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Abstract Probabilistic topicmodeling of text collections has been recently developedmainly
within the framework of graphical models and Bayesian inference. In this paper we intro-
duce an alternative semi-probabilistic approach,whichwe call additive regularization of topic
models (ARTM). Instead of building a purely probabilistic generative model of text we regu-
larize an ill-posed problem of stochastic matrix factorization by maximizing a weighted sum
of the log-likelihood and additional criteria. This approach enables us to combine probabilis-
tic assumptions with linguistic and problem-specific requirements in a single multi-objective
topic model. In the theoretical part of the work we derive the regularized EM-algorithm and
provide a pool of regularizers, which can be applied together in any combination. We show
that many models previously developed within Bayesian framework can be inferred easier
within ARTM and in some cases generalized. In the experimental part we show that a combi-
nation of sparsing, smoothing, and decorrelation improves several quality measures at once
with almost no loss of the likelihood.
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1 Introduction

Topic modeling is a rapidly developing branch of statistical text analysis (Blei 2012). A
probabilistic topic model of a text collection defines each topic by a multinomial distribution
over words, and then describes each document with a multinomial distribution over topics.
Such representation reveals a hidden thematic structure of the collection and promotes the
usage of topic models in information retrieval, classification, categorization, summarization
and segmentation of texts.

Latent Dirichlet allocation (LDA) (Blei et al. 2003) is the most popular probabilistic topic
model. LDA is a two-level Bayesian generativemodel, inwhich topic distributions overwords
and document distributions over topics are generated from prior Dirichlet distributions. This
assumption reducesmodel complexity and facilitatesBayesian inference due to the conjugacy
of Dirichlet and multinomial distributions.

Hundreds of LDA extensions have been developed recently to model natural language
phenomena and to incorporate additional information about authors, time, labels, categories,
citations, links, etc., (Daud et al. 2010).

Nevertheless, building combined and multi-objective topic models remains a difficult
problem in Bayesian approach because of a complicated inference in the case of a non-
conjugate prior. This open issue is little discussed in the literature. An evolutionary approach
has been proposed recently (Khalifa et al. 2013), but it seems to be computationally infeasible
for large text collections.

Another difficulty is that Dirichlet prior conflicts with natural assumptions of sparsity.
A document usually contains a small number of topics, and a topic usually consists of a
small number of domain-specific terms. Therefore, most words and topics must have zero
probabilities. Sparsity helps to save memory and time in modeling large text collections.
However, Bayesian approaches to sparsing (Shashanka et al. 2008; Wang and Blei 2009;
Larsson and Ugander 2011; Eisenstein et al. 2011; Chien and Chang 2013) suffer from an
internal contradiction with Dirichlet prior, which can not produce vectors with zero elements.

To address the aboveproblemswe introduce anon-Bayesian semi-probabilistic approach—
Additive Regularization of Topic Models (ARTM). Learning a topic model from a document
collection is an ill-posed problem of approximate stochastic matrix factorization, which has
an infinite set of solutions. To choose a better solution, we add regularization penalty terms
to the log-likelihood. Any problem-oriented regularizers or their linear combination may be
used instead ofDirichlet prior or togetherwith it. The idea ofARTM is inspired byTikhonov’s
regularization of ill-posed inverse problems (Tikhonov and Arsenin 1977).

Additive regularization differs from Bayesian approach in several aspects.
Firstly, we do not aim to build a fully generative probabilistic model of text. Many require-

ments for a topic model can be more naturally formalized in terms of optimization criteria
rather than prior distributions. Regularizers may have no probabilistic interpretation at all.
The structure of regularized models is so straightforward that their representation and expli-
cation in terms of graphical models is no longer needed. Thus, ARTM falls into the trend of
avoiding excessive probabilistic assumptions in natural language processing.

Secondly, we use the regularized expectation–maximization (EM) algorithm instead of
more complicated Bayesian inference. We do not use conjugate priors, integrations, and
variational approximations. Despite these fundamental differences both approaches often
result in the same or very similar learning algorithms, but in ARTM the inference is much
shorter.

Thirdly, ARTM considerably simplifies both design and inference of multi-objective topic
models. At the design stage we formalize each requirement for the model in a form of a
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regularizer—a criterion to be maximized. At the inference stage we simply differentiate
each regularizer with respect to the model parameters.

ARTM also differs from previous regularization techniques each designed for a particu-
lar regularizer such as KL-divergence, Dirichlet prior, L1 or L2 penalty terms (Si and Jin
2005; Chien and Wu 2008; Wang et al. 2011; Larsson and Ugander 2011). ARTM is not an
incremental improvement of a particular topic model, but a new instrument for building and
combining topic models much easier than in the state-of-the-art Bayesian approach.

The aim of the paper is to introduce a new regularization framework for topic modeling
and to provide an initial pool of useful regularizers.

The rest of the paper is organized as follows.
In Sect. 2 we describe probabilistic latent semantic analysis (PLSA) model, the historical

predecessor of LDA. We introduce the EM-algorithm from optimizational point of view.
Then we show experimentally on synthetic data that both PLSA and LDA give non-unique
and unstable solutions. Further we use PLSA as a more appropriate base for a stronger
problem-oriented regularization.

In Sect. 3 we introduce the ARTM approach and prove general equations for regularized
EM-algorithm. It is a major theoretical contribution of the paper.

In Sect. 4 we work out a pool of regularizers by revising known topic models. We pro-
pose an alternative interpretation of LDA as a regularizer that minimizes Kullback–Leibler
divergence with a fixed multinomial distribution. Then we consider regularizers for smooth-
ing, sparsing, semi-supervised learning, topic correlation and decorrelation, topic coherence
maximization, documents linking, and document classification. Most of them require tedious
calculations within Bayesian approach, whereas ARTM leads to similar results “in one line”.

In Sect. 5 we combine three regularizers from our pool to build a highly sparse and
well interpretable topic model. We propose to monitor many quality measures during EM-
iterations to choose the regularization path empirically for a multi-objective topic model. In
our experiment wemeasure sparsity, kernel size, coherence, purity, and contrast of the topics.
We show that ARTM improves all measures at once almost without any loss of the hold-out
perplexity.

In Sect. 6 we discuss advantages and limitations of ARTM.

2 Topic models PLSA and LDA

Let D denote a set (collection) of texts and W denote a set (vocabulary) of all terms from
these texts. Each term can represent a single word as well as a key phrase. Each document
d ∈ D is a sequence of nd terms (w1, . . . , wnd ) from the vocabulary W . Each term might
appear multiple times in the same document.

Assume that each termoccurrence in each document refers to some latent topic fromafinite
set of topics T . Text collection is considered to be a sample of triples (wi , di , ti ), i = 1, . . . , n
drawn independently from a discrete distribution p(w, d, t) over a finite space W × D × T .
Term w and document d are observable variables, while topic t is a latent (hidden) variable.
Following the “bag ofwords”model, we represent each document by a subset of terms d ⊂ W
and the corresponding integers ndw, which count how many times the term w appears in the
document d .

Conditional independence is an assumption that each topic generates terms regardless of
the document: p(w | t) = p(w | d, t). According to the law of total probability and the
assumption of conditional independence
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p(w | d) =
∑

t∈T
p(t | d) p(w | t). (1)

The probabilistic model (1) describes how the collection D is generated from the known
distributions p(t | d) and p(w | t). Learning a topic model is an inverse problem: to find
distributions p(t | d) and p(w | t) given a collection D. This problem is equivalent to finding
an approximate representation of counter matrix

F = (
p̂wd

)
W×D, p̂wd = p̂(w | d) = ndw

nd
, (2)

as a product F ≈ ΦΘ of two unknown matrices—the matrix Φ of term probabilities for the
topics and the matrix Θ of topic probabilities for the documents:

Φ = (φwt )W×T , φwt = p(w | t), φt = (φwt )w∈W ;
Θ = (θtd)T×D, θtd = p(t | d), θd = (θtd)t∈T .

(3)

Matrices F , Φ and Θ are stochastic, that is, they have non-negative and normalized
columns representing discrete distributions. Usually the number of topics |T | is much smaller
than the collection size |D| and the vocabulary size |W |.

In probabilistic latent semantic analysis PLSA (Hofmann 1999) the topic model (1) is
learned by log-likelihood maximization with linear constrains:

L(Φ,Θ) = ln
∏

d∈D

∏

w∈d
p(w | d)ndw =

∑

d∈D

∑

w∈d
ndw ln

∑

t∈T
φwtθtd → max

Φ,Θ
; (4)

∑

w∈W
φwt = 1, φwt � 0;

∑

t∈T
θtd = 1, θtd � 0. (5)

Theorem 1 The stationary point of the optimization problem (4), (5) satisfies the system of
equations with auxiliary variables ptdw , nwt , ntd , nt , nd

ptdw = φwtθtd∑
s∈T φwsθsd

; (6)

φwt = nwt

nt
, nwt =

∑

d∈D
ndw ptdw, nt =

∑

w∈W
nwt ; (7)

θtd = ntd
nd

, ntd =
∑

w∈d
ndw ptdw, nd =

∑

t∈T
ntd . (8)

This statement follows from Karush–Kuhn–Tucker (KKT) conditions. We will prove a
more general theorem in the sequel. The system of Eqs. (6)–(8) can be solved by various
numerical methods. Particularly, the simple-iteration method is equivalent to the EM algo-
rithm, which is typically used in practice.

EM algorithm repeats two steps in a loop.
The expectation step or E-step (6) can be understood as the Bayes’ rule for the probability

distribution p(t | d, w):

ptdw = p(t | d, w) = p(w, t |d)

p(w|d)
= p(w|t)p(t |d)

p(w|d)
= φwtθtd∑

s φwsθsd
. (9)

The value ntdw = ndw ptdw estimates howmany times the termw appears in the document
d with relation to the topic t .

The maximization step or M-step (7), (8) can therefore be interpreted as frequency esti-
mates for the conditional probabilities φwt and θtd .
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Algorithm 2.1: The rational EM-algorithm for PLSA
Input: document collection D, number of topics |T |;
Output: Φ, Θ;

initialize vectors φt , θd randomly;1
repeat2

zeroize nwt , ntd , nt , nd for all d ∈ D, w ∈ W , t ∈ T ;3
forall d ∈ D, w ∈ d do4

Z := ∑
t∈T φwt θtd ;5

forall t ∈ T : φwt θtd > 0 do6
increase nwt , ntd , nt , nd by δ = ndwφwt θtd/Z ;7

φwt := nwt/nt for all w ∈ W , t ∈ T ;8
θtd := ntd/nd for all d ∈ D, t ∈ T ;9

until Φ and Θ converge;10

Algorithm 2.1 reorganizes EM iterations by incorporating the E-step inside the M-step.
Thus it avoids storage of a three-dimensional array ptdw . Each EM iteration is a run through
the entire collection.

Equations (6)–(8) can be rewritten in a shorter notation by omitting normalization and
using the proportionality sign: ptdw ∝ φwtθtd ; φwt ∝ nwt ; θtd ∝ ntd .

In latent Dirichlet allocation (LDA) parameters Φ,Θ are constrained by an assump-
tion that vectors φt and θd are drawn from Dirichlet distributions with hyperparameters
β = (βw)w∈W and α = (αt )t∈T respectively (Blei et al. 2003). Learning algorithms for LDA
generally fall into two categories—sampling-based algorithms (Steyvers and Griffiths 2004)
and variational algorithms (Teh et al. 2006). In Gibbs Sampling (LDA-GS) a topic t is sam-
pled from the probability distribution p(t | d, w) for each term occurrence w = wi , then
counters nwt , ntd , nt , nt are increased by 1. Learning algorithms for LDA can also be con-
sidered as EM-like algorithms with modified M-step (Asuncion et al. 2009). The following
is the most simple and frequently used modification:

φwt ∝ nwt + βw, θtd ∝ ntd + αt . (10)

It is generally recognized since the work of Blei et al. (2003) that LDA is less subjected
to overfitting than PLSA. Nevertheless, recent experiments show that the performance of
PLSA and LDA differs insignificantly on large text collections (Masada et al. 2008; Wu et
al. 2010; Lu et al. 2011). The reason is that the optimal values of hyperparameters βw and
αt are usually close to zero (Wallach et al. 2009). Therefore they affect only small values
nwt and ntd corresponding to the rare terms of topics and rare topics of documents. Robust
variants of PLSA and LDA models describe rare terms by a separate model component and
have nearly the same performance (Potapenko and Vorontsov 2013). This means that LDA
reduces overfitting only for insignificantly rare terms and topics. Thus overfitting does not
seems to be such a serious problem for probabilistic topic models.

In contrast, the non-uniqueness, which causes the instability of the solution, is a serious
problem. The likelihood (4) depends on the productΦΘ , which is defined up to a linear trans-
formation: ΦΘ = (ΦS)(S−1Θ), where Φ ′ = ΦS and Θ ′ = S−1Θ are stochastic matrices.
The transformation S is not controlled by EM-like algorithms and may depend on random
initialization.

We performed the following experiment on the synthetic data in order to assess the ability
of PLSA and LDA to restore true matricesΦ,Θ . The collection was generated with the para-
meters |W | = 1,000, |D| = 500, |T | = 30, the lengths of the documents nd ∈ [100, 600]
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Fig. 1 Errors in restoring the matricesΦ,Θ andΦΘ over hyperparameter β while α = 0.01 is fixed for LDA
Gibbs sampling (left chart) and PLSA-EM (right chart)

Fig. 2 Errors in restoring the matricesΦ,Θ andΦΘ over hyperparameter α while β = 0.01 is fixed for LDA
Gibbs Sampling (left chart) and PLSA-EM (right chart)

were chosen randomly.Columnsof thematricesΦ,Θ were drawn from the symmetricDirich-
let distributions with parameters β, α respectively. The differences between the restored dis-
tributions p̂(i | j) and the synthetic ones p(i | j), j = 1, . . . ,m were measured by the
average Hellinger distance both for the matrices Φ,Θ and for their product:

DΦ = H(Φ̂,Φ); DΘ = H(Θ̂,Θ); DΦΘ = H(Φ̂Θ̂,ΦΘ); (11)

H( p̂, p) = 1

m

m∑

j=1

√
1

2

∑

i

(√
p̂(i | j) − √

p(i | j)
)2

. (12)

PLSA and LDA turned out to restore the matrices Φ,Θ much worse than their product,
Figs. 1, 2. The error depends on the sparsity of the original matricesΦ,Θ . In our experiments
LDA did not perform well even when we used the same hyperparameters α, β for synthetic
data generation and for LDA-GS algorithm.

These facts show that the Dirichlet distribution is tooweak as a regularizer.More problem-
oriented regularizers are needed to formalize additional restrictions on the matricesΦ,Θ and
to ensure uniqueness and stability of the solution. Therefore our starting point will be the
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PLSA model, free of regularizers, but not the LDA model, even though it is more popular in
recent research works.

3 EM-algorithm with additive regularization

Consider r additional objectives Ri (Φ,Θ), i = 1, . . . , r , called regularizers. To maximize
these objectives together with the likelihood (4) consider their linear combination with non-
negative regularization coefficients τi :

R(Φ,Θ) =
r∑

i=1

τi Ri (Φ,Θ), L(Φ,Θ) + R(Φ,Θ) → max
Φ,Θ

. (13)

Topic t is called regular if nwt + φwt
∂R

∂φwt
> 0 for at least one term w ∈ W . If the reverse

inequality holds for all w ∈ W then topic t is called overregularized.
Document d is called regular if ntd + θtd

∂R
∂θtd

> 0 for at least one topic t ∈ T . If the
reverse inequality holds for all t ∈ T then document d is called overregularized.

Theorem 2 If the function R(Φ,Θ) is continuously differentiable and (Φ,Θ) is the local
maximum of the problem (13), (5), then for any regular topic t and any regular document d
the system of equations holds:

ptdw = φwtθtd∑
s∈T φwsθsd

; (14)

φwt ∝
(
nwt + φwt

∂R

∂φwt

)

+
; nwt =

∑

d∈D
ndw ptdw; (15)

θtd ∝
(
ntd + θtd

∂R

∂θtd

)

+
; ntd =

∑

w∈d
ndw ptdw; (16)

where (z)+ = max{z, 0}.

Note 1 If a topic t is overregularized then (15) gives φt = 0. In this case we have to exclude
the topic t from the model. Topic overregularization is a mechanism that can eliminate
irrelevant topics and optimize the number of topics.

Note 2 If a document d is overregularized then Eq. (16) gives θd = 0. In this case we have
to exclude the document d from the model. For example, a document may be too short, or
have no relation to the thematics of a given collection.

Note 3 Theorem 1 is the particular case of Theorem 2 at R(Φ,Θ) = 0.

Proof For the local minimum (Φ,Θ) of the problem (13), (5) the KKT conditions can be
written as follows:

∑

d

ndw

θtd

p(w | d)
+ ∂R

∂φwt
= λt − λwt ; λwt � 0; λwtφwt = 0, (17)

where λt and λwt are KKTmultipliers for normalization and nonnegativity constrains respec-
tively. Let us multiply both sides of the first equation by φwt , identify the right-hand side of
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(14) and replace it by the left-hand side variable ptdw . Then we apply the definition of nwt

from (15):

φwtλt =
∑

d

ndw

φwtθtd

p(w | d)
+ φwt

∂R

∂φwt
= nwt + φwt

∂R

∂φwt
. (18)

An assumption that λt � 0 contradicts the regularity condition for the topic t . Then
λt > 0, φwt � 0. The left-hand side is nonnegative, thus the right-hand side is nonnegative
too, consequently,

φwtλt =
(
nwt + φwt

∂R

∂φwt

)

+
. (19)

Let us sum both sides of this equation over all w ∈ W :

λt =
∑

w∈W

(
nwt + φwt

∂R

∂φwt

)

+
. (20)

Finally, we obtain (15) by expressing φwt from (19) and (20).
Equations for θtd are derived analogously thus finalizing the proof. �	
The system of Eqs. (14)–(16) defines a regularized EM-algorithm. It keeps E-step (6)

and redefines M-step by regularized Eqs. (15), (16). Thus, the EM-algorithm for learning
regularized topic models can be implemented by easy modification of any EM-like algorithm
at hand. Particularly, in Algorithm 2.1 we are to modify only steps 8 and 9 according to Eqs.
(15), (16).

4 Regularization criteria for topic models

In this section we collect a pool of regularizers that can be used in any combination or
separately.We revise some of well-known topicmodels that were originally developedwithin
Bayesian approach.We show thatARTMgives similar ormore general results through amuch
simpler inference based on Theorem 2.

We will intensively use the Kullback–Leibler divergence (relative entropy) to measure the
difference between multinomial distributions (pi )ni=1 and (qi )ni=1:

KL(p‖q) ≡ KLi (pi‖qi ) =
n∑

i=1

pi ln
pi
qi

. (21)

Recall that the minimization of the KL-divergence is equivalent to maximizing the likelihood
of the model distribution q for the empirical distribution p.

Smoothing regularization and LDA Let us minimize the KL-divergence between the distri-
butions φt and a fixed distribution β = (βw)w∈W , and the KL-divergence between θd and a
fixed distribution α = (αt )t∈T :

∑

t∈T
KLw(βw‖φwt ) → min

Φ
,

∑

d∈D
KLt (αt‖θtd) → min

Θ
. (22)

After summing these criteria with coefficients β0, α0 and removing constants we get the
regularizer

R(Φ,Θ) = β0

∑

t∈T

∑

w∈W
βw ln φwt + α0

∑

d∈D

∑

t∈T
αt ln θtd → max . (23)
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The regularized M-step (15) and (16) gives equations

φwt ∝ nwt + β0βw, θtd ∝ ntd + α0αt , (24)

which are exactly the same as the M-step (10) in LDA model with hyperparameter vectors
β = β0(βw)w∈W and α = α0(αt )t∈T of the Dirichlet distributions.

The non-Bayesian interpretation of the smoothing regularization in terms of KL-
divergence is simple, natural, and avoids complicated inference.

Sparsing regularization The opposite regularization strategy is to maximize KL-divergence
between φt , θd and fixed distributions β, α:

R(Φ,Θ) = −β0

∑

t∈T

∑

w∈W
βw ln φwt − α0

∑

d∈D

∑

t∈T
αt ln θtd → max . (25)

For example, to find a sparse distributions φwt with lower entropywemay choose the uniform
distribution βw = 1

|W | , which is known to have the largest entropy.
The regularized M-step (15) and (16) gives equations that differ from the smoothing

equations in the sign of the parameters β, α:

φwt ∝ (
nwt − β0βw

)
+, θtd ∝ (

ntd − α0αt
)
+. (26)

The idea of entropy-based sparsingwas originally proposed in the dynamicPLSA for video
processing to produce sparse distributions of topics over time (Varadarajan et al. 2010). The
conflict between Dirichlet prior and sparsing assumption leads to sophisticated sparse LDA
models (Shashanka et al. 2008; Wang and Blei 2009; Eisenstein et al. 2011; Larsson and
Ugander 2011; Chien and Chang 2013). A simple and natural sparsing becomes possible due
to abandoning the Dirichlet prior within ARTM semi-probabilistic regularization framework.

Smoothing regularization for semi-supervised learning Consider a collection, which is par-
tially labeled by experts: each document d from a subset D0 ⊆ D is associated with a subset
of topics Td ⊂ T , and each topic t from a subset T0 ⊂ T is associated with a subset of terms
Wt ⊂ W . It is usually expected that labeling information helps to improve the interpretability
of topics.

Consider the regularizer that minimizes KL-divergence between φt , θd and uniform dis-
tributions βwt = 1

|Wt | [w ∈ Wt ], αtd = 1
|Td | [t ∈ Td ] respectively:

R(Φ,Θ) = β0

∑

t∈T0

∑

w∈W
βwt ln φwt + α0

∑

d∈D0

∑

t∈T
αtd ln θtd → max . (27)

The regularized M-step (15) and (16) gives another kind of smoothing:

φwt ∝ nwt + β0βwt [t ∈ T0]; (28)

θtd ∝ ntd + α0αtd [d ∈ D0]. (29)

This can be considered as yet another generalization of LDA, in which vectors β, α are
different for the respective distributions φt , θd depending on labeled data.

Decorrelation of topics Reducing the overlapping between the topic-word distributions is
known to make the learned topics more interpretable (Tan and Ou 2010). A regularizer that
minimizes covariance between vectors φt ,

R(Φ) = −γ
∑

t∈T

∑

s∈T \t

∑

w∈W
φwtφws → max, (30)
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leads to the following equation of the M-step:

φwt ∝
(
nwt − γφwt

∑

s∈T \t
φws

)

+. (31)

From this formula we conclude that for each term w the highest probabilities φwt will
increase even further, while small probabilities will decrease from iteration to iteration, and
may eventually turn into zeros. Therefore, this regularizer also stimulates sparsity. Besides,
it has another useful property, which is to group stop-words into a separate topic (Tan and
Ou 2010).

Covariance regularization for documents Sometimes we possess information that some doc-
uments are likely to share similar topics. For example, they may fall into the same category
or one document may have a reference or a link to the other. Making use of this information
in terms of the regularizer, we get:

R(Θ) = τ
∑

d,c

ndc
∑

t∈T
θtdθtc → max, (32)

where ndc is the weight of the link between documents d and c. A similar model LDA-JS by
Dietz et al. (2007) is based on the minimization of Jensen–Shannon divergence between θd
and θc, rather than on the covariance maximization.

According to (16), the equation for θtd in the M-step turns into

θtd ∝ ntd + τθtd
∑

c∈D
ndcθtc. (33)

This is a kind of smoothing regularizer, which adjusts probabilities θtd so that they become
closer to θtc for all documents c, connected with d .

Correlated topic model (CTM) was first introduced by Blei and Lafferty (2007) to find strong
correlations between topics. For example, a document about geology is more likely to also
be about archeology than genetics.

In CTM the correlation between topics ismodeled by an assumption that document vectors
θd are generated by logistic normal prior distribution:

θtd = exp(ηtd)∑
s∈T exp(ηsd)

; p(ηd | μ,Σ) = exp
(− 1

2 (ηd − μ)TΣ−1(ηd − μ)
)

(2π)
n
2 |Σ | 12

, (34)

where |T |-vectorμ and |T |×|T | covariancematrixΣ are parameters ofGaussian distribution.
Document vectorsηd ∈ R

|T | are determined by the corresponding vectors θd up to an arbitrary
document-dependent constant Cd :

ηtd = ln θtd + Cd . (35)

Initially CTM was developed within Bayesian approach, although Bayesian inference is
complicated by the fact that the logistic normal distribution is not conjugate to the multino-
mial. We argue that the very idea of CTM can be alternatively implemented and easier
understood within ARTM approach.

In terms of ARTM we define a regularizer as the log-likelihood of the logistic normal
model for a sample of the document vectors ηd :

R(Θ) = τ
∑

d∈D
ln p(ηd |μ,Σ) = −τ

2

∑

d∈D
(ηd−μ)TΣ−1(ηd−μ)+const → max . (36)
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According to (16) the equation for θtd in the M-step turns into

θtd ∝
(
ntd − τ

∑

s∈T
Σ̃ts (ln θsd − μs)

)

+
, (37)

where Σ−1 = (Σ̃ts)T×T is the inverse covariance matrix.
The parameters Σ,μ of Gaussian distribution are assumed to be constant during the

iteration. Following the idea of block-coordinate optimization we estimate them after each
run through the collection (in Algorithm 2.1 after step 9):

μ = 1

|D|
∑

d∈D
ln θd ; (38)

Σ = 1

|D|
∑

d∈D

(
ln θd − μ)

(
ln θd − μ)T. (39)

Then we invert the covariance matrix and turn insignificant values Σ̃ts into zeros to get
sparse solution and reduce computations in (37). Blei and Lafferty (2007) propose to use
lasso regression for this purpose.

Coherence regularization A topic is called coherent if its most frequent words typically
appear nearby in the documents—either in the training collection, or in some external corpus
likeWikipedia.An average topic coherence is considered to be a good interpretabilitymeasure
of a topic model (Newman et al. 2010b).

Let Cwv = p̂(w | v) denote an estimate of the co-occurrence of word pairs (w, v) ∈ W 2.
Usually, Cwv is defined as a portion of the documents that contain both words v and w in a
sliding window of ten words.

Let us estimate the conditional probability p(w | t) from φvt = p(v | t) over all coherent
words v using the law of total probability:

p̂(w | t) =
∑

v∈W\w
Cwvφvt =

∑

v∈W\w

Cwvnvt

nt
. (40)

Consider a regularizer which minimizes the weighted sum of KL-divergences between
the empirical distribution p̂(w | t) and the model distribution φwt :

R(Φ) = τ
∑

t∈T
nt

∑

w∈W
p̂(w | t) ln φwt → max . (41)

According to (15) the equation of the M-step turns into

φwt ∝ nwt + τ
∑

v∈W\w
Cwvnvt . (42)

The same formulawas derived byMimno et al. (2011) for LDAmodel andGibbs Sampling
algorithm, from more complicated reasoning through a generalized Polya urn model and a
more complex heuristic estimate for Cwv .

Newman et al. (2011) propose yet another regularizer:

R(Φ) = τ
∑

t∈T
ln

∑

u,v∈W
Cuvφutφvt → max, (43)

where Cuv = Nuv if PMI(u, v) > 0 and Cuv = 0 otherwise, pointwise mutual information
PMI(u, v) = ln |D|Nuv

NuNv
depends on document frequencies: Nuv is the number of documents
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that contain both words u, v in a sliding window of ten words, Nu is the number of documents
that contain at least one occurrence of the word u.

Thus we conclude that there is no commonly accepted approach to the coherence opti-
mization in the literature. All approaches that we have found so far can be easily expressed
in terms of ARTM without Dirichlet priors.

Document classification Let C be a finite set of classes. Suppose each document d is labeled
by a subset of classes Cd ⊂ C . The task is to infer a relationship between classes and topics,
to improve a topic model by using labeling information, and to learn a decision rule, which is
able to classify new documents. Common discriminative approaches such as SVMor Logistic
Regression usually give unsatisfactory results on large text collections with a big number of
unbalanced and interdependent classes. Probabilistic topic model can benefit in this situation
because it processes all classes simultaneously (Rubin et al. 2012).

There are many examples of document labeling in the literature. Classes may refer to
text categories (Rubin et al. 2012; Zhou et al. 2009), authors (Rosen-Zvi et al. 2004), time
periods (Cui et al. 2011; Varadarajan et al. 2010), cited documents (Dietz et al. 2007), cited
authors (Kataria et al. 2011), users of documents (Wang and Blei 2011). More information
about special models can be found in the survey (Daud et al. 2010). All these models fall
into several groups and all of them can be easily expressed in terms of ARTM. Below we
consider a close analogue of Dependency LDA (Rubin et al. 2012), one of the most general
topic models for document classification.

We expand the probability space to the set D×W ×T ×C and assume that each termw in
document d is related to both topic t ∈ T and class c ∈ C . To classify documents we model
distribution p(c | d) over classes for each document d . We assume that classes of a document
are determined by its topics, then conditional independence assumption p(c | t) = p(c | d, t)
is satisfied. This allows us to express p(c | d) in terms of class probabilities for the topics
p(c | t) = ψct and topic probabilities for the documents p(t | d) = θtd in the way that is
similar to the basic topic model (1):

p(c | d) =
∑

t∈T
ψctθtd . (44)

Thus we introduce a third stochastic matrix of model parameters Ψ = (ψct )C×T .
Another conditional independence p(w, c | d) = p(w | d) p(c | d) allows to split the

log-likelihood into PLSA term L(Φ,Θ) as in (4) and a regularization term Q(Ψ,Θ):

ln
∏

d∈D

∏

w∈d
p(w, c | d)ndw = L(Φ,Θ) + τQ(Ψ,Θ) → max

Φ,Θ,Ψ
; (45)

Q(Ψ,Θ) =
∑

d∈D

∑

c∈C
mdc ln

∑

t∈T
ψctθtd , (46)

wheremdc is the empirical frequency of classes in document d . It can be estimated via uniform
distribution over classes: mdc = nd

[c∈Cd ]
|Cd | . The regularization coefficient τ may be set to 1

or it may be used to trade-off the document language model p(w | d) and the document
classification model p(c | d). The regularizer Q can be considered as a minimization of
KL-divergence between the probability model of classification p(c | d) and the empirical
class frequency mdc. The problem (45), (46) can still be solved via the regularized EM-like
algorithm due to the following generalization of Theorem 2.

Theorem 3 If the function R(Φ,Ψ,Θ) of stochastic matrices Φ,Ψ,Θ is continuously dif-
ferentiable and (Φ,Ψ,Θ) is the local maximum of L(Φ,Θ) + τQ(Ψ,Θ) + R(Φ,Ψ,Θ)
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then for any regular topic t and any regular document d the system of equations holds:

ptdw = φwtθtd∑
s∈T φwsθsd

; ptdc = ψctθtd∑
s∈T ψcsθsd

; (47)

φwt ∝
(
nwt + φwt

∂R

∂φwt

)

+
; nwt =

∑

d∈D
ndw ptdw; (48)

ψct ∝
(
mct + ψct

∂R

∂ψct

)

+
; mct =

∑

d∈D
mdc ptdc; (49)

θtd ∝
(
ntd + τmtd + θtd

∂R

∂θtd

)

+
; ntd =

∑

w∈d
ndw ptdw; mtd =

∑

c∈Cd

mdc ptdc.

(50)

We omit the proof, which is analogous to the proof of Theorem 2.
Regularization term R(Φ,Ψ,Θ) can include Dirichlet prior for Ψ , as in Dependency

LDA, but sparsing seems to be a more natural choice.
Another useful example of R is label regularization.

Label regularization is known to improve multi-label classification for unbalanced classes
(Mann and McCallum 2007; Rubin et al. 2012). We encourage the similarity between the
model distribution p(c) and the empirical class frequency p̂c in the training data:

R(Ψ ) = ξ
∑

c∈C
p̂c ln p(c) → max, p(c) =

∑

t∈T
ψct p(t), p(t) = nt

n
, (51)

where ξ is the regularization coefficient. The formula for the M-step (49)

ψct ∝ mct + ξ p̂c
ψct nt∑
s∈T ψcsns

(52)

results in smoothing of distributions ψct proportionally to the frequencies p̂c.

5 Combining regularizers for sparsing and improving interpretability

Interpretability of a topic is a poorly formalized requirement. Essentiallywhat itmeans is that,
provided with the list of the most frequent terms and the most representative documents of a
topic, a human can understand its meaning and give it an appropriate name. The interpretabil-
ity is an important property for information retrieval, systematization and visualization of
text collections.

Most of the existing approaches involve human assessment. Newman et al. (2009) ask
experts to assess the usefulness of topics by a 3-point scale. Chang et al. (2009) prepare lists
of 10 most frequent words for each topic, intruding one random word into each list. A topic
is considered to be interpretable if experts can correctly identify the intrusion word. Human-
based approach is important at research stage, but it prohibits a fully automatic construction
of the topic model.

Coherence is the most popular automatic measure, which is known to correlate well
with human estimates of the interpretability (Newman et al. 2010a, b; Mimno et al. 2011).
Coherence measures how often the most probable words of the topic occur nearby in the
documents from the underlying collection or from external polythematic collection such as
Wikipedia.
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Fig. 3 The example of sparse
matrices Φ and Θ with specific
and background topics.
Background topics are shown as
two rightmost columns in Φ and
two lowest rows in Θ

In this paper we propose another formalization of interpretability, which also does not
require human assessment. We assume that each interpretable topic contains its own lexical
kernel—a set of specific terms for a particular domain area, which have high probability in
this topic, and lower probabilities in other topics. Lexical kernel of the topic should be free
of common lexis words, which frequently occur in many documents. Thus, we want to find
matrices Φ and Θ with a sparsity structure similar to the one displayed in Fig. 3. To do this
we split the set of topics T into two subsets: domain-specific topics S and background topics
B.

Domain-specific topic t ∈ S contains terms of a particular domain area. Domain-specific
distributions p(w | t) are sparse and weakly correlated. Their corresponding distributions
p(d | t) are also sparse, because each domain-specific topic occurs in a relatively small
number of documents.

Background topic t ∈ B contains common lexis words. Background distributions p(w | t)
and p(d | t) are smooth, because backgroundwords occur in many documents. A topic model
with background can be considered as a generalization of robust models, which use only one
background distribution (Chemudugunta et al. 2007; Potapenko and Vorontsov 2013).

Combining sparsing, smoothing, and decorrelation To obtain the sparsity sructure of Φ and
Θ matrices as shown in Fig. 3, we propose a combination of five regilarizers: smoothing of
background topics in matrices Φ and Θ , sparsing of domain-specific topics in matrices Φ

and Θ , and decorrelation of domain-specific topics in matrix Φ:

R(Φ,Θ) = − β0

∑

t∈S

∑

w∈W
βw ln φwt − α0

∑

d∈D

∑

t∈S
αt ln θtd

+ β1

∑

t∈B

∑

w∈W
βw ln φwt + α1

∑

d∈D

∑

t∈B
αt ln θtd

− γ
∑

t∈T

∑

s∈T \t

∑

w∈W
φwtφws → max . (53)

We use uniform distribution αt and two types of background distribution βw: either a uniform
distribution, or the term frequency estimates βw = nw/n.

Then we obtain M-step formulas for a combined model from (15) and (16):

φwt ∝
(
nwt − β0 βw[t ∈ S]︸ ︷︷ ︸

sparsing
specific
topic

+ β1 βw[t ∈ B]︸ ︷︷ ︸
smoothing
background

topic

− γ [t ∈ S]φwt

∑

s∈S\t
φws

︸ ︷︷ ︸
decorrelation

)

+
; (54)
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θtd ∝
(
ntd − α0 αt [t ∈ S]︸ ︷︷ ︸

sparsing
specific
topic

+ α1 αt [t ∈ B]︸ ︷︷ ︸
smoothing
background

topic

)

+
. (55)

Regularization trajectory A linear combination of multiple regularizers Ri depends on a
vector of regularization coefficients τ = (τi )

r
i=1, which is hard to optimize. A similar prob-

lem has been efficiently solved in ElasticNet with a regularization path technique specially
developed for a combination of L1 and L2 regularization (Friedman et al. 2010). In topic
modeling amuch larger variety of regularizers is used. Extremely large coefficientmay lead to
a conflict with other regularizers, to a slower convergence, or to a degeneration of the model.
Conversely, extremely small coefficient actually disables the regularization. According to the
theory of regularization of ill-posed inverse problems (Tikhonov and Arsenin 1977) we must
reduce the regularization coefficient down to zero during the iterations, in order to achieve a
correct regularized solution. Optimizing the convergence rate is usually task-dependent and
should be controlled manually in the experiment.

Then we define the regularization trajectory as a multidimensional vector τ , which is
a function of the number of iteration and, possibly, of the model quality measures. In our
experiments we choose the regularization trajectory by analyzing experimentally how the
change of regularization coefficients affects quality measures of the model during iterations.

Quality measures Learning a topic model from a text collection can be considered as a
constrained multi-criteria optimization problem. Therefore, the quality of a topic model
should also be measured by a set of criteria. Below we describe a set of quality measures that
we use in our experiments.

The accuracy of a topic model p(w | d) on the collection D is commonly evaluated in
terms of perplexity, which is closely related to the likelihood (the lower perplexity is, the
better):

P(D, p) = exp
(
−1

n
L(Φ,Θ)

)
= exp

(
−1

n

∑

d∈D

∑

w∈d
ndw ln p(w | d)

)
. (56)

The hold-out perplexity P(D′, pD) of the model pD trained on the collection D is eval-
uated on the test set of documents D′ not intersecting D. In our experiments we split the
collection in proportion |D| : |D′| = 9 : 1. Each document d from the test set is further
randomly split into two halves: the first one is used to estimate parameters θd , and the second
one is used in the perplexity evaluation. The terms in the second halves that did not appear
in D are ignored. Parameters φt are estimated from the training set D.

The sparsity of a model is measured by the ratio of zero elements in matrices Φ and Θ

over domain-specific topics S.
The background ratio is a ratio of background terms over the collection:

B = 1

n

∑

d∈D

∑

w∈d

∑

t∈B
ndw p(t | d, w). (57)

It takes value from 0 to 1. IfB is close to 0 then the model does not eliminate common lexis
from domain-specific topics. If B is close to 1 then the model is degenerated, possibly due
to excessive sparsing.
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We define the lexical kernel Wt of a topic t as a set of terms that distinguish the topic t
from the other topics: Wt = {w : p(t | w) > δ}. In our experiments we set δ = 0.25. Then
we define a set of measures, which characterize the conformity of the matrix Φ with the
sparse structure shown in Fig. 3:

kernel size kert = |Wt |, the reasonable values for it are about |W |
|T | ;

purity purt = ∑
w∈Wt

p(w | t), the higher the better;
contrast cont = 1

|Wt |
∑

w∈Wt
p(t | w), the higher the better.

The coherence of a topic t is defined as the pointwise mutual information averaged over
all word pairs from the top-k most probable words of the topic t :

C k
t = 2

k(k − 1)

k−1∑

i=1

k∑

j=i

PMI(wi , w j ), (58)

where wi is the i th word in the list of φwt , w ∈ W , sorted in descending order. A typical
approach is to calculate the top-10 coherence. In addition, we estimated the coherence of
top-100 words and the coherence of the topic kernel.

Finally, we define the corresponding measures of kernel size, purity, contrast, and coher-
ence for the topic model by averaging over domain-specific topics t ∈ S.

Text collection In our experiments we used the NIPS dataset, which contains |D| = 1,566
English articles from the Neural Information Processing Systems conference. The length of
the collection in words is n ≈ 2.3 × 106. The vocabulary size is |W | ≈ 1.3 × 104. We held
out |D′| = 174 documents for the testing set. In the preparation step we used BOW toolkit
(McCallum 1996) to perform changing to low-case, punctuation elimination, and stop-words
removal.

Experimental results In all experiments within this paragraph the number of iterations was
set to 40, and the number of topics was set to |T | = 100 with |B| = 10 background
topics.

In Table 1 we compare PLSA (first row), LDA (second row) andmultiple regularized topic
models. First three columns define a combination of regularizers. Other columns correspond
to the quality measures described above.

We use a regularized EM-algorithm with smoothing (23) for LDA model with symmetric
Dirichlet prior and usually recommended parameters α = 0.5, β = 0.01.

We use a uniform smoothing for background topics with α = 0.8, β = 0.1.
We use a uniform distribution βw = 1

|W | or background distribution βw = nw

n for sparsing
domain-specific topics.

From Table 1 we conclude that the combination of sparsing, smoothing and decorrelation
significantly improves all quality measures at once. Sparsing gives up to 98% zero elements
inΦ and 87% zero elements inΘ . Decorrelation improves purity and coherence. Smoothing
helps to transfer common lexis words from domain-specific topics to background topics. A
slight loss of the hold-out perplexity is consistent with an observation of Chang et al. (2009)
that models which achieve better predictive perplexity often have less interpretable latent
spaces.

In experiments we use convergence charts to compare different models and to choose
regularization trajectories τ = (α0, α1, β0, β1, γ ). A convergence chart represents each
quality measure of the topic model as a function of the iteration step. These charts give
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Table 1 Topicmodels with various combinations of regularizers: smoothing (Sm), sparsing (Sp) with uniform
(u) or background (b) distribution, and decorrelation (Dc)

Sm Sp Dc P B SΦ SΘ con pur ker C ker C 10 C 100

− − − 1,923 0.00 0.000 0.000 0.43 0.14 100 0.84 0.25 0.17
+ − − 1,902 0.00 0.000 0.000 0.42 0.12 82 0.93 0.26 0.17
− u − 2,114 0.24 0.957 0.867 0.53 0.20 71 0.91 0.25 0.18
− b − 2,507 0.51 0.957 0.867 0.46 0.56 151 0.71 0.60 0.58
− − + 2,025 0.57 0.561 0.000 0.46 0.38 109 0.82 0.94 0.56
+ u − 1,961 0.25 0.957 0.867 0.51 0.20 64 0.97 0.26 0.18
+ b − 2,025 0.49 0.957 0.867 0.45 0.52 128 0.77 0.55 0.55
+ − + 1,985 0.59 0.582 0.000 0.46 0.39 97 0.87 0.93 0.57
+ u + 2,010 0.73 0.980 0.867 0.56 0.73 78 0.94 0.94 0.62
+ b + 2,026 0.80 0.979 0.867 0.52 0.89 111 0.81 0.96 0.83

Quality measures: P—hold-out perplexity, B—background ratio, SΦ , SΘ—sparsity of matrices Φ, Θ ,
con—contrast, pur—purity, ker—kernel size, C ker—kernel coherence, C 10, C 100—coherence of top 10 and
top 100 words. The best values in each column are bold-emphasized

insight into the effects of each regularizer when it is used alone or in combination with
others.

Figures 4, 5, and 6 show convergence charts for PLSA and twoARTM regularizedmodels.
Qualitymeasures are shown in three charts for eachmodel. The left chart represents a hold-out
perplexityP on the left-hand axis, sparsitySΦ,SΘ of matrices Φ,Θ and background ratio
B on the right-hand axis. The middle chart represents kernel size (ker) on the left-hand axis,
purity (pur) and contrast (con) on the right-hand axis. The right chart represents the coherence
of top10 words C 10, top100 words C 100, and kernel words C ker on the left-hand axis.

Figure 4 shows that PLSA does not sparse matrices Φ,Θ and gives too low topic purity.
Also it does not determine background words.

Figure 5 shows the cumulative effect of sparsing domain-specific topics (with background
distribution βw) and smoothing background topics.

Figure 6 shows that decorrelation augments purity and coherence. Also it helps to move
common lexis words from the domain-specific topics to the background topics. As a result,
the background ratio reaches almost 80%.

Again, note the important effect of regularization for the ill-posed problem: someof quality
measures may change significantly even after the likelihood converges, either with no change
or with a slight increase of the perplexity.

Because of the volume limitations we can not show all the convergence charts that we have
analyzed in our experiments while choosing a satisfactory regularization trajectory. Below
we present only our final recommendations.

It is better to switch on sparsing after the iterative process enters into convergence stage
making clear which elements of the matrices Φ,Θ are close to zero. An earlier or a more
abrupt sparsingmay lead to an increase of perplexity.We enabled sparsing at the 10th iteration
and gradually adjusted the regularization coefficient to turn into zeros 8% of the non-zero
elements in each vector θd and 10% in each column φt per iteration.

Smoothing of the background topics should better start straight from the first iteration,
with constant regularization coefficients.

Decorrelation can be activated also from the first iteration, with a maximum regularization
coefficient that does not yet significantly increase perplexity. For our collection we chose
γ = 2 × 105.
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Fig. 4 Convergence charts for PLSA topic model

Fig. 5 Convergence charts for ARTM combining sparsing and smoothing

Fig. 6 Convergence charts for ARTM combining sparsing, smoothing, and decorrelation
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6 Discussion and conclusions

Learning a topic model from text collection is an ill-posed problem of stochastic matrix
factorization. It generally has infinitely many solutions, which is why solutions computed
algorithmically are usually unstable and depend on random initialization. Bayesian regu-
larization in the latent Dirichlet allocation does not cope with this problem, indicating that
Dirichlet prior is too weak as a regularizer. More problem-oriented regularizers are needed
to restrict the set of solutions.

In this paper we propose a semi-probabilistic approach named ARTM—Additive Reg-
ularization of Topic Models. It is based on the maximization of the weighted sum of the
log-likelihood and additional regularization criteria. Learning a topic model is considered as
a multi-criteria optimization problem, which then is reduced to a single-criterion problem via
scalarization. To solve the optimization problemwe use a general regularized EM-algorithm.
Compared to the dominantBayesian approach,ARTMavoids excessive probabilistic assump-
tions, simplifies the inference of the topic model and allows to use any combination of
regularizers.

ARTMprovides the theoretical background for developing a library of unified regularizers.
With such a library topic models for various applications could be build simply by choosing
a suitable combination of regularizers from a pool.

In this paperwe introduced a general framework ofARTMunder the following constraints,
which we intend to remove in further research work.

We confined ourselves to a bag-of-words representation of text collection, and have not
considered more sophisticated topic models such as hierarchical, multigram, multilingual,
etc. Applying additive regularization to these models will probably require more efforts.

We have worked out only one numerical method—regularized EM-algorithm, suitable for
a broad class of regularizers. Alternative optimization techniques as well as their convergence
and stability have not yet been considered.

Our review of regularizers is far from being complete. Besides, in our experimental study
we have investigated only three of them: sparsing, smoothing, and decorrelation. We argue
that this combination improves the interpretability of topics and therefore it is useful for
many topic modeling applications. Extensive experiments with combinations of a wider set
of regularizers are left beyond the scope of this paper.

Finally, having facedwith a problemof regularization trajectory optimization, we confined
to a very simple visual technique for monitoring convergence process and comparing topic
models empirically.
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