

1

2
: :color(green); 1

2
: :color(red) :−ball(Ball)

would be represented as
1
2 : :sw_1(color(green),Ball). 1 : :sw_1(color(red),Ball).

color(green) :− ball(Ball),sw_1(color(green),Ball).

color(red) :− ball(Ball),not(sw_1(color(green),Ball)),sw_1(color(red),Ball).

As this example suggests, annotated disjunctions can be expressed using probabilis-
tic facts by representing each annotated disjunction using the set of probabilistic facts
p̃i ::sw_id(hi , v1, ... , v f ) and the following clauses

hi :− b1, · · · , bm,not (sw_id(h1, v1, ... , v f )), ... , not (sw_id(hi−1, v1, ... , v f )),

sw_id(hi , v1, ... , v f ) (8)

where id is a unique identifier for a particular AD and v1, ... , v f are the free variables in the
body of the AD. The probability p̃1 is defined as p1 and for i > 1 it is

p̃i :=
⎧
⎨

⎩
pi ·

(
1 − ∑i−1

j=1 p j

)−1
if pi > 0

0 if pi = 0
. (9)

One can recover the original probabilities from p̃ by setting p1:= p̃1 and iteratively applying
the following transformation for i = 2, 3, ... , n

pi := p̃i ·
⎛

⎝1 −
i−1∑

j=1

p j

⎞

⎠ . (10)

Equations (9) and (10) together define a bijection between p and p̃ which allows one to
use parameter learning in either representation and map learned probabilities onto the other

28 For a probabilistic fact p::f, not(f) succeeds in a possible world exactly if f is not among the proba-
bilistic facts included in that world; cf. Sect. 4.6 for a more general discussion of negation.
29 used, e.g., by Sato and Kameya (1997) with parameters learned from data.
30 This transformation is correct for computing success probabilities, but care has to be taken to accomodate
for the additional random variables in MPE inference.
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representation. If the pi sum to 1, it is possible to drop the last probabilistic fact sw_id(hn)
since its probability p̃n is 1.
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