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Abstract An expectation propagation (EP) algorithm is proposed for approximate inference
in linear regressionmodelswith spike-and-slab priors. ThisEPmethod is applied to regression
tasks in which the number of training instances is small and the number of dimensions of the
feature space is large. The problems analyzed include the reconstruction of genetic networks,
the recovery of sparse signals, the prediction of user sentiment from customer-written reviews
and the analysis of biscuit dough constituents from NIR spectra. The proposed EP method
outperforms inmost of these tasks another EPmethod that ignores correlations in the posterior
and a variational Bayes technique for approximate inference. Additionally, the solutions
generated by EP are very close to those given by Gibbs sampling, which can be taken as the
gold standard but can be much more computationally expensive. In the tasks analyzed, spike-
and-slab priors generally outperform other sparsifying priors, such as Laplace, Student’s t
and horseshoe priors. The key to the improved predictions with respect to Laplace and
Student’s t priors is the superior selective shrinkage capacity of the spike-and-slab prior
distribution.
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1 Introduction

Inmany regressionproblemsof practical interest the number of training instances available for
induction (n) is small and the dimensionality of the data (d) is very large. Areas inwhich these
problems arise include the reconstruction of medical images (Seeger et al. 2010), studies of
gene expression data (Slonim 2002), the processing of natural language (Sandler et al. 2008)
and the modeling of fMRI data (van Gerven et al. 2009). To address these regression tasks,
one often assumes a simple multivariate linear model. However, when d > n, the calibration
of this model is underdetermined because an infinite number of different values for the model
parameters can describe the data equally well. In many of these learning tasks, only a subset
of the available features are expected to be relevant for prediction. Therefore, the calibration
problem can be addressed by assuming that most coefficients in the optimal solution are
exactly zero. That is, the vector of model coefficients is assumed to be sparse (Johnstone and
Titterington 2009). Different strategies can be used to obtain sparse solutions. For instance,
one can include in the target function a penalty term proportional to the �1 norm of the vector
of coefficients (Tibshirani 1996). In a Bayesian framework, sparsity can be favored by assum-
ing sparsity-enforcing priors on themodel coefficients. These types of priors are characterized
by density functions that are peaked at zero and also have a large probability mass in a wide
range of non-zero values. This structure tends to produce a bi-separation in the coefficients
of the linear model: The posterior distribution of most coefficients is strongly peaked at zero;
simultaneously, a small subset of coefficients have a large posterior probability of being sig-
nificantly different from zero (Seeger et al. 2010). The degree of sparsity in themodel is given
by the fraction of coefficients whose posterior distribution has a large peak at zero. (Ishwaran
and Rao 2005) refer to this bi-separation effect induced by sparsity-enforcing priors as selec-
tive shrinkage. Ideally, the posterior mean of truly zero coefficients should be shrunk towards
zero. At the same time the posterior mean of non-zero coefficients should remain unaffected
by the assumed prior. Different sparsity-enforcing priors have been proposed in the machine
learning and statistics literature. Some examples are Laplace (Seeger 2008), Student’s t (Tip-
ping 2001), horseshoe (Carvalho et al. 2009) and spike-and-slab (Mitchell and Beauchamp
1988; Geweke 1996; George and McCulloch 1997) priors. The densities of these priors are
presented in Table 1. In this table,N (·|μ, σ 2) is the density of a Gaussian with mean μ and
variance σ 2, c+(·|0, 1) is the density of a positive Cauchy distribution, T (·|ν) is a student’s
t density with ν degrees of freedom and δ(·) is a point probability mass at 0. A description
of the hyperparameters of each type of prior is also included in the table. Figure 1 displays
plots of the density function of each prior distribution for different hyperparameter values.

Spike-and-slab and horseshoe priors have some advantageswhen compared toLaplace and
Student’s t priors. In particular, the first two prior distributions aremore effective in enforcing
sparsity because they can selectively reduce the magnitude of only a subset of coefficients.
The remaining model coefficients are barely affected by these priors. The shrinkage effect

Table 1 Density functions of sparsity-enforcing priors and hyperparameter descriptions

Prior Density Hyper-parameters

Laplace 1/(2b) exp{−|x |/b} b: scale

Student’s t T (xs−1|ν)s−1 ν: degrees of freedom, s: scale

Horseshoe
∫
N (x |0, τ2λ2)c+(λ|0, 1) dλ τ : scale

Spike-and-slab p0N (x |0, vs ) + (1 − p0)δ(x) p0:P(x �= 0), vs : variance of the slab
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induced by Laplace and Student’s t priors is less selective. These types of priors tend to either
strongly reduce the magnitude of every coefficient (including coefficients that are actually
different from zero and should not be shrunk) or to leave all the model coefficients almost
unaffected.The reason for this is thatLaplace andStudent’s t priors have a single characteristic
scale. By contrast, spike-and-slab priors consist of a mixture of two densities with different
scales. This allows to discriminate between coefficients that are better modeled by the slab,
which are left almost unchanged, and coefficients that are better described by the spike,
whose posterior is highly peaked around zero. In terms of their selective shrinkage capacity,
spike-and-slab and horseshoe priors behave similarly. However, spike-and-slab priors have
additional advantages. Specifically, the degree of sparsity in the linear model can be directly
adjusted by modifying the weight of the spike in the mixture. This weight corresponds to
the fraction of coefficients that are a priori expected to be zero. Furthermore, spike-and-slab
priors can be expressed in terms of a set of latent binary variables that specify whether each
coefficient is assigned to the spike or to the slab. The expected value of these latent variables
under the posterior distribution yields an estimate of the probabilities that the corresponding
model coefficients are actually different from zero. These estimates can be very useful for
identifying relevant features. Finally, spike-and-slab priors have a closed-form convolution
with the Gaussian distribution while horseshoe priors do not. This is an advantage if we want
to use approximate inference methods based on Gaussian approximations.

A disadvantage of spike-and-slab priors is that they make Bayesian inference a difficult
and computationally demanding problem. When these priors are used, the posterior distri-
bution cannot be computed exactly when d is large and has to be estimated numerically.
Approximate Bayesian inference in linear models with spike-and-slab priors is frequently
performed using Markov chain Monte Carlo (MCMC) techniques, which are asymptotically
exact. However, in practice, very long Markov chains are often required to obtain accurate
approximations of the posterior distribution. The most common implementation of MCMC
in linear models with spike-and-slab priors is based on Gibbs sampling1 (George andMcCul-
loch 1997). However, this method can be computationally very expensive in many practical
applications. Another alternative is to use variational Bayes (VB) methods (Attias 1999). An
implementation of VB in the linear regression model with spike-and-slab priors is described
by Titsias and Lazaro-Gredilla (2012) and Carbonetto and Stephens (2012). The computa-
tional cost of Carbonetto’s implementation is only O(nd). However, the VB approach has
some disadvantages. First, this method generates only local approximations to the posterior
distribution. This increases the probability of approximating locally one of the many subopti-
mal modes of the posterior distribution. Second, some empirical studies indicate that VB can
be less accurate than other approximate inference methods, such as expectation propagation
(Nickisch and Rasmussen 2008).

In this paper, we describe a new expectation propagation (EP) (Minka 2001) algorithm
for approximate inference in linear regression models with spike-and-slab priors. The main
difference of our EP method with respect to other implementations of EP in linear regression
models is that we split the posterior distribution into only three separate factors and then
approximate each of them individually. This simplifies considerably our inference algorithm.
Other EP methods such as the one described by Seeger (2008) have to approximate a much
larger number of factors. This results in more complex EP update operations that require
expensive updates / downdates of a Cholesky decomposition. The computational complexity
of our EP method and the one described by Seeger (2008) are the same. However, we reduce
the multiplicative constant in our method by avoiding having to work with Cholesky factors.

1 An implementation of this method is described in Appendix 1.
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The proposed EP method is compared with other algorithms for approximate inference
in linear regression models with spike-and-slab priors, such as Gibbs sampling, VB and an
alternative EP method (factorized EP) which does not fully account for correlations in the
posterior distribution (Hernández-Lobato et al. 2008). The main advantage of our method
with respect to factorized EP is that we take into account correlations in the model coeffi-
cients during the execution of EP, while factorized EP does not. Our objective is to achieve
improvements both in computational efficiency, with respect to Gibbs sampling, and in pre-
dictive accuracy, with respect to VB and to the factorized EP method of Hernández-Lobato
et al. (2008). EP has already been shown to be an effective method for approximate infer-
ence in a linear model with spike-and-slab priors for the classification of microarray data
(Hernández-Lobato et al. 2010). This investigation explores whether these good results can
also be obtained when EP is used in sparse linear regression problems. The computational
cost of the proposed EP method is O(n2d) when d > n . This cost is expected to be smaller
than the cost of Gibbs sampling and comparable to the cost of VB inmany problems of practi-
cal interest. The performance of the proposed EP method is evaluated in regression problems
from different application domains. The problems analyzed include the reconstruction of
sparse signals (Ji et al. 2008), the prediction of user sentiment (Blitzer et al. 2007), the analy-
sis of biscuit dough constituents from NIR spectra (Osborne et al. 1984; Brown et al. 2001)
and the reverse engineering of transcription control networks (Gardner and Faith 2005).

In these problems, the proposed EP method is superior to VB and factorized EP and
comparable to Gibbs sampling. The computational costs are similar for VB and for EP.
However, EP is orders of magnitude faster than Gibbs sampling. To complete the study, other
sparsifying priors, such as Laplace, Student’s t and horseshoe priors, are considered as well.
In the tasks analyzed, using the spike-and-slabmodel andEP for approximate inference yields
the best overall results. The improvements in predictive accuracy with respect to the models
that assume Laplace and Student’s t priors can be ascribed to the superior selective shrinkage
capacity of the spike-and-slab distribution. In these experiments, the differences between
spike-and-slab priors and horseshoe priors are fairly small. However, the computational cost
of training the models with horseshoe priors using Gibbs sampling is much higher than the
cost of the proposed EP method.

The rest of the paper is organized as follows: Sect. 2 analyzes the shrinkage profile of
some common sparsity-enforcing priors. Section 3 introduces the linear regression model
with spike-and-slab priors (LRMSSP). The EP algorithm for the LRMSSP is described in
Sect. 4. The functional form of the approximation used by EP is introduced in Sect. 4.1, the
EP update operations in Sect. 4.2 and the EP approximation for the model evidence in Sect.
4.3. Section 5 presents the results of an evaluation of the proposed EP method in different
problems: a toy dataset (Sect. 5.1), the recovery of sparse signals (Sect. 5.2), the prediction
of user sentiment (Sect. 5.3), the analysis of biscuit dough constituents from NIR spectra
(Sect. 5.4) and the reconstruction of transcription networks (Sect. 5.5), Finally, the results
and conclusions of this investigation are summarized in Sect. 6.

2 Shrinkage analysis of sparsity-enforcing priors

Most of the sparsity-enforcing priors proposed in the literature can be represented as scale
mixtures of Gaussian distributions. Specifically, these priors can be represented as a zero-
meanGaussianwith a random variance parameter λ2. The distribution assumed for λ2 defines
the resulting family of priors. To evaluate the density of the prior at a given point using
this representation, one has to integrate over λ2. However, as suggested by Carvalho et al.
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Table 2 Densities for λ2

corresponding to common
sparsity-enforcing priors

Prior Density for λ2

Laplace Exp(λ2|2b2)
Student’s t IG(λ2|ν/2, s2ν/2)

Horseshoe C+(
√

λ2|0, τ )1/(2
√

λ2)

Spike-and-slab p0δ(λ
2 − vs ) + (1 − p0)δ(λ

2)

(2009), it is possible to analyze the shrinkage profiles of different sparsity-enforcing priors
by keeping λ2 explicitly in the formulation. For simplicity, we consider a problem with a
single-observation of a target scalar y. The distribution of y is assumed to be Gaussian with
mean w and unit variance (y ∼ N (w, 1)). The prior for w is assumed to be a scale mixture
of Gaussian distributions

P(w) =
∫

N (w|0, λ2)P(λ2) dλ2 . (1)

Given λ2, the prior for w is Gaussian. In this case, the posterior mean for w can be computed
in closed form

E[w|y, λ2] = λ2

1 + λ2
y = (1 − k)y ,

where k = 1/(1 + λ2), k ∈ [0, 1] is a shrinkage coefficient that can be interpreted as the
weight that the posterior mean places at the origin once the target y is observed (Carvalho et
al. 2009). For k = 1, the posterior mean is shrunk to zero. For k = 0, the posterior mean is not
regularized at all. Since k is a random variable we can plot its prior distribution,P(k), for a
specific choice ofP(λ2). The resulting plot represents the shrinkage profile of the prior (1).
Ideally, we would likeP(k) to enforce the bi-separation that characterizes sparse models. In
sparse models only a few coefficients are significantly different from zero. According to this
discussion, the prior P(k) should have large probability mass in the vicinity of k = 1, so
that most coefficients are shrunk towards zero. At the same time, P(k) should also be large
for values of k close to the origin, so that some of the coefficients are only weakly affected
by the prior.

Table 2 displays the expressions of the densities for λ2 corresponding to each of the
sparsity-enforcing priors of Table 1. In Table 2, Exp(·|β) is the density of an exponen-
tial distribution with survival parameter β and IG(·|a, b) represents the density of an inverse
gamma distributionwith shape parameter a and scale parameter b. The corresponding expres-
sions of the densities for k (not shown) are obtained by performing the change of variable
k = 1/(1+ λ2). Figure 2 shows plots of these latter densities for different prior distributions
and different values of the hyperparameters. For each prior distribution, the hyperparameter
values are selected so that the distance between the quantiles 0.1 and 0.9 of the resulting dis-
tribution is equal to 0.7, 3.5 and 17.5, respectively. These values correspond to high, medium
and low sparsity levels in the posterior distribution. Figure 2 shows that neither the Laplace
nor the Student’s t priors with 5 and 1 degrees of freedom simultaneously assign a large prob-
ability to values in the vicinity of k = 1 and for k close to the origin. This limits the capacity
of these priors to enforce sparsity in a selective manner, with the exception of Student’s t
priors in which the degrees of freedom approach zero. In this case,P(k) becomes more and
more peaked at k = 0 and at k = 1. However, the Student’s t with zero degrees of freedom
is a degenerate distribution that cannot be normalized. In this case, it is not possible to use
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a fully Bayesian approach. One has to resort to other alternatives such as type-II maximum
likelihood techniques (Tipping 2001).

In terms of their selective shrinkage capacity, both spike-and-slab and horseshoe priors
behave similarly. They yield densities that are peaked at k = 1 and at small values of k.
With spike-and-slab priors, one obtains a positive (non-zero) probability exactly at k = 1.
This means that the posterior distribution of the coefficients corresponding to non-predictive
features will tend to concentrate around the origin. On the other extreme (small k), horseshoe
priors are characterized by very heavy tails. This is reflected in the fact that P(k) is not
bounded at the origin for these priors. Because of this property, horseshoe priors barely
reduce the magnitude of those coefficients that are significantly different from zero. A similar
effect can be obtained with spike-and-slab priors by increasing the variance of the slab.
Therefore, these two distributions produce a selective shrinkage of the posterior mean. An
advantage of spike-and-slab priors is that they have a closed-form convolution with the
Gaussian distribution. This facilitates the use of approximate inference methods based on
Gaussian approximations such as the EP algorithm that is proposed in this paper.

3 Linear regression models with spike-and-slab priors

In this section,we describe the linear regressionmodelwith spike-and-slab priors (LRMSSP).
Consider the standard linear regression problem in d dimensions

y = Xw + e , (2)

where X = (x1, . . . , xn)T is an n × d design matrix, y = (y1, . . . , yn)T is a target vector,
w = (w1, . . . , wd)

T is an unknown vector of regression coefficients and e is an n-dimensional
vector of independent additive Gaussian noise with diagonal covariance matrix σ 2

0 I (e ∼
N (0, σ 2

0 I)). Given X and y, the likelihood function for w is

P(y|w,X) =
n∏

i=1

P(yi |w, xi ) =
n∏

i=1

N (yi |wTxi , σ 2
0 ) . (3)

When d > n, this function is not strictly concave and infinitely-many values of w fit the data
equally well. A common approach to identify w in such an underdetermined scenario is to
assume that only a few components of w are different from zero; that is, w is assumed to be
sparse (Johnstone and Titterington 2009). In a Bayesian approach, the sparsity of w can be
favored by assuming a spike-and-slab prior for the components of this vector (Mitchell and
Beauchamp 1988; Geweke 1996; George and McCulloch 1997)

P(w|z) =
d∏

i=1

[ziN (wi |0, vs) + (1 − zi )δ(wi )] . (4)

The slab N (·|0, vs), is a zero-mean broad Gaussian whose variance vs is large. The spike
δ(·), is a Dirac delta function (point probability mass) centered at 0. The prior is expressed in
terms of a vector of binary latent variables z = (z1, . . . , zd) such that zi = 0 when wi = 0
and zi = 1 otherwise. To complete the specification of the prior for w, the distribution of z
is assumed to be a product of Bernoulli terms

P(z) =
d∏

i=1

Bern(zi |p0) , (5)
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where p0 is the fraction of components of w that are a priori expected to be different from
zero and Bern(x |p) = xp + (1 − x)(1 − p), x ∈ {0, 1} and p ∈ [0, 1]. Note that our
parameterization for the prior on w does not follow the general convention of scaling the
prior variance on the regression coefficients by the variance σ 2

0 of the additive noise.
Given X and y, the uncertainty about the values of w and z that were actually used to

generate y from the design matrix X according to (2) is given by the posterior distribution
P(w, z|X, y), which can be computed using Bayes’ theorem

P(w, z|X, y) = P(y|w,X)P(w|z)P(z)
P(y|X)

, (6)

where P(y|X) is a normalization constant, which is referred to as the model evidence. This
normalization constant can be used to perform model selection (MacKay 1992). The central
operation in the application of Bayesian methods is the computation of marginalizations
or expectations with respect to the posterior distribution. For example, given a new feature
vector xnew, one can compute the probability of the associated target ynew using

P(ynew|X, y) =
∑

z

∫
N (ynew|wTxnew, σ 2

0 )P(w, z|X, y) dw . (7)

Additionally, one canmarginalize (6) overw1, . . . , wd and all z1, . . . , zd except zi to compute
P(zi |X, y), the posterior probability that the i-th component ofw is different from zero. The
probabilities P(z1|X, y), . . . ,P(zd |X, y) can be used to identify the features (columns of
X) that are more relevant for predicting the target vector y. Exact Bayesian inference in
the LRMSSP involves summing over all the possible configurations for z. When d is large
this is infeasible and we have to use approximations. Approximate inference in models with
spike-and-slab priors is usually implemented using Markov chain Monte Carlo (MCMC)
methods, in particular Gibbs sampling (George and McCulloch 1997). Appendix 1 describes
an efficient implementation of this technique for the LRMSSP. The average cost of Gibbs
sampling in the LRMSSP is O(p20d

3k), where k is the number of Gibbs samples drawn from
the posterior and often k > d for accurate approximate inference. This large computational
cost makes Gibbs sampling infeasible in problems with a high-dimensional feature space
and high p0. More efficient alternatives such as variational Bayes (VB) (Attias 1999) have
also been proposed for approximate inference in the LRMSSP (Titsias and Lazaro-Gredilla
2012; Carbonetto and Stephens 2012). The cost of Carbonetto and Stephens’ VB method is
O(nd). However, empirical studies show that VB can perform worse than other approximate
inference techniques, such as expectation propagation (EP) (Nickisch and Rasmussen 2008).
In this work, we propose to use EP as an accurate and efficient alternative to Gibbs sampling
and VB. The following section describes the application of EP to the LRMSSP. A software
implementation of the proposed method is publicly available at http://jmhl.org.

4 Expectation propagation in the LRMSSP

Expectation propagation (EP) (Minka 2001) is a general deterministic algorithm for approx-
imate Bayesian inference. This method approximates the joint distribution of the model
parameters and the observed data by a simpler parametric distribution Q, which needs not be
normalized. The actual posterior distribution is approximated by the normalized version of
Q, which we denote by the symbolQ. The form of Q is chosen so that the integrals required
to compute expected values, normalization constants and marginal distributions for Q can
be obtained at a very low cost.
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For many probabilistic models, the joint distribution of the observed data and the model
parameters can be factorized. In the particular case of the LRMSSP, the joint distribution of
w, z and y given X can be written as the product of three different factors f1, f2 and f3:

P(w, z, y|X) =
n∏

i=1

P(yi |w, xi )P(w|z)P(z) =
3∏

i=1

fi (w, z), (8)

where f1(w, z) = ∏n
i=1 P(yi |w, xi ), f2(w, z) = P(w|z) and f3(w, z) = P(z). The EP

method approximates each exact factor fi in (8) with a simpler factor f̃i so that

P(w, z, y|X) =
3∏

i=1

fi (w, z) ≈
3∏

i=1

f̃i (w, z) = Q(w, z) , (9)

where all the f̃i belong to the same family of exponential distributions, but they need not
be normalized. Because exponential distributions are closed under the product operation, Q
has the same functional form as f̃1, f̃2 and f̃3. Furthermore, Q can be readily normalized to
obtain Q. Marginals and expectations over Q can be computed analytically because of the
simple form of this distribution. Note that we could have chosen to factorize P(w, z, y|X)

into only two factors, by merging the product of f2 and f3 into a single factor. However, the
resulting EP method would be equivalent to the one shown here.

The approximate factors f̃1, f̃2 and f̃3 are iteratively refined by EP. Each update operation
modifies the parameters of f̃i so that the Kullback-Leibler (KL) divergence between the
unnormalized distributions fi (w, z)Q\i (w, z) and f̃i (w, z)Q\i (w, z) is as small as possible
for i = 1, 2, 3, where Q\i (w, z) denotes the current approximation to the joint distribution
with the i-th approximate factor removed

Q\i (w, z) =
∏

j �=i

f̃ j (w, z) = Q(w, z)

f̃i (w, z)
. (10)

The divergence minimized by EP includes a correction term so that it can be applied to
unnormalized distributions (Zhu and Rohwer 1995). Specifically, each EP update operation
minimizes

DKL( fi Q
\i‖ f̃i Q

\i ) =
∑

z

∫ [

fi Q
\i log fi Q\i

f̃i Q\i + f̃i Q
\i − fi Q

\i
]

dw , (11)

with respect to the approximate factor f̃i . The arguments to fi Q\i and f̃i Q\i have been
omitted in the right-hand side of (11) to improve the readability of the expression. The
complete EP algorithm involves the following steps:

1. Initialize all the f̃i and Q to be uniform (non-informative).
2. Repeat until all the f̃i have converged:

(a) Select a particular factor f̃i to be refined. Compute Q\i dividing Q by f̃i .
(b) Update f̃i so that DKL( fi Q\i‖ f̃i Q\i ) is minimized.
(c) Construct an updated approximation Q as the product of the new f̃i and Q\i .

The optimization problem in step (b) is convex and has a single global solution (Bishop
2006). The solution to this optimization problem is found bymatching the sufficient statistics
between f̃i Q\i and fi Q\i (Minka 2001). Upon convergence Q (the normalized version of
Q) is an approximation of the posterior distribution P(w, z|y,X). EP is not guaranteed to
converge in general. The algorithm may end up oscillating without ever stopping (Minka
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2001). This undesirable behavior can be prevented by damping the update operations of EP
(Minka andLafferty 2002). Let f̃ newi denote theminimizer of theKullback-Leibler divergence
(11). Damping consists in using

f̃ damp
i =

[
f̃ newi

]ε [
f̃i
](1−ε)

, (12)

instead of f̃ newi in step (b) of the EP algorithm. The quantity f̃i represents in (12) the factor
before the update. The parameter ε ∈ [0, 1] controls the amount of damping. The original
EP update operation (that is, without damping) is recovered in the limit ε = 1. For ε = 0,
the approximate factor f̃i is not modified during step (b).

An alternative to damping are convergent versions of EP based on double loop algorithms
(Opper andWinther 2005). However, these methods are computationally more expensive and
more difficult to implement than the version of EP based on damping. In the experiments
described in Sect. 5, our EP method with damping always converged so we did not consider
using other convergent alternatives.

The main difference of our EP method with respect to other implementations of EP in
linear regression models is that we split the joint distribution (8) into only three separate
factors and then approximate each of them individually. This simplifies the implementation
of our EP algorithm. Other EP methods such as the one described by Seeger (2008) work
by spliting the joint distribution into a much larger number of factors. In that case, the EP
update operations are more complex and require to perform expensive rank one updates /
downdates of a Cholesky decomposition. The computational complexity of our EP method
and the one described by Seeger (2008) are the same. However, we reduce the multiplicative
constant in our method by avoiding having to work with Cholesky factors.

4.1 The form of the posterior approximation

In our implementation of EP for the LRMSSP, the posterior P(w, z|y,X) is approximated
by the product of d Gaussian and Bernoulli factors. The resulting posterior approximation is
a distribution in the exponential family

Q(w, z) =
d∏

i=1

N (wi |mi , vi )Bern(zi |σ(pi )) , (13)

where σ is the logistic function

σ(x) = 1

1 + exp(−x)
(14)

and m = (m1, . . . ,md)
T, v = (v1, . . . , vd)

T and p = (p1, . . . , pd)T are free distributional
parameters to be determined by the refinement of the approximate factors f̃1, f̃2 and f̃3. The
logistic function is used to guarantee the numerical stability of the algorithm, especially when
the posterior probability of zi = 1 is very close to 0 or 1 for some value of i ∈ {1, . . . , d}.
The role of the logistic function in the EP updates is similar to that of the use of logarithms
to avoid numerical underflow errors. This procedure to stabilize numerical computations is
particularly effective in the signal reconstruction experiments of Sect. 5.2.

Note that the EP approximation (13) does not include any correlations between the com-
ponents of w. This might suggest that our implementation of EP assumes independence
between the entries of w. However, this is not the case. When we refine the EP approximate
factors, we take into account possible posterior correlations in w. Furthermore, once EP has
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converged, we can easily obtain an approximation to the posterior covariance matrix for w.
This is explained at the end of Sect. 4.2.

The approximate factors f̃1, f̃2 and f̃3 in (8) have the same form as (13), except that they
need not be normalized

f̃1(w, z) = s̃1

d∏

i=1

exp

{

− (wi − m̃1i )
2

2ṽ1i

}

, (15)

f̃2(w, z) = s̃2

d∏

i=1

exp

{

− (wi − m̃2i )
2

2ṽ2i

}

{ziσ( p̃2i ) + (1 − zi )σ (− p̃2i )} , (16)

f̃3(w, z) = s̃3

d∏

i=1

{ziσ( p̃3i ) + (1 − zi )σ (− p̃3i )} , (17)

where {m̃i = (m̃i1, . . . , m̃id)
T, ṽi = (ṽi1, . . . , ṽid)

T}2i=1, {p̃i = ( p̃i1, . . . , p̃id)T}3i=2 and
{s̃i }3i=1 are free parameters to be determined by EP. The normalized version of these factors
can be found in Appendix 9. The positive constants {s̃i }3i=1 are introduced to guarantee that
f̃i Q\i and fi Q\i have the same normalization constant for i = 1, 2, 3. The parameters of
(13), m, v and p, are obtained from m̃1, m̃2, ṽ1, ṽ2, p̃2 and p̃3 using the product rule for
Gaussian and Bernoulli factors (see Appendix 3):

vi =
[
ṽ−1
1i + ṽ−1

2i

]−1
, (18)

mi =
[
m̃1i ṽ

−1
1i + m̃2i ṽ

−1
2i

]
vi , (19)

pi = p̃2i + p̃3i , (20)

for i = 1, . . . , d . The first step of EP is to initialize f̃1, f̃2, f̃3 andQ to be non-informativep =
p̃{2,3} = m = m̃{1,2} = (0, . . . , 0)T and v = ṽ{1,2} = (∞, . . . ,∞)T. After this, EP iterates
over all the approximate factors, updating each f̃i so that the divergence DKL( fi Q\i‖ f̃i Q\i )
is minimized. A cycle of EP consists in the sequential update of all the approximate factors.
The algorithm stops when the absolute value of the change in the components of m and v
between two consecutive cycles is less than a threshold δ > 0. To improve the converge of
EP, we use a damping schemewith a parameter ε that is initialized to 1 and then progressively
annealed. After each iteration of EP, the value of this parameter is multiplied by a constant
k < 1. The resulting annealed damping scheme greatly improves the convergence of EP.
The values selected for δ and k are δ = 10−4 and k = 0.99. The results obtained are not
particularly sensitive to the specific values of these constants, provided that δ is small enough
and that k is close to 1. In the experiments performed, EP converges most of the times in less
than 20 cycles. Exceptionally, EP takes more than 100 iterations to converge, usually when
σ0 and p0 are very small and very few training instances are available.

4.2 The EP update operations

In this section we describe the EP updates for the minimization of DKL( fi Q\i‖ f̃i Q\i ) with
respect to the parameters of the approximate factor f̃i , for i = 1, 2, 3. This is a convex
optimization problem with a single global optimum. This optimum is obtained by finding
the parameters of f̃i that make the first and second moments of w and the first moment of
z for fi Q\i and for f̃i Q\i equal (Minka 2001; Bishop 2006). In the following paragraphs
we present the update operations for {m̃i , ṽi }2i=1 and {p̃i }3i=2 that result from these moment
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matching constraints. The update rules for {s̃i }3i=1 are described in the next section. The
derivation of these operations is given in Appendix 4. For the sake of clarity, we include
only the update rules without damping (ε = 1). Incorporating the effect of damping in
these operations is straightforward.With damping, the natural parameters of the approximate
factors become a convex combination of the natural parameters before and after the update
without damping

[
ṽ
damp
i j

]−1 = ε
[
ṽnewi j

]−1 + (1 − ε)ṽ−1
i j , (21)

m̃damp
i j

[
ṽ
damp
i j

]−1 = εm̃new
i j

[
ṽnewi j

]−1 + (1 − ε)m̃i j ṽ
−1
i j , (22)

p̃damp
k j = ε p̃newk j + (1 − ε) p̃k j , (23)

where i = 1, 2, k = 2, 3 and j = 1, . . . , d . The superscript new denotes the value of the
parameter given by the full EP update operation without damping. The superscript damp
denotes the parameter value given by the damped update rule. The absence of a superscript
refers to the value of the parameter before the EP update. The updates for the parameters
{s̃i }3i=1 are not damped.

The first approximate factor to be processed by EP is f̃3. Since the corresponding exact
factor f3 has the same functional form as f̃3, the update for this approximate factor is
p̃new3 = (σ−1(p0), . . . , σ−1(p0))T, where σ−1 is the logit function

σ−1(x) = log
x

1 − x
. (24)

Because this update rule does not depend on f̃1 or f̃2, we only have to update f̃3 during the
first cycle of the EP algorithm.

The second approximate factor to be processed is f̃2. During the first iteration of the
algorithm, the update rule for f̃2 is ṽnew2 = (p0vs, . . . , p0vs)T. In successive cycles, the rule
becomes

ṽnew2i = (a2i − bi )
−1 − ṽ1i , (25)

m̃new
2i = m̃1i − ai (ṽ

new
2i + ṽ1i ) , (26)

p̃new2i = 1

2
log(ṽ1i ) − 1

2
log(ṽ1i + vs) + 1

2
m̃2

1i

[
ṽ−1
1i − (ṽ1i + vs)

−1
]

, (27)

for i = 1, . . . , d , where ai and bi are given by

ai = σ( p̃new2i + p̃3i )
m̃1i

ṽ1i + vs
+ σ(− p̃new2i − p̃3i )

m̃1i

ṽ1i
, (28)

bi = σ( p̃new2i + p̃3i )
m̃2

1i − ṽ1i − vs

(ṽ1i + vs)2
+ σ(− p̃new2i − p̃3i )

[
m̃2

1i ṽ
−2
1i − ṽ−1

1i

]
. (29)

The update rule (25) may occasionally generate a negative value for some of the variances
ṽ21, . . . , ṽ2d . Negative variances in Gaussian approximate factors are common in many EP
implementations (Minka 2001; Minka and Lafferty 2002). When this happens, the marginals
of f̃2 with negative variances do not correspond to density functions. Instead, they are cor-
rection factors that compensate the errors in the corresponding marginals of f̃1. However,
negative variances in f̃2 can lead to erratic behavior and slower convergence rates of EP,
as indicated by Seeger (2008). Furthermore, when some of the components of ṽ2 are nega-
tive, EP may fail to approximate the model evidence (see the next section). To avoid these
problems, whenever (25) generates a negative value for ṽ2i , the update rule is modified and
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the corresponding marginal of f̃2 is refined by minimizing DKL( f2Q\2‖ f̃2Q\2) under the
constraint ṽ2i ≥ 0. In this case, the update rules for m̃2i and p̃2i are still given by (26) and
(27), but the optimal value for ṽ2i is now infinite, as demonstrated in Appendix 5. Thus,
whenever (a2i − bi )−1 < ṽ1i is satisfied, we simply replace (25) by ṽnew2i = v∞, where v∞
is a large positive constant. This approach to deal with negative variances is new up to our
knowledge.

The last approximate factor to be refined by EP is f̃1. To refine this factor we have
to minimize DKL( f1Q\1‖ f̃1Q\1) with respect to f̃1. Since Q = f̃1Q\1, we have that the
update rule for f̃1 minimizes DKL( f1Q\1‖Q)with respect to Q. Once we have updated Q by
minimizing this objective, we can obtain the new f̃1 by computing the ratio between the new
Q and Q\1. If we ignore the constant s̃1, we can perform these operations using normalized
distributions. In this case, the update rule consists of two steps. First, the parameters of Q
are determined by minimizing DLK(S ‖Q), whereS denotes the normalized product of the
exact factor f1 and the approximate factors f̃2 and f̃3; then, the parameters of f̃1 are updated
by computing the ratio between Q and the product of f̃2 and f̃3. The rule for updating the
parameters of Q is

vnew = diag(V) , (30)

mnew = V
[
Ṽ−1
2 m̃2 + σ−2

0 XTy
]

, (31)

pnew = p̃2 + p̃3 , (32)

where diag(·) extracts the diagonal of a square matrix,

V = (Ṽ−1
2 + σ−2

0 XTX)−1 (33)

and Ṽ2 is a diagonal matrix such that diag(Ṽ2) = ṽ2. The calculation of diag(V) is the
bottleneck of the proposed EP method. When XTX is precomputed and n ≥ d , the compu-
tational cost of performing the inverse of Ṽ−1

2 + σ−2
0 XTX is O(d3). However, when n < d ,

the Woodbury formula provides a more efficient computation of V:

V = Ṽ2 − Ṽ2XT
[
Iσ 2

0 + XṼ2XT
]−1

XṼ2 . (34)

With this improvement the time complexity of EP is reduced toO(n2d) because it is necessary
to compute only diag(V) and not V itself. However, the use of the Woodbury formula may
lead to numerical instabilities when some of the components of ṽ2 are very large, as reported
by Seeger (2008). This limits the size of the constant v∞ that is used for the update of ṽ2i
when (25) yields a negative result. In our implementation we use v∞ = 100. In practice,
the predictive accuracy of the model does not strongly depend on the precise value of v∞
provided that it is sufficiently large. Once Q has been refined using (30), (31) and (32), the
update for f̃1 is obtained by computing the ratio between Q and the product of f̃2 and f̃3
(see Appendix 4)

ṽnew1i =
[(

vnewi

)−1 − ṽ−1
2i

]−1
, (35)

m̃new
1i =

[
mnew

i

(
vnewi

)−1 − m̃2i ṽ
−1
2i

]
ṽnew1i , (36)

where i = 1, . . . , d .
Although the approximation (13) does not include any correlations between the compo-

nents of w, these correlations can be directly estimated once EP has converged. For this,
one computes V using either (33) when n < d or (34) when n ≥ d . The proposed EP
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method is in fact taking into account possible correlations among the components ofw when
it approximates the posterior marginals of this parameter vector. Such correlations are used,
for example, in the computation of (31) for the update of Q. In particular, to obtain (31),
we make use of the non-diagonal elements of V. If one is not interested in considering these
posterior correlations, a more efficient implementation of EP is obtained by expressing f1
and f̃1 as a product of n subfactors, one subfactor per data point (Hernández-Lobato et al.
2008). If such a factorization is used, f̃1 can be updated in n separate steps, one step per sub-
factor. In this alternative implementation, the computational cost of EP isO(nd). Appendix 6
provides a detailed description of this faster implementation of EP. However, in this case, the
posterior approximation is less accurate because the correlations between the components of
w are ignored. This is shown in the experiments described in Sect. 5.

As mentioned before, the computational cost of our EP method is O(n2d). The cost of
Gibbs sampling is O(p20d

3k) (see Appendix 8), where k are the number of samples drawn
from the posterior. The cost of the alternative EP method that ignores posterior correlations
is O(nd) (Hernández-Lobato et al. 2008) (see Appendix 6). Gibbs sampling is the preferred
approachwhen p0 is small. For large p0 and large correlations in the posterior distribution, the
proposed EP method is the most efficient alternative. Finally, when p0 is large and posterior
correlations are small, the EP method described in Appendix 6 should be used. Here, we
have ignored the number of iterations k that the Gibbs sampling approach needs to be run
to obtain samples from the stationary distribution. When this number is very large, the EP
methods would be the preferred option, even if p0 is very small.

4.3 Approximation of the model evidence

An advantage of Bayesian techniques is that they provide a natural framework for model
selection (MacKay 2003). In this framework, the alternative models are ranked according
to the value of their evidence, which is the normalization constant used to compute the
posterior distribution from the joint distribution of the model parameters and the data. In
this approach one selects the model with the largest value of this normalization constant. For
linear regression problems the model evidence, P(y|X), represents the probability that the
targets y are generated from the design matrix X using (2) when the vector of coefficients w
is randomly sampled from the prior distribution assumed. The main advantage of using the
model evidence as a tool for discriminating among different alternatives is that it naturally
achieves a balance between rewarding models that provide a good fit to the training data and
penalizing their complexity (Bishop 2006).

The exact computation of P(y|X) in the LRMSSP is generally infeasible because it
involves averaging over the 2d possible configurations of z and integrating overw. However,
EP can also be used to approximate the model evidence using

P(y|X) ≈
∑

z

∫
f̃1(w, z) f̃2(w, z) f̃3(w, z) dw . (37)

Several studies indicate that the EP approximation of themodel evidence can be very accurate
in specific cases (Kuss and Rasmussen 2005; Cunningham et al. 2011). The right-hand side
of (37) can be computed very efficiently because the approximate factors f̃1, f̃2 and f̃3 have
simple exponential forms. However, before evaluating this expression, the parameters s̃1, s̃2
and s̃3 in (15), (16) and (17) need to be calculated. After EP has converged, the value of these
parameters is determined by requiring that f̃i Q\i and fi Q\i have the same normalization
constant for i = 1, 2 and 3
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log s̃1 = 1

2
mT(Ṽ−1

2 m̃2 + σ−2
0 XTy) − n

2
log(2πσ 2

0 ) − 1

2
σ−2
0 yTy − 1

2
m̃T

2 Ṽ
−1
2 m̃2

− 1

2
logα + 1

2

d∑

i=1

{

log
[
1 + ṽ2i ṽ

−1
1i

]
+ m̃2

1i ṽ
−1
1i + m̃2

2i ṽ
−1
2i − m2

i v
−1
i

}

, (38)

log s̃2 =
d∑

i=1

1

2

{

2 log ci + log
[
1 + ṽ1i ṽ

−1
2i

]
+ m̃2

1i ṽ
−1
1i + m̃2

2i ṽ
−1
2i

− m2
i v

−1
i + 2 log

[
σ(pi )σ (− p̃3i ) + σ(−pi )σ ( p̃3i )

]

− 2 log
[
σ( p̃3i )σ (− p̃3i )

]
}

, (39)

log s̃3 = 0 , (40)

where ci = σ( p̃3i )N (0|m̃1i , ṽ1i + v) + σ(− p̃3i )N (0|m̃1i , ṽ1i ), α = |I + σ−2
0 Ṽ2XTX|

and the logarithms are taken to avoid numerical underflow or overflow errors in the actual
implementation of EP. The derivation of these formulas is given in Appendix 4. Sylvester’s
determinant theorem provides a more efficient representation for α when n < d

α = |I + σ−2
0 XṼ2XT|. (41)

Finally, by taking the logarithm on both sides of (37), logP(y|X) can be approximated as

logP(y|X) ≈ log s̃1 + log s̃2 + d

2
log(2π)

+
d∑

i=1

1

2

{
log vi + m2

i v
−1
i − m̃2

1i ṽ
−1
1i − m̃2

2i ṽ
−1
2i

}

+
d∑

i=1

log {σ( p̃2i )σ ( p̃3i ) + σ(− p̃2i )σ (− p̃3i )} , (42)

where log s̃1 and log s̃2 are given by (38) and (39). The derivation of this formula makes
use of the product rules for Gaussian and Bernoulli distributions (see Appendix 3). Note
that α can be negative if some of the components of ṽ2 are negative. In this particular case,
I+σ−2

0 Ṽ2XTX is not positive definite, log s̃1 cannot be evaluated and EP fails to approximate
themodel evidence. To avoid this, f̃2 is determined byminimizingDKL( f2Q\2‖ f̃2Q\2) under
the constraint that the components of ṽ2 be positive, as described in the previous section.

Finally, a common approach in Bayesian methods for selecting the optimal value of
the hyperparameters is to maximize the evidence of the model. This procedure is usually
referred to as type-II maximum likelihood estimation (Bishop 2006). In the LRMSSP, the
hyperparameters are the level of noise in the targets, σ0, the variance of the slab, vs , and the
prior probability that a coefficient is different from zero, p0. Thus, the values σ0, vs and p0
are determined by maximizing (42).

5 Experiments

The performance of the proposed EPmethod is evaluated in regression problems from differ-
ent domains of application using both simulated and real-world data. The problems analyzed
include the reconstruction of sparse signals from a reduced number of noisy measurements
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(Ji et al. 2008), the prediction of user sentiment from customer-written reviews of kitchen
appliances and books (Blitzer et al. 2007), the modeling of biscuit dough constituents based
on characteristics measured using near infrared (NIR) spectroscopy (Osborne et al. 1984;
Brown et al. 2001) and the reverse engineering of transcription networks from gene expres-
sion data (Gardner and Faith 2005). These problems have been selected according to the
following criteria: First, they all have a high-dimensional feature space and a small num-
ber of training instances (d > n). Second, only a reduced number of features are expected
to be relevant for prediction; therefore, the optimal models should be sparse. Finally, the
regression tasks analyzed arise in application domains of interest; namely, the modeling of
gene expression data (Slonim 2002), the field of compressive sensing (Donoho 2006), the
statistical processing of natural language (Manning and Schütze 2000) and the quantitative
analysis of NIR spectra (Osborne et al. 1993).

In these experiments, different inference methods for the linear regression model with
spike-and-slab priors are evaluated. The proposed EP method (SS-EP) is compared with
Gibbs sampling, variational Bayes and another approximate inference method that is also
based on EP, but ignores posterior correlations. Specifically, these include SS-MCMC, which
makes Bayesian inference using Gibbs sampling instead of EP. This technique is described
in Appendix 1; the variational Bayes method (SS-VB) proposed by Carbonetto and Stephens
(2012). Finally,we also consider an alternativeEPmethodwhich ignores possible correlations
in the posterior distribution, which is based on a different factorization of the likelihood (SS-
EPF) (Hernández-Lobato et al. 2008). This latter technique is described in Appendix 6.

We also investigate the effect of assuming different sparsity-enforcing priors. These
include the sparse linear regression model proposed by Seeger (2008), with Laplace pri-
ors and EP for approximate inference (Laplace-EP), a linear model with horseshoe pri-
ors and Gibbs sampling (HS-MCMC), which is described in Appendix 2; and, finally, the
relevance vector machine (RVM) of Tipping (2001). The RVM is equivalent to assuming
Student’s t priors in which the degrees of freedom approach zero. This method employs
a type-II maximum likelihood approach for the estimation of the model parameters. An
interpretation of this latter method from a variational point of view is given by Wipf
et al. (2004). Both Laplace-EP and RVM approximate the posterior using a multivari-
ate Gaussian distribution. The method SS-VB is based on the posterior approximation
QVB(w, z) = ∏d

i=1[zi pVBi N (wi |mVB
i , vVBi ) + (1 − zi )(1 − pVBi )δ(wi ))], where δ(·) is

a point probability mass at zero. To select mVB
1 , . . . ,mVB

d , vVB1 , . . . , vVBd and pVB1 , . . . , pVBd
SS-VB maximizes a lower bound on the model evidence (Carbonetto and Stephens 2012).

The different algorithms are implemented in R (Team 2007) except for RVM and SS-VB.
The results for these twomethods are obtained using theMATLAB implementation developed
by Ji et al. (2008) and the R package made available by Carbonetto and Stephens (2012),
respectively. SS-MCMC and HS-MCMC draw 10,000 Gibbs samples from the posterior
after a burn-in period of 1000 samples. Preliminary experiments in which more than 10,000
samples are generated produced no significant improvements in predictive accuracy, which
indicates that the runs are sufficiently long to produce accurate approximations to the posterior
distribution in these models. Besides evaluating the performance of the different methods,
we report the estimates of the model evidence given by SS-EP, SS-EPF, Laplace-EP and
RVM, and the value of the lower bound for this quantity given by SS-VB. We do not report
estimates of the model evidence for SS-MCMC or HS-MCMC. However, such estimates
could be computed using thermodynamic integration methods (Calderhead and Girolami
2009). Finally, we also report the training time in seconds for each method.

In the experiments with gene expression data, customer-written reviews and biscuit dough
constituents, we tune the hyperparameters of each method to the available training data.

123



454 Mach Learn (2015) 99:437–487

For this, in the EP based methods SS-EP, SS-EPF and Laplace-EP, we maximize the EP
approximation of the model evidence using the downhill simplex method. Other options
could be to do importance sampling using the the EP approximation of the model evidence
as importance weights or to sample hyperparameter values over a grid as in the integrated
nested Laplace approximation (INLA) (Rue et al. 2009). In SS-MCM and HS-MCMC, we
select non-informative priors for the hyperparameters and then sample from their posterior
distribution using Gibbs sampling. Finally, in SS-VB and RVMwe optimize the lower-bound
on the model evidence and the type-II likelihood function, respectively. In the experiments
with spike signals we use simulated data. The values of the hyperparameters are in this
case determined by taking into account the actual values of the parameters of the generative
process for the data.

In SS-MCMC, theMarkov chain is initialized to a solution inwhich the posterior probabil-
ity is large, so that the Gibbs sampler converges faster to a good solution. To this end, we use
a greedy search that starts off by setting z1, . . . , zd to zero and then activates the component
of z that reduces the mean squared error on the training data the most. This activation step is
repeated until p0d components of z are equal to one, where p0 is the hyperparameter value
selected by SS-EP. Note that we could have used a random initialization instead, at the cost
of having to increase the number of samples generated by the Gibbs sampling approach. In
SS-VB, we use an initialization similar to the one used for SS-MCMC.

We first evaluate the performance of the different inference methods for the linear regres-
sionmodelwith spike-and-slab priors (SS-EP, SS-MCMC,SS-EPFandSS-VB)on a synthetic
toy dataset. This simple toy example illustrates the behavior of each approximation method.
After that, we evaluate the performance of the spike-and-slab inference methods (SS-EP,
SS-MCMC, SS-EPF and SS-VB) and all the other methods (HS-MCMC, Laplace-EP and
RVM) on the remaining problems described above.

5.1 Toy example for spike-and-slab inference methods

We first evaluate the performance of SS-EP, SS-MCMC, SS-EPF and SS-VB on a toy exam-
ple. This allows us to illustrate the typical behavior of each of these inference methods. We
focus on a regression problem in which each xi is a two-dimensional vector (xi,1, xi,2)T

whose entries are sampled from a two-dimensional multivariate Gaussian distribution with
zero mean, unit marginal variances and 0.5 covariance between xi,1 and xi,2. The true coeffi-
cient vectorw is sampled from a spike-and-slab prior distribution (4) in which the probability
of sampling each coefficient from the slab is p0 = 0.5 and the slab variance is vs = 1. Given
xi and w, we sample yi from a Gaussian with mean xTi w and precision 10. For a direct
comparison of the different inference techniques, we fix the hyper-parameters to the opti-
mal values that were used to generate the data. This allows us to avoid discrepancies due to
SS-MCMC performing full Bayesian inference on the hyper-parameter values and SS-EP,
SS-EPF and SS-VB selecting only the point estimates that maximize an approximation to
the model evidence. For each method, we set p0 = 0.5, σ 2

0 = 0.1 and vs = 1. Note that
in the experiments with gene expression data, customer-written reviews and biscuit dough
constituents, we tune the hyperparameters of each method to the available training data. In
this toy example we use training sets with 2 instances and test sets with 1000 instances. The
training/testing process is repeated 100,000 times.

The plots in the top and bottom left of Fig. 3 show the approximation for the posterior
of w generated by SS-EP, SS-EPF and SS-MCMC on a particular case of the toy synthetic
data. The posterior distribution generated by SS-MCMC is considered to be the gold standard
and it is displayed in each plot in gray colors using the output of a kernel density estimator

123



Mach Learn (2015) 99:437–487 455

F
ig
.3

To
p
an
d
bo
tt
om

le
ft
,
po

st
er
io
r
ap
pr
ox

im
at
io
n
fo
r
w

=
(w

1
,
w
2
)T

ge
ne
ra
te
d
by

SS
-E
P,

SS
-E
PF

,
SS

-M
C
M
C
an
d
SS

-V
B
on

a
pa
rt
ic
ul
ar

ca
se

of
th
e
to
y
sy
nt
he
tic

da
ta
.

Se
e
th
e
m
ai
n
te
xt

fo
r
de
ta
ils
.T

he
ap
pr
ox
im

at
io
n
ge
ne
ra
te
d
by

SS
-E
P
is
ve
ry

cl
os
e
to

th
e
G
au
ss
ia
n
w
ith

th
e
sa
m
e
m
ea
n
an
d
co
va
ri
an
ce

as
th
e
sa
m
pl
es

ge
ne
ra
te
d
by

SS
-M

C
M
C
.

SS
-E
PF

fa
ils

to
ac
cu
ra
te
ly

ap
pr
ox
im

at
e
th
e
po
st
er
io
r
co
va
ri
an
ce

si
nc
e
it
as
su
m
es

in
de
pe
nd
en
ce

am
on
g
th
e
en
tr
ie
s
of

w
in

th
e
po
st
er
io
r.
T
he

ap
pr
ox
im

at
io
n
ge
ne
ra
te
d
by

SS
-V

B
di
ff
er
s
si
gn

ifi
ca
nt
ly
fr
om

th
e
on

e
ge
ne
ra
te
d
by

SS
-M

C
M
C
.S

S-
V
B
on

ly
ap
pr
ox

im
at
es

on
e
of

th
e
m
od

es
in
th
e
tr
ue

po
st
er
io
r.
In

SS
-E
P,
th
e
po

st
er
io
rc
ov
ar
ia
nc
es

ar
e
ap
pr
ox

im
at
ed

us
in
g
(3
3)

on
ce

th
e
E
P
m
et
ho

d
ha
s
co
nv
er
ge
d.

B
ot
to
m

ri
gh

t,
m
ar
gi
na
lp

os
te
ri
or

ac
tiv

at
io
n
pr
ob

ab
ili
tie

s
fo
r
z

=
(z
1
,
z 2

)T
ge
ne
ra
te
d
by

SS
-E
P,
SS

-E
PF

,S
S-
M
C
M
C
an
d
SS

-V
B

on
th
e
sa
m
e
in
st
an
ce

of
th
e
to
y
sy
nt
he
tic

da
ta
.T

he
ap
pr
ox
im

at
io
n
ge
ne
ra
te
d
by

SS
-E
P
is
ve
ry

cl
os
e
to

th
e
on
e
ge
ne
ra
te
d
by

SS
-M

C
M
C
.S

S-
E
PF

an
d
SS

-V
B
ar
e
le
ss

ac
cu
ra
te

ap
pr
ox

im
at
in
g
th
e
m
ar
gi
na
lf
or

z 1

123



456 Mach Learn (2015) 99:437–487

Table 3 Results of the different methods in the toy dataset

SS-EP SS-MCMC SS-EPF SS-VB

MSE 0.5190 ± 0.2912 0.5187 ± 0.2908 0.5207 ± 0.3005 0.5382 ± 0.3484

logP(y|X) −2.07 ± 1.45 Not available −2.10 ± 1.47 −2.29 ± 1.62

Time 7.6 × 10−3 ±
5 × 10−3

5.52 ± 2.07 3.1 × 10−3 ± 2.6 × 10−3 4.2 × 10−2

± 1.4×10−2

applied to the samples generated by SS-MCMC. The figure shows that in this case there are
two modes in the posterior distribution: one corresponding to solutions in which only w1

is zero and another one corresponding to solutions in which both w1 and w2 are different
from zero. We show in blue the Gaussian distribution with the same mean and the same
covariance matrix as the samples generated by SS-MCMC. The mean of the Gaussian is
shown with an “x” and its covariance matrix is visualized as the ellipse with axes formed
by the eigenvectors of the covariance matrix after being scaled by the square root of the
corresponding eigenvalues. The Gaussian approximations generated by SS-EP, SS-EPF and
SS-VB are shown as discontinuous red ellipses, with an “o” denoting their mean. In SS-EP,
the posterior covariances are approximated using (33) once the EP method has converged.
The Gaussian approximation generated by SS-EP is very close to a Gaussian with the same
mean and covariance matrix as the samples drawn by SS-MCMC. SS-EPF fails to accurately
model the posterior covariance since it assumes independence among the entries of w in the
posterior. The approximation generated bySS-VBdiffers significantly from the one generated
by SS-MCMC. SS-VB is stuck in a local solution. This method only approximates the mode
in the true posterior for which bothw1 andw2 are different from zero and it ignores the mode
for which w1 is zero and w2 is not. The plots in the bottom right of Fig. 3 show the marginal
posterior activation probabilities for z = (z1, z2)T generated by SS-EP, SS-EPF, SS-MCMC
and SS-VB on the same instance of the toy synthetic data. The approximation generated by
SS-EP is very close to the one generated by SS-MCMC. However, SS-EPF and SS-VB are
less accurate approximating the marginal for z1.

Table 3 shows for eachmethod the average and standard deviation of the test mean squared
error (MSE), the model evidence and the training time in seconds. In terms of MSE, the best
method is SS-MCMC, closely followed by SS-EP. SS-EPF performs worse than SS-EP and
SS-VB obtains the worst results. The gains of SS-MCMC with respect to the other methods
are significant at α = 5% according to different paired t tests. The p-values obtained are
all below 10−6. Regarding the estimates of logP(y|X), the evidence of SS-EP is larger
than the evidence of SS-EPF and SS-VB. Regarding execution times, SS-EP and SS-EPF
have similar performance, closely followed by SS-VB. However, SS-MCMC is much more
expensive than the other methods.

5.2 Reconstruction of sparse signals

TheLRMSSPhas potential applications also in signal processing and, in particular, in the field
of compressive sensing (Candès 2006; Donoho 2006). The objective in compressive sensing
is to recover a sparse signal w = (w1, . . . , wd)

T from a limited set of linear measurements
y = (y1, . . . , yn)T, where n < d . The measurements y are obtained after projecting the
signal w onto an n × d measurement matrix X

y = Xw + e, (43)
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where e = (e1, . . . , en)T ∼ N (0, σ 2
0 I) is additive Gaussian noise. Since w is sparse, it is

possible to accurately reconstruct this vector from y and X using fewer measurements than
the number of degrees of freedom of the signal, which is the limit imposed by the Nyquist
sampling theorem to guarantee the reconstruction of general signals. When w is not sparse,
it may be possible to find a d × d orthonormal matrix B (for example, a wavelet basis), such
that w̃ = BTw, where w̃ is sparse or nearly sparse. In this case, the measurement process is
performed after projecting the signal onto the columns of B

y = XBTw + e = Xw̃ + e (44)

Once an estimate of w̃ has been obtained from y andX,w can be approximated usingw = Bw̃.
Therefore, even if the signal is not sparse, it may still be possible to reconstruct w with high
precision using less than d samples, provided that this vector is compressible in some basisB.

In summary, the problem of recovering a sparse signal from a few compressive measure-
ments is a linear regression problem in which y is the target vector,X is the design matrix and
the vector of regression coefficientsw (the signal) is assumed to be sparse. Therefore, SS-EP
can be used to address this problem. The following experiments evaluate the performance
of SS-EP in the recovering of non-uniform and uniform spike signals. These are standard
benchmark problems in the field of compressive sensing for the comparison of different
algorithms (Ji et al. 2008).

5.2.1 Non-uniform spike signals

In this experiment, 100 signals of length d = 512 are generated by randomly selecting 20 non-
zero components in each signal vector. The elements in these positions are independently
sampled from a standard Gaussian distribution. The remaining components in the signal
vectors are zero. In this case it is not necessary to use a basisB because the signals are already
sparse in the original basis. The measurements are performed using a matrix X whose rows
are sampled uniformly from the unit hypersphere. For the reconstruction of the signals, a
total of n = 75 measurements are used. The noise in the measurement process follows a
zero-mean Gaussian distribution with standard deviation 0.005. The signal reconstruction is
given by the posterior mean of w, as approximated by each of the methods analyzed. The
hyperparameters in each method are determined in correspondence with the actual signal. In
SS-EP, SS-VB and SS-MCMC, p0 = 20/512 and vs = 1. In Laplace-EP, the scale parameter
is b = √

10/512. This specific value is such that the standard deviations of the Laplace prior
and of the signal to be recovered coincide. In HS-MCMC, the scale parameter τ is selected
so that the distance between the 0.01 and 0.99 quantiles is the same in the horseshoe prior
and in the spike-and-slab prior. In all the methods analyzed, the variance of the noise is
σ 2
0 = 0.0052. Given an estimate ŵ of a signal w0, the reconstruction error of ŵ is quantified

by ||ŵ − w0||2/||w0||2, where || · ||2 represents the Euclidean norm.
Table 4 summarizes the results of the experiments with non-uniform spike signals. This

table displays the average and the standard deviation of the signal reconstruction error, the

Table 4 Results of the different methods in the experiments with non-uniform spike signals

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

Error 0.04 ± 0.11 0.02 ± 0.00 0.07 ± 0.18 0.12 ± 0.28 0.16 ± 0.07 0.82 ± 0.06 0.20 ± 0.36

log P(y|X) 122.4 ± 27.5 Not available 115.1 ± 40.5 108.8 ± 49.1 Not available 19.7 ± 11.2 218.9 ± 25.4

Time 0.19 ± 0.11 11041 ± 942 0.45 ± 0.77 1.36 ± 0.48 4010 ± 61 0.13 ± 0.01 0.07 ± 0.02
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logarithm of the model evidence and the time cost in seconds for each method. The best
reconstruction performance is obtained by SS-MCMC, followed by SS-EP and SS-EPF. The
differences between these methods are not statistically significant. However, the differences
between SS-EP and SS-VB, Laplace-EP, HS-MCMC and RVM are significant at the level
α = 5% according to different paired t tests. All the resulting p-values are below 10−4. The
model evidence is higher for SS-EP than for SS-EPF and Laplace-EP. Furthermore, SS-EP
generates estimates of logP(y|X) that are larger than the value of the lower bound given by
SS-VB. In this problemRVMobtains the largest estimate ofP(y|X). However, the estimates
of the evidence given by RVM are too high. The reason for this is that the type-II maximum
likelihood approach used by RVM generates a posterior approximation in which many of the
model coefficients are exactly zero with probability one. The uncertainty in the actual value
of these coefficients is not taken into account by RVM and this method tends to overestimate
the value of the evidence. The training time of the EP methods are similar. RVM is slightly
faster and SS-VB slightly slower than EP. HS-MCMC and SS-MCMC are the costliest meth-
ods: Up to 20,000 and 60,000 times slower than SS-EP, respectively. In this case SS-MCMC
is particularly slow because of the specific parallel tempering implementation that prevents
the Gibbs sampler from becoming trapped in a suboptimal mode of the posterior distribu-
tion. This alternative version of SS-MCMC is described in section “Parallel tempering” of
Appendix 1.

In this problem, the differences between SS-VB and SS-EP have their origin in the propen-
sity of the variational method to become trapped in suboptimal modes of the posterior distri-
bution. This is illustrated by the plots in Fig. 4, which show the signal estimates obtained by
thesemethods in a particular instance of the problem. SS-EPgenerates a signal estimatewhich
is very accurate and cannot be distinguished in the graph from the original signal (not shown).
By contrast, SS-VB produces incorrect spikes that are not present in the original signal. This
happens even though we used an annealed version of SS-VB to try to prevent SS-VB from
getting trapped in suboptimal modes. This annealed version of SS-VB is described in Appen-
dix 7. The signal estimate generated by RVM also presents similar problems. The reason is
that RVM involves an optimization step that often converges to local suboptimal maxima
of the type-II likelihood. Laplace-EP has the largest reconstruction error in this problem, as
illustrated by the top-right plot in Fig. 4. The Laplace prior produces excessive shrinkage of
non-zero coefficients and does not sufficiently reduce the magnitude of the coefficients that
should be zero. The reconstruction generated by HS-MCMC is in this case very close to the
original signal as well. However, the height of some of the spikes is not correct, especially for
the smallest ones. Finally, the signal estimates given by SS-EPF and SS-MCMC (not shown)
are very similar to the reconstruction generated by SS-EP.

5.2.2 Uniform spike signals

The uniform spike signals are generated similarly as the non-uniform ones. The only differ-
ence is that the non-zero elements of the signals are now sampled at random from the set
{−1, 1}. The experimental protocol and the hyperparameters of the different methods are the
same as the ones used in the previous set of experiments. However, we now use 100 mea-
surements for the reconstruction of the signal vectors because the accurate reconstruction of
uniform spike signals requires more data.

Table 5 shows the results in the experiments with uniform spike signals. Themost accurate
reconstruction is provided by SS-MCMC, SS-EP and SS-EPF. The differences between these
methods are not statistically significant. However, the differences between SS-EP and all the
other techniques are statistically significant atα = 5%according to several paired t tests. The
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Table 5 Results of the different methods in the experiments with uniform spike signals

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

Error 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.12 0.32 ± 0.49 0.03 ± 0.01 0.84 ± 0.03 0.66 ± 0.55

log P(y|X) 215.2 ± 5.9 Not available 206.9 ± 46.6 131.7 ± 129.1 Not available 27.8 ± 5.3 247.8 ± 56.2

Time 0.20 ± 0.03 13250 ± 1009 0.38 ± 0.44 1.64 ± 0.94 4798 ± 40 0.18 ± 0.02 0.12 ± 0.04

p-values obtained are all lower than 10−15. The ranking of the different methods according to
the average estimates of the evidence is RVM, SS-EP, SS-EPF, SS-VB and Laplace-EP from
higher to lower values. The average training times of SS-EP, SS-EPF, SS-VB, Laplace-EP
and RVM are similar. However, HS-MCMC and SS-MCMC have computational costs that
are about 25,000 and 60,000 times larger than the cost of SS-EP, respectively.

Figure 5 displays the signal reconstructions generated by the different methods in a par-
ticular realization of the problem with uniform spike signals. SS-VB appears to be trapped
in some suboptimal mode of the posterior distribution. Similarly, RVM converges to a local
maximum of the type-II likelihood, which is suboptimal. By contrast, the signal reconstruc-
tion given by SS-EP is very accurate. These results indicate that SS-EP is less affected
than SS-VB by the multi-modality of the posterior distribution. The reconstruction given by
Laplace-EP is again very poor. This method does not produce an effective selective shrinkage
for the different coefficients of the signal vector. The estimation produced by HS-MCMC
is very accurate, being almost as good as SS-EP. The differences between SS-EP and HS-
MCMC are only in the heights of the predicted spikes. HS-MCMC tends to produce signal
reconstructions that slightly over-estimate or underestimate the size of the spikes. This was
observed in the experiments with non-uniform spike signals as well. By contrast, the signal
reconstructions generated by SS-EP are more accurate. The reason for this is that the spike-
and-slab prior applies the same intensity of shrinkage to all the spikes (the shrinkage is given
by the slab), while the horseshoe prior may apply different amounts of shrinkage to different
spikes, as illustrated by the bottom plots in Fig. 2.

In these experiments, the performances of SS-VB and RVM are markedly worse than in
the case with non-uniform spike signals. The reason seems to be that, with uniform spike
signals, it is more difficult to avoid suboptimalmaxima of the type-II likelihood or suboptimal
modes of the posterior distribution.

5.3 Prediction of user sentiment

In this section, we illustrate the effectiveness of the LRMSSP in natural language processing
applications (Manning and Schütze 2000). In particular, we consider the problem of senti-
ment prediction from user-written product reviews. The objective is to predict from the text
of a product review the rating assigned by the user to that product. In this work we analyze
the sentiment dataset2 described by Blitzer et al. (2007). This dataset contains review texts
and corresponding rating values taken from www.amazon.com in four different product cat-
egories. The range of possible ratings is from 1 to 5 stars. We focus on the categories books
and kitchen appliances because these are the hardest and easiest prediction problems, respec-
tively. Each review is represented using a vector of features whose components correspond
to the unigrams and bigrams (Manning and Schütze 2000) that appear in at least 100 reviews
within the same product category. The feature values are the occurrences of these unigrams

2 http://www.seas.upenn.edu/~mdredze/datasets/sentiment/.
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Table 6 Number of instances
and features in the sentiment
datasets

Dataset Instances Features

Books 5,501 1,213

Kitchen 5,149 824

Table 7 Results in the book dataset

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

MSE 1.84 ± 0.05 1.83 ± 0.04 1.85 ± 0.05 2.10 ± 0.07 1.96 ± 0.15 1.83 ± 0.04 2.48 ± 0.18

logP(y|X) −679 ± 5 Not available −684 ± 5 −694 ± 5 Not available −681 ± 5 −717 ± 4

Time 1,913 ± 1,353 239,493 ± 316,393 152 ± 42 81 ± 17 148,383 ± 9,223 476 ± 44 0.09 ± 0.01

Table 8 Results in the kitchen dataset

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

MSE 1.62 ± 0.04 1.61 ± 0.04 1.63 ± 0.04 1.76 ± 0.06 1.65 ± 0.04 1.62 ± 0.02 2.02 ± 0.10

logP(y|X) −648 ± 8 Not available −653 ± 8 −662 ± 8 Not available −652 ± 7 −710 ± 5

Time 1,015 ± 636 42,091 ± 31,504 106 ± 21 43 ± 10 93,327 ± 19,072 390 ± 29 0.07 ± 0.01

and bigrams in the review text. Table 6 contains the total number of instances and features
in the resulting datasets.

The performance of the different methods is evaluated in the problem of predicting the
user rating from the vector of features that encodes the text of the product review. For this
purpose, 20 random partitions of the data into non-overlapping training and test sets are
made. The size of the training set is n = 500. This particular size is selected because we
are interested in evaluating the results of the LRMSSP when the number of features is larger
than the number of training instances (that is, n < d). During the training process, the data
are normalized so that the instance features and the user ratings have zero mean and unit
standard deviation on the training set. The mean squared error (MSE) is then evaluated on
the corresponding test set. For training, the rating vector y is standardized so that it has zero
mean and unit standard deviation.

Tables 7 and 8 summarize the results obtained by the different methods in the books and
kitchen datasets, respectively. The rows in these tables display the average and the standard
deviation of the test MSE, the logarithm of the model evidence and the training time in
seconds for each method. In the books dataset, the methods with lowest test MSE are SS-
MCMC, SS-EP, SS-EPF and Laplace-EP. The differences in MSE between these techniques
are not statistically significant at α = 5% according to different paired t tests. In the kitchen
dataset SS-MCMC has the best accuracy. The differences between SS-MCMC and the other
approaches are statistically significant at α = 5% according to a paired t test. After SS-
MCMC, the highest predictive accuracy is obtained using SS-EP and Laplace-EP. Regarding
training times, the fastest method is RVM, followed by SS-EPF and SS-VB. The methods
SS-EP, Laplace-EP are a bit slower. The costliest methods are HS-MCMC and SS-MCMC.
They are on average 100 times slower than SS-EP. Finally, in both datasets SS-EP obtains
the highest evidence.

Figure 6 is useful to understand the differences of the methods analyzed. This fig-
ure shows the posterior means of w generated by each method on a specific training
instance of the kitchen dataset. The plots for the book dataset (not shown) are simi-
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Table 9 Results in the NIR cookie dataset: target variable fat

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

MSE 0.10 ± 0.03 0.10 ± 0.03 0.18 ± 0.11 0.14 ± 0.05 0.10 ± 0.03 0.10 ± 0.03 0.19 ± 0.05

log P(y|X) 5 ± 5 Not available −106 ± 7 −269 ± 114 Not available 4 ± 4 −60 ± 2

Time 15 ± 2 35,344 ± 42,576 1 ± 0 27 ± 21 5,778 ± 710 19 ± 3 0.04 ± 0.01

Table 10 Results in the NIR cookie dataset: target variable sucrose

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

MSE 0.76 ± 0.35 0.74 ± 0.35 1.19 ± 0.64 1.31 ± 0.78 0.73 ± 0.34 0.76 ± 0.36 1.37 ± 0.49

log P(y|X) −8 ± 4 Not available −108 ± 5 −242 ± 76 Not available −8 ± 4 −65 ± 2

Time 15 ± 2 35,236 ± 34,403 1 ± 0 27 ± 18 5,057 ± 860 17 ± 3 0.05 ± 0.01

lar. For SS-EP (top-left plot), the posterior means of most of the model coefficients are
shrunk towards zero. Only for a few coefficients are the posterior means significantly dif-
ferent from zero. When a Laplace prior is used, this selective shrinkage process is less
effective (top-right plot). The magnitude the coefficients that are close to zero is not sig-
nificantly reduced. Furthermore, the reduction of the magnitude of non-zero coefficients
caused by the Laplace prior tends to be excessive. In contrast, the posterior mean produced
by RVM (middle-right plot) includes too many components whose magnitude is signifi-
cantly different from zero. This leads to overfitting. The posterior means for HS-MCMC
and SS-EP are very similar. When SS-VB and SS-EP are compared, it seems that SS-
VB excessively reduces the magnitude the coefficients with small posterior means. Finally,
the plots for SS-EPF and SS-MCMC (not shown) are very similar to the one generated
by SS-EP.

5.4 Biscuit dough data

We also performed experiments with a biscuit dough dataset (Osborne et al. 1984; Brown
et al. 2001). The goal in this problem is to predict biscuit dough constituents (fat, sucrose,
dry flour, and water) from the spectral characteristics of the samples in the near infrared
(NIR). The available features are 700 NIR reflectance points measured from 1,100 to 2,498
nanometers (nm) in steps of 2 nm. The dataset consists of 72 data points. Samples 23 and
44 are considered to be outliers and are thus ignored. The data are randomly partitioned
into training and test sets with 47 and 23 instances each, respectively. This process was
repeated 50 times and the results averaged over the resulting random partitions. During the
training process, the data are normalized so that the different features and the targets have
zero mean and unit standard deviation on the training set. The mean squared error (MSE) is
then evaluated on the corresponding test set.

Tables 9, 10, 11 and 12 summarize the results obtained by the different methods when
predicting the dough constituents fat, sucrose, dry flour and water, respectively. The rows in
these tables display the average and the standard deviation of the test MSE, the logarithm of
the model evidence and the training time in seconds for each method. In general, the best
results are obtainedwith SS-MCMC,SS-EP,HS-MCMCandLaplace-EP.All of themachieve
similar predictive accuracy. In this problem the values determined for the hyperparameters
p0, vs and σ 2

0 for SS-EPF and SS-VB are suboptimal, which results in poor predictions. To
obtain results that are comparable with those of SS-EP and SS-MCMC,we use in SS-EPF and
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Table 11 Results in the NIR cookie dataset: target variable dry flour

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

MSE 0.69 ± 0.44 0.68 ± 0.43 0.96 ± 0.73 0.80 ± 0.44 0.70 ± 0.44 0.70 ± 0.44 0.71 ± 0.37

log P(y|X) −17 ± 11 Not available −104 ± 6 −205 ± 83 Not available −17 ± 11 −60 ± 2

Time 15 ± 1 27,821 ± 37,771 1 ± 0 15 ± 22 6,228 ± 462 12 ± 5 0.05 ± 0.01

Table 12 Results in the NIR cookie dataset: target variable water

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

MSE 0.05 ± 0.02 0.05 ± 0.01 0.11 ± 0.07 0.09 ± 0.05 0.05 ± 0.01 0.05 ± 0.01 0.11 ± 0.06

log P(y|X) 8 ± 4 Not available −91 ± 9 −171 ± 69 Not available 6 ± 4 −48 ± 3

Time 16 ± 2 30,362 ± 24,809 1 ± 0 15 ± 12 5,773 ± 1,257 17 ± 1 0.05 ± 0.01

SS-VB the hyperparameter values selected by SS-EP. As illustrated by the results displayed
in Tables 9, 10, 11 and 12, even with these values of the hyperparameters SS-EPF and SS-
VB perform much worse than SS-EP or SS-MCMC. In this problem most of the available
features are highly correlated. The average correlation between features is 0.88. This leads
to large correlations between the entries of w in the posterior, which explains the the poor
performance of SS-EPF. By contrast, SS-EPF performs much better in the experiments with
sentiment data (Sect. 5.3). The reason is that the correlation between features are much
smaller int that case (on average 0.04). RVM also obtains rather poor results in all the
cases analyzed. Regarding training time, RVM is the fastest method, followed by SS-EPF.
SS-EP, Laplace-EP and SS-VB have all similar costs and SS-MCMC and HS-MCMC are
the most expensive methods. Finally, the highest model evidence is obtained by SS-EP and
Laplace-EP, while SS-EPF, SS-VB and RVM obtain much lower values.

Figure 7 shows the posterior mean for w generated by each method on a specific training
instance of the biscuit dough dataset when the target variable is water. The plots for the
other target variables (fat, sucrose and dry flour) (not shown) are similar. The posterior
means generated by SS-EP, Laplace-EP and HS-MCMC present similar characteristics and
include several coefficients which are different from zero. The posterior mean produced by
SS-MCMC (not shown) is also very similar. In this dataset, the target vector y is very noisy
and there are not enough data to clearly identify which coefficients should be shrunk to zero.
Furthermore, the level of sparsity in this dataset is rather low. SS-EP selects on average the
hyperparameter value p0 = 0.22. By contrast, in other cases, such as in the experiments
with gene expression data presented in Sect. 5.5, SS-EP selects on average p0 = 0.03. This
explains why SS-EP and HS-MCMC do not produce a strong shrinkage of most coefficients
and why Laplace-EP performs relatively well, even though this method usually produces
solutions in which the posterior means are not strongly shrunk towards zero. From the results
of these experiments one concludes that SS-EP can perform very well even in datasets with
low sparsity level. An analysis of the plots for RVM and SS-VB in Fig. 7 reveals that these
methods generate solutions in which all the coefficients have zero posterior mean. These
methods seem to be trapped in some local optima where the whole signal in the target vector
y is assumed to be noise. Finally, SS-EPF seems to produce an excessive shrinkage of the
regression coefficients even though in this case it is using the same hyperparameter values
as SS-EP. The posterior approximation produced by SS-EPF is in this case much worse than
the one generated by SS-EP. The EPmethod used by SS-EPF does not fully take into account
the high correlations present in the posterior distribution.
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5.5 Reconstruction of transcription regulatory networks

In this section we analyze the performance of the LRMSSP in the reconstruction of genetic
regulatory networks from gene expression data. In these networks each node corresponds
to a different gene and each connection represents an interaction between two genes at
the transcription level (Alon 2006). The objective is to identify the connections between
transcription factors (genes that regulate the expressionof other genes) and thegenes regulated
by them. Bayesian linear models with sparsity enforcing priors are a popular approach for
solving this problem since transcription networks are sparsely connected (Steinke et al. 2007).
The experiments shown here are particularly useful for evaluating the performance of SS-EP
on the estimation of the marginal posterior probabilities for the latent variables z.

Let X be an n × d matrix whose columns correspond to different genes and whose rows
represent measurements of log-concentration of mRNA obtained under different steady-
state conditions. The columns of X are centered so that they have zero mean. As shown
in Appendix 8, if one assumes that the components of X are contaminated with additive
Gaussian noise, X approximately satisfies

X = XW + σ0E (45)

In this expression W is the d × d matrix of linear regression coefficients that connects the
expression level of each gene with that of its transcriptional regulators, E is a n × d random
matrix whose elements are independent and follow a standard Gaussian distribution and σ0
is a positive constant that measures the level of noise in X. The diagonal of W can be set
to zero because any autoregulatory term in (45) can be eliminated using the transformation
described in Appendix 8. For the linear model (45), the likelihood ofW given X and σ0 is

P(X|W) =
n∏

i=1

d∏

j=1

N (xi j |wT
j xi , σ

2
0 ) , (46)

where xi j is the element in the i-th row and j-th column of X, xi is the i-th column of XT

andw j is the j-th column ofW. To complete a Bayesian description for (45), a prior must be
specified for W. Note that the value of W is determined by the connectivity of the network.
In particular, the element in the i-th row and j-th column ofW is non-zero (wi j �= 0) if there
is a link from gene i to gene j and wi j = 0 otherwise. Therefore, our prior for W should
reflect the expected connectivity of transcription control networks.

Figure 8 shows an example of a realistic transcription control network, generated by the
application GeneNetWeaver (Marbach et al. 2009). Most genes in the network have only a
few parents. There are also a few hub genes that are connected to a large number of nodes
(Thieffry et al. 1998; Barabási and Oltvai 2004). Thus, W is expected to be sparse. The
non-zero elements ofW are clustered on a few rows ofW corresponding to hub genes. The
performance of network reconstruction methods can be improved by taking into account this
clustering effect (Hernández-Lobato et al. 2010). In the prior used in the present investigation,
we assume independence among the components ofW. The sparsity assumption can then be
captured by a spike-and-slab prior

P(W|Z) =
d∏

i=1

d∏

j=1

[
zi jN (wi j |0, vs) + (1 − zi j )δ(wi j )

]
, (47)

whereZ is a d×d matrix of binary latent variables, zi j = {0, 1} is the element in the i-th row
and j-th column of Z and vs is the prior variance of the components of W that are different
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Fig. 8 A transcription regulatory
network with 100 nodes. Each
node in the network represents a
different gene. Edges represent
transcriptional interactions
between genes. The network has
been generated using the
application GeneNetWeaver. Hub
genes are displayed in the
network with a diamond-shape
node

from zero. Note that zi j = 1 whenever there is an edge in the network from gene i to gene j
and zi j = 0 otherwise. The prior for Z is given by a product of Bernoulli terms

P(Z) =
d∏

i=1

d∏

j=1

Bern(zi j |pi j ) , (48)

where pi j = p0 for i �= j , pi j = 0 for i = j to enforce that the diagonal elements of W
be zero and p0 is the expected fraction of regulators of a gene in the network. The posterior
distribution forW and Z is obtained using Bayes’ theorem

P(W,Z|X) = P(X|W)P(W|Z)P(Z)

P(X)
=

d∏

i=1

P(xi |wi )P(wi |zi )P(zi )
P(xi )

, (49)

where xi ,wi and zi represent the i-th columns ofX,W andZ, respectively and the right-most
part of (49) reflects the fact that the posterior factorizes in the columns of W and Z. The
i-th factor in the right part of (49) (i = 1, . . . , d) is the posterior distribution of a LRMSSP
that predicts the expression level of gene i as a function of the expression levels of the other
genes in the network. To reconstruct the transcription network, we compute the posterior
probability of each possible link. For an edge from gene i to gene j , this probability is given
by P(zi j = 1|X), which is computed by marginalizing (49) with respect to W and all the
components of Z except zi j . Once the posterior probability of each possible connection has
been computed, a connection fromgene i to gene j is predictedwheneverP(zi j = 1|X) > γ ,
where 0 ≤ γ ≤ 1 is a pre-specified threshold. In practice, the exact marginalization of (49)
is not practicable. Because (49) factorizes into d linear regression problems, the posterior of
each of these problems can be approximated using EP. The product of the resulting d partial
solutions generates a final approximation of (49), which allows us to compute the posterior
probability of each edge very efficiently.

We also assess the performance of models based on Laplace, Student’s t and horseshoe
priors in the problem of reverse engineering transcription control networks. In these cases,
the posterior for W is also obtained by solving d different regression problems. In each of
these problems the log-concentration of mRNA of gene i is expressed as a linear combi-
nation of the log-concentration of mRNA of all the other genes plus Gaussian noise, for
i = 1, . . . , d . The global posterior is then given by the product of the d individual posteriors
of the surrogate regression problems. However, with these alternative priors, the probability
that any component of W is different from zero is always one. This means that we would
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Table 13 Results for each spike-and-slab method in the network reconstruction problem

SS-EP SS-MCMC SS-EPF SS-VB HS-MCMC Laplace-EP RVM

AUC-PR 0.180±0.03 0.173±0.03 0.167±0.03 0.161±0.04 0.176±0.03 0.147±0.03 0.095±0.02

AUC-ROC 0.754±0.03 0.757±0.04 0.724±0.03 0.712±0.03 0.757±0.03 0.756±0.03 0.621±0.03

log P(y|X) −13,150±294 Not available −13,190±283 −13,212±277 Not available −13,408±238 −10,888±368

Time 1,230±1,167 44,905±13,381 732±538 96±23 154,798±24,205 544±419 7±1

always predict a fully connected network, where each gene is connected to all other genes,
independently of the value of γ . To avoid this, we follow Steinke et al. (2007) and approx-
imate the posterior probability of a connection from gene i to gene j by the probability
of the event |wi j | > δe under the posterior for W, where δe is a small positive constant.
To evaluate this probability, P(W|X) is integrated in the set of possible values of W such
that wi j < −δe and wi j > δe. This integral does not have an analytic solution. In prac-
tice, it is computed using numerical approximation schemes. In the models with Laplace
and Student’s t priors, the true posterior is approximated using a multivariate Gaussian.
P(|wi j | > δe|X) is then approximated by integrating the Gaussian marginal for wi j in the
intervals (−∞,−δe] and [δe,∞). In the model with horseshoe priors, we draw samples from
the exact posterior and approximate P(|wi j | > δe|X) by the fraction of samples for which
|wi j | > δe.

5.5.1 DREAM 4 multifactorial sub-challenge

The performance of SS-EP is evaluated in the problem of reverse engineering transcription
networks. The experimental protocol is based on the DREAM 4 (2009) multifactorial sub-
challenge. The Dialogue for Reverse Engineering Assessments andMethods (DREAM) is an
annual conference, in which researchers compare the performance of different methods on a
set of network reconstruction tasks (Stolovitzky et al. 2007). The DREAM 4 multifactorial
sub-challenge includes 100 steady-state measurements from networks with 100 genes. The
levels of expression of all the genes are measured under different perturbed conditions. Each
perturbation consists in small random changes in the basal activation of all the genes in
the network. The network structures and the gene expression measurements are simulated
using the program GeneNetWeaver (Marbach et al. 2009). This program is used to generate
100 networks of size 100 and to sample 100 steady-state measurements from each network.
Figure 8 displays one of the networks generated by GeneNetWeaver.

The posterior probability of each edge in each network is approximated using the methods
SS-EP, SS-MCMC, SS-EPF, SS-VB, HS-MCMC, Laplace-EP and RVM. The columns of
matrixX are standardized so that they have zero mean and unit standard deviation. The value
of δe is set to 0.1, as recommended by Steinke et al. (2007). The performance of the different
approaches is evaluated using the area under the precision recall (PR) and receiver operating
characteristics (ROC) curves which are obtained when γ is varied from 0 to 1 (Davis and
Goadrich 2006).

Table 13 displays the results obtained by each method in the experiments with gene
expression data. The rows in this table present the average and the standard deviation of the
area under the PR and ROC curves, the logarithm of the model evidence and the training time
in seconds for eachmethod. In termsofAUC-PR, the best reconstruction is obtained bySS-EP.
According to this metric, the improvements of SS-EP with respect to the other techniques are
statistically significant at α = 5% based on different paired t tests. The p-values obtained are
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all below 10−5. When AUC-ROC is used as a performance measure, the differences between
the top performing methods are smaller. The best methods are in this case SS-MCMC, HS-
MCMC, Laplace-EP and SS-EP. All of them achieve very similar results. Overall, SS-EP is
better than SS-EPF and SS-VB. Note that the different rankings of the methods according to
AUC-ROC or AUC-PR have their origin in the fact that these performance measures are not
monotonically related and algorithms that optimize AUC-ROC do not also optimize AUC-PR
and the otherway around (Davis andGoadrich 2006). Regarding the estimates of logP(y|X),
the evidence of SS-EP is larger than the evidence of SS-EPF and Laplace-EP and larger
than the lower-bound given by SS-VB. RVM obtains the highest average evidence. Finally,
regarding training times, the fastest methods are SS-VB and RVM. The EP methods SS-EP,
SS-EPF and Laplace-EP obtain similar results, while HS-MCMC and SS-MCMC are much
slower.

The superior results of SS-EP over SS-MCMC on AUC-PR could have two explanations:
i) the Gibbs sampler would need more iterations to converge to the stationary distribution
or ii) with this particular data SS-EP is more robust to model mismatch. The better perfor-
mance of SS-EP with respect to Laplace-EP and RVM in terms of AUC-PR probably has
its origin in the superior selective shrinkage capacity of spike-and-slab priors. The analysis
of the approximations of the posterior mean for W given by the different methods dis-
played in Fig. 9 supports this claim. In this figure, the 100 × 100 matrices are represented
as vectors of dimension 10, 000. Each point in the plots represents the posterior mean of
a different coefficient. In the plot for SS-EP, most coefficients are strongly shrunk to zero
while a few of them take values that are significantly different from zero. By contrast, in
the Laplace model this shrinkage effect is less pronounced for small coefficients while the
magnitudes of coefficients different from zero are excessively reduced. This result cannot
be circumvented by increasing the sparsity level of the Laplace prior; that is, by lowering
the value of the hyperparameter b, because that would increase the amount of shrinkage in
all the model coefficients, including truly non-zero coefficients whose magnitude should not
be reduced. The corresponding plot for SS-MCMC (not shown) cannot be visually distin-
guished from the one generated by SS-EP. The average size of the non-zero coefficients in
RVM is similar to the average size of large coefficients in SS-EP. However, RVM includes
an excessive number of coefficients whose posterior mean is not close to zero. The insuf-
ficient shrinkage for these coefficients makes RVM susceptible to overfitting. The plot for
HS-MCMC is very similar to the one produced by SS-EP.When we compare SS-EP with SS-
EPF and SS-VB, it seems that SS-EPF and SS-VB produce an excessive shrinkage of small
coefficients.

6 Conclusions and discussion

In many regression problems of practical interest d , the dimension of the feature vector, is
significantly larger than n, the number of training instances. In these conditions assuming
a sparse linear model can be an effective way to limit the detrimental effects of overfitting
(Johnstone and Titterington 2009). In a Bayesian approach, sparsity can be favored by using
specific priors such as Laplace (Seeger 2008), Student’s t (Tipping 2001), horseshoe (Car-
valho et al. 2009) or spike-and-slab (Mitchell and Beauchamp 1988; Geweke 1996; George
and McCulloch 1997) distributions. These priors induce a bi-separation in the posterior
between a few coefficients that are significantly different from zero with large probability
and a large number of coefficients that have very small posterior means. Ishwaran and Rao
(2005) call this bi-separation effect selective shrinkage.
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Spike-and-slab priors are generally better at enforcing sparsity than Laplace or Student’s
t priors because the two components in the mixture can account for two types of coefficients:
The spike captures the prior distribution of coefficients that are exactly zero in the actual
model. The slab models the prior of coefficients that are significantly different from zero. By
contrast, Laplace and Student’s t priors cannot discriminate between different groups of coef-
ficients (zero versus non-zero coefficients). These priors produce a more uniform reduction
of the magnitude of the coefficients and are, in general, less effective than spike-and-slab
priors in enforcing sparsity. An exception occurs in the Student’s t distribution when the
degrees of freedom approach zero. However, in this case, the Student’s distribution cannot
be normalized and a fully Bayesian approach is not possible. Horseshoe priors are similar to
spike-and-slab priors in terms of their capacity for selectively shrinking the posterior distrib-
ution, but they do not have a closed-form convolution with the Gaussian distribution. This is
a disadvantage that renders approximations based on the Gaussian distribution impractical.

Bayesian inference with spike-and-slab priors is a difficult and computationally demand-
ing problem. Approximate Bayesian inference in the linear regression model with spike-and-
slab priors (LRMSSP) is usually implemented usingGibbs sampling (George andMcCulloch
1997). However, thismethod has a very high computational cost when d and p0 are very large.
Another option is to use variational Bayes (VB) methods (Titsias and Lazaro-Gredilla 2012;
Carbonetto and Stephens 2012). However, VB can be less accurate than other alternatives of
comparable running time (Nickisch and Rasmussen 2008). We propose to use an expectation
propagation (EP) (Minka 2001) algorithm as a more efficient alternative to Gibbs sampling
and a more accurate method than VB. The cost of EP in the LRMSSP is O(n2d) when the
number of training instances n is smaller than d . The performance of EP has been evaluated
in regression problems from different application fields with d > n: the reverse engineering
of transcription networks, the reconstruction of sparse signals given a reduced number of
linear measurements, the prediction of sentiment from user-written product reviews and the
determination of biscuit dough constituents from spectral characteristics. In these tasks, the
proposed EP method outperforms VB and an alternative implementation of EP that assumes
no correlations in the posterior distribution (Hernández-Lobato et al. 2008). Furthermore,
the predictive accuracy achieved is comparable to Gibbs sampling at a much lower computa-
tional cost. This good generalization performance is obtained even though the values of the
hyperparameters in the proposed method are determined by maximizing the approximation
of the model evidence given by EP, while Gibbs sampling performs a full average over the
posterior distribution of the hyperparameters.

The superior performance of EP over VB in the problems investigated can be explained by
the differences in the form of the KL divergence minimized by these methods. In regression
models, the mean of the posterior distribution leads to optimal predictions, in the sense that it
minimizes themean square error. EP usually produces a global fit to the posterior distribution.
In contrast, VB approximates the posterior only locally around one of its modes. This is
illustrated by the plots shown in Fig. 10. In the multi-modal posterior distributions generated
by spike-and-slab priors, the global fit produced by EP is much better at approximating the
posteriormean than the local approximations generated byVB. Furthermore, our experiments
show that SS-VB often ends up being stuck in suboptimal modes of the posterior distribution
with poor predictive properties.

The LRMSSPwith EP also outperforms other sparse linear regression models that assume
Laplace, Student’s t or horseshoe priors. The good overall results of the LRMSSP when
compared to models based on Laplace or Student’s t priors are explained by the superior
selective shrinkage capacity of spike-and-slab distributions: In the posterior approximation
computed by EP, most of the model coefficients are close to zero with large probability. Only
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Fig. 10 Comparison of the solutions generated by the minimization of two alternative forms of the KL
divergence. The blue contours showabimodal posterior distribution p generated by amixture of twoGaussians.
The red contours show a single Gaussian distribution q that best approximates p according to theminimization
of KL(q||p) (left-plot) or KL(p||q) (right-plot). Variational Bayes minimizes KL(q||p) and produces local
approximations to specific modes of the posterior distribution, as illustrated in the left plot. By contrast, EP
works by minimizing the reversed KL divergence and produces a global fit to the posterior distribution, as
shown in the right plot. In sparse linear regression models, optimal predictive performance in terms of mean
square error is given by the mean of the posterior distribution. The mean of p is located between the two
modes of the Gaussian components in the mixture. The plots above show that the cost function minimized by
EP generates better approximations to the posterior mean in multi-modal posterior distributions, which is the
case in linear models with spike-and-slab priors (Color figure online)

for a few coefficients is the posterior probability centered around values that are significantly
different from zero. By contrast, Laplace priors produce a more uniform reduction of the
magnitude of all coefficients. The consequence is that the shrinkage of the coefficients that
should be zero is insufficient. At the same time, the reduction of the size of the coefficients that
should be different fromzero is too large. Themethod that assumesStudent’s t priors performs
rather poorly in all the problems analyzed. The reason is that thismethod is often stuck in local
and suboptimal optima of the type-II likelihood function. In the experiments, themodel based
on horseshoe priors performs much better than the models based on Laplace or Student’s t
priors. In terms of their capacity for selectively shrinking the posterior mean, the performance
of models that assume horseshoe priors is comparable to LRMSSP with EP. However, the
computational cost of Bayesian inference in the models that assume horseshoe priors, which
is carried out using Gibbs sampling, is much larger than the cost of the proposed EP method.
Horseshoe priors do not have a closed-form convolution with the Gaussian distribution. This
makes the application of EP in models with these types of priors difficult.

A disadvantage of EP is that this method is not guaranteed to converge. In our implemen-
tation, different strategies have been used to improve the convergence of EP. In particular,
the components of ṽ2 in (16) are restricted to be positive in the optimization. An annealing
process for the damping parameter ε is used to improve the convergence of EP. In all the
experiments, the proposed EPmethod (SS-EP) generally converged in less than 20 iterations.
However, in some specific cases, SS-EP might take more than 100 iterations to converge,
especially when σ0 and p0 are very small and the amount of training data is very small.
By contrast, the EP method for the model with Laplace priors (Seeger 2008) exhibits bet-
ter convergence properties and does not seem to be affected by this drawback. Note that
Hernández-Lobato and Hernández-Lobato (2011) describe an alternative implementation of
EP in the LRMSSP that is guaranteed to converge. However, the computational cost of this
method is much higher than the cost of the EP algorithm described here.

Finally, the proposed EP method could be easily extended to the probit regression setting.
For this, we would introduce the vector of auxiliary variables a = (a1, . . . , an), where
ai = wTxi . The likelihood for yi ∈ −1, 1 given ai is then p(yi |ai ) = Φ(yiai ), where
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Φ is the standard Gaussian cumulative distribution function. The probability of a given X
and w is then p(a|w,X) = ∏n

i=1 δ(ai − wTxi ), where δ(·) is a point mass at zero. EP
would approximate the likelihood factors p(yi |ai ) with Gaussian factors as in the Gaussian
process classification case (Rasmussen andWilliams 2005). The factor p(a|w,X) can then be
approximated in the same way as the likelihood factor f1(w, z) in the linear regression case.
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Appendix 1: Gibbs sampling in the LRMSSP

Approximate Bayesian inference in the LRMSSP has been traditionally implemented using
Gibbs sampling. This method randomly samples w and z from (6). Expectations over the
actual posterior are then approximated by expectations over the resulting samples. For the
implementation of the Gibbs sampling method, we follow Lee et al. (2003) and sample z
from its marginal distribution after integratingw out, which speeds up the computations. The
central operation in Gibbs sampling is the evaluation of the conditional probability of the
event zi = 1 when all the other components of z stay fixed. This probability can be efficiently
computed using the framework described by Tipping and Faul (2003).

First,we introduce somenotation.LetCz be ann×nmatrix such thatCz = σ 2
0 I+XA−1

z XT,
whereAz is a d ×d diagonal matrix whose i-th diagonal element αi satisfies αi = v−1

s when
zi = 1 and αi = ∞, otherwise. The logarithm of the joint marginal probability of z and y is
then

logP(z, y|X) = −1

2
log |Cz| − 1

2
yTC−1

z y + sz log p0 + (d − sz) log(1 − p0) + constant ,

(50)
where sz is the number of components of z that are equal to one. Let ϕi denote the i-th
column of X and let Σ−1

z = Az + σ−2
0 XTX. Following Tipping and Faul (2003), when z is

updated by switching zi from one to zero, the corresponding decrement in (50) is

log

√
1

1 + vssi
+ q2i

2(v−1
s + si )

+ log
p0

1 − p0
, (51)

where qi and si are given by

qi = Qi

1 − vs Si
, si = Si

1 − vs Si
(52)

and Qi and Si are computed using

Qi = σ−2
0 ϕT

i y − σ−4
0 ϕT

i XΣzXTy , (53)

Si = σ−2
0 ϕT

i ϕi − σ−4
0 ϕT

i XΣzXTϕi , (54)

whereX andΣz involve in (53) and (54) only the features whose corresponding components
of z are one before the update. When z is updated by switching zi from zero to one, the
resulting increment in (50) is also given by (51). However, qi and si are now fixed as qi = Qi

and si = Si , where Qi and Si are obtained using (53) and (54). This allows us to efficiently
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compute the conditional probability of zi as a function of qi and si alone

P(zi = 1|z\i , y,X) = p0

[

p0 + (1 − p0) exp

{
−q2i

2(v−1
s + si )

}
√
1 + vssi

]−1

, (55)

where z\i represents z1, . . . , zd but with zi omitted and qi and si are obtained using either
the rule qi = Qi , si = Si or (52), depending on whether zi = 1 is satisfied or not during
the computation of Qi and Si by (53) and (54). Gibbs sampling generates a sample of z
by randomly iterating through all the components of this vector and drawing a value for
each component according to the probability given by (55). The bottleneck of this process
is the computation of Σz in (53) and (54), which requires O(s2z n) operations when sz < n.
Nevertheless, Gibbs sampling modifies Σz by adding or removing a single feature from this
matrix at a time. This allows us to save unnecessary computations by storingLz, the Cholesky
decomposition of Σ−1

z ; that is, Σ−1
z = LzLT

z where Lz is a lower triangular matrix. The cost
of updating Lz after switching on or off a single component of z is O(s2z ) when efficient
methods for modifying matrix factorizations are used (Gill et al. 1974). Once Lz is available,
we can compute Σz in only O(s2z ) operations. After having generated a Gibbs sample for z,
we draw a sample of w conditioning to the current value of z. For this, we set to zero the
components of w whose corresponding z1, . . . , zd are equal to zero. The other components
of w, represented by the sz-dimensional vector wz, are sampled using

wz = σ−2
0 ΣzXy + rTL′

z , (56)

whereX andΣz involve in this formula only those featureswhose corresponding components
of z are active, r is an sz-dimensional random vector whose components follow independent
standard Gaussian distributions; that is, r ∼ N (0, I) and L′

z is the Cholesky decomposition
of the matrix Σz used in this formula. The cost of generating a Gibbs sample of w is O(s3z ).
When n < d , the computational complexity of the method is determined by the operations
involved in the sampling of z. The expected value of sz is p0d . Hence, generating a total of
k samples of z and w has a cost equal to O(kp20d

3) and often k  d for accurate inference.

Hyper-parameter learning

Learning the hyperparameters p0, σ 2
0 and vs is straightforward. For this, we select non-

informative conjugate priors and use Gibbs sampling for inference. For p0, we choose the
prior P(p0) = Beta(p0|a0, b0), where a0 = k p̂0, b0 = k(1 − p̂0), p̂0 is an initial guess of
the true value of p0, k is a concentration parameter specifying the width of P(p0) around
its mean and Beta(·|a0, b0) denotes a Beta distribution with parameters a0 and b0

Beta(x |a, b) = 1

B(a, b)
xa−1(1 − x)b−1 , (57)

where B(a, b) is the Beta function. The conditional distribution for p0 depends only on z. In
particular,we sample p0 fromP(p0|z) =Beta(p0|a0+sz, b0+d−sz), where sz is the number
of components of z that take value one. For σ 2

0 , we choose the priorP(σ 2
0 ) = IG(σ 2

0 |α0, β0),
α0 = k/2,β0 = k/2σ̂ 2

0 , σ̂
2
0 is an initial guess for σ 2

0 , k is a concentration parameter specifying
the width ofP(σ 2

0 ) around its mean and IG(·|α0, β0) denotes an inverse Gamma distribution
with parameters α0 and β0

IG(x |α0, β0) = β
α0
0

Γ (α0)
x−α0−1 exp

{
β0

x

}

, (58)
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where Γ is the Gamma function. The conditional distribution for σ 2
0 depends only on w.

In particular, we sample σ 2
0 from P(σ 2

0 |w) = IG(σ 2
0 |α, β), where α = α0 + n/2 and

β = 1/2(y − Xw)T(y − Xw) + β0. For vs , we choose the prior P(vs) = IG(σ 2
0 |α′

0, β
′
0),

where α′
0 = k/2, β ′

0 = k/2v̂s , k is a concentration parameter and v̂s is an initial guess for
this hyperparameter. The conditional distribution for vs depends only on w. In particular, we
sample vs fromP(vs |w) = IG(vs |α′, β ′), where α′ = α′

0 + sz/2 and β ′ = ∑d
i=1 ziw

2
i +β0.

Finally, we have to specify the value of p̂0, σ̂ 2
0 , v̂s and k. In our case, we have fixed p̂0, σ̂ 2

0
and v̂s to be the values that maximize the approximation of the evidence returned by the EP
method described in Sect. 4. The concentration parameter k is fixed to a low positive integer
(k = 3). This leads to non-informative broad priors.

Parallel tempering

In the experiments with spike signals from Sect. 5.2, we found that the Gibbs sampling
method described above is very often stuck in local and suboptimal modes of the posterior
distribution. To avoid this, we use the method parallel tempering (Ferkinghoff-Borg 2002).
This technique consists in running several chains in parallel at different temperatures. Chains
at higher temperatures have flatter target distributions and aremore likely to escape from local
and suboptimal modes. Let γ ∈ [0, 1] be the inverse temperature parameter of a particular
chain. Assuming the hyperparameters σ0, p0 and vs are known, each parallel chain draws
samples from

Pγ (w, z) ∝ P(y|w,X)γP(w|z)P(z) , (59)

where γ determines the temperature of the chain andP(y|w,X),P(w|z) andP(z) are given
by (3), (4) and (5), respectively. When γ = 1, the chain generates samples from the original
target distribution (6). For values ofγ lower than1, the chain gives lessweight to the likelihood
P(y|w,X) and focuses more on the prior P(w|z)P(z). When γ = 0, the chain generates
samples from the prior. To sample fromPγ (w, z), we simply run the Gibbs samplingmethod
described above with the noise level σ 2

0 scaled by γ −1. That is, instead of using σ 2
0 as the

variance parameter in the Gaussian likelihoodP(yi |w, xi ) = N (yi |xiw, σ 2
0 ), we use σ 2

0 /γ .
In the experiments with spike signals, we run a total of 30 chains in parallel for 5000 iterations
with temperature parameter γi for the i-th chain given by γi = 0.8i−1, i = 1, . . . , 30. At
each iteration, we perform 30 swap moves, where each of these moves attempts to exchange
the states of chains k and k + 1 and k is sampled uniformly from {1, . . . , 29}. Each of
these swap moves between chains k and k + 1 is accepted with probability α given by the
Metropolis-Hastings rule

α = min (1, exp {(γk − γk+1)(logP(y|wk+1,X) − logP(y|wk,X))}) , (60)

wherewk andwk+1 are the current states of chains k and k +1, respectively. When the move
is accepted we generate a new state for all the chains. The new state for each chain is the
state of the chain before the swap move was attempted, except for chains k and k + 1, which
have now their previous states swapped. When the move is not accepted, we again generate
a new state for all the chains. However, in this case, the new state for each chain is the state
of the chain before the swap move was attempted. Finally, we use the samples generated by
the first chain (i = 1) as samples drawn from the posterior distribution (6), ignoring the first
1000, which are used as burn-in.
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Appendix 2: Gibbs sampling in the model with horseshoe prior

The horseshoe prior for w can be written as

P(w) =
d∏

i=1

∫
N (wi |0, τ 2λ2i )C+(λi |0, 1) dλi ,

where C+(λi |0, 1) = 2π−1(1 + λ2i )
−1 is a positive Cauchy distribution (Carvalho et al.

2009). Given the likelihood function (3), we can easily compute the logarithm of the joint
marginal density of the vector of latent variables λ = (λ1, . . . , λd)

T and the targets y. The
resulting formula is similar to (50) in Appendix 1, namely,

logP(λ, y|X) = −1

2
log |Cλ| − 1

2
yTC−1

λ y +
d∑

i=1

logC+(λi |0, 1) + constant , (61)

where Cλ is the n × n matrix given by Cλ = σ 2
0 I + XA−1

λ XT and Aλ is a d × d diagonal
matrix whose i-th diagonal element is equal to τ−2λ−2

i . Following Tipping and Faul (2003)
we can obtain the logarithm of the conditional density of λi when y, X and all the other
components of λ are hold fixed:

logP(λi |λ−i , y,X) = l(λi ) + logC+(λi |0, 1) + constant , (62)

where λ−i represents the vector (λ1, . . . , λd)
T but with λi omitted, the term l(λi ) is given

by the expression

l(λi ) = 1

2

[

− log(1 + λ2i τ
2si ) + q2i λ2i τ

2

1 + λ2i τ
2si

]

(63)

and we compute qi and si in this case using

qi = ϕT
i C

−1
λ\λi y si = ϕT

i C
−1
λ\λi ϕi ,

where ϕi is the i-th column of X and Cλ\λi is obtained by removing the contribution of ϕi
from Cλ

Cλ\λi = σ 2
0 I + XA−1

λ\λiX
T, (64)

and A−1
λ\λi is equal to A−1

λ , but with the i-th diagonal element equal to zero. We generate
a Gibbs sample of λ by running randomly through all the components of this vector and
generating a value for each λi according to the density implied by (62). Sampling from such
density can be performed using the method proposed by Damien et al. (1999). For this,
we first sample an auxiliary latent variable u such that exp(u) ∼ U [0, exp(l(λi ))], where
l(λi ) is given by (63) and second, we sample λi from C+(λi |0, 1), but restricted to the set
Au = {λi : l(λi ) > u}. The function l(λi ) has a single global maximum (Faul and Tippin
2001) which is equal to zero when q2i < si and to (q2i −si )1/2(s2i τ

2)−1/2 otherwise. Let λ�
i be

the global maximum of l(λi ). Then the set Au can be identified by finding roots of l(λi ) − u
in the intervals [0, λ�

i ] and [λ�
i ,∞]. The costliest operation in this process is the computation

of C−1
λ\λi each time that a new λi has to be sampled. To perform this operation efficiently, we

store the Cholesky decompositions of Cλ and C−1
λ and update these decompositions (Gill

et al. 1974) with cost O(n2) after a rank-one update of Cλ since Cλ\λi = Cλ − λ2i τ
2ϕiϕ

T
i

and Cλ = Cλ\λi + λ2i τ
2ϕiϕ

T
i . To avoid numerical errors, the Cholesky decompositions are

recomputed from scratch once we have generated ten new Gibbs samples of λ. Following
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Scott (2010), the Markov Chain for λ is initialized to λstart = (1, . . . , 1)T, a vector whose
components are all equal to 1.

Conditioning to λ, we can sample w from a Gaussian distribution with covariance matrix
Σλ = (Aλ + σ−2

0 XTX)−1 and mean vector σ−2
0 ΣλXy. When d > n this can be performed

with cost O(n2d) using the method described by Seeger (2008) in Appendix B.2. The total
cost of Gibbs sampling in the model with horseshoe prior is O(kn2d), where k is the number
of samples to be generated from the posterior. Often k  d for accurate inference.

Hyper-parameter learning

In this case, the model hyperparameters are σ 2
0 and τ 2. We select non-informative conjugate

priors and use Gibbs sampling to learn the value of these hyperparameters. We sample σ0 in
the sameway as inAppendix 1.1. To sample τ 2, we choose the priorP(τ 2) = IG(σ 2

0 |α0, β0),
where α0 = k/2, β0 = k/2τ̂ 2, k is a concentration parameter specifying the width of P(τ )

around its mean and τ̂ 2 is an initial guess for τ 2. The conditional distribution for τ 2 depends
only on w and λ. In particular, we sample τ 2 from P(τ 2|w,λ) = IG(τ 2|α, β), where
α = α0 + d/2 and β = ∑d

i=1 w2
i /λ

2
i + β0. Finally, we have to specify the values of τ̂ 2

and k. Let p̂0 and v̂s be the hyperparameters of the spike-and-slab prior that maximize the
approximation of the evidence returned by the EP method from Sect. 4. We select τ̂ 2 so that
the horseshoe prior with hyperparameter τ̂ 2 has the same distance between quantiles 0.05 and
0.95 as the spike-and-slab priorwith hyperparameters p̂0 and v̂s . The concentration parameter
k is fixed to a low positive integer (k = 3). This leads to a non-informative broad prior.

Appendix 3: Product and quotient rules

We describe the product and quotient rules for Gaussian and Bernoulli distributions, which
are useful for the derivation of EP in the LRMSSP. Let N (x|m,V) be the density function
of a d-dimensional Gaussian distribution with mean vectorm and covariance matrix V. The
product of two Gaussian densities is another Gaussian density that is no longer normalized:

N (x|m1,V1)N (x|m2,V2) ∝ N (x|m3,V3) , (65)

where V3 = (V−1
1 +V−1

2 )−1,m3 = V3(mT
1V

−1
1 +mT

2V
−1
2 ) and the normalization constant

in the right part of (65) is

(2π)−d/2 |V3|1/2
|V1|1/2|V2|1/2 exp

{

−1

2

(
mT

1V
−1
1 m1 + mT

2V
−1
2 m2 − mT

3V
−1
3 m3

)}

. (66)

Similarly, the quotient of two Gaussian densities is another Gaussian density, although no
longer normalized:

N (x|m1,V1)

N (x|m2,V2)
∝ N (x|m3,V3) , (67)

whereV3 = (V−1
1 −V−1

2 )−1,m3 = V−3(mT
1V

−1
1 −mT

2V
−1
2 ) and the normalization constant

in the right part of (67) is in this case

(2π)d/2 |V3|1/2|V2|1/2
|V1|1/2 exp

{

−1

2

(
mT

1V
−1
1 m1 − mT

2V
−1
2 m2 − mT

3V
−1
3 m3

)}

. (68)

Let Bern(x |σ(p)) = xσ(p)+(1−x)(1−σ(p)) be aBernoulli distribution, where x ∈ {0, 1},
p is a real parameter, σ is the logistic function (14) and σ(p) represents the probability of
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x = 1. The product of two Bernoulli distributions is another Bernoulli distribution, but no
longer normalized:

Bern(x |σ(p1))Bern(x |σ(p2)) ∝ Bern(x |σ(p3)) , (69)

where p3 = p1+ p2 and the normalization constant in the right part of (69) is σ(p1)σ (p2)+
σ(−p1)σ (−p2). The quotient of two Bernoulli distributions is also a Bernoulli distribution
which is no longer normalized:

Bern(x |σ(p1))

Bern(x |σ(p2))
∝ Bern(x |σ(p3)) , (70)

where p3 = p1 − p2 and the normalization constant in the right part of (70) is computed as
σ(p1)/σ (p2) + σ(−p1)/σ (−p2).

Appendix 4: Derivation of the EP update operations

In this appendix, we describe the EP update operations for minimizing DKL( fi Q\i‖ f̃i Q\i )
with respect to f̃i for the cases i = 1, 2. The update of f̃3 is not discussed here because it is
trivial. To refine f̃1 and f̃2 we follow two steps. First, Q is updated so that KL( fi Q\i‖Q)

is minimized and second, f̃i is fixed to the ratio between Q and Q\i , where i = 1, 2.
These operations are performed using the normalized versions of Q and Q\i : Q and Q\i ,
respectively.

The first approximate factor

To minimize DKL( f1Q\1‖Q), we first computeQ\1, which has the same functional form as
Q because all the f̃i belong to the same family of exponential distributions. The parameters
of Q\1 are obtained from the ratio between Q and f̃1 (see Appendix 3):

Q\1(w, z) =
d∏

i=1

N (wi |m̃2i , ṽ2i )Bern(zi |σ( p̃2i + p̃3i )) . (71)

The KL divergence is minimized when Q is modified so that the first and second marginal
moments ofw and the firstmarginalmoments of z are the sameunderQ and under f1Q\1Z−1

1 ,
where Z1 is the normalization constant of f1Q\1. Therefore, the update rule for Q is given
by

mnew = E[w] , vnew = diag(E[wwT] − E[w]E[w]T]) , pnew = σ−1(E[z]) , (72)

where diag(·) extracts the diagonal of a square matrix, all the expectations are taken with
respect to f1Q\1Z−1

1 and σ−1((x1, . . . , xd)T) = (σ−1(x1), . . . , σ−1(xd))T where σ−1 is the
logit function (24). Computing the expectation of z under f1Q\1Z−1

1 is trivial. To compute
the first and second moments of w, we note that the likelihood factor f1 has a Gaussian
form on w which is characterized by a precision matrix �1 and a mean vector m1 such that
�1 = σ−2

0 XTX and �1m1 = σ−2
0 XTy. Because Q\1 is also Gaussian in w, we can use the

product rule for Gaussian distributions (see Appendix 3) to obtain the moments of w with
respect to f1Q\1Z−1

1 . The final update operation for Q is given by (30), (31) and (32) and
the logarithm of the normalization constant of f1Q\1 is obtained as
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log Z1 = − n

2
log(2πσ 2

0 ) − 1

2
log |I + σ−2

0 Ṽ2XTX| + 1

2
mT(Ṽ−1

2 m̃2 + σ−2
0 XTy)

− 1

2
m̃T

2 Ṽ
−1
2 m̃2 − 1

2
σ−2
0 yTy , (73)

where m is the expectation of w under Q after the update of this distribution and Ṽ2 is a
d × d diagonal matrix such that diag(Ṽ2) = ṽ2. Once Q has been refined, the update rule
for f̃1 is computed as the ratio between Q and Q\1, see (35) and (36). Finally, the positive
constant s̃1 in (15) is fixed so that condition

f̃1(w, z) = Z1
Q(w, z)
Q\1(w, z)

(74)

is satisfied. This equality is translated into equation (38) for the value of log s̃1.

The second approximate factor

To minimize DKL( f2Q\2‖Q), we first compute Q\2, whose parameters are obtained from
the ratio between Q and f̃2:

Q\2(w, z) =
d∏

i=1

N (wi |m̃1i , ṽ1i )Bern(zi |σ( p̃3i )) . (75)

The divergence is minimized whenQ is updated so that the marginal moments ofw (first and
second moment) and z (first moment) are the same under Q and under f2Q\2Z−1

2 , where
Z2 is the normalization constant of f2Q\2. Hence, the update rule for the parameters of Q
is given by

mnew
i = E[wi ] , vnewi = E[w2

i ] − E[wi ]2 , pnewi = σ−1(E[zi ]) , (76)

where all the expectations are taken with respect to f2Q\2Z−1
2 . Because f2Q\2 can be

factorized in the components of w and z, Z2 is given by Z2 = ∏d
i=1 ni , the product of the

normalization constants of the resulting factors, where

ni = σ( p̃3i )N (0|m̃1i , ṽ1i + vs) + σ(− p̃3i )N (0|m̃1i , ṽ1i ) (77)

and we have used the property 1 − σ(x) = σ(−x) for any x ∈ R of the logistic function.
Given ni , we calculate the mean and variance of wi under f2Q\2Z−1

2 very easily. For this,
we need only the partial derivatives of log ni with respect to m̃1i and ṽ1i as indicated by
formulas (3.18) and (3.19) in the thesis of Minka (2001). Furthermore, the expectation of zi
under f2Q\2Z−1

2 is also computed in a straightforward manner. Consequently, we obtain

E[wi ] = m̃1i + ṽ1i
∂ log ni
∂m̃1i

, (78)

E[w2
i ] − E[wi ]2 = ṽ1i − ṽ21i

[(
∂ log ni
∂m̃1i

)2

− 2
∂ log ni
∂ṽ1i

]

, (79)

E[zi ] = σ( p̃3i )N (0|m̃1i , ṽ1i + vs)n
−1
i . (80)

OnceQ has been refined, we obtain the update for f̃2 by computing the ratio betweenQ and
Q\2 (see Appendix 3):
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ṽnew2i =
[(

vnewi

)−1 − ṽ−1
1i

]−1
, (81)

m̃new
2i = ṽnew2i

[
mnew

i

(
vnewi

)−1 − m̃1i ṽ
−1
1i

]−1
, (82)

p̃new2i = pnewi − p̃3i , (83)

After some arithmetic simplifications, these formulas are translated into (25), (26) and (27).
Finally, the positive constant s̃2 in (16) is fixed so that condition

f̃2(w, z) = Z2
Q(w, z)
Q\2(w, z)

(84)

is satisfied. This equality is translated into equation (39) for the value of log s̃2.

Appendix 5: Constrained minimization of the KL divergence

WhenDKL( f2Q\2‖ f̃2Q\2) isminimizedwith respect to m̃2i , ṽ2i and p̃2i , the optimal value for
ṽ2i can be negative. To avoid this situation, we minimize the divergence subject to constraint
ṽ2i ≥ 0. Two different scenarios are possible. In the first one, the optimal unconstrained value
for ṽ2i is zero or positive and condition (a2i − bi )−1 ≥ ṽ1i is satisfied, where ai and bi are
given by (28) and (29). The update rules for m̃2i , ṽ2i and p̃2i are in this case the same as in the
unconstrained setting (25), (26) and (27). In the second scenario, the optimal unconstrained
value for ṽ2i is negative and condition (a2i −bi )−1 < ṽ1i is satisfied. In this case, the original
update operation for ṽ2i needs to be modified. Recall that DKL( f2Q\2‖ f̃2Q\2) is convex in
the natural parameters ηi = m̃2i ṽ

−1
2i and νi = ṽ−1

2i . Under this reparameterization, constraint
ṽ2i ≥ 0 is translated into constraint νi ≥ 0. The optimal constrained value for νi must then
lay on the border νi = 0 because the optimal unconstrained value for νi is negative in this
second scenario and the target function is convex. The update rule for ṽ2i is thus given by
ṽ2i = ∞. Additionally, the update rule for p̃2i is still given by (27) because the optimal
value for p̃2i does not depend on m̃2i or ṽ2i . Finally, the optimal value for m̃2i in the second
scenario is again given by (26) since this formula yields the minimizer of DKL(t2Q\2‖t̃2Q\2)
with respect to m̃2i when conditioning to the value selected for ṽ2i .

Appendix 6: SS-EPF: an EP method with computational cost O(nd)

We describe an implementation of EP for the linear regression model with spike-and-slab
priors which has computational cost O(nd) (Hernández-Lobato et al. 2008). This method
has lower computational complexity than the method described in Sect. 4 because it does not
directly take into account possible correlations in the posterior distribution. The main dif-
ference is that the exact likelihood factor f1(w, z) = ∏n

i=1 P(yi |w, xi ) is now decomposed
into n factors f1,1, . . . , f1,n (one per data point) where

f1,i (w, z) = P(yi |w, xi ) = N (yi |wTxi , σ 2
0 ) , i = 1, . . . , n , (85)

and each of these n exact factors is then approximated by a different approximate factor
f̃1,i with i = 1, . . . , n. The parametric form of each f̃1,i is the same as the form of the
approximation for the likelihood used in the EP algorithm from Sect. 4 (15). In particular,
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f̃1,i (w, z) = s̃1,i

d∏

j=1

exp

{

− (w j − m̃1,i, j )
2

2ṽ1,i, j

}

, i = 1, . . . , n , (86)

where
{
m̃1,i = (m̃1,i,1, . . . , m̃1,i,d)

T, ṽ1,i = (ṽ1,i,1, . . . , ṽ1,i,d)
T, s̃1,i

}n
i=1 are free parame-

ters to be determined by EP. The remaining exact factors f2(w, z) = P(w|z) and f3(w, z) =
P(z) are still approximated by (16) and (17), respectively. The update operations for these
two latter approximate factors are the same as the ones described in Sect. 4.2 with the excep-
tion that, whenever we need access to the parameters m̃1,i and ṽ1,i of (15), we now use (18)
and (19) to obtain

ṽ1,i =
[
v−1
i − ṽ−1

2,i

]−1
, (87)

m̃1,i =
[
miv

−1
i − m̃2,i ṽ

−1
2,i

]
ṽ1,i , (88)

where mi and vi are mean and variance parameters of the EP posterior approximation
(13), which in this case is equal to the normalized product of all the approximate factors
f̃1,1, . . . , f̃1,n , f̃2 and f̃3, and m̃2,i and ṽ2,i are mean and variance parameters of the second
approximate factor (16). We now describe how to refine the parameters of the new approxi-
mate factors f̃1,1, . . . , f̃1,n . For the sake of clarity, we include only the update rules without
damping. Incorporating the effect of damping in these operations is straightforward. Let

v
\i
j =

[
v−1
j − ṽ−1

1,i, j

]−1
, (89)

m\i
j =

[
m jv

−1
j − m̃1,i, j ṽ

−1
1,i, j

]
ṽ

\i
j , (90)

denote the mean and variance parameters for the j-th entry of w given by the product of all
the approximate factors except f̃1,i . Then, the update for the parameters of f̃1,i is given by

ṽnew1,i, j = −β−1
i, j − v

\i
j , m̃new

1,i, j = αi, j − m\i
j βi, j

1 + βi, jv
\i
j

ṽnew1,i, j , (91)

where αi, j and βi, j are defined as

αi, j = xi, j
yi −∑d

j=1 xi, jm
\i
j

σ 2
0 +∑d

j=1 x
2
i, jv

\i
j

, βi, j = − x2i, j

σ 2
0 +∑d

j=1 x
2
i, jv

\i
j

, (92)

for j = 1, . . . , d . Once we have refined f̃1,i , we update the parameters of the posterior
approximation (13) using

v j =
[
[v\i

j ]−1 + [ṽnew1,i, j ]−1
]−1

, (93)

m j =
[
m\i

j [v\i
j ]−1 + m̃new

1,i, j [ṽnew1,i, j ]−1
]
v j . (94)
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Finally, after the EP method has converged, we compute

log s̃1,i = −1

2
log

⎡

⎣2π +
d∑

j=1

x2i, jv
\i
j + σ 2

0

⎤

⎦− 1

2

⎡

⎢
⎣

(
yi −∑d

j=1 xi, jm
\i
j

)2

∑d
j=1 x

2
i, jv

\i
j + σ 2

0

⎤

⎥
⎦

+ 1

2

d∑

j=1

{
log
[
1 + ṽ−1

1,i, jv
\i
j

]
+ [m\i

j ]2[v\i
j ]−1 + m̃2

1,i, j ṽ
−1
1,i, j − m2

i v
−1
i

}
(95)

and approximate the normalization constant P(y|X) as

P(y|X) ≈
n∑

i=1

log s̃1,i + log s̃2 + log s̃3

+ d

2
log(2π) +

d∑

j=1

1

2

{

log v j + m2
jv

−1
j −

n∑

i=1

m̃2
1,i, j ṽ

−1
1,i, j − m̃2

2, j ṽ
−1
2, j

}

×
d∑

i=1

log {σ( p̃2i )σ ( p̃3i ) + σ(− p̃2i )σ (− p̃3i )} . (96)

Computing the sums
∑d

j=1 xi, jm
\i
j and

∑d
j=1 x

2
i, jv

\i
j in (92) has cost O(d). We have to do

this for each of the n approximate factors f̃1,1, . . . , f̃1,n . Therefore, the computational cost
of this EP algorithm is O(nd).

The main difference between this alternative EP method and the EP method described
in Sect. 4 is that the method from Sect. 4 processes the factor for the likelihood in a single
EP update operation. This factor is the only one that introduces correlations in the poste-
rior distribution. Because the method from Sect. 4 refines that factor in a single step, it is
able to successfully take into account those correlations when it approximates the poste-
rior distribution. By contrast, the EP method described above splits the likelihood factor∏n

i=1 P(yi |w, xi ) into n individual factors N (yi |wTxi , σ 2
0 ), i = 1, . . . , n, which are indi-

vidually processed by EP. This makes this method loose track of the correlations induced by
the original likelihood.

Appendix 7: Annealed version of SS-VB

In the experiments with spike signals from Sect. 5.2, we found that the standard version
of SS-VB is very often stuck in local and suboptimal modes of the posterior distribution.
To improve the results of this technique in this dataset, we used an annealed version of
SS-VB. In the other datasets, this annealed version did not produce improvements with
respect to the original method and consequently, we kept using the original method in those
cases.

The annealed version of SS-VB attempts to match a sequence of posterior distributions at
different temperatures, starting at high temperatures and then cooling down until the target
distribution has the same temperature as the original posterior distribution (6). In this process,
the solution to each optimization problem is then used as the initialization to the next opti-
mization problem at a lower temperature. Let γ ∈ [0, 1] be the current inverse temperature
parameter. Then the new version of SS-VB attempts to match the posterior distribution (6)
with the noise level σ 2

0 scaled by γ −1. That is, instead of using σ 2
0 as the variance parameter
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in the Gaussian likelihood P(yi |w, xi ) = N (yi |xiw, σ 2
0 ), we use σ 2

0 /γ . When γ = 1, we
try to match the original posterior distribution (6). For values of γ lower than 1, we give
less weight to the likelihood P(y|w,X) and focus more on the prior P(w|z)P(z). When
γ = 0, we try to match only the prior. The annealed version of SS-VB solves a total of 30
different optimization problems, with temperature parameter γi for the i-th problem given by
γi = 0.830−i , i = 1, . . . , 30, where the solution to the problem i is used as the initialization
to the problem i + 1. The final output of the annealed version of SS-VB is the solution to the
problem i = 30.

Appendix 8: A linear model for the reconstruction of transcription networks

The LRMSSP can be a useful method for the reconstruction of genetic regulatory networks
from gene expression data. Transcription control networks are a specific class of interaction
networks in which each node corresponds to a different gene and each connection represents
an interaction between two genes at the transcription level (Alon 2006). Specifically, the
directed edge Z → Y encodes the information that the protein expressed by gene Z has a
direct effect on the transcription rate of gene Y . Michaelis-Menten interaction kinetics and
the Hill equation can be used to characterize this network edge as a differential equation
(Alon 2006). Assuming that Z is a transcriptional activator, the equation that describes the
regulation kinetics is

d [Y ]

dt
= Vm [Z ]α

[Z ]α + KA
− δ [Y ] . (97)

When Z is a transcriptional repressor, the evolution of [Y ] is described by

d [Y ]

dt
= VmKR

KR + [Z ]β
− δ [Y ] . (98)

In these equations, KA and KR are activation and repression thresholds, respectively, α and
β are the Hill coefficients for cooperative binding, Vm is the maximum rate of synthesis,
[·] stands for ’concentration of mRNA’ and δ is the rate of degradation of mRNA. The
concentration of mRNA [Z ] is assumed to be a measure of the activity of the protein product
of gene Z . When the system achieves a steady-state, and assuming that, in this state, the
concentrations of mRNA are far from saturation, the relation between the logarithm of the
mRNA concentration of Y and the logarithm of the mRNA concentrations of Z1, . . . , Zk

(the parents of Y in the network) is approximately linear (Gardner and Faith 2005)

log [Y ] ≈
k∑

i=1

wi log [Zi ] + constant . (99)

In this derivation, both activation and repression are assumed to be possible simultaneously.
When Y is a self-regulating gene, log [Y ] is included in the right part of (99) with associated
coefficient wk+1. This autoregulatory term can be eliminated by replacing w′

i = wi/(1 −
wk+1) forwi , where i = 1, . . . , k, and settingw′

k+1 = 0. This model can be readily extended
to describe the kinetics of all the transcripts present in a biological system. This leads us to
the multiple gene model shown in equation (45).
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Appendix 9: Normalized approximate factors and posterior approximation

The approximate factors shown in equations (15), (16) and (17) and the approximation Q
defined in the right-hand side of equation (9) may not be normalized. This means that when
we marginalize out their variables by summing or integrating them out, the result may not
be 1. The normalized factors are given by the following expressions:

f̃ norm1 (w, z) =
d∏

i=1

N (wi |m̃1i , ṽ1i ) , (100)

f̃ norm2 (w, z) =
[

d∏

i=1

N (wi |m̃1i , ṽ1i )

][
d∏

i=1

Bern(zi |σ( p̃2i ))

]

, (101)

f̃ norm3 (w, z) =
d∏

i=1

Bern(zi |σ( p̃3i )) . (102)

Note that the parameters (means, variances and activation probabilities) of these normalized
factors and the un-normalized ones shown in (15), (16) and (17) are the same. The normalized
Q is given in (13).
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