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Abstract Non-negative matrix factorization (NMF) is a powerful machine learning method
for decomposing a high-dimensional nonnegative matrix V into the product of two nonnega-
tive matrices, W and H , such that V ∼ W H . It has been shown to have a parts-based, sparse
representation of the data. NMF has been successfully applied in a variety of areas such as
natural language processing, neuroscience, information retrieval, image processing, speech
recognition and computational biology for the analysis and interpretation of large-scale data.
There has also been simultaneous development of a related statistical latent class modeling
approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpret-
ing co-occurrence count data arising in natural language processing. In this paper, we present
a generalized statistical approach to NMF and PLSI based on Renyi’s divergence between
two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies var-
ious competing models and provides a unique theoretical framework for these methods. We
propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multi-
plicative updates for W and H . In addition, we generalize the relationship between NMF and
PLSI within this framework. We demonstrate the applicability and utility of our approach as
well as its superior performance relative to existing methods using real-life and simulated
document clustering data.
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1 Introduction

Nonnegative matrix factorization (NMF) was introduced as an unsupervised parts-based
learning paradigm in which a nonnegative matrix V is decomposed into the product of two
nonnegative matrices, W and H , such that V ∼ W H , by a multiplicative updates algorithm
(Lee and Seung 2001). In the past decade, NMF has been widely used in a variety of areas
including natural language processing such as text mining and document clustering (Pauca et
al. 2004; Shahnaz and Berry 2004; Shahnaz et al. 2006; Chagoyen et al. 2006), neuroscience
(Cheung and Tresch 2005; Devarajan and Cheung 2012), information retrieval (Tsuge et
al. 2001; Xu et al. 2003), image processing and facial pattern recognition (Li et al. 2001;
Buciu and Pitas 2004), sparse coding (Hoyer 2002, 2003; Liu et al. 2003), speech recognition
(Behnke 2003; Cho et al. 2003), video summarization (Cooper and Foote 2002), and Internet
research (Lu et al. 2003; Mao and Saul 2004). More recently, this approach has found its
way into the domain of computational biology, particularly in the analysis and interpretation
of high-throughput biological data (Devarajan and Ebrahimi 2005, 2008; Okun and Priisalu
2006; Devarajan 2006, 2008, 2011a, b; Qi et al. 2009; Zhang et al. 2011; Gaujoux and Seoighe
2012). For a complete review of the applications of NMF, the interested reader is referred to
Devarajan (2008) and references therein. These developments in NMF have been paralleled
by the formulation of a statistical latent class modeling approach called probabilistic latent
semantic indexing (PLSI). PLSI is a model-based extension of latent semantic indexing and
is used for analyzing and interpreting co-occurrence count data arising in text mining and
document clustering applications (Hoffman 2001).

Lee and Seung (2001) outlined algorithms for NMF based on the Poisson and Gaussian
likelihoods. They applied it to text mining and facial pattern recognition. Since its introduc-
tion, several variations and extensions of their algorithm have been proposed in the literature.
For instance, Hoyer (2004), Shahnaz et al. (2006), Pascual-Montano et al. (2006) and Berry
et al. (2007) extended NMF to include sparseness constraints. Wang et al. (2006) devel-
oped LS-NMF that incorporated variability in the data. Cichocki et al. (2006, 2008, 2009,
2011) extensively developed a series of generalized algorithms for NMF based on α- and
β-divergences. In addition, Dhillon and Sra (2005) and Kompass (2007) have proposed gener-
alized divergence measures for NMF. Cheung and Tresch (2005) and Devarajan and Cheung
(2012) extended the NMF algorithm to include members of the exponential family of dis-
tributions while Devarajan and Ebrahimi (2005, 2008), Devarajan (2006, 2008, 2011a, b)
formulated a generalized approach to NMF based on the Poisson likelihood that included
various well-known distance measures as special cases. Ding et al. (2008) showed the relation-
ship between NMF and PLSI while Ding et al. (2010) proposed a Bayesian non-parametric
approach to NMF. Lin (2007), Cichocki et al. (2007), Cichocki and Phan (2009), Cichocki et
al. (2009), Wang and Li (2010), Févotte and Idier (2011), Gillis and Glineur (2010, 2012) and
Zhou et al. (2012) have developed efficient algorithms for various divergence measures used
in NMF. The work of Cichocki et al. (2009) is a detailed reference on this subject. In previous
work (Devarajan and Ebrahimi 2005, 2008), we applied NMF based on Renyi’s divergence
between two non-negative matrices to gene expression data from cancer microarray studies.
Renyi’s divergence is indexed by a parameter γ and represents a continuum of divergence
measures based on the choice of this parameter (Renyi 1970). In this paper, we propose a
unique theoretical framework for NMF and PLSI based on Renyi’s divergence between two
non-negative matrices, related to the Poisson likelihood. This model-based approach includes
several well-known divergence measures as special cases and is also related to some recently
proposed divergence measures, thus unifying various competing models into a single statis-
tical framework. We describe a generalized algorithm for NMF based on Renyi’s divergence
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and provide a rigorous proof of its convergence using the Expectation-Maximization (EM)
algorithm (Dempster et al. 1977). Furthermore, we generalize the equivalence of NMF and
PLSI using our framework and show that the currently known relationship between these
methods is embedded within this framework as a special case. Throughout this paper, NMF
refers to that based on the Poisson likelihood unless specified otherwise.

We demonstrate the utility and applicability of our generalized approach using several real-
life and simulated data sets from text mining and document clustering. We use consensus
clustering to quantitatively evaluate the homogeneity and accuracy of clustering for different
choices of the parameter γ using a variety of metrics. Our methods are implemented in
high-performance computing clusters using message-passing interface. The extension of our
methods to other problems of interest is straightforward.

This paper is organized as follows. Section 2 gives an overview of the fundamental concepts
and provides a brief discussion of Renyi’s divergence and related divergence measures. In
Sect. 3, we explore the applicability of these measures in the context of NMF, propose our
unified NMF algorithm and provide update rules based on Renyi’s divergence. In addition,
we generalize the equivalence of NMF and PLSI within the unified framework provided by
Renyi’s divergence. In Sect. 4, we describe the quantitative evaluation of clustering based on
our approach and in Sect. 5, we illustrate our methods in detail by applying it to a variety of
real-life and simulated document clustering data sets. The last section provides a discussion
and concluding remarks. Detailed proofs of the theoretical results presented in Sect. 3 are
relegated to the Appendix.

2 A generalized divergence measure

Consider the problem of discriminating between two probability models F and G for a
random prospect X that ranges over the space S. Let f and g be the probability density
(mass) functions corresponding to F and G, respectively. Given an observation X = x ,

the logarithm of the likelihood ratio log

[
f (x)

g(x)

]
quantifies the information in X = x in

favor of F against G. Suppose that x is not given and there is not specific information
on the whereabouts of x , other than xεS, then the mean observation per x from F for the
discrimination information between F and G is

K ( f : g) =
∫ (

log
f (x)

g(x)

)
d F(x), (2.1)

given that F is absolutely continuous with respect to G. The discrimination information
function (2.1) is a measure for comparing two distributions, and is referred to as the Kullback–
Leibler (KL) divergence (Kullback and Leibler 1951; Kullback 1959). See Ebrahimi and Soofi
(2004) for properties of this measure.

Renyi’s divergence, which is referred to as the information divergence of order γ between
two distributions F and G, is defined by

Rγ ( f : g) = 1

γ − 1
log

∫ (
f (x)

g(x)

)γ−1

d F(x), (2.2)

where γ �= 1 (Renyi 1970). Various well-known distance measures, including KL divergence,
arise from Renyi’s divergence as special cases. An important feature of Renyi’s divergence
is that it is invariant under any nonsingular transformation, Y = T (X), on the original data.
That is, for any γ , Rγ ( fX : gX ) = Rγ ( fY : gY ).
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For two Poisson random variables with parameters m1 and m2, i.e., f (x) = e−m1 mx
1

x ! and

g(x) = e−m2 mx
2

x ! , one can easily show that

Rγ ( f : g) = 1

γ − 1

(
−γ m1 − (1− γ )m2 + mγ

1 m1−γ
2

)
. (2.3)

It is well-known that Renyi’s divergence reduces to KL divergence for the limiting case
γ → 1,

K ( f : g) = m1 log

(
m1

m2

)
− m1 + m2. (2.4)

In the special case that γ = 1

2
, R 1

2
( f : g) = R 1

2
(g : f ) = (

√
m1 −

√
m2)

2. This is the

well-known Bhattacharya distance and is a symmetric measure (Freeman and Tukey 1950).
For this case, it is also the logarithm of the squared Matusita or Hellinger distance (Matusita

1954). If γ = 2, R2( f : g) = (m1 − m2)
2

m2
, which is the Pearson Chi-squared estimator.

When γ = −1, we obtain the modified Chi-squared estimator due to Neyman (1949). And

for γ = 5

3
, we obtain the Cressie-Read distance estimator (Cressie et al. 2003).

Our motivation for a generalized approach to NMF using the Poisson likelihood is based
on the power-divergence family of statistics (Agresti 1990). It is given by

φλ(m1, m2) = 2

λ(λ+ 1)
m1

[(
m1

m2

)λ

− 1

]
(2.5)

for λ �= −1 and λ �= 0. This family of measures and its variants have been extensively studied
in the statistical literature in the context of discrete multivariate data analysis (see Cressie
et al. 2003 and references therein). It is straightforward to obtain Renyi’s divergence and all
the special cases outlined above via reparametrizations in (2.5). For example in (2.5), λ→ 0

corresponds to γ → 1 in (2.3). Similarly, λ = −1

2
,−2 and 1 correspond to γ = 1

2
,−1 and

2, respectively in (2.3).
Several other generalized divergence measures have been proposed in the machine learn-

ing literature recently within the context of NMF. These include Cichocki et al. (2006, 2008),
Devarajan and Ebrahimi (2005) and Kompass (2007). Cichocki and Amari (2010) also dis-
cussed several divergence measures with potential applications in NMF. Unlike other mea-
sures, Renyi’s divergence (2.3) and the power divergence family (2.5) are motivated by an
underlying statistical model.

3 Methods

Text mining and document clustering are concerned with the recognition of patterns or
similarities in natural language text. Consider a corpus of documents that is summarized as
a p × n matrix V in which the rows represent the terms in the vocabulary and the columns
correspond to the documents in the corpus. The entries of V denote the frequencies of words
in each document. In document clustering studies, the number of terms p is typically in the
thousands and the number of documents n is typically in the hundreds. The objective is to
identify subsets of semantic categories and to cluster the documents based on their association
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with these categories. To this end, we propose to find a small number of metaterms, each
defined as a nonnegative linear combination of the p terms. This is accomplished via a
decomposition of the frequency matrix V into two matrices W and H with nonnegative
entries such that V ∼ W H , where W has size p × k, with each of k columns defining a
metaterm and H has size k×n, with each of n columns representing the metaterm frequency
pattern of the corresponding document. The rank k of the factorization is chosen so that
(n + p)k < np. Here, the entry wia in the matrix W is the coefficient of term i in metaterm
a and the entry haj in the matrix H quantifies the influence of metaterm a in document j .

The metaterms and the metaterm frequency patterns have a sparse representation, poten-
tially representing local hidden variables or clusters. These clusters are subgroups of terms
that co-occur in subgroups of documents. The perception of the whole is simply a combina-
tion of the parts represented by these basis vectors. Since the data are presented as frequency
of occurrence of terms for each document, NMF provides a more natural representation of
the metaterms and metaterm frequency patterns unlike other dimension reduction methods.
Moreover, the nonnegative coefficients in each metaterm are easily interpretable as the relative
contribution of terms. A more thorough discussion of the interpretation of the factorization
and the nonnegativity constraints in NMF can be found in Devarajan (2008). In this paper,
our focus will be on clustering documents. A notable example of such an application is in
biomedical informatics involving mining of the biomedical literature. Chagoyen et al. (2006)
describe the application of NMF to create literature profiles from a corpus of documents
relevant to large sets of genes and proteins using common semantic features extracted from
the corpus.

3.1 A unified algorithm for NMF

In order to find an approximate factorization for the matrix V , we first need to define functions
that quantify the quality of the approximation. In general, such a function can be constructed
using some measure of distance between any two nonnegative matrices, say A and B. Exam-
ples of such measures include Euclidean distance and KL divergence, obtained based on the
Gaussian and Poisson likelihoods, respectively. The latter can be derived based on recon-
struction of an image represented by the matrix A from the matrix B by the addition of
Poisson noise, i.e,

A = B + ε (3.1)

where ε is a Poisson random variable. This formulation was originally described in Lee and
Seung (1999) for text mining applications involving count data as well as for facial pattern
recognition. We generalize this approach by using Renyi’s divergence Rγ ( f : g) related to
the Poisson likelihood of generating A from B, as described in Sect. 2. Specifically, using
(2.3), our measure is

D∗γ (A||B) = 1

γ − 1

∑
i, j

[
Aγ

i j B1−γ

i j − γ Ai j − (1− γ )Bi j

]
(3.2)

which can be generalized by re-defining it as

D∗γ (A||B) = 1

γ (γ − 1)

∑
i, j

[
Aγ

i j B1−γ

i j − γ Ai j − (1− γ )Bi j

]
(3.3)
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where γ �= 1 and γ �= 0. This includes Renyi’s divergence as defined by (2.3) and its special
cases. If γ → 1, then D∗γ in (3.3) becomes KL divergence (Eq. 2.4),

K (A : B) =
∑
i, j

Ai j log

(
Ai j

Bi j

)
− Ai j + Bi j . (3.4)

This coincides with the measure proposed by Lee and Seung (2001). If γ → 0, we obtain

dual KL divergence (Kullback 1959). For γ �= 1 and γ �= 0, one can ignore
1

γ (γ − 1)
in

(3.3) and define the function

Dγ (A||B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i, j

Aγ

i j B1−γ

i j − γ Ai j − (1− γ )Bi j , γ > 1

∑
i, j

γ Ai j + (1− γ )Bi j − Aγ

i j B1−γ

i j , 0 < γ < 1.

(3.5)

Similarly for γ �= 1, one can ignore
1

γ − 1
in (3.2) and define the function

Dγ (A||B) =
∑
i, j

−γ Ai j − (1− γ )Bi j + Aγ

i j B1−γ

i j , γ < 0. (3.6)

Thus, for any information measure which is proportional to Renyi’s divergence we obtain
Eq. (3.5). Both β-divergence (Cichocki et al. 2006) and its simplified version proposed
by Kompass (2007) can be shown to be related to Renyi’s divergence of order γ between
matrices A and B via non-linear transformations of A, B and γ . These measures contain the
Gaussian and Poisson models as special cases while the former also embeds the so called
Itakura-Saito (IS) divergence that is suitable for modeling signal-dependent noise (Cheung
and Tresch 2005; Devarajan and Cheung 2012). The relationship between these divergence
measures provides a unified view of various algorithms for NMF from the perspective of
different statistical models. In the case of non-normal data such as those arising in document
clustering, Renyi’s divergence is a flexible choice in decomposing a frequency matrix.

For a given document frequency matrix V , we now formally consider a method for find-
ing nonnegative matrices W and H such that V ≈ W H . In our setup, this is equivalent to
minimizing Dγ (V ||W H) in (3.5) and (3.6) with respect to W and H , subject to the con-
straints W, H ≥ 0. In this formulation, we observe that for a given γ , Dγ (V ||W H) is not
convex in both variables (V and W H ) together. Hence, the algorithm will only converge to
a local minima. There are many techniques such as gradient descent and conjugate gradient
from numerical optimization that can be applied to find the minima. In this paper, we use
multiplicative update rules, similar to that in Lee and Seung (1999). For a given γ , we will
start with random initial values for W and H and iterate until convergence, i.e, iterate until
|D(i)

γ (V ||W H)− D(i−1)
γ (V ||W H)| < δ where δ is a pre-specified threshold between 0 and

1 and i denotes the iteration number.
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Theorem 1 For γ ∈ 
\{0, 1}, the measure Dγ (V ||W H) is non-increasing under the mul-
tiplicative update rules for W and H given by

Ht+1
aj = Ht

aj

⎛
⎜⎜⎜⎜⎝

∑
i

(
Vi j∑

b Wib Ht
bj

)γ

Wia

∑
i Wia

⎞
⎟⎟⎟⎟⎠

1/γ

(3.7)

and

W t+1
ia = W t

ia

⎛
⎜⎜⎜⎝

∑
i

(
Vi j∑

b W t
ib Hbj

)γ

Haj

∑
j Haj

⎞
⎟⎟⎟⎠

1/γ

. (3.8)

This measure is also invariant under these updates if and only if W and H are at a stationary
point of the divergence.

A proof of the monotonicity of these updates is given in Cichocki et al. (2008). However,
the auxiliary function used in their proof will be properly defined only if each element of V is
assumed to be positive. This violates the non-negativity requirement on V . An alternate proof
that overcomes this problem by considering different ranges of the parameter γ is provided
in the Appendix.

3.2 Equivalence of NMF and PLSI: a generalization

PLSI is a method for modeling co-occurrence data arising in natural language processing
such as text mining and document clustering. It is based on a statistical latent class model
called the aspect model for the analysis of count data (Hoffman 2001). PLSI employs the
likelihood principle and results in a factor representation of the data such as in NMF, thereby
defining a proper generative model of the data. The relationship between NMF and PLSI
has been described elsewhere in the literature (Buntine 2002; Ding et al. 2008; Gaussier and
Goutte 2005). In this section, we generalize the equivalence of these methods within the
unified framework provided by Renyi’s divergence. This generalization allows us to view
NMF as a family of probabilistic mixture models indexed by the parameter γ in Renyi’s
divergence.

Consider the corpus of documents summarized as a p × n co-occurrence matrix V
described earlier. Let the vi j th entry of V denote the frequency of occurrence of term
i in document j . In the context of NMF, vi j has a Poisson distribution with mean
μi j and the vi j s are independent. The log-likelihood can be shown to be equivalent to∑

i j

{
−vi j log

(
vi j

μi j

)
− μi j + vi j

}
. In contrast PLSI is based on multinomial sampling

where the term frequencies are normalized by conditioning on their sum such that
∑

i j vi j

is fixed; for example, by re-scaling to their sum vi j ← vi j∑
i j vi j

where
∑

i j vi j = 1. The

normalized term frequencies vi j are neither independent nor Poisson distributed, and the
log-likelihood can be shown to be equivalent to

L =
n∑

j=1

p∑
i=1

vi j log Pi j (3.9)
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(Hoffman 2001). We generalize the likelihood (3.9) in the following lemma.

Lemma The log-likelihood for PLSI (3.9) is a member of the family of λ-log-likelihoods
given by

Lλ = − 2

λ(λ+ 1)

n∑
j=1

p∑
i=1

{
vi j

[(
vi j

Pi j

)λ

− 1

]
− λ(vi j − Pi j )

}
(3.10)

where λ �= 0 and λ �= −1.

The proof is provided in the Appendix. Using this lemma, we generalize the equivalence
of NMF and PLSI in the following theorem. Again, the proof is relegated to the Appendix.

Theorem 2 Renyi’s divergence, D∗γ (A||B), between two non-negative matrices A and B in
(3.2) is equivalent to the negative λ-log-likelihood−Lλ(A, B) given by (3.10), and therefore
generalizes the relationship between NMF and PLSI.

4 Quantitative evaluation of clustering

In this section, we describe the implementation of our NMF algorithm and quantitatively
evaluate its performance in grouping n documents into homogeneous classes based on the
frequency of occurrence of p terms. The NMF algorithm may not converge to the same
solution on each run due to the random nature of initial conditions. We exploited this feature
to evaluate the consistency of its performance and to quantify the clustering accuracy for a
benchmark data set where the true number of classes k is known. The algorithm is applied
multiple times with random initial starting values for W and H ; and it groups the documents
into k clusters, where k is the pre-specified rank of the factorization.

In order to assess whether a given γ provides a meaningful decomposition of the data
for a fixed (known) number of classes k = K , we applied consensus clustering to evaluate
the clustering accuracy of the factorization. Consensus clustering (CC) (Monti et al. 2003;
Brunet et al. 2004) evaluates the performance of any unsupervised clustering algorithm
based on resampling methods. In our case, the stochastic nature of initial conditions in the
NMF algorithm is utilized in the evaluation process. In this approach, class membership for
each document is determined based on the highest metaterm frequency profile. Each run of
the algorithm results in an n × n connectivity matrix C with an entry of 1 if documents
i and j cluster together and 0 otherwise, where i, j = 1, ..., n. The consensus matrix C̄ is
simply the average connectivity matrix obtained over N runs of the algorithm. Final document
assignments are based on the re-ordered consensus matrix obtained by hierarchical clustering
(HC) using average linkage. In our studies (Devarajan and Ebrahimi 2005; Devarajan and
Wang 2007), we found the performance of the method to be consistent across multiple runs
and, in general, 50–200 runs were sufficient to provide stability to the clustering. For a given
data set and pre-specified rank K factorization, we employed CC as the primary method for
selecting the appropriate γ by evaluating the clustering accuracy for each of several choices of
γ based on the measures described in the next section. In practice, however, this data-driven
approach can be used for selecting the appropriate γ for a given rank k or the appropriate
combination of γ and rank k (for a range of ranks) in analyzing a real data set.

4.1 Measures for evaluating clustering accuracy

We utilized four measures for evaluating clustering accuracy by combining the information
across N = 200 runs of the NMF algorithm. These are the misclassification rate (ν), adjusted
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Rand index (ARI), normalized mutual information (NMI), and the cophenetic correlation
coefficient (ρ). These measures have been used in similar clustering applications Shahnaz
and Berry (2004), Ding et al. (2008) and Brunet et al. (2004).

The misclassification rate, ν, is the proportion of documents that are classified incorrectly
by the CC algorithm across all clusters based on the final cluster labels assigned by that
algorithm. ν can be calculated only if the true number of classes K is known and thus pro-
vides us with an overall measure of agreement for the clustering. An equivalent measure
is given by clustering accuracy defined as 1 − ν. ARI and NMI are commonly used mea-
sures to quantify the agreement between the true class labels X and the assigned cluster
labels Y . ARI is the proportion of pairs of documents that are both in the same class and
same cluster or that are both in a different class and different cluster, adjusted for chance
(Monti et al. 2003). NMI is an information theoretic measure based on estimated entropies
(Strehl and Ghosh 2002). The cophenetic correlation coefficient, ρ, is defined as the corre-
lation between 1 − C̄ and the distance induced by HC using average linkage (Brunet et al.
2004).

Unlike ν, N M I , ARI and ρ can be computed even if the true number of classes K is
not known. However, for our purpose of evaluating clustering accuracy the true K is known.
The range of each measure is [0, 1] where the two extreme values correspond to random
partitioning and perfect clustering, respectively. This enabled us to compare these three
measures by correlating each with ν across the range of γ based on the true K .

4.2 Data normalization

We consider two different normalization schemes for the term frequency matrix for evaluating
our proposed methods. These are term frequency normalization (tf) and term frequency-
inverse document frequency normalization (tfidf). In each case, the input matrix is idealized
by adding a small positive constant to the zero entries in order to provide numerical stability to
the algorithm. A detailed account of these normalization methods can be found in Salton and
Buckley (1988) and Salton and McGill (1983). Henceforth, we shall refer to these methods
simply as tf and tfidf, respectively. For each dataset presented, we compare these two schemes
based on clustering accuracy for each (k, γ ) combination as well as their overall performance.

4.3 Algorithm implementation

For any real large-scale data set, the implementation of steps in the factorization for a given
rank k (or for a range of ranks) and its evaluation using CC is computationally intensive due
to the consideration of k, N and/or γ . The stochastic nature of the NMF algorithm, however,
enables each step in this procedure to be run independently and simultaneously, thus lending
itself easily to a parallel implementation that would increase speed and efficiency. A com-
prehensive parallel implementation of this algorithm on a Message-Passing Interface/C++
platform (http://www-unix.mcs.anl.gov/mpi/mpich2/) using high-performance computing
(HPC) clusters was utilized in data analyses presented here (Devarajan and Wang 2007;
Wang et al. Manuscript in preparation, http://devarajan.fccc.edu).

5 Real-life and simulated examples

We describe several real-life and simulated examples to illustrate the applicability of our
algorithm as well as its performance. For this purpose, we considered the following choices
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Fig. 1 Graphical illustration of the relationship between various measures of clustering accuracy, sparseness
and the parameter γ for tf (dashed) and tfidf (solid) normalized WebKB data. a–d display, respectively, ν,
ARI, NMI and ρ as a function of γ ; e–f illustrate the relationship between ν and ARI and NMI, and g–h plot
sparseness of the factored matrices W , H as a function of γ

of γ in the interval (0, 2] : 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, for various ranks
k, each based on N = 200 runs. Note that γ = 1 represents KL divergence and γ = 0.01
approximates dual KL divergence described in (3.4). In addition, we considered well known
algorithms based on ED and IS divergence.

5.1 WebKB data

The documents in the WebKB corpus are webpages collected from computer science
departments of various universities by the World Wide Knowledge Base (WebKB) project
and is available at http://web.ist.utl.pt/acardoso/datasets/. It consists of 2803 documents
split into four classes, namely, project, course, faculty and student. We pre-processed
this data set based on document and term frequencies alone. This resulted in 902 docu-
ments containing 1,338 terms across the four classes. We refer to this as the WebKB data
set.

Given four major classes of documents in this corpus, we considered a rank k = 4 fac-
torization for the choices of γ listed earlier. Figure 1a displays the misclassification rate ν

plotted as a function of γ for normalized data based on tf and tfidf. These normalization
methods are seen to perform similarly overall where γ = 0.75 and 0.5 result in the lowest
misclassification rate of 25.06 and 25.17 %, respectively. This is corroborated by the rela-
tionship between ARI and γ as well as between NMI and γ , and is graphically presented
in Fig. 1b, c. The strong negative correlation between each of these measures and ν is evi-
denced in Fig. 1e, f where, for each normalization method, the most homogeneous cluster
corresponds to the value of γ that results in the smallest misclassification rate. The rela-
tionship between ρ and γ is similar to that observed for ARI and NMI (Fig. 1d). However,
the correlation between ρ and ν is not as strong as that observed for the other measures
(Table 2).

It is also worth noting from Fig. 1a that γ = 1 (KL divergence) results in higher
misclassification rates of 26.16 and 29.38 % using tf and tfidf, respectively. Using simi-
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lar measures of clustering accuracy, Ding et al. (2008) applied their NMF-based hybrid
method to a different filtered version of this data set. They used only the top 1,000 terms
in the corpus selected based on mutual information with class labels. On the other hand,
our filtering scheme is completely blinded to the class labels and utilizes only the term
and document frequencies. Nevertheless, our approach achieves a misclassification rate of
only 25 % (clustering accuracy of 75 %) using both tf (γ = 0.75) and tfidf (γ = 0.5)

normalization (Fig. 1a) and outperforms the 35.6 % misclassification rate (64.4 % clus-
tering accuracy) achieved by their hybrid method. Tables 3 and 4 present a comparison
of the performance of various algorithms based on the best performing model in terms
of choice of γ (for Renyi divergence) and normalization method for real-life and simu-
lated data sets used in this paper, respectively. The top row of Table 3 (WebKB) presents
the results for this data set. There is clear evidence of the superior performance of the
proposed algorithm based on Renyi divergence (ν = 25.06 %, γ = 0.75) over algo-
rithms based on ED (ν = 42.57 %), IS divergence (ν = 31.15 %) and KL divergence
(ν = 26.16 %).

Furthermore, we investigated the sparseness of the four metaterms and meteterm frequency
profiles for each choice of γ using the sparseness measure defined in Hoyer (2004). For fixed
γ , the mean sparseness of the metaterms (columns of W ) was computed as the sparseness
of each metaterm averaged across the four metaterms for each run and then averaged across
the N = 200 runs. The mean sparseness of the metaterm frequency profiles (rows of H ) was
computed in a similar manner. For both normalization methods, sparseness of metaterms
showed a monotonically decreasing trend with respect to γ (Fig. 1h) while sparseness of
metaterm frequency profiles showed an initial surge for small γ before declining for higher
values of γ (Fig. 1g). It is interesting to note that tf normalization resulted in uniformly
sparser metaterms (across the range of γ ) while tfidf normalization resulted in uniformly
sparser metaterm frequency profiles.

Next, we repeated the above analysis on a larger version of the WebKB data set by pre-
processing the original data using a less stringent filter, again based on document and term
frequencies alone. By retaining documents containing a large number of very low frequency
terms, this approach resulted in 2,606 out of the 2,803 documents in the original corpus, split
into four classes, for the same number (1,338) of terms. We refer to this as the WebKB 2 data
set. The purpose of this analysis was twofold: (1) to evaluate the robustness of the proposed
methods relative to existing methods in terms of clustering accuracy and (2) to aid in the
assessment of computational performance of the proposed methods for large-scale problems.
Results are summarized in the second row of Table 3 (WebKB 2) for this data set as described
before. Despite the threefold increase in the number of documents to be clustered based on
the same number of terms, there is clear evidence of the superior performance of the proposed
algorithm based on Renyi divergence (ν = 31.08 %, γ = 0.75) over algorithms based on
ED (ν = 45.01 %), IS divergence (ν = 39.41 %), KL divergence (ν = 33.11 %) as well as
the hybrid method of Ding et al. (2008) (ν = 35.6 %). Given the increase in data set size,
it is not entirely surprising that the misclassification rate attained by each method for this
set has increased relative to that of the previous set. However, it is important to note that the
overall performance of the various algorithms relative to one another was unchanged. The
overall performance of the NMF algorithm based on Renyi divergence was similar between
the two sets across values of γ , as evidenced by the correlations between various measures of
clustering accuracy shown in Table 2. Furthermore, the same value of γ = 0.75 attained the
best performance for both sets. These results establish the robust performance of the proposed
methods in large-scale applications. The assessment of computational performance is devoted
to §6.5.
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Table 1 Subsets of Reuters data Subset K # of documents # of terms

1 3 77 1, 969

2 4 68 1, 105

3 5 120 1, 527

4 6 139 1, 639

5 8 169 1, 706

6 10 195 1, 800

7 20 276 1, 969

8 4 99 1, 407

9 3 55 828

5.2 Reuters data

The Reuters data is one of the most widely used benchmark datasets in text mining. We
utilize the pre-processed data consisting of the frequencies of 1,969 terms from 276 differ-
ent documents presented by Shahnaz and Berry (2004) and Shahnaz et al. (2006). These
documents belong to a total of 20 different categories. For the purpose of illustrating our
methodology, we created various subsets of this dataset where the known, true number K ,
of classes varied anywhere from 3 to 20. This allowed us to evaluate the performance of our
method for various models, each determined by the true number of classes of documents. In
each case, the appropriate rank of factorization was used.

Table 1 presents a summary of the various subsets used in our analysis. Subsets 1–6 were
created based on the K most frequently occurring classes of documents in the corpus where
the corresponding K is specified in this table. Subset 7 represents the complete data set. The
other two subsets were created based on different combinations of more and less frequently
occurring classes. The subset numbers in the first column of Table 1 are used to refer to these
subsets in subsequent Tables 2, 3, 5 and 6.

For most subsets, tf was observed to perform at least as well as or better than tfidf in
delineating the true classes. In all subsets, there was at least one value of γ that outperformed
γ = 1 (KL divergence). Perfect clustering (ν = 0) was achieved for subsets 1 and 8 for at
least one normalization method and for at least one choice of γ (Table 3). A decreasing trend
was observed in the metaterms and metaterm frequency profiles with respect to γ , similar to
that seen for the WebKB data (data not shown). Strong negative correlations between ARI
and ν, and between NMI and ν are clearly seen for the best performing normalization method
(Table 2) across all subsets, with ARI showing a stronger correlation with ν relative to other
measures.

The various subsets in this example allowed us to perform a sensitivity analysis with
real data whereby we have assessed performance of our method for various true models.
Shahnaz and Berry (2004) and Shahnaz et al. (2006) adopted a similar approach for evaluating
their penalized NMF (PNMF) algorithm using this dataset. They considered ranks (subsets)
ranging from K = 2 to 20 and assessed the clustering accuracy of their method for various
choices of their penalty parameter λ. For more details, the interested reader is referred to
their paper referenced above. It is not clear exactly how the subsets were chosen in their
approach, nevertheless, it provides us with a basis for comparing the two methods for this
dataset.
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Table 2 Correlation between measures of clustering accuracy

Dataset ARI versus ν NMI versus ν ρ versus ν

WebKB −1.00 −0.98 −0.81

WebKB 2 −0.99 −0.97 −0.55

Reuters 1 −1.00 −0.98 −0.70

Reuters 2 −0.49 −0.55 −0.50

Reuters 3 −0.82 0.05 0.36

Reuters 4 −0.96 −0.41 −0.66

Reuters 5 −0.87 −0.96 −0.33

Reuters 6 −0.98 −0.97 −0.80

Reuters 7 −0.98 −0.96 −0.88

Reuters 8 −1.00 −0.99 0.33

Reuters 9 −0.70 −0.45 −0.16

Page Blocksa −0.85 −0.19 0.03

Example 1 −0.97 −0.95 0.53

Example 2 −0.99 −1.00 −0.47

Results reported for best performing normalization method
a No normalization was required

Table 3 Comparison of methods based on misclassification rate for real-life data

Dataset K PNMF (λ)a ED (λ = 0) IS KL (γ = 1) Renyi (γ �= 1)a

WebKB 4 – 42.57 31.15 26.16 25.06 (0.75)

WebKB 2 4 – 45.01 39.41 33.11 31.08 (0.75)

Reuters 1 3 – 2.60 37.66 1.30 0 (0.25, 0.5, 0.75)

Reuters 2 4 – 36.76 36.76 29.41 23.53 (1.25)

Reuters 3 5 – 35.00 41.67 17.50 17.50 (0.5)

Reuters 4 6 27.38 (0.001) 25.90 40.29 28.06 20.86 (1.75)

Reuters 5 8 42.75 (0.1) 35.50 49.70 36.69 33.14 (0.5)

Reuters 6 10 32.64 (0.01) 45.64 52.31 28.72 30.26 (1.25)

Reuters 7 20 42.86 (0.001) 55.07 56.16 42.75 41.67 (1.5)

Reuters 8 4 22.25 (0.001) 21.21 31.31 2.02 0 (0.5)

Reuters 9 3 – 30.91 30.91 27.27 23.64 (1.5)

Page Blocks 5 – 34.61 47.05 41.79 29.64 (0.25)

a Best-performing λ (PNMF) or γ (Renyi) shown within parentheses

Table 3 presents the misclassification rates achieved by different algorithms for various
ranks. In each case, the best performing model determined by the choice(s) of γ or λ and
normalization method is listed. It is evident from these results that our approach not only
outperforms PNMF but also algorithms based on ED, IS and KL divergences throughout
the range of K considered. This table also presents results for several additional subsets of
the Reuters data for these algorithms where similar improvements in performance are seen.
There is also a notable improvement in performance for smaller ranks where our algorithm
achieved near-perfect or perfect clustering. While the misclassification rate tends to increase
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with K for all algorithms, the gain in clustering accuracy is substantial for Renyi divergence
especially in comparison to ED and IS divergence.

Furthermore, Ding et al. (2008) applied their NMF-based hybrid method to the subset of
this dataset containing the ten most frequently occurring categories. Once again, they used
an informative filter that utilized the top 1,000 terms based on mutual information with class
labels. However, our approach performed significantly better by achieving misclassification
rates of 28.72 and 30.76 % (or clustering accuracies of 71.28 and 69.24 %), respectively,
using tf and tfidf in clustering the documents over their hybrid approach which achieved a
much higher misclassification rate of 47.9 % (52.1 % clustering accuracy).

5.3 Page Blocks data

This dataset was described by Esposito et al. (1994) and represents a unique example in
document analysis. Here, we are interested in classifying all the blocks of the page layout
of a document that have been detected by a segmentation process. This is an important
step in document analysis that is necessary for separating text from non-text areas. The
original dataset consists of 5,473 blocks from 54 distinct documents. Each block represents
an observation and there are five classes of blocks, namely, text, horizontal line, picture,
vertical line and graphic. The following variables are measured for each block-number of
black pixels per unit area, mean number of white-black transitions, total number of black
pixels, number of white-black transitions in the original bitmap of the block, height, length,
area and eccentricity (ratio of length to height). In addition, the dataset also contains the
number of black pixels per unit area and the total number of black pixels obtained after the
application of a smoothing algorithm. This data set is available http://archive.ics.uci.edu/ml/
datasets/Page+Blocks+Classification. For more details on this dataset, the interested reader
is referred to Esposito et al. (1994) and Malerba et al. (1995).

We reduced the dimensionality of this dataset by removing blocks with a relatively small
number of black pixels per unit area and mean number of white-black transitions. This resulted
in 1407 blocks across the five classes. Also since some variables have been normalized
with respect to other variables in this dataset, no further normalization (i.e., tf or tfidf ) was
deemed appropriate for this data. A rank k = 5 factorization was applied to this dataset
for each γ under consideration. γ = 0.25 resulted in the most homogeneous grouping
of blocks based on the measured variables. In particular, it is worth noting from Table 3
that γ = 0.25 outperformed all four known algorithms that are embedded within Renyi
divergence, namely, KL divergence (γ = 1, ν = 41.79 %), approximation to dual KL
divergence (γ = 0.01, ν = 44.28 %), Bhattacharya distance (γ = 0.5, ν = 36.74 %) and
the Pearson Chi-squared statistic (γ = 2, ν = 45.98 %)—by a wide margin (see Fig. 2).
These results emphasize the need to incorporate different choices of γ in the factorization,
beyond the commonly known metrics. Furthermore, γ = 0.25 also outperforms algorithms
based on ED (ν = 34.61 %) and IS divergence (ν = 47.05 %).

5.4 Simulating nested classes

We further investigate the performance of our NMF algorithm via extensive simulations
involving a correlated structure. In particular, we illustrate its ability to recover documents
into the true underlying classes when there exists a sub-structure (or a dependent structure)
between different classes. This is more realistic in real-life data especially when the number
of classes exceeds two, and there is a hierarchical or nested structure of the classes. To this
end, we construct two examples involving simulated frequencies of p = 1,000 terms for
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Fig. 2 Illustration of the relationship between various measures of clustering accuracy and γ for the Page
Blocks data. a–d display, respectively, ν, ARI, NMI and ρ as a function of γ . The best performing model was
obtained for γ = 0.25. This is indicated by the observed trend in ARI and NMI as γ increases (b, c) and by
the smallest misclassification rate, ν, of 29.64 % (a). On the other hand, ρ exhibits an inconsistent change as
γ increases, peaking at γ = 1 (corresponding to ν = 41.79 %) (d)

each of n = 60 documents. We first describe their construction followed by their analyses
based on our methods.

Example 1 We generated the term-document frequencies as follows: Let documents 1–20,
21–40 and 41–60 denote classes A, B and C respectively. For the first 50 terms, frequencies for
documents in classes A, B and C were generated from a Poisson distribution with means 10,
1 and 1 respectively. For terms 51−100, frequencies for documents in class B were generated
as Y ∼ min(X1, X2) where X1 ∼ Poisson(mean = λ1) and X2 ∼ Poisson(mean = λ2);
and frequencies for documents in class C were generated from a Poisson distribution with
mean λ3. Documents in classes B and C have a dependent structure for terms 51–100 while
for terms 1–50, documents in class A are independent of those in classes B and C . For the
remainder of the terms, all documents are generated from a Poisson distribution with unit
mean. We set λ1 = 20 and considered various choices of λ2 in the range (20, 40].
Example 2 For this example, we generated toy data based on the same setup as Example 1
above except for the following: For the first 50 terms, frequencies for documents in classes
A, B and C were generated from a Poisson distribution with means 20, 1 and 1 respectively.
In this set-up, documents in classes B and C have a dependent structure for terms 51–100
while documents in classes A and B have a dependent structure among the first 100 terms. In
this structure, class B is dependent on both classes A and C . We set λ1 = 20 and considered
various choices of λ2 in the range [25, 40].

The rationale behind this scheme is to generate data with a dependent and/or a hierarchical
structure. In the first example, there are two major classes where one class has two sub-
classes while the second example represents a unique dependent structure between all three
classes. Each dataset was normalized using tf and tfidf and then a rank k = 3 factorization
was applied using our method. The overall performance of our algorithm on the simulated
datasets paralleled that on the real-life data presented. The results were also insensitive to the
choice of the Poisson mean parameters in each example. For the sake of brevity, we present
results only for the case λ1 = 20 and λ2 = 25 in these examples.
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Table 4 Comparison of methods based on misclassification rate for simulated data

Dataset K ED IS KL (γ = 1) Renyi (γ �= 1)a

Example 1 3 31.67 31.67 26.67 3.33 (1.5)

Example 1a 3 31.67 31.67 0 0b

Example 1b 3 21.67 28.33 8.33 0 (1.25,1.75)

Example 1c 3 33.33 31.67 28.33 16.67 (0.25)

Example 2 3 33.33 31.67 6.67 5.00 (1.25,1.75,2)

a Best-performing γ shown within parentheses
b All choices of γ except γ = 0.01
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Fig. 3 Graphical illustration of the relationship between the misclassification rate ν and γ for simulated data
in Examples 1 and 2 in §6.4. Examples are identified using different line types in the legend. There is at least
one value of γ that outperforms KL divergence (γ = 1) in each example. In Example 1 (dashed lines) there is
a significant improvement in clustering for γ = 1.5 (ν = 3.33 %) compared to γ = 1 (26.67 %). Results are
displayed for various values of the parameter λ2 in this example. As λ2 is decreased from 40 (Example 1a) to a
value closer to 20 (Example 1b, λ2 = 30; Example 1, λ2 = 25; Example 1c, λ2 = 22), i.e., as classes B and C
became more and more similar, a gradual increase is observed in ν across γ . Note that as λ2 → 20, classes B
and C merge into a single, larger class. In Example 2 (dashed lines connected by asterisk), γ = 1.25, 1.75, 2
achieve the lowest misclassification rate of 5 %

Table 4 presents a comparison of various algorithms using simulated data. In both exam-
ples, tf outperformed tfidf in delineating the true classes, and its performance was seen to be
uniformly better than that of tfidf throughout the range of γ . Therefore, results are shown
only for tf normalized data. The improvement afforded by our algorithm over those based
on ED, IS and KL divergences is evidenced by the results in this table. Figure 3 presents the
misclassification rates for each example plotted against γ . While Renyi divergence improves
upon every other algorithm in both examples, it is particularly significant to note that there
is at least one choice of γ that outperforms ED, IS and KL divergences by a wide margin.
ARI, NMI and ρ displayed relationships with γ that were similar to those observed for
real-life data. The sparseness of both metaterms and metaterm frequency profiles exhibited
a decreasing trend with respect to γ in a similar fashion to that seen in real data.

Next, we investigated the sensitivity of our method in delineating similar clusters. In our
simulation studies, the similarity between any two clusters can be simply determined by the
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data generating mechanism. To this end, we utilized Example 1 and varied the Poisson mean
parameter λ2 that determines the degree of closeness between classes B and C . It is natural
that our method performs very well for λ2 ≥ 30, however, the utility of our method lies in
its ability to capture subtle differences between classes B and C (i.e., as λ2 approaches the
limiting value of 20). A summary of the performance of various algorithms for Examples 1, 1a,
1b and 1c is given in Table 4. As noted above, Examples 1a and 1b represent situations where
classes B and C are more dissimilar (where λ2 = 40 and 30, respectively). In both cases,
perfect clustering is achieved by Renyi divergence for multiple choices of γ . For instance
in Example 1a, the performance of Renyi divergence is uniformly excellent throughout the
range of γ where perfect clustering is achieved for all values of γ (ν = 0), including KL
divergence, with the exception of γ = 0.01 (ν = 1.67 %). This deviates considerably from
the performance of ED and IS divergence where both algorithms perform poorly in both
cases (Table 4). When λ2 = 25 (Example 1), γ = 1.5 is the best-performing algorithm with
ν = 3.33 % while ED and IS are the worst performing algorithms, each with ν = 31.67 %.
KL divergence performed slightly better with a ν = 26.67 %. Finally, for the extreme case
of λ2 = 22 (Example 1c), γ = 0.25 is the best performer (ν = 16.67 %) and results in
significant improvements over ED, KL and IS divergence (Table 4). This phenomenon was
also observed in other examples in our simulation studies as the parameter values were varied
(data not shown) and it emphasizes the need for a broader approach.

5.5 Computational performance of algorithms

We made systematic comparisons of the computational performance of the various algorithms
developed and tested in this paper. Data were analyzed using Intel Xeon processors running
at 2.40 Ghz and 24 Gb of RAM using the parallel implementation of algorithms on HPC
clusters described in §5.4. Data set size was determined by the product of the number of rows
(terms) and number of columns (documents) contained in it. Two objective measures were
used to quantify computational speed. The first measure is the number of updates required
until convergence for each run, averaged across N = 200 runs of a particular algorithm for a
pre-specified rank K factorization for a given data set. As noted earlier, each run is allowed
a maximum of 2000 iterations for convergence. A run that fails to converge within this pre-
specified limit stops after 2000 iterations and the resulting W and H matrices are utilized
in further quantitative evaluation of clustering. Faster algorithms typically will have a lower
mean number of updates until convergence for a fixed rank K factorization, dependent on
data set size.

The second measure is the more traditional CPU time required to complete a single run,
averaged across N = 200 runs of a fixed rank K factorization of a given data set. Again,
faster algorithms will require fewer updates until convergence per run and the mean number
of updates required will have a bearing on computational time contingent on data set size.
In addition to CPU time, we also computed wall clock times required for completion of
a single run, averaged across N = 200 runs of a particular algorithm for a fixed rank K
factorization of a given data set. Wall clock time is relevant in this application due to parallel
implementation of our NMF algorithms on HPC clusters. It gives a more realistic assessment
of computational time required for a particular job depending on the data set size, rank K of
the factorization, number of runs N and number of choices of γ in Renyi divergence. It is also
dependent on the number of cores (processors) chosen or available for a particular job on the
cluster. Since CPU time may be affected by the number of available nodes and the demands on
the HPC cluster, wall clock time provides a measure of the expected duration for a particular
job subject to constraints on the cluster and job size. In this regard, the mean number of
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Table 5 Mean number of updates until convergence

Dataset K ED IS KL (γ = 1) Renyi (γ �= 1)a

WebKB 4 214.7 647.1 162.1 104.9 (0.75)

WebKB 2 4 213.1 312.4 364.3 211.2 (0.75)

Reuters 1 3 34.6 392.1 54.6 37.2 (0.5), 42.1 (0.75), 29.3 (0.25)

Reuters 2 4 45.5 292.9 63.0 78.5 (1.25)

Reuters 3 5 43.5 677.9 85.6 61.9 (0.5)

Reuters 4 6 49.5 780.1 101.2 144.8 (1.75)

Reuters 5 8 51.6 976.5 119.2 93.7 (0.5)

Reuters 6 10 56.3 1, 131.1 127.1 154.6 (1.25)

Reuters 7 20 75.4 1, 494.5 163.2 189.1 (1.5)

Reuters 8 4 41.2 542.8 71.8 50.7 (0.5)

Reuters 9 3 40.4 303.7 69.6 68.4 (1.5)

Page Blocks 5 2,000 645.3 1, 983.2 1,984 (0.25)

Example 1 3 146.7 510.5 27.3 37.2 (1.5)

Example 2 3 176.3 517.8 20.5 23.3 (1.25), 36.2 (1.75), 39.2 (2)

a Best-performing γ shown within parentheses

updates can be considered to be a more objective measure of speed that is independent of
cluster occupancy. As outlined in §5.4, the parallel implementation allows us to pre-specify
all the aforementioned parameters prior to initiation of a particular job. This implementation
was described in our earlier work (Devarajan and Wang 2007) and a more detailed account
of it is provided in Wang et al. (Manuscript in preparation).

Table 5 summarizes the performance of various algorithms in terms of the mean number
of updates until convergence for each data set presented in this paper. For each combination
of algorithm and data set, the mean number of updates listed in the table corresponds to the
best performing model whose misclassification rate is listed in Table 3 (for real data sets) and
Table 4 (for simulated data sets). The NMF algorithm based on ED was observed to converge
faster than most other algorithms in general, and for higher rank factorizations in particular.
However the overall performance of ED has been poor in delineating the clusters of documents
as evidenced by the results shown in Tables 3 and 4. This poor performance was observed
throughout the range of K and for all data sets, both real life and simulated, considered.
Computational speed has not translated to better performance in this case. An interesting
observation in Table 5 is that the mean number of updates for ED has virtually remained the
same between the smaller and larger WebKB data sets while its performance has worsened,
and remains the overall worst performer across all algorithms tested (Table 3). On the other
hand, the best performing model using Renyi divergence required twice as many updates until
convergence for the larger WebKB set while continuing to remain the best overall performer
among all algorithms. Although the NMF algorithm based on Renyi divergence has been
relatively slow in terms of mean number of updates, particularly for higher rank factorizations,
there have been significant gains in clustering accuracy as seen by our experimental results
on both real-life and simulated data. In some cases, Renyi divergence converges faster than
any other algorithm while in other cases, KL divergence converges faster. The difference is
striking in the simulated data sets where Renyi divergence is uniformly the fastest algorithm.
It is also the best performing algorithm in terms of classification accuracy (Table 3). IS
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Table 6 Computational speed: mean clock (and CPU)b time per run (seconds)

Dataset K ED IS KL (γ = 1) Renyi (γ �= 1)a Renyi (all γ )

WebKB 4 5.89 23.10 3.98 5.58 (0.75) 76.71

[36.41] [161.11] [22.34] [40.20] [539.6]

[[10.39]]

WebKB 2 4 24.49 35.98 27.06 35.55 (0.75) 593.56

[123.36] [238.98] [147.48] [272.25] [4147.60]

[[27.33]]

Reuters 4 6 0.38 6.41 0.25 1.34 (1.75) 8.22

[1.32] [43.62] [2.80] [10.59] [66.88]

[[0.38]]

Reuters 5 8 0.63 13.39 1.02 0.72 (0.5) 13.55

[2.74] [90.65] [5.10] [4.66] [108.50]

[[0.65]]

Reuters 6 10 0.98 24.34 1.70 2.65 (1.25) 19.77

[6.40] [159.03] [8.43] [23.30] [154.62]

[[0.95]]

Reuters 7 20 3.71 98.00 6.63 7.20 (1.5) 62.81

[33.56] [646.56] [36.38] [57.55] [468.52]

[[2.80]]

Page Blocks 5 0.59 0.43 0.51 0.99 (0.25) 7.69

[2.44] [2.08] [3.09] [9.79] [77.46]

[[3.67]]

a Best-performing γ shown within parentheses
b CPU time indicated within [.] for all algorithms and within [[.]] for HALS algorithm for ED

divergence is the slowest among all algorithms considered and it is also the worst performing
algorithm overall, for both real and simulated data sets, often exhibiting poorer classification
accuracy than ED in our studies.

Table 6 summarizes the performance of various algorithms in terms of mean clock and CPU
times for selected, large data sets discussed in the paper. CPU times are listed within brackets
and represent single core values. Various criteria such as the presence of a large number of
clusters (K = 6, 8, 10, 20 for the Reuters data sets) or a large number of documents to be
clustered (n = 902, 2,606 and 1,407, respectively, for the WebKB, WebKB 2 and Page Blocks
data sets) were used to select these data sets. The NMF algorithm using Renyi’s divergence
was run for ten choices of the parameter γ for the rank K factorization specified in Table 6
for each data set (last column). In addition, the hierarchical alternating least squares (HALS)
algorithm (Cichocki et al. 2009; Gillis and Glineur 2012) was applied to these data sets and
its computational performance was compared to our proposed methods. HALS has been
demonstrated to considerably improve convergence speed; however, this approach is limited
to the use of ED as the divergence measure. In terms of clustering accuracy, this algorithm
was found to have similar performance to that of the regular multiplicative algorithm for ED
(see also Zhou et al. 2012; Gillis and Glineur 2012). CPU times for the HALS algorithm
are listed within double brackets for each data set along with those of our approach for
ED (third column of Table 6). For each combination of algorithm and data set, the mean
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computational time across N = 200 runs is listed. For NMF algorithms based on ED, IS,
KL and Renyi divergence (columns 3–6), these correspond to the best performing model
whose misclassification rate is listed in Table 3. For each algorithm, a strong correlation was
observed between computational time (both CPU and wall clock times) and the mean number
of updates after accounting for data set size, with Spearman’s rank correlations ranging from
0.83–1.00. An average sevenfold improvement in computational time was observed overall
due to the parallel implementation. In half the cases, Renyi divergence (including KL) is the
fastest algorithm while ED is faster for the remaining cases. It is also worth noting that in
terms of CPU time, the HALS algorithm is significantly faster than the regular multiplicative
algorithm for ED for all data sets with the exception of the Page Blocks data. In terms of
mean clock time due to parallel implementation, a considerable gain is noted for the WebKB
and Page Blocks data sets.

From a practical point of view, slower computational speed is mitigated by our parallel
implementation of these algorithms. With the advent of HPC clusters and their widespread
utilization as part of computational infrastructure in recent years, such a parallel implementa-
tion should be readily accessible to researchers in a variety of scenarios. The implementation
of the HALS algorithm and its refinements (Cichocki et al. 2009; Gillis and Glineur; Zhou
et al. 2012) in this setting are expected to significantly increase computational speed, but,
as alluded to earlier, it is limited to the use of ED as the divergence measure. One possi-
ble avenue for future research is to extend these algorithms for the generalized divergence
measures described in this paper.

6 Summary and discussion

In summary, we have described a unified algorithm for NMF and PLSI based on Renyi’s
divergence stemming from the Poisson likelihood. We proved convergence of our algorithm
using an auxiliary function analogous to that used for proving convergence of the EM algo-
rithm. This approach provides a unique and generalized statistical framework for NMF and
PLSI and includes well-known divergence measures as special cases. It is also related to some
recently proposed divergence measures via transformations. Furthermore, we generalized the
relationship between NMF and PLSI using a Box–Cox transformation in the multinomial
likelihood for PLSI. This generalization embeds PLSI within the larger framework of the
λ-log-likelihood and enables us to utilize some useful properties of PLSI within a broader
class of models. Last but not least, we demonstrated the applicability of our methods using
simulated as well as real-life document clustering data.

One of the objectives of this paper has been to demonstrate the need for a generalized metric
for modeling high-dimensional data in the context of text mining and document clustering.
The generalized metric presented here retains the distributional assumption on the data while
providing modeling flexibility via the choice of the parameter γ . In that regard, one could
arguably view our approach from the perspective of penalized likelihood where the choice ofγ
in Renyi’s divergence determines the joint penalty on the metaterms and metaterm frequency
profiles, or alternatively, on the reconstructed matrix W H . Furthermore, the application of
consensus clustering to select γ is analogous to the use of cross-validation for choosing the
penalty parameter in penalized likelihood methods. Our real-life examples and simulation
studies suggest an underlying effect due to the distribution of the term frequencies (across
documents) on the performance of the clustering algorithm. This is determined by the choice
ofγ . Perfect clustering is indeed achievable with the appropriate choice ofγ for some datasets,
as demonstrated in our examples. The approach emphasizes the need for a data-driven choice
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of γ and, hence, of the divergence measure itself used in the decomposition. In practice, we
recommend the use of several values of γ for evaluating the homogeneity of clustering for a
given factorization rank k. Our studies indicate that values of γ in the (0, 2] range work very
well in practice for any real data set as evidenced by our real-life and simulated examples.
We also found that no significant improvement was afforded by the choice of higher values
of γ (data not shown). This range also contains several well-known divergence measures
thus providing interpretability of the NMF objective function. Our parallel implementation
has distinct advantages in terms of computational speed and allows one to simultaneously
evaluate several factorization ranks for multiple choices of γ .

Several computational algorithms have been suggested in the literature recently for
improving the speed and efficiency in NMF (for example, Zhou et al. 2012; Gillis and Glineur
2010, 2012; Cichocki et al. 2007, 2009; Phan and Cichocki 2011; Cichocki and Phan 2009;
Lin 2007; Févotte and Idier 2011; Wang and Li 2010). The theoretical approach presented
in this paper paves the way for potentially extending these algorithms by incorporating the
generalized Renyi divergence for count data. It should be emphasized, however, that compu-
tational algorithm development is not the focus of our work and that such an extension could
form the core of future work on this topic. In particular, extending the fast NMF algorithms
proposed by Gillis and Glineur (2012) and Zhou et al. (2012) to non-Gaussian models would
broaden the applicability of NMF in different areas.

An important observation from the analytical results presented is that the best performing
model is not necessarily the sparsest, either in terms of the metaterms or the metaterm
frequency profiles. The simulations highlight the ability of our approach to delineate classes
based on subtle differences between them. The overall performance of tf normalization was
found to be superior to that of tfidf. Our results demonstrated that both ARI and NMI were
better measures of clustering accuracy than ρ. The problems associated with ρ have been well
documented in the literature (Hastie et al. 2001; Holgersson 1978). Moreover, ρ typically
has too narrow a range to be useful in many applications and, unlike ARI and NMI, can only
be used with consensus clustering in conjunction with hierarchical clustering. In particular,
for a real dataset with unknown true number of classes, we recommend the use of ARI or
NMI on tf normalized data.

While Renyi’s divergence is applicable for modeling count data, it has been shown to
closely approximate data from skewed distributions in large-scale gene expression studies
(Devarajan and Ebrahimi 2005, 2008; Devarajan 2006, 2008). Applications of NMF in the
domain of computational biology are abundant in the literature. An extensive list of such
applications is presented in Devarajan (2008). Thus the approach presented here provides
the generalizability and flexibility in modeling such large-scale biological data as well, and
further broadens the usefulness and applicability of our method.
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7 Appendix

Proof of Thoerem 1 As noted earlier, a proof of the monotonicity of the updates in Theorem
1 is given in Cichocki et al. (2008). However, the auxiliary function used to derive updates
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for W and H and to prove their monotonicity contains elements of V in the denominator. In
order for this formulation of the auxiliary function to be properly defined, each element of V
is implicitly required to be positive. However, for Poisson distributed data, it is possible to
have exact zeroes in V and accordingly the auxiliary function may not be defined. Moreover,
the non-negativity constraint imposed on V is fundamental to NMF and is independent of the
data generating mechanism. Here we provide a more general proof of the monotonicity of
updates that satisfies the non-negativity assumption on V . It is based on splitting the domain

\{0, 1} of the parameter γ into three disjoint regions and considering each separately. The
update rules obtained under all cases, however, are the same.

First, we derive the update for H and prove its monotonicity for 0 < γ < 1. Then we
show how similar arguments can be used to prove the result for γ > 1 and for γ < 0. We will
make use of an auxiliary function similar to the one used in the EM algorithm (Dempster et al.
1977; Lee and Seung 2001). Note that for h real, G(h, h′) is an auxiliary function for F(h) if
G(h, h′) ≥ F(h) and G(h, h) = F(h) where G and F are scalar valued functions. Also, if G
is an auxiliary function, then F is non-increasing under the update ht+1 = arg min

h
G(h, ht ).

Using the second Eq. in (3.5), we define

F(Haj ) = γ
∑

i

Vi j + (1− γ )
∑
ia

Wia Haj −
∑

i

V γ

i j

[∑
a

Wia Haj

]1−γ

,

where Haj denotes the aj th entry of H . Then the auxiliary function for F(Haj ) is

G
(

Haj , Ht
aj

)
=γ

∑
i

Vi j + (1− γ )
∑
ia

Wia Haj −
∑
ia

V γ

i j (Wia Haj )
1−γ

⎛
⎜⎜⎝

Wia Ht
aj∑

b

Wib Ht
bj

⎞
⎟⎟⎠

γ

.

It is straightforward to show that G(Haj , Haj ) = F(Haj ). To show that G(Haj , Ht
aj ) ≥

F(Haj ), we use the convexity of −x1−γ and the fact that for any convex function

f, f

(
n∑

i=1

ri xi

)
≤

n∑
i=1

ri f (xi ) for rational nonnegative numbers r1, . . . , rn such that

n∑
i=1

ri = 1. We then obtain

−
(∑

a

Wia Haj

)1−γ

≤ −
∑

a

γa

(
Wia Haj

γa

)1−γ

= −
∑

a

(Wia Haj )
1−γ

⎛
⎜⎜⎝

Wia Ht
aj∑

b

Wib Ht
bj

⎞
⎟⎟⎠

γ

,

where γa =
Wia Ht

aj∑
b

Wib Ht
bj

. From this inequality it follows that F(Haj ) ≤ G(Haj , Ht
aj ). The

minimizer of F(Haj ) is obtained by solving

dG
(

Haj , Ht
aj

)
d Haj

123



Mach Learn (2015) 99:137–163 159

= (1− γ )

⎛
⎜⎜⎝

∑
i

Wia −
∑

i

V γ

i j

(
W 1−γ

ia

) Wia Ht
aj∑

b

Wib Ht
bj

(
Wia Ht

aj∑
b Wib Ht

bj

)γ−1

H−γ

aj

⎞
⎟⎟⎠ = 0.

The update rule for H thus takes the form given in (3.7). For γ > 1, using the first Eq. in
(3.5) we define

F(Haj ) = −γ
∑

i

Vi j − (1− γ )
∑
ia

Wia Haj +
∑

i

V γ

i j

[∑
a

Wia Haj

]1−γ

,

and the auxiliary function for F(Haj ) as

G
(

Haj , Ht
aj

)
= −γ

∑
i

Vi j − (1−γ )
∑
ia

Wia Haj +
∑
ia

V γ

i j (Wia Haj )
1−γ

⎛
⎜⎜⎝

Wia Ht
aj∑

b

Wib Ht
bj

⎞
⎟⎟⎠

γ

.

It is easy to see that G(Haj , Haj ) = F(Haj ). By using the convexity of x1−γ for γ > 1,
we can show that F(Haj ) ≤ G(Haj , Ht

aj ) and proceed to obtain the update rule for H
as described above. The update rule for this case is exactly as those specified for the case
0 < γ < 1. Finally, the proof for the case γ < 0 is obtained by using (3.6) and defining

F(Haj ) = −γ
∑

i

Vi j − (1− γ )
∑
ia

Wia Haj +
∑

i

V γ

i j

[∑
a

Wia Haj

]1−γ

,

and the auxiliary function for F(Haj ) to be

G(Haj , Ht
aj )= −γ

∑
i

Vi j − (1− γ )
∑
ia

Wia Haj +
∑
ia

V γ

i j (Wia Haj )
1−γ

⎛
⎜⎜⎝

Wia Ht
aj∑

b

Wib Ht
bj

⎞
⎟⎟⎠

γ

.

Again, it is easy to verify that G(Haj , Haj ) = F(Haj ). Using the convexity of xγ for γ < 0,
we can show that F(Haj ) ≤ G(Haj , Ht

aj ) and proceed to obtain the update rule for H as
shown above. By using symmetry of the decomposition V ∼ W H and by reversing the
arguments on W , one can easily obtain the update rule for W given in (3.8) in the same
manner as H .

Proof of Lemma Without loss of generality, we re-write the log-likelihood (3.9) by adding

a constant term such that L = ∑n
j=1

∑p
i=1−vi j log

(
vi j

Pi j

)
. Using the Box–Cox family of

transformations (Box and Cox 1964), we can generalize it as

Lλ =
n∑

j=1

p∑
i=1

−vi j

λ

[(
vi j

Pi j

)λ

− 1

]
(7.1)

where λ �= 0. In the limit λ → 0, we obtain the log-likelihood given in (3.9). This is
similar in principle to the α-log-likelihood approach outlined in Matsuyama (2003). Since∑

i j vi j = ∑
i j Pi j = 1, we have

∑
i j (vi j − Pi j ) = 0. Adding this term to Lλ in (7.1) and

multiplying throughout by the constant
2

λ+ 1
does not alter the meaning and interpretation
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of Lλ, and results in Lλ defined in Eq. (3.10). We refer to Lλ = Lλ(V, P) in (3.10) as the
λ-log-likelihood where V = [vi j ], P = [Pi j ], λ �= −1 and λ �= 0.

Proof of Thoerem 2 In the context of NMF, the power-divergence family of statistics (2.5)
can be re-written as

φλ(A, B) = 2

λ(λ+ 1)

∑
i, j

Ai j

[(
Ai j

Bi j

)λ

− 1

]
− λ(Ai j − Bi j ) (7.2)

for λ �= −1 and λ �= 0 since
∑

i j (Ai j − Bi j ) = 0. Note that φλ(A, B) = −Lλ(A, B), and

if we reparametrize (7.2) such that Ai j = γ

2
Ãi j , Bi j = γ

2
B̃i j and λ = γ − 1, we obtain

the quantity D∗γ ( Ã||B̃) defined in (3.2). Hence the negative λ-log-likelihood is equivalent
to Renyi’s divergence between the matrices A and B. This equivalence thus generalizes the
relationship between NMF and PLSI.
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