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Abstract Stock price movements are claimed to be chaotic and unpredictable, and main-
stream theories of finance refute the possibility of realizing risk-free profit through predictive
modelling. Despite this, a large body of technical analysis work maintains that price move-
ments can be predicted solely from historical market data, i.e., markets are not completely
efficient. In this paper we seek to test this claim empirically by developing a novel stochas-
tic trading algorithm in the form of a linear model with a profit maximization objective.
Using this method we show improvements over the competitive buy-and-hold baseline over
a decade of stock market data for several companies. We further extend the approach to allow
for non-stationarity in time, and using multi-task learning to modulate between individual
companies and the overall market. Both approaches further improve the predictive profit.
Overall this work shows that market movements do exhibit predictable patterns as captured
through technical analysis.

Keywords Multi-task learning · Technical analysis · Stock market trading

1 Introduction

A central tenet of financial theory is the Efficient Markets Hypothesis, which states that
the market price reflects all available knowledge and accordingly no risk-free returns can
be realized without access to non-public information. Despite its prevalence, this theory
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is not universally accepted, as it cannot explain several small but significant examples of
inefficiencies commonly exhibited in markets. A large body of technical analysis techniques
claim that recurring patterns can be identified from historical market data, which can be
used to realize risk-free profits (Lo et al. 2000). Such techniques are widely used as part of
active portfolio management, which aims to outperform passive ‘buy-and-hold’ management
strategies. It is an open question as to the scientific validity of these claims, namely whether
active trading and technical analysis can reliably realize above market returns. In this paper we
seek to test the question of whether markets are completely efficient by empirical validation
using predictive modelling. We demonstrate that historical market movements and technical
analysis contain predictive power for forecasting daily returns in an active trading scenario.

This paper proposes a novel learning algorithm for profit maximization in an active trading
scenario, where stocks are bought and sold on a daily basis. We show how trading can be
modelled using a similar formulation to logistic regression, permitting a simple gradient
based training algorithm and a straight-forward means of prediction on unseen data. This
technique allows for recent market data, represented using technical analysis basis functions,
to drive investment decisions. Compared to the manual use of technical analysis, where
a trader interprets the identified patterns, here our training algorithm assists the trader in
deciding which technical analysis indicators are important, and how these should be used in
their trading decisions.

To reflect the idiosyncrasies of individual companies, we present a multi-task learning
approach that is suitable for jointly modelling several companies on the stock market. This
trains a series of per-company models, subject to a mean regularization term which encourages
global parameter sharing. We show that this improves over independent modelling of each
company, or joint modelling of all companies with tied parameters. A second question is
how to handle changing market conditions over time, which is of particular importance in
our setting as speculative opportunities are likely to change over time as they have been
identified and removed by market participants. For this purpose we use a simple time based
regularizer which permits model parameters to vary smoothly with time, which is shown to
result in further improvements in predictive profit.

This paper seeks to answer several research questions. The first is regarding market effi-
ciency, namely whether there are systematic inefficiencies that can be exploited using statis-
tical models. To answer this, we show that excess profits are achieved using our active trading
models when compared to simple baseline methods, such as buy-and-hold. A second aspect
of this research question is whether technical analysis can improve active trading models
compared to using only recent price values, which we also show to be the case, although this
difference is less dramatic. Together these results provide an empirical justification of active
trading and technical analysis, refuting the efficiency arguments of financial theory.

The second set of research objectives concerns modelling. Our approach develops a model
of financial trading, and a training method for optimizing trading profits. To test the validity
of explicit profit maximization, we compare against squared error loss, the most common
regression objective, and show significant outperformance. Our modelling includes multi-task
learning over several different companies and over time, which we show leads to substantial
benefits in profit over baseline models trained on individual companies, pooling together
the dataset, or ignoring the effect of time. Overall these results suggest that fine grained
modelling is useful, including modelling non-stationarities, but there is information from the
global data. Multi-task learning is an effective means of balancing these two criteria.

The remainder of the paper is structured as follows. In Sect. 2 we review the financial
literature on market efficiency, as well as the few papers applying machine learning tech-
niques to stock price prediction or portfolio optimization. In Sect. 3 we present our novel
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profit maximization model, and extensions to enable joint multi-task learning over several
companies as well as temporal adaptation to handle non-stationarities. Next we turn to the
evaluation, starting in Sect. 4 with a brief overview of technical analysis before presenting
the validation methodology and comparative baselines in Sect. 5. Experimental results are
presented in Sect. 6, evaluating the algorithm in several realistic trading scenarios.

2 Literature review

2.1 Risk-free profits

Most theoretical finance works maintain that markets are efficient and as such Modern Port-
folio Theory (Markowitz 1952) and the Capital Asset Pricing Model (Sharpe 1964) state
that no risk-free excess profits can be made. That means the best one can do is maximize
the returns for a given level of risk. In practical terms for markets to be fully efficient the
following must be true: universal access to high-speed and advanced systems of pricing
analysis; a universally accepted analysis system of pricing stocks; an absolute absence of
human emotion in investment decision-making; the willingness of all investors to accept that
their returns or losses will be exactly identical to all other market participants.

There is some evidence that actively managed funds under-perform passively managed
index funds by their added expenses (Jensen 1968). Therefore, a simple model with maximum
diversification that spreads the risk and invests equally in all assets yields better returns than a
complex model that aims to select stocks by active analysis. Stock markets are highly chaotic
systems with very high levels of noise (Magdon-Ismail et al. 1998; Ghosn and Bengio 1997).
Therefore, the price movement of companies on the market are fundamentally unpredictable
(Magdon-Ismail et al. 1998). The Efficient Market Hypothesis states that the price of a
stock already contains all the available information about the asset, therefore the market
is informationally efficient (Malkiel 2003). According to this theory, in the long term one
cannot beat the market consistently through speculation.

However, Malkiel notes that in the real world there are market phenomena that can be
interpreted as signs of inefficiencies. One such example is short term momentum and under-
reaction to new information (Lo et al. 2000). This may be attributed to the psychological
bandwagon effect (Shiller et al. 1984). Another example is long-run return reversals, which
means that stock prices are expected to revert to their mean (Kahneman and Tversky 1979). A
third source is seasonal patterns, for example in January higher returns could be achieved due
to tax filing in December (Haugen and Lakonishok 1987). According to the Size effect, smaller
companies tend to outperform larger companies (Bondt and Thaler 1985). The equity risk
premium puzzle shows that investors prefer bonds to common stocks even when that results
in lower risk adjusted returns for them (Weil 1989). The 1987 market crash and the 1990s
Internet bubble can be regarded as short term market inefficiencies (Malkiel 2003). Prospect
theory and advances in behavioral economics have shown that humans are subject to cognitive
and emotional biases and therefore they are prone to make sub-optimal financial decisions
(Tversky and Kahneman 1974; Kahneman and Tversky 1979). Nevertheless, it has been
shown that soon after publishing the discovery of such patterns that may enable excess risk
adjusted profits to be made, these opportunities are quickly exploited by investors (Malkiel
2003). These observations suggest that active portfolio management could outperform passive
management by exploiting inefficiencies in the market.

Although the Efficient Market Hypothesis rejects its validity, technical analysis is com-
monly applied to stock market forecasting. Kim et al. (2002) measured the distributional
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differences of a select few technical indicators that were chosen by expert knowledge instead
of automated statistical analysis. They used profit per trade as a measure to evaluate perfor-
mance of a trading system with transaction cost. Cha and Chan (2000) proposed a system
that output buy, sell and hold trading signals for stocks that were not part of the training set.
In his system he extracted local maxima and minima of prices and trained a neural network to
predict these points. They used a dataset of around 800 trading days with three companies on
the Hong Kong Stock Exchange, proposing to invest proportional to the strength of the trad-
ing signal, but leaving the implementation of such an objective to future work. In our system,
profit per trade was used as a measure of performance but we relied on automated learning
methods to extract relevant information from the dataset, instead of expert knowledge. Sim-
ilar to their work, we consider investment based on the predictive signal determined by a
learning algorithm that invests based on the strength of the signal after squashing it through
a sigmoid function. Our modelling approach is different to theirs as we do not explicitly
model peaks and troughs, but consider making daily trades based on the recent historical
market context. Moreover we train on several thousand data points across almost a hundred
companies on the London Stock Exchange, a much larger dataset than that used in Cha and
Chan (2000).

2.2 Joint modelling

Multi-task learning has been investigated as an effective way of improving predictions of
machine learning models. Ghosn and Bengio (1997) studied whether sharing hidden layers
of neural networks between companies could improve the selection of high return stocks.
They trained neural net parameters on one company and used them to produce predictions
for other stocks, and also examined whether selective parameter sharing of various neural
net layers could aid prediction. They report significant above-market returns with a trading
system based on this model. Bengio (1997) experimented with portfolio optimization over 35
stocks using one model for all companies, finding that the best results were obtained by sharing
neural network parameters across companies. Finally, Cha and Chan (2000) explored domain
adaptation by training a model on all stocks but one, and testing on the held-out stock. These
papers show that relationships between companies contain valuable information that can be
mined for trading. Therefore, in our experiments separate models for different companies
were related to one another during training via multi-task learning. Our working assumption
is that the mechanisms for predicting individual stock movements will be highly correlated
through model regularization towards a common shared component.

2.3 Temporal variations

Multi-task learning can also be used for temporal data. Caruana (1997) explored time series
prediction where he fitted a neural network with shared parameters to produce outputs for
multiple simultaneous tasks. He noted that this kind of learning is especially useful for harder
longer term predictions where best results can be obtained when the middle task is predicted
from previous and later tasks. To take temporal changes into account Bengio (1997) trained
on a window of data, which he shifted through time. This is a naive way for accounting for
time as it assumes non stationarity but sacrifices information sharing that goes beyond the
window. In another experiment, Bengio used a recurrent neural network, with five macro
and micro economic variables as external inputs. In this paper we consider a linear model,
with its outputs mapped to trading actions via a non-linear sigmoid function. This is akin to
a one layer neural network. Here we account for time using a regularization method which
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ensures smoothness between adjacent time periods, where model parameters were stratified
by month. Our experimental setup focused on extrapolation a month into the future, rather
than the easier problem of interpolation, as done in Caruana (1997).

2.4 Model formulation

Minimizing squared loss is inappropriate for the reason that profit and prediction accuracy
are often not significantly correlated in a financial context. Instead Bengio (1997) proposes
replacing the prediction criterion in training with a financial criterion. Bengio identified
optimal weights to determine the share of each stock or asset in the portfolio at a given time
step which was one month. We optimized for profit which is a different type of financial
criterion suited to our setting of day trading.

3 Model

An active trading scenario is considered, where a trader makes an investment every day which
is then reversed the following day. Trades are based on the outputs of a linear model over
technical analysis features encoding recent market history, as described in Sect. 4. Then the
problem is how to trade based on the real valued prediction, considering the type of trade
(buy or sell) and the magnitude of the trade. A linear model is chosen due to its simplicity,
although the approach would accommodate a more complex non-linear modelling approach,
such as a multi-layer neural network.

The invested money on each day is proportional to the confidence level of the prediction,
which is denoted by the absolute sigmoid value. The sigmoid is a useful function because it
is easily differentiable, thus resulting in an error term which can be easily minimized. The
hyperbolic tangent sigmoid function is applied to the simple linear model of the input,

p(x,w) = tanh(wᵀx) , (1)

resulting in a prediction value p ∈ [−1, 1] which determines the trade type (buy or sell,
depending on sign(p)) and magnitude of investment (|p|). Figure 1 illustrates the trading
actions resulting from several different inputs. Here a negative prediction denotes sell the
stock whereas a positive prediction denotes buying the stock, with a maximum investment
of £ ± 1.

In order to train such a model, we use as the response variable the relative price movement
from the stock. If the stock price falls by 50 %, then the three scenarios illustrated in Fig. 1
result in profits of roughly £-0.5, £0 and £0.5. More formally, the target of the prediction
y(d) ∈ [−1,∞) is the return on investment,

y(d) = sclose(d + 1) − sclose(d)

sclose(d)
,

where d is the trading day and sclose(d) is the closing price of the stock on day d .
Consider now a linear regression baseline algorithm where the optimum weights are found

that minimize the error of the predictions as measured by the squared difference between
the targets and the predictions. This has the benefit of a closed form solution for the optimal
weights (Rogers and Girolami 2011), however it has two short-comings. First, it is not clear
how to trade based on the signal, which can vary over a wide range of values, and secondly
the training loss is highly dissimilar to trading profit. To account for the first problem, we can
adjust the model predictions by first normalizing by the standard deviation of the prediction,

123



192 Mach Learn (2015) 101:187–209

(a) (b)

(c)

prediction,

prediction,

prediction,
ac

tiv
at

io
n 

si
gn

al
,

ac
tiv

at
io

n 
si
gn

al
,

ac
tiv

at
io

n 
si
gn

al
,

Fig. 1 Prediction signal: confident buy, unconfident (short) sell, confident (short) sell

after which we apply the hyperbolic sigmoid in (1) to obtain a trading action. This is a rough
heuristic to ensure the scale of predictions are comparable to that of other models.

The second problem of the mismatch between the training and the testing loss is more
insidious, as the sum of squared errors does not resemble profit. To illustrate the difference
between the two objectives, consider the case when the stock price rises. The squared error loss
penalizes predictions which do not exactly match the price rise, irrespective of whether they
are above and below the true price movement. This makes little sense, as all buy predictions
should be rewarded, including extremely high values. A similar effect occurs for negative
predictions, which attract heavy penalties out of keeping with the loss from trading.

A better approach is to integrate the sigmoid into the loss function such that optimization
can be performed directly for profit instead of prediction accuracy. For this reason instead of
minimizing the squared error of the prediction, as for the linear regression baseline, we seek
to maximize profit directly. This gives rise to the profit (utility) objective,

u(x,w, y) = p(x,w)y = tanh(wᵀx)y

which multiplies the prediction p(x,w) by the relative price movement of the stock, y. This
corresponds to the profit realized over a single trade.

123



Mach Learn (2015) 101:187–209 193

Table 1 Notation

Notation Explanation

X Training data of technical analysis indicators, X ∈ R
C×M×Dc,m×T

Y Targets, relative price movement of stocks, Y ∈ R
C×M×Dc,m

W Model parameters, W ∈ R
C×M×T

λc Regularization coefficient between companies

λm Regularization coefficient between trading months

λl Regularization coefficient for weights

C Number of companies

M Number of trading months

Dc,m Number of trading days in company c and month m

T Number of technical indicators

Rc Company regularizer term

Rm Time regularizer term

Rl L-2 regularizer term

U Utility or profit in entire dataset

S Raw market data

It is assumed that fractions of stocks can be traded and that stocks that are not currently
possessed can be short sold. Further, trades can be executed at the closing price of the stocks
of the companies each day for the invested amount. Last, transaction costs are not factored in
the prediction signal, although this could be implemented using a form of hinge loss. These
assumptions are designed to be reasonable while still yielding a simple and differentiable
objective for training the model. Table 1 gives an explanation of the notation used throughout
the paper.

The overall utility or profit U is obtained by aggregating the profit over all time periods,
for which we compare two alternative methods:

U (W) =
C∑

c=1

Dc∑

d=1

tanh(wc
ᵀxc,d)yc,d (2)

U ′(W) = ln
C∏

c=1

Dc∏

d=1

(
tanh(wc

ᵀxc,d)yc,d + 1
)
. (3)

The first objective in (2) simply considers the total aggregate profit, which is appropriate
if each trade is performed independently based on the same investment budget. The sec-
ond objective (3) allows for compounding of profits whereby the proceeds from day d are
reinvested and subsequent trades are based on this revised budget. In Eq. (3) the constant
1 is added to the daily utility to reflect the multiplicative change in bank balance, and the
logarithm is applied to simplify the formulation.

The training objective is to maximize the utility, as defined in (2) or (3), including an
additive L2 regularizer term to bias weights towards zero,

Rl = λl

T∑

t=1

‖W·,·,t‖2
F , (4)
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where ‖ · ‖F is the Frobenius norm of the weights and the coefficient λl modulates the effect
of the regularization term relative to the profit. In the optimization, the loss function which
measures the negative utility is minimized with respect to the weights W in order to learn
the optimal model weights,

Ŵ = argmin
W

−U (W) + Rl(W) . (5)

The optimization in (5) is solved using the L-BFGS algorithm (Byrd et al. 1995), a quasi-
Newton method for convex optimization. Note that the objective in (5) is non-convex, and
therefore gradient based optimization may not find the global optimum. However, our exper-
iments showed that L-BFGS was effective: it consistently converged and was robust to dif-
ferent starting conditions. The L-BFGS optimizer requires first order partial derivatives of
the objective function. The gradient of each component of the objective are as follows:

∂

∂wc,t
U =

D∑

d=1

xc,d,t yc,d cosh−2(wc
ᵀxc,d)

∂

∂wc,t
U ′ =

∑D
d=1 yc,d xc,d,t cosh−2(wc

ᵀxc,d)
∏D

d ′=1,d ′ �=d yc,d ′ tanh(wc
ᵀxc,d′) + 1

∏D
d=1 yc,d tanh(wc

ᵀxc,d) + 1
∂

∂wc,t
Rl = 2λlwc,t ,

where the first two equations are the partial derivatives of the two alternative loss functions—
for non-compound (2) and compound profits (3), respectively—and the last equation is the
gradient of the regularizer term.

3.1 Multi-task learning

The algorithm makes a prediction for each company c each trading day d based on the data
vector xc,d. Therefore, it produces multiple simultaneous outputs, one for each company. As
new data points are acquired for each daily time step, a prediction is made for each company at
the same time. We assume that different companies operate under different conditions, which
in turn affect their trading on the stock market. Therefore each company is best modelled
using different parameters. However as our dataset consists of companies which operate in
the same market and are all ‘blue-chip’ stocks with high market capitalization, we would
also expect that their price behaviors are linked.

Balancing these two effects is achieved by mean regularized multi-task learning (Evge-
niou and Pontil 2004). This method learns multiple related tasks jointly, which can improve
accuracy for the primary task learned. Despite its simplicity among other multi-task learning
methods, it can be highly effective. This is implemented by including a new penalty term,
the ‘company regularizer’,

Rc = λc

C∑

c=1

‖Wc,·,· − 1

C

C∑

c′=1

Wc′,·,·‖2
F , (6)

which penalizes differences between company specific weights and the mean weights across
all companies. When the company regularizer coefficient, λc, is set to zero there is no regular-
ization between companies, such that each company is modelled independently. Conversely,
setting λc = ∞ means all parameters are tied, i.e., all company data is pooled together.
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3.2 Non-stationarity

Markets are dynamic systems since inefficiencies will be eventually discovered and exploited
by traders, and thus exploitable signals in the market data may fade over time. Besides evolv-
ing speculative behaviors, it is likely that the underlying dynamics of financial systems and
changes to external economic conditions (unknown to our model) result in a non-stationarity
process. Although the model may need to change with time, it is unlikely to change rapidly
over a short period, but rather evolve smoothly with time.1

To encode the assumption of smooth variation with time, we elect to use an additional
time regularization term. This is related to other temporal modelling methods such as the
Fused Lasso (Tibshirani et al. 2005), which penalizes absolute changes in weights between
adjacent time intervals using the L1 norm. Here instead we use a L2 term,

Rm = λm

M∑

m=2

‖W·,m,· − W·,m−1,·‖2
F , (7)

where m is the trading month, used as the granularity of our temporal modelling. The reg-
ularizer penalizes weight differences for adjacent trading months, m and m − 1, such that
weights smoothly vary over time. The extreme behavior of the time regularizer represents
either pooling (λm = ∞), allowing for no temporal variations, or independent modelling of
each month (λm = 0). The final optimization objective, including both company and time
regularization term, is now

Ŵ = argmin
W

−U (W) + Rl(W) + Rc(W) + Rm(W) .

This objective discourages large differences between parameters for adjacent trading months,
and also discourages large differences between the weights for individual companies versus
the average over all companies. These biases are balanced against data fit, and consequently
we expect the model to learn different parameter values for each task as needed to maximize
training profit. The partial derivatives of the regularization terms are as follows:

∂

∂wc,m,t
Rc = 2λc

(
wc,m,t − 1

C

C∑

c′=1

wc′,m,t

)

∂

∂wc,m,t
Rm =

⎧
⎪⎨

⎪⎩

2λm(wc,m,t − wc,m−1,t ) if m = M

2λm(wc,m,t − wc,m+1,t ) if m = 1

2λm(2wc,m,t − wc,m−1,t − wc,m+1,t ) otherwise

.

The multi-task regularizers facilitate the sharing of data statistics across task models, while
also limiting overfitting the weak signal characteristic of noisy financial datasets.

4 Technical analysis

Now we consider experimental validation of our trading model. Our dataset was sourced
from Google Finance, taking market data over the period 2000–2013 for all companies
constituting the FTSE index of the top 100 stocks by market value in the United Kingdom.

1 Note that market crashes and other sudden events will not be handled well by this approach, a more sophis-
ticated method would be needed to handle such cases.
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The FTSE index composition changed during this period, due to companies being excluded
or included, and we retain the 64 companies which remained in the index for the full period
(see “Appendix 1” for the company ticker symbols).2 The market data was cleaned to account
for incorrect adjustment for dividends, stock splits or merges by manually verifying all daily
price movements above 10 %, and excluding any improperly adjusted prices.

The dataset is divided into individual ‘tasks’ by company and by trading month. The daily
market data is transformed by applying a suite of technical analysis features, which are then
each normalized and standardized before used in the learning algorithm.

Technical analysis can reveal behavioral patterns in trading activity on stock markets. It
has the potential to uncover behavioral cues of market participants and capture psychological
biases such as loss aversion or risk avoidance. In its arsenal, sound statistical and quantitative
analysis methods can be found in addition to heuristic pattern analysis such as candlestick
pattern matching functions. The three pillars of technical analysis are history tends to repeat
itself, prices move in trends, and market action discounts everything (Lo et al. 2000; Neely
et al. 1997). This means that all past, current and even future information is discounted into
the markets, such as emotions of investors to inflation or pending earnings announcements
by companies. Therefore, technical analysis treats fundamental analysis, which analyzes
external factors such as company performance reports and economic indicators, redundant
for making predictions.

We apply technical analysis to the market data for each company using the TA-lib tech-
nical analysis library.3 This transforms raw market data series, S, of open, high, low, close
and volume values with a family of technical analysis functions, φ, to obtain the techni-
cal indicator series representation of the data, X = φ(S). Functions are applied from the
family of overlap studies, momentum, volume, cycle, price transform, volatility and pattern
recognition indicators. For the list of technical indicators, please see “Appendix 2”.4 Figure 2
depicts an example of a few technical indicator values calculated on a single stock. Bollinger
Bands return two time series that are two standard deviations away from the moving average
(MVA), which is a measure of volatility. Moving Average Convergence Divergence (MACD)
subtracts the 26-day exponential moving average (EMA) from the 12-day EMA. This is used
as a rough heuristic by traders as follows: when the MACD is above the signal line, it rec-
ommends buying while when it is below, it recommends selling. A dramatic rise suggests a
small speculative bubble and end of the current trend. Williams’ %R compares the closing
price to the high-low range over 14 days. A high value indicates that a stock is oversold, while
a low value shows that it is overbought.

The first six months of the dataset is reserved to bootstrap the indicator calculation. Most
indicators rely on a history of market data for analysis so as to give forecasts. As the TAlib
suite provides a large range of technical analysis indicators, we process them in a simple
and agnostic manner to derive the feature representation of our data. The parameters of most
indicators were left at their default values. In cases where an indicator returns multiple value
series, one feature was created for each series, and indicators returning invalid or constant
values were discarded. Overall, this resulted in a dataset with T = 133 features, representing
the market conditions for a given company on a given trading day.

2 This confers a survivor bias to our results, as any companies suffering extremely poor performance or
bankruptcy during the period have been excluded. However note that this bias also affects our baselines, in
particular inflating the performance of the passive ‘buy-and-hold’ strategy.
3 Technical Analysis library—http://ta-lib.org/.
4 Statistical functions, mathematical transforms and operators are not used because these are helper functions
of other more complex functions. In addition, MAVP, MACDFIX and ROCR100 are omitted due to the fact
that equivalent functions, such as scaled versions, are already present in the library.
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(a) (b)

(c)
Fig. 2 Bollinger bands, a MVA (blue solid), +2STD (red dashed), -2STD (green dashed); b MACD (blue
solid), EMA (red dashed), DIV (green dotted); Williams’ %R; c for Tesco, Nov 2012–May 2013 (Color figure
online)

5 Validation

In order to evaluate the performance of the algorithm, a sliding window experimental setup is
used, as illustrated in Fig. 3. For each evaluation round, one and a half years of data across all
companies is used for training, the following month is used for validation and the subsequent
month is used for testing. In the case of time-varying models, the weights from the most recent
month are used for validation and testing. Validation is only performed on the first window
of data for efficiency reasons, and is used to select the three regularization coefficients which
control the importance of the penalty terms of the loss function. After the first validation
and evaluation, the training and testing window is shifted by one month and the process is
repeated until the end of the dataset is reached in 2013. This evaluation setup is designed
to match a trading scenario, where short term extrapolation predictions are needed to guide
investment decisions.

The model has several parameters: the weight, λl , company, λc, and time, λm , regularizer
coefficients (see Eqs. 4, 6, 7). These need to be tuned to control the relative effect of the
data fit versus the regularization for weight magnitude, deviation from the market mean,
and weight change with time, respectively. These parameters are automatically tuned by grid
search using a logarithmic scale between 10−10 and 1010. In addition, 0 and infinity are added
to the possible values to simulate independent task learning and pooling. The performance
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Fig. 3 Sliding window evaluation

of the model is measured on the validation set, and the values that give the highest validation
profit are selected.

We evaluate against several baseline measures:

Random: In random trading, the predictions are produced by a uniform distribution
between −1 and +1. In this case the expected predictions are 0 and consequently expected
trading profit is also 0.
Buy-and-hold: Setting all predictions to +1 is similar to a long term buy-and-hold posi-
tion, but without reinvestment of daily profits or losses. A buy and hold strategy can
be seen as spreading the risk between all possessed assets, in this case the FTSE index,
which confers diversification benefits as advocated by Modern Portfolio Theory.
Short-and-hold: There is an always sell strategy which is the inverse of buy-and-hold,
above. This corresponds to a long term short position.
Ridge regression: To test the importance of profit maximization, we consider also ridge
regression (Hoerl and Kennard 1970) which instead minimizes squared error subject
to an L2 regularization term. In this case we do not perform multi-task learning over
companies or time, but instead fit a single regression model per company and ignore
temporal variation. For fairness of evaluation, we use the sliding window evaluation and
validation method for fitting the regularization hyper-parameter, as described in Sect. 5.

6 Evaluation

Our experimental validation seeks to provide empirical answers to several research questions:
whether our approach outperforms simple baselines, the importance of using a profit objec-
tive, the importance of technical analysis features, and the how multi-task learning affects
performance, both over individual companies and over time. We now address each of these
questions in turn.

The overall profit results are shown in Table 2,5 where the models in the top portion of
the table using our techniques for profit maximization, and in the bottom portion, the base-
line techniques. It is clear that the profit-trained models (profits of £45.3–£64.9) outperform
the baselines (−£26.2–£26.2) by a large margin. During the testing period the market went
through peaks and troughs, including two market crashes, with an overall gradual rise, leading
to a positive profit from the buy-and-hold strategy. Despite this our method was able to achieve
excess profits of up to £38.7. The best model predictions significantly outperform random

5 We present other evaluation metrics, including annual return in Sect. 6.1.
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Table 2 Trading results based on a £1 budget, evaluated on 2002–2013 FTSE data over 62 companies

Method Absolute profit

Multi task, tech anal, comp-time reg £64.9

Multi task, tech anal, comp-time reg, compound prof £62.1

Multi task, tech anal, comp reg £61.1

Multi task, tech anal, time reg £55.9

Single task, tech anal £49.3

Single task, window of returns £45.3

Buy-and-hold £26.2

Ridge regression £9.0

Random £0.0 ± 4.6

Short-and-hold £-26.2

trading.6 Our method has identified important patterns in the data to achieve excess profits,
demonstrating that market inefficiencies do exist in historical FTSE market data and can be
exploited. Comparing the ridge regression baseline against the equivalent model Single
task, tech anal trained with a different loss function, shows that optimizing for profit
outperforms squared error loss by £40.3. In fact, ridge regression performed poorly, signif-
icantly outperforming only random trading and Short-and-hold. Using the appropriate loss
function was clearly the single most important modelling decision in terms of net profit. Note
however that using the compounding or non-compounding formulation of profit made little
difference, with compounding under-performing by £2.8, although this did speed up training.

A related question regards the utility of technical analysis features (as described in Sect. 4).
Our intuition was that many of these features could be useful, and using many together
would provide a rich and expressive basis for (non-linear) modelling and thus outperform a
linear autoregressive model. The rows in Table 2 labelled Single task, tech anal
and Single task, window of returns differ in their feature representation: the
former uses our 133 technical analysis features, while the window of returns uses as features
the market history for the past 90 days, i.e., an autoregressive model with a 90 day time lag.
The difference in profit between the two systems is modest but statistically significant, which
shows evidence of the utility of technical analysis. An advantage of using technical indicators
is that they can perform non-linear transformations on the market data. Therefore, using this
basis allows our linear model to learn non-linear relationships over this time-series data. An
interesting extension would be to allow for non-linear functions, which could remove the
need for hand-engineered technical analysis features.

Next, we consider the importance of multi-task learning. Starting with the Single
task, tech anal we can see that multi-task learning over companies (Multi task,
tech anal, comp reg) provides a statistically significant improvement of £10.8 over
independent models per company. Moreover, the temporal regularizer (Multi task,
tech anal, time reg) also results in a significant gain of £6.6, showing that our
method for modelling non-stationarity is effective. Together the two multi-task regularizers
(Multi task, tech anal, comp-time reg) provide a significant profit increase

6 Significance hereinafter is accessed using the Wilcoxon ranked-sign test, p < 0.01.
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Table 3 Top indicators for Capita plc and BG Group plc with multitask learning

Company Date Top positive Top negative

CPI 2004-03-31 MACDEXT CDLCLOSINGMARUBOZU

CPI 2005-08-31 CDLEVENINGSTAR CDLCLOSINGMARUBOZU

CPI 2008-08-31 CDLHIKKAKE CDLHOMINGPIGEON

CPI 2009-07-31 CDLPIERCING CDLCLOSINGMARUBOZU

CPI 2009-11-30 ADXR CDLCLOSINGMARUBOZU

CPI 2010-03-31 CCI CDLCLOSINGMARUBOZU

BG 2004-07-31 CDLHANGINGMAN CDLCLOSINGMARUBOZU

BG 2006-06-30 CDLHANGINGMAN CDLCLOSINGMARUBOZU

BG 2006-08-31 CDLHANGINGMAN CDLCLOSINGMARUBOZU

BG 2008-09-30 HT DCPERIOD HT PHASOR

BG 2011-02-28 HT SINE STOCHRSI

BG 2012-10-31 HT DCPERIOD STOCH

of £15.6 over the single task method.7 The magnitude of this improvement suggests that
the two regularization methods work in complementary ways, and both identify important
aspects in our data.

By examining the feature weights during testing, it is possible to determine which weights
were important and how they contributed to predictions. For the top positive and negative
indicators by weights sampled at random intervals for randomly selected companies CPI
and BG, see Table 3. The fact that some of the top indicators are different in various tasks
justifies having an individual model for each company separately and relating them to the
market average model via the company regularizer. It also shows that the time regularization
can provide additional flexibility in the model. However, note that the top negative feature
persisted for a long time for many companies. The tasks were not forced to share the same
weights as in single task learning, but rather they could learn their own weights which provided
better predictions during testing.

The Hilbert Transform is a technique used to generate in-phase and quadrature components
of a de-trended real-valued signal, such as price series, in order to analyze variations of
the instantaneous phase and amplitude. An interesting note is that HT PHASOR, Hilbert
Transform—Phase components, frequently appeared in the top four positive indicators for
companies during 2002–2003 while it also appeared in the top four negative indicators for
some of the same companies during 2005–2006. The HT DCPERIOD, or Hilbert Transform—
Dominant Cycle Period, is an adaptive stochastic indicator. Given a cyclic price signal, it
attempts to identify the beginning and end of the cycle. CCI, or Commodity Channel Index,
measures the current price level relative to an average price level over a period of time. It
can be used to track the beginning of a new trend or warn of extreme conditions. Both HT
DCPERIOD and CCI had positive weights which suggests that they can provide information
with regard to the beginning of new price trends.

Another interesting observation is the inclusion of behavioral pattern matching indicators
starting with the CDL prefix. CDLCLOSINGMARUBOZU frequently appeared in the top
negative indicators for many companies during various periods. Marubozu is positive when

7 The values learned for the regularizer coefficients were λc = 10 (company), λm = 104 (time), and λl =
10−4 (weight magnitude). Note that none of these values are extreme, illustrating that multi-task learning is
favored over independent learning or pooling.
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(a) (b)

(c) (d)
Fig. 4 Time variations in feature weights (blue line) with 30-month moving average (red dotted line) with
multi-task learning (Color figure online)

the closing price was at a high during the period, indicating a bull market, and negative when
it was at a low, indicating a bear market. Hence, a negative weight would contribute to a
SELL signal when positive and to a BUY signal when negative. This could indicate trend
reversal in stock prices or a reversion to longer term average returns. CDLHANGINGMAN
was another top positive feature. It indicates that despite a large sell-off, the buyers remain
in control and manage to push the prices further up in the short term before an eventual drop.
With a positive weight it has the effect of buying stock shortly before the peak of the price
trend, which is still a good time to do so.

Next, the change of the feature weights is examined over time. Figure 4 demonstrates
that the predictive weight of feature CDLLONGLINE was fairly negative during the initial
testing period, but later it became positive. On the other hand, HT PHASOR behaved the
opposite way. Similarly, the weight of CDLSHOOTINGSTAR started with negative value,
then during the middle of the testing period it became positive, and at the end it went back
to negative. On the other hand, the weights of CDLINNECK seemed to vary periodically
across the time scale. These examples justify the use of time regularization as they show that
there are temporal changes in market conditions to which the feature weights can adapt.

Last, the importance of each feature group is determined, which could result in the omis-
sion of certain features and a simpler model consequently. Table 4 contains ablation analysis of
each technical analysis feature group in terms of predictive power. This shows that the Pattern
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Table 4 Trading with selected feature groups

Feature group Absolute profit

All £64.9

Pattern recognition £54.8

Momentum indicators £47.4

Overlap studies £37.8

Volume indicators £27.1

Cycle indicators £21.2

Price transform £9.0

Volatility indicators £-5.7

Matching indicators had the most predictive power during the experiments, with Momentum
indicators coming close second. On the other hand, Volatility indicators were not very useful
in predicting profitability, but all indicators together still gave a solid boost in performance.

6.1 Trading simulation

The experimental results reported above show the efficacy of our proposed modelling tech-
nique. However the above evaluation used a simplistic trading setting which does not cor-
respond to the conditions an investor would face on the market. Now we seek to augment
the evaluation to cope with real market conditions, by (1) maintaining a running budget
to determine the amount invested each day, (2) disallowing short-selling and (3) including
transaction costs.8 Together these changes provide a more realistic evaluation of the trading
profits and losses.

First, consider the trading amount, which previously was fixed to range between £-1 and
£1. Here instead we allow the budget accumulate throughout the testing period, and scale
all trades by the funds available each day.9 This limits the downside during a run of poor
performance, as investments become proportionally smaller, while also increasing the profits
(and risk) after sustained successful trading. The results of trading with a cumulative balance
are shown in Fig. 5. Even with two significant market crashes, the algorithm made a loss
only temporarily. On average the algorithm made a profit of 101 % which is equivalent to
a 6.53 % annual return, exceeding the baseline buy and hold strategy which returned 22 %
profit overall and 1.8 % annually.

Secondly, although short selling is permitted on many financial markets, it is a controver-
sial practice and is subject to several restrictions and costs. In brief, short selling involves
borrowing a stock from a broker, which is immediately sold on the market. The transaction
is closed later by repurchasing the stock to repay the debt to the broker. This strategy can
be used to profit in a falling market, however, as it involves borrowing with an unlimited
potential for loss, it is not a widely available service and typically incurs significant costs and
collateral requirements. For these reasons we now consider evaluation where short-selling
is disallowed. This allows for the algorithm to applied to a much wider range of markets
and stocks. To support this change, we also allow stocks to be held in long positions, and

8 Note that we allow for fractional stocks to be traded, which is also unrealistic, but would have only a
negligible effect when trading with a sufficiently large budget.
9 This evaluation method corresponds to the compounding training objective U’ in (3). However for simplicity
in this section we evaluate only the model trained without compounding, denoted Multi task, tech
anal, comp-time reg in Sect. 6.
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Fig. 5 Balance evolution, or cumulative profits, of various trading strategies

maintain daily cash and stock balances for each security. This contrasts with the evaluation
in Sect. 6 where each trade was reversed on the following day, such that no ongoing positions
were held. The revised evaluation process starts with a budget of £1 for each security, split
evenly between stock and cash. Buy predictions p(x,w) > 0 are applied to the cash balance,
proportionally to the prediction magnitude, which is then used to increase the investment in
the stock. Sell predictions p(x,w) < 0 are applied proportionally to the stock balance, thus
depleting the stock and increasing the cash balance. Note that as both balances are tracked
separately and will often differ in value, and consequently the same magnitude prediction for
buy versus sell may result in a different value trade. This trading strategy is denoted trading
position. For comparison we also present two modifications to this trading strategy: first
fixed lot trading which scales each trade, by a fixed constant, e.g., 1 %. This helps to limit
extreme trading behavior where all or none of the budget is invested. The other modification
is rebalancing which equalizes the value of stock and cash in each account before applying
the trade. This restores the symmetry of buying and selling, and limits the exposure to large
losses or gains. Note that fixed lot is orthogonal to rebalancing, and we evaluate using both
techniques together.

The final change to our evaluation method is to include transaction costs at 0.6 % of
the transaction value. The results of the trading strategy simulations are shown in Table 5,
where each trade was executed using the closing price of each day. As expected transaction
costs tend to erode the profits, however this was not the case with some trading strategies.
In particular, with a fixed 1 % lot size, the algorithm still made a substantial profit. When
combined with the rebalancing strategy the profits were even greater than positional, which
is even more surprising considering the costs levied on the rebalancing transactions. What
this suggests is that it is important to realize gains and losses quickly. With a positional
trading strategy with 100 % lot size, early trades can have a large affect on the leverage
of later trades. While rebalancing is also similarly affected by compounding balances, it is
overall more conservative and maintains a more diversified portfolio. The algorithm may have
predicted small changes in the relative price movement accurately, but these changes were
not enough to offset the transaction costs, which were not included in the model’s training
objective. However, when the transaction costs were zero, then there was no drawback of
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Table 5 Trading simulations with £1 starting balance, 2002–2013, 62 companies

Transaction cost (%) Trading position Lot size (%) Prediction model End balance

0 Positional 100 Trained model £2.01

0 Positional 100 Buy-and-hold £1.22

0 Positional 100 Random £1.11

0 Positional 1 Trained model £1.18

0 Rebalance 1 Trained model £1.33

0.6 Positional 100 Trained model £0.00

0.6 Positional 100 Buy-and-hold £1.21

0.6 Positional 100 Random £0.00

0.6 Positional 1 Trained model £1.12

0.6 Rebalance 1 Trained model £1.20

predicting small price changes and thus a 100 % lot strategy produced more profit than 1 %
lot. Note that the algorithm came very close to the buy and hold strategy in the transaction
cost case even though it suffered significant transaction costs compared to the practically no
transaction costs of the former. In future work, we plan to extend the model objective to allow
for transaction costs.

6.1.1 Performance metrics

Modern Portfolio Theory gives various measures to evaluate the performance of a trading
strategy. According to the Capital Asset Pricing Model (Sharpe 1964) in order to evaluate
whether an investment is worth the capital, the investor must be compensated for the time
value of his capital and for the risk of losing the investment, also known as risk premium.

Jensen’s alpha (Jensen 1968), αa , can be interpreted as how much the fund strategy out-
performs the baseline investment strategy risk adjusted, αa = ra −(r f +βa(rm −r f )), where
ra is the returns of portfolio or own strategy, r f is the risk-free returns, 3 month UK treasury
bond yields in sterling,10 rm is the market or baseline returns, always buy or buy and hold. A
value above 0 means that the algorithm was able to beat the market in the long term without
taking excess risk. Beta, βa , measures how volatile or risky the strategy is compared to the
baseline, βa = σ(ra ,rm )

σ 2(rm )
, where σ is the covariance function. The Sharpe ratio measures

excess return adjusted by risk (Sharpe 1998), S = ra−r f
σ(ra)

.
The results are summarized in Table 6. An annual rate of 4.3 % was calculated for alpha,

meaning that the algorithm generated risk-free excess profits in the long term, putting it in
the 95 % percentile of funds as measured by a t-distribution of 115 fund performances over
20 years (Jensen 1968). Beta was measured on the monthly time series of the buy and hold
and the own portfolio returns, where 1 denotes the market risk. An annualized value of 0.54
means the algorithm returns were considerably less risky than the market returns. The Sharpe
ratio of 1.52 was computed based on the monthly standard deviation of returns, noting that 1
is considered good, 2 very good and 3 excellent (Lo 2002). In summary, all three measures
confirm the presence of risk adjusted profits from our algorithm’s trading predictions.

10 We used the monthly average 3-month sterling treasury bill discount rate data for 2002–2013 as reported
by the Bank of England, http://www.bankofengland.co.uk/.
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Table 6 Annualized performance metrics of own strategy compared to baseline buy and hold, risk adjusted
by 3 month sterling UK treasury bills discount rate, 2002–2013

Metric Value

Alpha 4.3 %

Beta 0.54

Sharpe 1.52

7 Conclusions

This paper has demonstrated that stock market price movements are predictable, and patterns
of market movements can be exploited to realize excess profits over passive trading strategies.
We developed a model of daily stock trading of several stocks, and a means of training to
directly maximize trading profit. This results in consistent risk-free profit when evaluated on
more than a decade of market data for several UK companies, beating strong baselines includ-
ing buy-and-hold and linear regression. Beyond individual stock modelling, we presented a
multi-task learning approach to account for temporal variations in market conditions as well
as relationships between companies, both demonstrating further improvements in trading
profit. Technical analysis indicators, in particular from the pattern matching and momentum
family, were found to have better predicting power than plain historical returns calculated on
a window of adjacent trading days. Finally, we demonstrated in realistic trading scenarios
that the algorithm was capable of producing a profit when including transaction costs.

Appendix 1: List of company symbols

The following companies were used in the experiments reported in the paper. Shown below
are the stock symbols on the London Stock Exchange.
CPI REX BG AGK BA AZN AAL AMEC CNA LGEN BARC BP REL STAN CRH
GSK PRU LAND MGGT RR DGE SAB NG BLND RIO WTB SMIN RB RDSB
LLOY SGE SHP NXT IMI BLT MKS MRW RBS WEIR WOS HMSO SRP IMT
GKN ADN SVT BSY VOD TSCO SDR UU GFS HSBA RSA OML TATE SN AV
KGF PSON BATS ULVR

Appendix 2: Technical indicators

Overlap studies

BBANDS Bollinger Bands
DEMA Double Exponential Moving Average
EMA Exponential Moving Average
HT_TRENDLINE Hilbert Transform - Instantaneous

Trendline
KAMA Kaufman Adaptive Moving Average
MA Moving average
MAMA MESA Adaptive Moving Average
MAVP Moving average with variable period
MIDPOINT MidPoint over period
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MIDPRICE Midpoint Price over period
SAR Parabolic SAR
SAREXT Parabolic SAR - Extended
SMA Simple Moving Average
T3 Triple Exponential Moving Average (T3)
TEMA Triple Exponential Moving Average
TRIMA Triangular Moving Average
WMA Weighted Moving Average

Momentum indicators

ADX Average Directional Movement Index
ADXR Average Directional Movement Index

Rating
APO Absolute Price Oscillator
AROON Aroon
AROONOSC Aroon Oscillator
BOP Balance Of Power
CCI Commodity Channel Index
CMO Chande Momentum Oscillator
DX Directional Movement Index
MACD Moving Average Convergence/Divergence
MACDEXT MACD with controllable MA type
MFI Money Flow Index
MINUS_DI Minus Directional Indicator
MINUS_DM Minus Directional Movement
MOM Momentum
PLUS_DI Plus Directional Indicator
PLUS_DM Plus Directional Movement
PPO Percentage Price Oscillator
ROC Rate of change : ((price/prevPrice)-1)

*100
ROCP Rate of change Percentage:

(price-prevPrice)/prevPrice
ROCR Rate of change ratio: (price/prevPrice)
RSI Relative Strength Index
STOCH Stochastic
STOCHF Stochastic Fast
STOCHRSI Stochastic Relative Strength Index
TRIX 1-day Rate-Of-Change (ROC) of a Triple

Smooth EMA
ULTOSC Ultimate Oscillator
WILLR Williams’ %R

Volume indicators

AD Chaikin A/D Line
ADOSC Chaikin A/D Oscillator
OBV On Balance Volume
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Cycle indicators

HT_DCPERIOD Hilbert Transform - Dominant Cycle Period
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase
HT_PHASOR Hilbert Transform - Phasor Components
HT_SINE Hilbert Transform - Sine Wave
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode

Price transform

AVGPRICE Average Price
MEDPRICE Median Price
TYPPRICE Typical Price
WCLPRICE Weighted Close Price

Volatility indicators

ATR Average True Range
NATR Normalized Average True Range
TRANGE True Range

Pattern recognition

CDL2CROWS Two Crows
CDL3BLACKCROWS Three Black Crows
CDL3INSIDE Three Inside Up/Down
CDL3LINESTRIKE Three-Line Strike
CDL3OUTSIDE Three Outside Up/Down
CDL3STARSINSOUTH Three Stars In The South
CDL3WHITESOLDIERS Three Advancing White Soldiers
CDLABANDONEDBABY Abandoned Baby
CDLADVANCEBLOCK Advance Block
CDLBELTHOLD Belt-hold
CDLBREAKAWAY Breakaway
CDLCLOSINGMARUBOZU Closing Marubozu
CDLCONCEALBABYSWALL Concealing Baby Swallow
CDLCOUNTERATTACK Counterattack
CDLDARKCLOUDCOVER Dark Cloud Cover
CDLDOJI Doji
CDLDOJISTAR Doji Star
CDLDRAGONFLYDOJI Dragonfly Doji
CDLENGULFING Engulfing Pattern
CDLEVENINGDOJISTAR Evening Doji Star
CDLEVENINGSTAR Evening Star
CDLGAPSIDESIDEWHITE Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI Gravestone Doji
CDLHAMMER Hammer
CDLHANGINGMAN Hanging Man
CDLHARAMI Harami Pattern
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CDLHARAMICROSS Harami Cross Pattern
CDLHIGHWAVE High-Wave Candle
CDLHIKKAKE Hikkake Pattern
CDLHIKKAKEMOD Modified Hikkake Pattern
CDLHOMINGPIGEON Homing Pigeon
CDLIDENTICAL3CROWS Identical Three Crows
CDLINNECK In-Neck Pattern
CDLINVERTEDHAMMER Inverted Hammer
CDLKICKING Kicking
CDLKICKINGBYLENGTH Kicking - bull/bear determined by the

longer marubozu
CDLLADDERBOTTOM Ladder Bottom
CDLLONGLEGGEDDOJI Long Legged Doji
CDLLONGLINE Long Line Candle
CDLMARUBOZU Marubozu
CDLMATCHINGLOW Matching Low
CDLMATHOLD Mat Hold
CDLMORNINGDOJISTAR Morning Doji Star
CDLMORNINGSTAR Morning Star
CDLONNECK On-Neck Pattern
CDLPIERCING Piercing Pattern
CDLRICKSHAWMAN Rickshaw Man
CDLRISEFALL3METHODS Rising/Falling Three Methods
CDLSEPARATINGLINES Separating Lines
CDLSHOOTINGSTAR Shooting Star
CDLSHORTLINE Short Line Candle
CDLSPINNINGTOP Spinning Top
CDLSTALLEDPATTERN Stalled Pattern
CDLSTICKSANDWICH Stick Sandwich
CDLTAKURI Takuri (Dragonfly Doji with very long

lower shadow)
CDLTASUKIGAP Tasuki Gap
CDLTHRUSTING Thrusting Pattern
CDLTRISTAR Tristar Pattern
CDLUNIQUE3RIVER Unique 3 River
CDLUPSIDEGAP2CROWS Upside Gap Two Crows
CDLXSIDEGAP3METHODS Upside/Downside Gap Three Methods
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