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Abstract We prove theoretical guarantees for an averaging-ensemble of randomly projected
Fisher linear discriminant classifiers, focusing on the case when there are fewer training obser-
vations than data dimensions. The specific form and simplicity of this ensemble permits a
direct and much more detailed analysis than existing generic tools in previous works. In
particular, we are able to derive the exact form of the generalization error of our ensemble,
conditional on the training set, and based on this we give theoretical guarantees which directly
link the performance of the ensemble to that of the corresponding linear discriminant learned
in the full data space. To the best of our knowledge these are the first theoretical results to
prove such an explicit link for any classifier and classifier ensemble pair. Furthermore we
show that the randomly projected ensemble is equivalent to implementing a sophisticated
regularization scheme to the linear discriminant learned in the original data space and this
prevents overfitting in conditions of small sample size where pseudo-inverse FLD learned in
the data space is provably poor. Our ensemble is learned from a set of randomly projected
representations of the original high dimensional data and therefore for this approach data
can be collected, stored and processed in such a compressed form. We confirm our theo-
retical findings with experiments, and demonstrate the utility of our approach on several
datasets from the bioinformatics domain and one very high dimensional dataset from the
drug discovery domain, both settings in which fewer observations than dimensions are the
norm.
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1 Introduction

Classification ensembles that use some form of randomization in the design of the base
classifiers have a long and successful history in machine learning, especially in the case when
there are fewer training observations than data dimensions. Common approaches include:
Bagging (Breiman 1996); random subspaces (Ho 1998); random forests (Breiman 2001).

Surprisingly, despite the well-known theoretical properties of random projections as
dimension-reducing approximate isometries (Dasgupta and Gupta 2002; Achlioptas 2003)
and empirical and theoretical studies demonstrating their usefulness when learning a single
classifier (e.g. Fradkin and Madigan 2003; Durrant and Kabán 2010), results in the literature
employing random projections to create weak learners for ensemble classification are sparse
compared to results for other approaches such as bagging and random subspaces. On the
other hand, given their appealing properties and tractability to analysis, random projections
seem like a rather natural choice in this setting. Those empirical studies we could find on
randomly-projected ensembles in the literature (Goel et al. 2005; Folgieri 2008; Schclar and
Rokach 2009) all report good empirical performance from the ensemble, but none attempt a
theoretical analysis. Indeed for all of the randomizing approaches mentioned above, despite
a wealth of empirical evidence demonstrating the effectiveness of these ensembles, there are
very few theoretical studies.

An important paper by Fumera et al. (2008) gives an approximate analytical model as a
function of the ensemble size, applicable to linear combiners, which explains the variance
reducing property of bagging. However, besides the inherent difficulties with the approach of
bias-variance decomposition for classification problems (Schapire et al. 1998), such analysis
only serves to relate the performance of an ensemble to its members and Fumera et al. (2008)
correctly point out that even for bagging, the simplest such approach and in use since at least
1996, there is ‘no clear understanding yet of the conditions under which bagging outperforms
an individual classifier [trained on the full original data set]’. They further state that, even
with specific assumptions on the data distribution, such an analytical comparison would be
a complex task. In other words, there is no clear understanding yet about when to use an
ensemble vs. when to use one classifier.

Here we take a completely different approach to address this last open issue for a specific
classifier ensemble: Focusing on an ensemble of randomly projected Fisher linear discrimi-
nant (RP-FLD) classifiers as our base learners, we leverage recent random matrix theoretic
results to link the performance of the linearly combined ensemble to the corresponding clas-
sifier trained on the original data. In particular, we extend and simplify the work of Marzetta
et al. (2011) specifically for this classification setting, and one of our main contributions
is to derive theoretical guarantees that directly link the performance of the randomly pro-
jected ensemble to the performance of Fisher linear discriminant (FLD) learned in the full
data space. This theory is, however, not simply of abstract interest: We also show exper-
imentally that the algorithm we analyze here is highly competitive with the state-of-the-
art. Furthermore our algorithm has several practically desirable properties, amongst which
are: Firstly, the individual ensemble members are learned in a very low-dimensional space
from randomly-projected data, and so training data can be collected, stored and processed
entirely in this form. Secondly, our approach is fast—training on a single core typically
has lower time complexity than learning a regularized FLD in the data space, while for
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classification the time complexity is the same as the data space FLD. Thirdly, parallel imple-
mentation of our approach is straightforward since, both for training and classification, the
individual ensemble members can be run on separate cores. Finally, our approach returns
an inverse covariance matrix estimate for the full d-dimensional data space, the entries of
which are interpretable as conditional correlations; this may be useful in a wide range of
settings.

Our randomly projected ensemble approach can be viewed as a generalization of bagged
ensembles, in the sense that here we generate multiple instances of training data by projecting
a training set of size N onto a subspace drawn uniformly at random with replacement from
the data space, whereas in bagging one generates instances of training data by drawing
N ′ training examples uniformly with replacement from a training set of size N � N ′.
However, in this setting, an obvious advantage of our approach over bagging is that it is
able to repair the rank deficiency of the sample covariance matrix we need to invert in order
to build the classifier. In particular, we show that when there are fewer observations than
dimensions our ensemble implements a data space FLD with a sophisticated covariance
regularization scheme (parametrized by an integer parameter) that subsumes a combination
of several previous regularization schemes. In order to see the clear structural links between
our ensemble and its data space counterpart we develop our theory in a random matrix
theoretic setting. We avoid a bias-variance decomposition approach since, in common with
the analysis of Schapire et al. (1998), a key property of our ensemble is that its effect is not
simply to reduce the variance of a biased classifier.

A preliminary version of this work (Durrant and Kabán 2013) won the best paper award at
the 5th Asian Conference on Machine Learning (ACML 2013). Here we extend that work in
several directions, as well as including material omitted there due to space constraints: The
high probability lower bound on the generalization error of pseudo-inverted FLD (Theorem
3.3), full proofs of all theorems in the place of the sketches in Durrant and Kabán (2013),
and most of Sect. 5 are new. Moreover we have greatly extended the experimental section,
adding a 100,000-dimensional dataset, additional carefully-tuned comparison methods, and
comparisons of our approach with an ensemble of random subspace FLDs.

The structure of the remainder of the paper is as follows: We give some brief background
and describe the randomly projected FLD classifier ensemble. Next, we present theoretical
findings that give insight into how this ensemble behaves. We continue by presenting extensive
experiments on real datasets from the bioinformatic domain where FLD (and variants) are
a popular classifier choice even though often restricted to a diagonal covariance choice
because of high dimensionality and data scarcity (Guo et al. 2007; Dudoit et al. 2002). We
further present experimental results on a 100,000-dimensional drug discovery dataset, that
is from another problem domain where the small sample size problem typically arises. Our
experiments suggest that in practice, when the number of training examples is less than
the number of data dimensions, our ensemble approach outperforms the traditional FLD in
the data space both in terms of prediction performance and computation time. Finally, we
summarize and discuss possible future directions for this and similar approaches.

2 Preliminaries

We consider a binary classification problem in which we observe N i.i.d examples of labelled

training data TN = {(xi , yi ) : xi ∈ R
d , yi ∈ {0, 1}}N

i=1 where (xi , yi )
i.i.d∼ Dx,y . We are

interested in comparing the performance of a randomly-projected ensemble classifier working
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in the projected space R
k, k � d , to the performance achieved by the corresponding classifier

working in the data space R
d . We will consider Fisher’s linear discriminant classifier working

in both of these settings since FLD is a popular and widely used linear classifier (in the data
space setting) and yet it is simple enough to analyse in detail.

The decision rule for FLD learned from training data is given by:

ĥ(xq):=1
{
(μ̂1 − μ̂0)

T �̂−1
(

xq − μ̂0 + μ̂1

2

)
> 0

}

where μ̂0, μ̂1, and �̂ are maximum likelihood (ML) estimates of the class-conditional means
and (shared) covariance matrix respectively, and 1(·) is the indicator function which returns 1
if its argument is true and 0 otherwise. In the setting considered here we assume that N � d .
Hence, �̂ will be singular and so one can either pseudo-invert or regularize �̂ to obtain a
working decision rule; both approaches are used in practice (Raudys and Duin 1998).

To construct the randomly projected ensemble, we choose the number of ensemble mem-
bers M and the projection dimensionality k, and generate M random matrices R ∈ Mk×d

with i.i.d entries ri j ∼ N (0, σ 2) each. We can take σ 2 = 1 without loss of generality. Such
matrices are called random projection matrices in the literature (Arriaga and Vempala 1999;
Achlioptas 2003). Pre-multiplying the data with one of the matrices R maps the training
examples to a random k-dimensional subspace of the data space R

d and for each instance of
R we learn a single FLD classifier in this subspace. By linearity of expectation and of the
projection operator, the decision rule for a single randomly projected classifier is then given
by:

ĥ R(xq):=1
{
(μ̂1 − μ̂0)

T RT
(
R�̂RT

)−1
R

(
xq − μ̂0 + μ̂1

2

)
>0

}

For an ensemble, various different combination rules can be applied. The most common
choices include majority voting (when there is an odd number of classifiers in the ensemble)
and linear combination (Brown 2009). We want to make the most of the weak learners’
confidence estimates so we choose to employ the averaged linear decisions of M base learners
as our combination rule which gives the following ensemble decision:

ĥens(xq):=1

{
1

M

M∑
i=1

(μ̂1 − μ̂0)
T RT

i

(
Ri �̂RT

i

)−1
Ri

(
xq − μ̂1 + μ̂0

2

)
> 0

}

Our algorithm is therefore very simple: we learn M FLD classifiers from M different
instances of randomly projected data, average their outputs and take the sign of this average
as the ensemble decision. This combination rule is called ‘voting’ in the ensemble literature
but, to avoid any possible confusion with majority voting, we shall refer to it as ‘RP averaging’;
it does not require the number of classifiers in the ensemble to be odd for good generalization
and, as we shall see, it also has the advantage of analytical tractability.

We commence our theoretical analysis of this algorithm by examining the expected perfor-
mance of the RP-FLD ensemble when the training set is fixed, which is central to linking the
ensemble and data space classifiers, and then later in Theorem 3.2 we will consider random
instantiations of the training set.
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To begin, observe that by the law of large numbers the LHS of the argument of the decision
rule of the ensemble converges to the following:

lim
M→∞

1

M

M∑
i=1

(μ̂1 − μ̂0)
T RT

i

(
Ri �̂RT

i

)−1
Ri

(
xq − μ̂0 + μ̂1

2

)

= (μ̂1 − μ̂0)
TE

[
RT
(
R�̂RT

)−1
R

](
xq − μ̂1 + μ̂0

2

)
(2.1)

provided that this limit exists. If ρ is the rank of �̂, then it will turn out that for R ∈ Mk×d

having i.i.d zero-mean Gaussian entries ri j ∼ N (0, 1), if k ∈ {1, . . . , ρ − 2} then this
expectation is indeed defined for each entry. From Eq. (2.1) we see that, for a fixed training
set, in order to quantify the error of the ensemble it is enough to consider the expectation
(w.r.t random matrices R):

E

[
RT
(

R�̂RT
)−1

R

]
(2.2)

Before continuing, we should note that for the case k ∈ {1, . . . , ρ−2} (Marzetta et al. 2011)
provide a procedure to compute this expectation exactly. However we are more interested
in how this expectation relates to characteristics of the maximum likelihood estimate of the
sample covariance �̂, since we shall see in Theorem 3.2 that improving the conditioning of
this matrix has a direct impact on the generalization error of the FLD classifier. Our approach
and proof techniques are therefore very different to those followed by Marzetta et al. (2011),
specifically we bound this expectation from both sides in the positive semi-definite ordering
in order to provide an estimate of the extreme eigenvalues of the inverse covariance matrix
implemented by our ensemble.

3 Theory

Our main theoretical results are the following three theorems: the first characterizes the
regularization effect of our ensemble, while the second bounds the generalization error of the
ensemble for an arbitrary training set of size N in the case of multivariate Gaussian class-
conditional distributions with shared covariance. The third is a finite sample generalization
of the negative result of Bickel and Levina (2004) showing that when the data dimension d
is large compared to the rank of �̂ (which is a function of the sample size) then, with high
probability, pseudoinverted FLD performs poorly.

Theorem 3.1 (Regularization) Let �̂ ∈ Md×d be a symmetric positive semi-definite matrix
with rank ρ ∈ {3, . . . , d − 1}, and denote by λmax(�̂), λmin �=0(�̂) > 0 its greatest and least
non-zero eigenvalues. Let k < ρ − 1 be a positive integer, and let R ∈ Mk×d be a random

matrix with i.i.d N (0, 1) entries. Let S−1:=E

[
RT
(

R�̂RT
)−1

R

]
, and denote by κ(S−1)

its condition number, κ(S−1) = λmax(S−1)/λmin(S−1). Then:

κ(S−1) �
ρ

ρ − k − 1
· λmax(�̂)

λmin �=0(�̂)

This theorem implies that for a large enough ensemble the condition number of the sum

of random matrices 1
M

∑M
i=1 RT

i

(
Ri �̂RT

i

)−1
Ri is bounded. Of course, any one of these
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summands RT
i

(
Ri �̂RT

i

)−1
Ri is singular by construction. On the other hand if we look at

the decision rule of a single randomly projected classifier in the k-dimensional space,

ĥ R(xq):=1
{
(μ̂1 − μ̂0)RT

(
R�̂RT

)−1
R

(
xq − μ̂0 + μ̂1

2

)
>0

}
(3.1)

we have for all z �= 0, Rz �= 0 almost surely, and R�̂RT is full rank almost surely—therefore
with probability 1 the k-dimensional system in (3.1) is well-posed.

The significance of this theorem from a generalization error analysis point of view stems
from the fact that the rank deficient maximum-likelihood covariance estimate has unbounded
condition number and, as we see below in Theorem 3.2, (an upper bound on) the generalization
error of FLD increases as a function of the condition number of the covariance estimate
employed. In turn, the bound given in our Theorem 3.1 depends on the extreme non-zero
eigenvalues of �̂, its rank1 ρ, and the subspace dimension k, which are all finite for any
particular training set instance. We should also note that the subspace dimension k is a
parameter that we can choose, and in what follows k therefore acts as the integer regularization
parameter in our setting.

Theorem 3.2 (Tail bound on generalization error of the converged ensemble) Let T =
{(xi , yi )}N

i=1 be a set of training data of size N = N0 + N1, subject to N < d and Ny > 1
∀y. Let xq be a query point with Gaussian class-conditionals xq |(yq = y) ∼ N (μy, �), with
� full rank and let Pr{yq = y} = πy . Let ρ be the rank of the maximum likelihood estimate
of the covariance matrix and let k < ρ − 1 be a positive integer. Then for any δ ∈ (0, 1) and
any training set of size N, the generalization error of the converged ensemble of randomly
projected FLD classifiers is upper-bounded with probability at least 1 − δ by the following:

Pr
xq ,yq

(ĥens(xq) �= yq) �
1∑

y=0

πy	

(
−
[

g

(
κ̄

(√
2 log

5

δ

))

. . . ×
[√

‖�− 1
2 (μ1 − μ0)‖2 + d N

N0 N1
−
√

2N

N0 N1
log

5

δ

]
+

. . .−
√

d

Ny

(
1 +

√
2

d
log

5

δ

)])

where 	 is the c.d.f of the standard Gaussian, κ̄(ε) is a high probability (w.r.t. the random
draw of training set) upper bound on the condition number of � Ŝ−1 given by Eq. (4.17) and

g(·) is the function g(a):=
√

a
1+a .

The principal terms in this bound are: (i) The function g : [1,∞) → (0, 1
2 ] which is a

decreasing function of its argument and here captures the effect of the mismatch between
the estimated model covariance matrix Ŝ−1 and the true class-conditional covariance �, via
a high-probability upper bound on the condition number of Ŝ−1�; (ii) The Mahalanobis
distance between the two class centres which captures the fact that the better separated
the classes are the smaller the generalization error should be; and (iii) antagonistic terms
involving the sample size (N ) and the number of training examples in each class (N0, N1),
which capture the effect of class (im)balance—the more evenly the training data are split,
the tighter the bound.

1 In the setting considered here we typically have ρ = N − 2.
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We note that a bound on generalization error with similar behaviour can be obtained for
the much larger family of sub-Gaussian distributions, or when the true class-conditional
covariance matrices are taken to be different (see e.g. Durrant and Kabán 2010; Durrant
2013). Therefore the distributional assumptions on Theorem 3.2 are not crucial.

Theorem 3.3 (High probability lower bound on generalization error of pseudoinverted FLD)
For any δ ∈ (0, 1), and any data set of size N0 + N1 = N, assuming Gaussian classes with
shared covariance and κ(�) < ∞ , the generalization error of pseudo-inverted FLD is
lower-bounded with probability at least 1 − δ over the random draws of training set by:

Pr(ĥ+(xq) �= yq) � 	

⎛
⎝−1

2

√
1 +

√
8

N
log

2

δ

. . . ×
(

1 +
√

2λmax(�) log(2/δ)

Tr(�) + ‖μ1 − μ0‖2 N0 N1
N

)

. . . ×
√

ρ

d

‖μ1 − μ0‖2 + Tr(�) N
N0 N1

λmin(�)

⎞
⎠

where 	 is the c.d.f of the standard Gaussian.

It is interesting to notice that this lower bound depends on the rank of the covariance estimate,
not on its fit to the true covariance �. Note in particular that when N � d our lower bound
explains the bad performance of pseudo-inverted FLD since ρ, the rank of �̂, is at most
min{N − 2, d} and the lower bound of Theorem 3.3 becomes tighter as ρ/d decreases.
Allowing the dimensionality d to be large, as in Bickel and Levina (2004), so that ρ/d → 0,
this fraction goes to 0 which means the lower bound of Theorem 3.3 converges to 	(0) =
1/2—in other words random guessing.

4 Proofs

4.1 Proof of Theorem 3.1

Estimating the condition number of E

[
RT
(

R�̂RT
)−1

R

]
is the key result underpinning our

generalization error results. We will make use of the following two easy, but useful, lemmas:

Lemma 4.1 (Unitary invariance) Let R ∈ Mk×d with ri j
i.i.d∼ N (0, σ 2). Let �̂ be any

symmetric positive semi-definite matrix, and let Û be a unitary matrix such that �̂ = Û�̂Û T,
where �̂ is a diagonal matrix with the eigenvalues of �̂ in descending order along the
diagonal. Then:

E

[
RT
(

R�̂RT
)−1

R

]
= ÛE

[
RT
(

R�̂RT
)−1

R

]
Û T

Lemma 4.2 (Expected preservation of eigenvectors) Let �̂ be a diagonal matrix, then

E

[
RT
(

R�̂RT
)−1

R

]
is a diagonal matrix.
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Furthermore, if Û diagonalizes �̂ as �̂ = Û�̂Û T, then Û also diagonalizes

E

[
RT
(

R�̂RT
)−1

R

]
.

We omit the proofs which are straightforward and can be found in Marzetta et al. (2011).
Now, it follows from Lemmas 4.1 and 4.2 that at convergence our ensemble preserves the

eigenvectors of �̂, and so we only need to consider the diagonal entries (i.e. the eigenvalues)

of E

[
RT
(

R�̂RT
)−1

R

]
, which we now do. To fix ideas we will look first at the case k = 1,

when we are projecting the high dimensional data on to a single line for each classifier in the

ensemble. In this case the ith diagonal element of E

[
RT
(

R�̂RT
)−1

R

]
is E

[
r2

i∑ρ
j=1 λ j r2

j

]
,

where ri is the ith entry of the single row matrix R. This can be upper and lower bounded as:

1

λmax
E

[
r2

i∑ρ
j=1 r2

j

]
� E

[
r2

i∑ρ
j=1 λ j r2

j

]
�

1

λmin �=0
E

[
r2

i∑ρ
j=1 r2

j

]

where λmin �=0 denotes the smallest nonzero eigenvalue of �̂ (and of �̂), and λmax its largest
eigenvalue.

Recall that as a result of Lemmas 4.1 and 4.2 we only need consider the diagonal entries
of this expectation as the off-diagonal terms are known to be zero.

Now, we evaluate the remaining expectation. There are two cases: If i > ρ then ri is

independent from the denominator and we have E

[
r2

i∑ρ
j=1 r2

j

]
= E

[
r2

i

]
E
[
1/
∑ρ

j=1 r2
j

]
=

1
ρ−2 , where we used the expectation of the inverse-χ2 with ρ degrees of freedom, and the

fact that E
[
r2

i

] = 1. When i � ρ, then in turn we have E

[
r2

i∑ρ
j=1 r2

j

]
= E

[
r2

i
‖r‖2

]
= 1

ρ
. That

is,

E

[
diag

(
r2

i∑ρ
j=1 r2

j

)]
=
[

1
ρ

Iρ 0

0 1
ρ−2 Id−ρ

]

and so E

[
RT
(

R�̂RT
)−1

R

]
is full rank, hence invertible. Its inverse may be seen as a

regularized covariance estimate in the data space, and its condition number, κ , is upper
bounded by:

κ �
ρ

ρ − 2
· λmax

λmin �=0

whereas in the setting N < d the ML covariance estimate has unbounded condition number.
For the general k < ρ −1 case we write R as a concatenation of two matrices R = [P, S]

where P is k × ρ and S is k × (d − ρ), so that E

[
RT
(

R�̂RT
)−1

R

]
can be decomposed

as two diagonal blocks:

⎡
⎢⎣E[PT

(
P�̂PT

)−1
P] 0

0 E[ST
(

P�̂PT
)−1

S]

⎤
⎥⎦

123



Mach Learn (2015) 99:257–286 265

where here in P�̂PT we use �̂ to denote the ρ × ρ positive definite upper block of the
positive semi-definite matrix �̂. Now, rewrite the upper block to orthonormalize P as the

following: E[PT
(

P�̂PT
)−1

P] =

E[PT(P PT)−
1
2

(
(P PT)−

1
2P�̂PT(P PT)−

1
2

)−1
(P PT)−

1
2 P]

Denoting by Pi the ith column of P , we can write and bound the ith diagonal element as:

E[PT
i (P PT)−

1
2

(
(P PT)−

1
2 P�̂PT(P PT)−

1
2

)−1
(P PT)−

1
2 Pi ]

� E

[
PT

i (P PT)−1 Pi

λmin((P PT)− 1
2 P�̂PT(P PT)− 1

2 )

]

� E

[
PT

i (P PT)−1 Pi

λmin �=0

]

with λmin �=0 the smallest non-zero eigenvalue of �̂ as before, and where we used the Rayleigh
quotient and the Poincaré separation theorem respectively (e.g. Horn and Johnson 1985,
Thm 4.2.2, Corr 4.3.16). This holds for all i , so then replacing we have:

E[PT(P PT)−1 P]/λmin �=0 � E
[

PT(P�̂PT)−1 P
]

(4.1)

where A � B denotes A − B is positive semi-definite. Now the remaining expectation can
be evaluated using the expectation of the ρ-dimensional Wishart matrix PT P with k degrees
of freedom:

E[PT(P PT)−1 P] = E[PT P]/ρ = k

ρ
· Iρ

Similarly to equation (4.1) we can also show that:

E
[

PT(P�̂PT)−1 P
]

� E[PT (P PT)−1
P]/λmax (4.2)

in much the same way. Put together, the diagonal elements in the upper block are all in the
interval:

[
1

λmax

k

ρ
,

1

λmin �=0

k

ρ

]

Hence, we see that in this upper block the condition number is reduced in comparison to that
of �̂ in its column space.

λmax(E[PT(P�̂PT)−1 P])
λmin(E[PT(P�̂PT)−1 P]) �

λmax(�̂)

λmin �=0(�̂)

That is, in the range of �̂, the ensemble has the effect of a shrinkage regularizer (Ledoit and
Wolf 2004). Next, we consider its effect in the null space of �̂.
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The lower block is E
[

ST(P�̂PT)−1S
]

= Tr
(

E
[
(P�̂PT)−1

])
· Id−ρ since S is inde-

pendent of P . We again rewrite this to orthonormalize P . Going through similar steps, we

obtain: Tr
(

E
[
(P�̂PT)−1

])
=

Tr

(
E

[(
P PT)− 1

2

((
P PT)− 1

2 P�̂PT(P PT)− 1
2

)−1(
P PT)− 1

2

])

�
Tr
(

E
[(

P PT
)−1
])

λmin �=0
= k

ρ − k − 1
· 1

λmin �=0

where we used the expectation of the inverse Wishart. Likewise,

Tr

(
E

[(
P�̂PT

)−1
])

�
k

ρ − k − 1
· 1

λmax
(4.3)

Hence, the lower block is a multiple of Id−ρ with the coefficient in the interval:[
k

ρ − k − 1

1

λmax
,

k

ρ − k − 1

1

λmin �=0

]

That is, in the null space of �̂ the ensemble acts as a ridge regularizer (Hastie et al. 2001).
Putting everything together, the condition number of the covariance (or inverse covariance)

estimate is upper bounded by:

κ �
ρ

ρ − k − 1
· λmax

λmin �=0
(4.4)

which we see reduces to equation (4.1) when k = 1. �
4.2 Proof of Theorem 3.2

Traditionally ensemble methods are regarded as ‘meta-learning’ approaches and although
bounds exist (e.g. Koltchinskii and Panchenko 2002) there are, to the best of our knowl-
edge, no results giving the exact analytical form of the generalization error of any particular
ensemble. Indeed, in general it is not analytically tractable to evaluate the generalization error
exactly, so one can only derive bounds. Because we deal with a particular ensemble of FLD
classifiers we are able to derive the exact generalization error of the ensemble in the case of
Gaussian classes with shared covariance �, the setting in which FLD is Bayes’ optimal. This
allows us to explicitly connect the performance of the ensemble to its data space analogue. As
noted earlier, an upper bound on generalization error with similar behaviour can be derived
for the much larger class of sub-Gaussian distributions (see e.g. Durrant and Kabán 2010;
Durrant 2013), therefore this Gaussianity assumption is not crucial.

We proceed in two steps: (1) Obtain the generalization error of the ensemble conditional
on a fixed training set; (2) Bound the deviation of this error caused by a random draw of a
training set.

4.2.1 Generalization error of the ensemble for a fixed training set

For a fixed training set, the generalization error is given by the following lemma:

Lemma 4.3 (Exact generalization error with Gaussian classes) Let xq |(yq = y) ∼
N (μy, �), where � ∈ Md×d is a full rank covariance matrix, and let πy :=Pr{yq = y}.
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Let R ∈ Mk×d be a random projection matrix with i.i.d. zero-mean Gaussian entries and

denote Ŝ−1:=ER

[
RT
(

R�̂RT
)−1

R

]
. Then the exact generalization error of the converged

randomly projected ensemble classifier (2.1) is given by Pr(xq ,yq ){ĥens(xq) �= yq} =
1∑

y=0

πy	

⎛
⎝−1

2

(μ̂¬y − μ̂y)
T Ŝ−1(μ̂0 + μ̂1 − 2μy)√

(μ̂1 − μ̂0)T Ŝ−1� Ŝ−1(μ̂1 − μ̂0)

⎞
⎠ (4.5)

where 	 is the c.d.f of the standard Gaussian.

The proof of this lemma is similar in spirit to the one for a single FLD in Pattison and Gossink
(1999). For completeness we give it below.

Proof of Lemma 4.3

Without loss of generality let xq have label 0. By assumption the classes have Gaussian distri-
bution N (μy, �) so then the probability that xq is misclassified by the converged ensemble
is given by:

Prxq |yq=0

{
(μ̂1 − μ̂0)

T Ŝ−1
(

xq − μ̂0 + μ̂1

2

)
> 0

}
(4.6)

Define aT:=(μ̂1 − μ̂0)
T Ŝ−1 and observe that if xq ∼ N (μ0, �) then:

(
xq − μ̂0 + μ̂1

2

)
∼ N

((
μ0 − μ̂0 + μ̂1

2

)
, �

)

and so:

aT
(

xq − μ̂0 + μ̂1

2

)
∼ N

(
aT
(

μ0 − μ̂0 + μ̂1

2

)
, aT�a

)

which is a univariate Gaussian. Therefore:

aT
(

xq − μ̂0+μ̂1
2

)
− aT

(
μ0 − μ̂0+μ̂1

2

)
√

aT�a
∼ N (0, 1)

Hence, for the query point xq we have the probability (4.6) is given by:

	

⎛
⎝aT

(
μ0 − μ̂0+μ̂1

2

)
√

aT�a

⎞
⎠ = 	

⎛
⎝−1

2

(μ̂1 − μ̂0)
T Ŝ−1(μ̂0 + μ̂1 − 2μ0)√

(μ̂1 − μ̂0)T Ŝ−1� Ŝ−1(μ̂1 − μ̂0)

⎞
⎠ (4.7)

where 	 is the c.d.f of the standard Gaussian.
A similar argument deals with the case when xq belongs to class 1, and applying the law

of total probability completes the proof. �
Indeed equation (4.5) has the same form as the error of the data space FLD (See Bickel

and Levina 2004; Pattison and Gossink 1999 for example.) and the converged ensemble,
inspected in the original data space, produces exactly the same mean estimates and covariance
matrix eigenvector estimates as FLD working on the original data set. However it has different
eigenvalue estimates that result from the sophisticated regularization scheme that we analyzed
in Sect. 4.1.
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4.2.2 Tail bound on the generalization error of the ensemble

The previous section gave the exact generalization error of our ensemble conditional on a
given training set. In this section our goal is to derive an upper bound with high probability
on the ensemble generalization error w.r.t. random draws of the training set.

We will use the following concentration lemma:

Lemma 4.4 (Concentration bound on exponential random variables) Let X be a Gaussian
random vector in R

d with mean vector E[X ] = μ and covariance matrix �. Let ε > 0. Then:

Pr
{‖X‖2 � (1 + ε)

(
Tr (�) + ‖μ‖2)} � exp

(
−Tr(�) + ‖μ‖2

2λmax(�)

(√
1 + ε − 1

)2
)

(4.8)

Furthermore, if ε ∈ (0, 1):

Pr
{‖X‖2 � (1 − ε)

(
Tr (�) + ‖μ‖2)} � exp

(
−Tr(�) + ‖μ‖2

2λmax(�)

(√
1 − ε − 1

)2
)

(4.9)

The proof, which follows immediately from the more general result we give in Durrant and
Kabán (2012), is given in Appendix 1 for completeness. Now we can bound the generalization
error of the RP-FLD ensemble. We begin by decomposing the numerator of the generalization
error term (for a single class) obtained in Lemma 4.3 as follows:(

μ̂1 + μ̂0 − 2μ0
)T

Ŝ−1 (μ̂1 − μ̂0
) = (

μ̂1 − μ̂0
)T

Ŝ−1(μ̂1 − μ̂0
)

+2
(
μ̂0 − μ0

)T
Ŝ−1(μ̂1 − μ̂0

)
Using this decomposition we can rewrite the argument of the first term in Lemma 4.3 in

the following form:

	

(
−1

2
[A − B]

)

where

A =
(
μ̂1 − μ̂0

)T
Ŝ−1

(
μ̂1 − μ̂0

)
√

(μ̂1 − μ̂0)T Ŝ−1� Ŝ−1(μ̂1 − μ̂0)

and

B = 2
(
μ0 − μ̂0

)T
Ŝ−1

(
μ̂1 − μ̂0

)
√

(μ̂1 − μ̂0)T Ŝ−1� Ŝ−1(μ̂1 − μ̂0)

We will lower bound A and upper bound B with high probability over the random draw of
training set in order to bound the whole term from above with high probability and, since 	 is
monotonic increasing in its argument, this will give the upper bound on generalization error.

Lower-bounding the term A

Applying the Kantorovich inequality (e.g. Horn and Johnson 1985, Thm 7.4.41), A is lower
bounded by:

‖�− 1
2
(
μ̂1 − μ̂0

) ‖ · 2
√

κ(Ŝ− 1
2 � Ŝ− 1

2 )

1 + κ(Ŝ− 1
2 � Ŝ− 1

2 )
(4.10)

where κ(H):= λmax(H)
λmin(H)

denotes the condition number of the matrix H .
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Next, since �− 1
2 μ̂1 and �− 1

2 μ̂0 are independent with �− 1
2 μ̂y ∼ N (�− 1

2 μy, Id/Ny),

we have �− 1
2 (μ̂1 − μ̂0) ∼ N (�− 1

2 (μ1 − μ0), N/(N0 N1) · Id).
Applying the second concentration bound of Lemma 4.4, (4.9), we have:

‖�− 1
2 (μ̂1 − μ̂0)‖ �

√
(1 − ε)

(
d · N

N0 N1
+ ‖�− 1

2 (μ1 − μ0)‖2

)
(4.11)

with probability at least:

1 − exp

(
−d + ‖�− 1

2 (μ1 − μ0)‖2 N0 N1/N

2

(√
1 − ε − 1

)2
)

(4.12)

To complete the bounding of the term A, we denote g(a):=
√

a
1+a , and observe that this

is a monotonic decreasing function on [1,∞). So, replacing a with the condition number

κ(Ŝ− 1
2 � Ŝ− 1

2 ) ∈ [1,∞) we need to upper bound this condition number in order to lower
bound g. Denoting this upper bound by κ̄ , which will be quantified in Lemma 4.5, then the
term A is lower bounded with high probability by:

A � 2g(κ̄)

√
(1 − ε)

(
‖�− 1

2 (μ1 − μ0)‖2 + d · N

N0 N1

)
(4.13)

Upper-bounding the term B

We can rewrite B by inserting �− 1
2 �

1
2 = Id , and using Cauchy-Schwarz in the numerator

to give:

B �
2‖�− 1

2 (μ0 − μ̂0)‖ · ‖� 1
2 Ŝ−1(μ̂1 − μ̂0)‖√

(μ̂1 − μ̂0)T Ŝ−1� Ŝ−1(μ̂1 − μ̂0)

(4.14)

After cancellation, this simplifies to:

= 2‖�− 1
2 (μ0 − μ̂0)‖ (4.15)

and so by Lemma 4.4, (4.8), we have:

B � 2
√

(1 + ε)d/N0 (4.16)

with probability at least 1 − exp(− d
2 (

√
1 + ε − 1)2).

To bound the condition number κ(Ŝ− 1
2 � Ŝ− 1

2 ) with high probability we need the following
additional lemma:

Lemma 4.5 (Upper bound on κ(Ŝ− 1
2 � Ŝ− 1

2 )) Under the conditions of Theorem 3.2 we have,
∀ε > 0:

κ(Ŝ− 1
2 � Ŝ− 1

2 ) = λmax(�
1
2 · ER[RT(R�̂RT)−1 R] · �

1
2 )

λmin(�
1
2 · ER[RT(R�̂RT)−1 R] · �

1
2 )

�
(
√

N − 2 + √
d + ε)2(1 + ρ/k · κ(�))

(
√

N − 2 − √
k − ε)2

=: κ̄(ε) (4.17)

with probability at least 1 − 2 exp(−ε2/2).
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4.2.3 Proof of Lemma 4.5

To upper bound the condition number κ(Ŝ− 1
2 � Ŝ− 1

2 ) with high probability, we derive high-
probability upper and lower bounds on (respectively) the greatest and least eigenvalues of its
argument. We will make use of the following result, Eq. (2.3) from Vershynin (2012):

Lemma 4.6 (Singular Values of Wishart Matrices (Vershynin 2012)) Let R be a k ×d matrix
with i.i.d N (0, 1) entries. Then for all ε > 0 with probability at least 1 − 2 exp(−ε2/2) we
have: √

d − √
k − ε � smin(R) � smax(R) �

√
d + √

k + ε (4.18)

Upper-bound on largest eigenvalue

By Jensen’s inequality, and noting that λmax(·) is a convex function, we have:

λmax(Ŝ− 1
2 � Ŝ− 1

2 )

= λmax(�
1
2 ER[RT(R�̂RT)−1 R]� 1

2 )

� ER[λmax(�
1
2 RT(R�̂RT)−1 R�

1
2 )]

= ER[λmax((R�̂RT)−1 R�RT]
= ER[λmax((R�RT)

1
2 (R�̂RT)−1(R�RT)

1
2 )]

= ER

[
1

λmin((R�RT)− 1
2 R�̂RT(R�RT)− 1

2 )

]

�
N

(
√

N − 2 − √
k − ε)2

with probability at least 1 − exp(−ε2/2),∀ε > 0, where throughout we use the fact
that the non-zero eigenvalues of AB are the same as non-zero eigenvalues of B A, in the
second to last step we used the fact that for invertible matrices A we have λmax(A) =
1/λmin(A−1), and in the last step we used that for any particular full row-rank matrix

R, (R�RT)− 1
2 R�̂RT(R�RT)− 1

2 (regarded as a function of the training set and therefore
�̂ is the random variable) is distributed as a k-dimensional Wishart with N − 2 degrees of
freedom and scale matrix Ik (e.g. Mardia et al. 1979 Corr. 3.4.1.2), and we then used the high
probability lower-bound for the smallest eigenvalue of such a matrix, Lemma 4.6.

Lower-bound on smallest eigenvalue

Dealing with the smallest eigenvalue is less straightforward. Although λmin(·) is a concave
function, Jensen’s inequality does not help with lower bounding the smallest eigenvalue of the
expectation since the matrix �̂ in the argument of this expectation is singular. We therefore
take a different route and start by rewriting as follows:

λmin(�
1
2 ER[RT(R�̂RT)−1 R)]� 1

2 )

= 1

λmax(�
− 1

2 (ER[RT(R�̂RT)−1 R)])−1�− 1
2 )

= 1

λmax(�
− 1

2 {�̂ + (ER[RT(R�̂RT)−1 R)])−1 − �̂}�− 1
2 )

(4.19)
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Now, using Weyl’s inequality, and the SVD decomposition �̂ = Û�̂Û T combined with
Lemma 4.1, the denominator in (4.19) is upper-bounded by:

λmax(�
− 1

2 �̂�− 1
2 ) + λmax(�

− 1
2 Û

(
(ER[RT(R�̂RT)−1 R])−1 − �̂

)
Û T�− 1

2 )

� λmax(�
− 1

2 �̂�− 1
2 ) + λmax((ER[RT(R�̂RT)−1 R])−1 − �̂)/λmin(�) (4.20)

Now observe from Lemma 4.2 that the matrix ER[RT(R�̂RT)−1 R])−1 − �̂ is diagonal and,
from our analysis in Sect. 4.1, it has the upper ρ diagonal entries in the interval:[(ρ

k
− 1

)
λmin �=0(�̂),

(ρ

k
− 1

)
λmax(�̂)

]

and the lower d − ρ diagonal entries in the interval:[
ρ − k − 1

k
λmin �=0(�̂),

ρ − k − 1

k
λmax(�̂)

]

Hence, λmax((ER[RT(R�̂R)−1 R])−1−�̂) � ρ
k λmax(�̂) and so the lower-bounding of (4.20)

continues as:

�
1

λmax(�
− 1

2 �̂�− 1
2 ) + ρ

k
λmax(�̂)
λmin(�)

(4.21)

Now observe that �− 1
2 �̂�− 1

2 is a d-dimensional standard Wishart with N − 2 degrees of
freedom and scale matrix Id (e.g. Mardia et al. 1979, Corr. 3.4.1.2), and using the upper
bound in Lemma 4.6 for largest eigenvalues of standard Wishart matrices we get (4.21)
lower-bounded as

�
1

(
√

N − 2 + √
d + ε)2/N + ρ

k
λmax(�̂)
λmin(�)

(4.22)

with probability at least 1 − exp(−ε2/2).
Finally, we bound λmax(�̂) as:

λmax(�̂) = λmax(�̂) = λmax(��−1�̂)

� λmax(�)λmax(�
−1�̂) = λmax(�)λmax(�

− 1
2 �̂�− 1

2 )

� λmax(�)(
√

N − 2 + √
d + ε)2/N

To complete the bound on the condition number we apply union bound and combine the
eigenvalue estimates to obtain, after simple algebra, Lemma 4.5. �

Back to the proof of Theorem 3.2, substituting into Lemma 4.3 the high probability bounds
for A and B, rearranging, then setting each of the failure probabilities to δ/5 so that the overall
probability of failure remains below δ, then solving for ε we obtain Theorem 3.2 after some
algebra. For completeness we give these last few straightforward details in Appendix 2. �
4.3 Proof of Theorem 3.3

We start from the exact form of the error of FLD in the data space with a fixed training set.
Using a similar approach to that employed in proving Lemma 4.3, this is easily be shown to be:

Pr(ĥ+(xq) �= yq) =
1∑

y=0

πy	

⎛
⎝−1

2

(μ̂¬y − μ̂y)
T�̂+(μ̂0 + μ̂1 − 2μy)√

(μ̂1 − μ̂0)T�̂+��̂+(μ̂1 − μ̂0)

⎞
⎠
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where �̂+ is the pseudo-inverse of the maximum likelihood covariance estimate.

Make the rank ρ SVD decomposition �̂ = Û�̂Û
T

, where Û is the d × ρ matrix of

eigenvectors associated with the non-zero eigenvalues, Û
T

Û = Iρ , and as before �̂ is the
diagonal ρ × ρ matrix of non-zero eigenvalues. Then we have:

(μ̂1 + μ̂0 − 2μ0)
TÛ�̂

−1
Û

T
(μ̂1 − μ̂0)√

(μ̂1 − μ̂0)TÛ�̂
−1

Û
T
�Û�̂

−1
Û

T
(μ̂1 − μ̂0)

�
(μ̂1 + μ̂0 − 2μ0)

TÛ�̂
−1

Û
T
(μ̂1 − μ̂0)

√
λmin(�)

√
(μ̂1 − μ̂0)TÛ�̂

−2
Û

T
(μ̂1 − μ̂0)

�
‖Û

T
(μ̂1 + μ̂0 − 2μ0)‖ · ‖�̂−1

Û
T
(μ̂1 − μ̂0)‖√

λmin(�)‖�̂−1
Û

T
(μ̂1 − μ̂0)‖

= ‖Û
T
(μ̂1 + μ̂0 − 2μ0)‖√

λmin(�)

where we used minorization by Rayleigh quotient and the Cauchy-Schwartz inequality. We
will use the well-known fact that �̂ and μ̂1+μ̂0 are independent (Mardia et al. 1979). Observe

that Û
T

is a random matrix with orthonormal rows representing the eigenvectors of the sample
covariance of a Gaussian sample. Using the rotational invariance of the multivariate Gaussian
distribution, by the Johnson-Lindenstrauss lemma (JLL) this matrix acts as an approximate
isometry with high probability (Dasgupta and Gupta 2002) that projects a d-dimensional
vector onto a random subspace of dimension ρ. Conditioning on μ̂1 +μ̂0 to hold this quantity
fixed, and using independence of Û and μ̂1 + μ̂0 (Tulino and Verdú 2004), we have with
probability at least 1 − exp(−Nε2/8) that:

‖Û
T
(μ̂1 + μ̂0 − 2μ0)‖√

λmin(�)
�

√
1 + ε

√
ρ

d

‖μ̂1 + μ̂0 − 2μ0‖√
λmin(�)

Further, applying Lemma 4.4 (4.8) to the norm on the r.h.s and replacing in the generalization
error expression, we have the following lower bound:

	

⎛
⎝−1

2

√
(1 + ε1)(1 + ε2)

√
ρ

d

‖μ1 − μ0‖2 + Tr(�) N
N0 N1

λmin(�)

⎞
⎠

with probability at least 1 − [exp(−Nε2
1/8) + exp(−Tr(�)+‖μ1−μ0‖2 N0 N1

N
2λmax(�)

(
√

1 + ε2 − 1)2)].
Setting both of these exponential risk probabilities to δ/2 and solving for ε1 and ε2, we

obtain the lower bound on the generalization error of pseudoinverted FLD, Theorem 3.3. �

5 Remarks

5.1 On the effect of eigenvector misestimation

We have seen that the eigenvector estimates are not affected by the regularization scheme
implemented by our converged ensemble. One may then wonder, since we are dealing with
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small sample problems, how does misestimation of the eigenvectors of � affect the classifi-
cation performance?

It is known that the quality of eigenvector estimates depends on the eigengaps (differences
between ordered eigenvalues) of � as well as on the data dimension and number of training
examples (Vu and Lei 2012; Johnstone and Lu 2009; Paul and Johnstone 2012; Vu 2011).
Although the sensitivity of eigenvectors to perturbations of matrix entries is well known, the
following simple but powerful example from Horn and Johnson (1985) shows clearly both
the problem and the importance of eigenvalue separation. Let:

� =
[

1 − ε 0
0 1 + ε

]

so that � has eigenvalues 1± ε and eigenvectors (1, 0)T, (0, 1)T. On the other hand consider
the following perturbed matrix (where the perturbation could arise from, say, estimation error
or noise):

� + E =
[

1 − ε 0
0 1 + ε

]
+
[

ε ε

ε −ε

]
=
[

1 ε

ε 1

]

This matrix also has eigenvalues 1 ± ε, but has eigenvectors 1√
2
(1, 1)T, 1√

2
(1,−1)T, regard-

less of how small ε is.
Applying this in the small sample setting we consider here, if the eigengaps of � are too

small we can expect bad estimates of its eigenvectors. However, we have seen in Theorem
3.2 that the generalization error of the ensemble can be bounded above by an expression
that depends on covariance misestimation only through the condition number of Ŝ−1� ≡
(� + E)−1� so even a large misestimation of the eigenvectors need not have a large effect
on the classification performance: if all the eigengaps are small, so that all the eigenvalues of
� are similar, then poor estimates of the eigenvectors will not affect this condition number
too much. Conversely, following Johnstone and Lu (2009) if the eigengaps are large—i.e. we
have a very elliptical covariance—then better eigenvector estimates are likely from the same
sample size and the condition number of Ŝ−1� should still not grow too much as a result
of any eigenvector misestimation. In the case of the toy example above, the eigenvalues of

�(� + E)−1 are 1±ε
√

2−ε2

1−ε2 , so its condition number is 1+ε
√

2−ε2

1−ε
√

2−ε2 . For small ε this remains
fairly close to one—meaning eigenvector misestimation indeed has a negligible effect on
classification performance.

5.2 On the effect of k

It is interesting to examine the condition number bound in (4.17) in isolation, and observe the
trade off for the projection dimension k which describes very well its role of regularization
parameter in the context of our RP-FLD ensemble. To make the numerator smaller k needs
to be large while to make the denominator larger it needs to be small. We also see natural
behaviour with N , d and the conditioning of the true covariance. From Eqs. (4.13) and (4.16)
we see that the condition number bounded by Eq. (4.17) is the only term in the generalization
error bound affected by the choice of k, so we can also partly answer the question left open in
Marzetta et al. (2011) about how the optimal k depends on the problem characteristics, from
the perspective of classification performance, by reading off the most influential dependencies
that the problem characteristics have on the optimal k. The first term in the numerator of (4.17)
contains d but does not contain k while the remaining terms contain k but do not contain d ,
so we infer that in the setting of k < ρ − 1 < d the optimal choice of k is not affected by the
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dimensionality d . Noting that for N < d and Gaussian class-conditionals we have ρ = N −2
with probability 1, we see also that for small N or ρ the minimizer of this condition number
is achieved by a smaller k (meaning a stronger regulariser), as well as for a small κ(�).
Conversely, when N , ρ, or κ(�) is large then k should also be large to minimize the bound.

It is also interesting to note that the regularization scheme implemented by our ensemble
has a particularly pleasing form. Shrinkage regularization is the optimal regularizer (w.r.t the
Frobenius norm) in the setting when there are sufficient samples to make a full rank estimation
of the covariance matrix (Ledoit and Wolf 2004), and therefore one would also expect it to
be a good choice for regularization in the range space of �̂. Furthermore ridge regularization
in the null space of �̂ can also be considered optimal in the following sense—its effect is to
ensure that any query point lying entirely in the null space of �̂ is assigned the maximum
likelihood estimate of its class label (i.e. the label of the class with the nearest mean).

5.3 Bias of the ensemble

By letting N → ∞ (and so ρ → d) while enforcing k < d = ρ we see that our ensemble
implements a biased estimate of the true covariance matrix �. In particular, plugging in
the true parameters μy and � in the exact error (4.5) we find that the Bayes’ risk for FLD

in the data space is
∑1

y=0 πy	
(
− 1

2‖�− 1
2 (μ1 − μ0)‖

)
but the expression in Theorem 3.2

converges to:

1∑
y=0

πy	

(
−g

(
1 + d

k
κ(�)

)
‖�− 1

2 (μ1 − μ0)‖
)

where we recall that g(1) = 1
2 . When N < d however, we see that the generalization error

of our RP-FLD ensemble is upper bounded for any training sample containing at least two
points for each class whereas our Theorem 3.3 (and asymptotic results in Bickel and Levina
2004) demonstrate that this is not the case in the data space setting if we regularize by
pseudoinverting.

Note that when we plug the expectation examined above into the classifier ensemble, this
is equivalent to an ensemble with infinitely many members and therefore, for any choice
of k < ρ − 1, although we can underfit (with a poor choice of k) the bounded loss of our
ensemble implies that we cannot overfit any worse than the pseudo-inverse FLD data space
classifier regardless of the ensemble size, since we do not learn any combination weights
from the data. This is quite unlike adaptive ensemble approaches such as AdaBoost, where it
is well-known that increasing the ensemble size can indeed lead to overfitting. Furthermore,
we shall see from the experiments in Sect. 6 that this guarantee vs. the performance of
pseudo-inversion appears to be a conservative prediction of the performance achievable by
our randomly-projected ensemble.

5.4 Time complexities for the RP-FLD ensemble

We noted in the Introduction that our ensemble, although simple to implement, is also fast.
Here we briefly compare the time complexity of our ensemble approach (for a finite ensemble)
with that for regularized FLD learnt in the data space.

The time complexity of training a regularized FLD in the data space is dominated by the
cost of inverting the estimated covariance matrix �̂ (Duda et al. 2000), which is O(d3) or
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O(d log2 7) � O(d2.807) using Strassen’s algorithm (Golub and Van Loan 2012).2 On the other
hand, in order to obtain a full-rank inverse covariance estimate in the data space using our
ensemble requires M ∈ O (�d/k�), and our experimental results in Sect. 6 suggest that M
of this order is indeed enough to get good classification performance. Using this, and taking
into account the M k ×d matrix multiplications required to construct the randomly-projected
training sets, implies that the time complexity of training our algorithm is O( d

k (Nkd+k3)) =
O(Nd2 + k2d) overall, where the k3 term comes from inverting the full-rank covariance
matrix estimate in the projected space. Since we have k < ρ − 1 < N � d this is generally
considerably faster than learning regularized FLD in the original data space, and furthermore,
by using sparse random projection matrices such as those described in Achlioptas (2003);
Ailon and Chazelle (2006); Matoušek (2008) one can improve the constant terms hidden by
the O considerably.

For classification on a single core, one can avoid randomly projecting the query point M
times by averaging the individual classifiers comprising the ensemble. That is, by bracketing
the argument to the ensemble decision rule as:

(
(μ̂1 − μ̂0)

T 1

M

M∑
i=1

RT
i

(
Ri �̂RT

i

)−1
Ri

)(
xq − μ̂1 + μ̂0

2

)

we obtain a single linear classifier of the form ĥ = w + b, w ∈ R
d , b ∈ R, where:

w:= 1

M

M∑
i=1

(μ̂1 − μ̂0)
T RT

i

(
Ri �̂RT

i

)−1
Ri = 1

M

M∑
i=1

wi

and

b:= − 1

M

M∑
i=1

(μ̂1 − μ̂0)
T RT

i

(
Ri �̂RT

i

)−1
Ri

(
μ̂1 + μ̂0

2

)
= 1

M

M∑
i=1

bi

Classification of new points using our ensemble then has the same time complexity as clas-
sification using the data space FLD, namely O(d).

6 Experiments

We now present experimental results which show that our ensemble approach is competitive
with the state of the art in terms of prediction performance. We do not claim of course that
the choice of FLD as a classifier is optimal for these data sets; rather we demonstrate that the
various practical advantages of our RP-FLD approach that we listed in the Introduction and
Sect. 5.4, and most importantly its analytical tractability, do not come at a cost in terms of
prediction performance.

6.1 Datasets

We used six publicly available high dimensional datasets: Five from the bioinformatics
domain (colon, two versions of leukaemia, prostate, and duke breast cancer), and one drug

2 We note that pseudoinverting �̂ or inverting a diagonal covariance matrix has typical time complexity of
O(Nd2) or O(d) respectively. However, as we see from Theorem 3.3 and the experiments in Sect. 6, the cost
in classification performance of these approaches can be prohibitive.
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Table 1 Datasets Name Source #samples #features

Colon Alon et al. (1999) 62 2000

Leukaemia Golub et al. (1999) 72 3571

Leukaemia large Golub et al. (1999) 72 7129

Prostate Singh et al. (2002) 102 6033

Duke West et al. (2001) 44 7129

Dorothea Guyon (2003) 800 100,000

discovery dataset from the 2003 NIPS Feature Selection Challenge (dorothea). The character-
istics of these datasets are described in Table 1. Our smallest datasets (colon and leukaemia)
were the highest dimensional ones used in the empirical RP-classifier study of Fradkin and
Madigan (2003) (although that paper focuses on a single randomly projected classifier vs.
the data space equivalent). The 7,129 dimensional leukaemia-large was also the dataset of
choice in evaluating a technique for ultrahigh dimensional data in Fan and Lv (2008). The
100,000 dimensional dorothea dataset is currently the highest dimensional publicly available
dataset in the UCI repository from a problem domain where N � d is the norm.

6.2 Protocol

We standardized each data set to have features with mean 0 and variance 1. For dorothea
we removed features with zero variance, there were 8402 such features which left a working
dimensionality of 91598; we did not do any further feature selection filtering to avoid any
external effects in our comparison. For the first five datasets we ran experiments on 100
independent splits, and in each split we took 12 points for testing and used the remainder for
training. For dorothea we used the same data split as was used in the NIPS challenge, taking
the provided 800 point training set for training and the 350 point validation set for testing.
We ran 10 instances for each combination of projection dimension, projection method, and
ensemble size—that is 1120 experiments.

For our data space experiments on colon and leukaemia we used FLD with ridge reg-
ularization and fitted the regularization parameter using 5-fold cross-validation indepen-
dently on each training set, following Cawley and Talbot (2010), with search in the set
{2−11, 2−10, . . . , 2}. However on these data this provided no statistically significant improve-
ment over employing a diagonal covariance in the data space, most likely because of the data
scarcity. Therefore for the remaining three bioinformatics datasets (which are even higher
dimensional) we used diagonal FLD in the data space. Indeed since diagonal FLD is in use
for gene array data sets (Dudoit et al. 2002) despite the features being known to be correlated
(this constraint acting as a form of regularization) one of the useful benefits of our ensemble
is that such a diagonality constraint is no longer necessary.

To satisfy ourselves that building on FLD was a reasonable choice of classifier we also
ran experiments in the data space using classical SVM (using the matlab implementation of
Cawley (2000) on the first five datasets, and the ‘liblinear’ toolbox (Fan et al. 2008), which
is specialised for very large datasets, for dorothea) and 1-regularized SVM (Fan et al. 2008)
with linear kernel. In all SVMs the C parameter was fitted by 5-fold cross-validation as above,
with search in the set {2−10, 2−9, . . . , 210}.

For the dorothea dataset it was impractical to consider constructing the full FLD in the
dataspace since the covariance matrix would not fit in memory on the authors’ machines.
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We linearized diagonal FLD to get around this issue, but the performance of diagonal FLD
was extremely poor (Accuracy of 0.2686) and, since the classical linear SVM is also known
to perform poorly on this dataset (Guyon et al. 2006, 2004), for the dorothea dataset we
baselined against Bernoulli Naïve Bayes (without preprocessing the binary data) following
the advice of the challenge organiser to her students given in Guyon et al. (2006). We have
also run 1-regularised SVM (Fan et al. 2008), which turned out successful on this data
set.

For all experiments carried out in the projected space, the randomly projected base learners
are FLDs with full covariance and no regularization (since we choose k < ρ − 1 and so the
projected sample covariances are invertible).

6.3 Results

For the five bioinformatics datasets, in each case we compare the performance of the RP
ensembles with (regularized) FLD in the data space, vanilla and 1-regularized SVM, and (as
suggested by one of the anonymous referees) with an ensemble of Random Subspace (RS)
FLD classifiers.3 For dorothea we also compare our RP-FLD ensemble with Bernoulli Naïve
Bayes.

Summary results for the rule of thumb choice k = ρ/2 are listed in Table 2 as well as end-
to-end running times for each data split on a Linux machine with Intel � CoreTM i5-3570 CPU
@ 3.40 GHz and 7 GB memory for the bioinformatics datasets. The dorothea experiments
were run on a Microsoft � Windows 7TM machine with the same CPU specification and
8GB memory and, because of the extremely high dimensionality of the dorothea dataset,
we refactored our code to avoid randomly projecting the test set by using the approach
described in Sect. 5.4 for these experiments; therefore the running times for dorothea are not
directly comparable with those for the biomedical datasets. We note, however, that the main
computational overhead for the dorothea dataset comes from the random preprocessing of
the data (either random projection, or random subspace) so for these experiments the running
times for the preprocessing step are given which still give a good indication of the overall
running time.

We see from Table 2 that with M = 1,000 members in our ensemble, the SVM outper-
forms us on two datasets (colon and duke), we outperform it on two datasets (leukaemia-large,
and dorothea) and no statistical difference is found on the remaining two datasets. On one
dataset (dorothea) 1-regularised SVM does better than us, we outperform it on three data sets
(colon, leukaemia, and leukaemia-large), and there is no statistical difference on the remain-
ing two data sets. We outperform random subspace with 1,000 ensemble members on two
datasets (duke and prostate) and there is no statistical difference found on the remaining four
datasets.

The picture looks not much different for our method having M=100 ensemble members,
except there is no significant difference with the 1-regularised SVM on leukaemia-large,
the random subspaces with 100 members beats us on colon and leukaemia, and displays no
difference on duke. In fact it turns out that our ensemble with 1000 members differs from
that with 100 members on only one data set (duke).

3 The Random Subspace method (Ho 1998) consists of projection onto the span of k randomly cho-
sen canonical basis vectors. Note that our theory developed here applies to Gaussian random projec-
tion, and this is different to random subspace projection. The RS-FLD decision rule is equivalent to

ĥ P (xq ):=1
{
(μ̂1 − μ̂0)PT(P�̂PT)+ P

(
xq − μ̂0+μ̂1

2

)
>0
}

where P is a canonical projection matrix and

e.g. is therefore not full rank.
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Table 2 Mean error rates ± 1 standard error, and CPU times estimated from 100 independent splits (10
instances of the fixed split for dorothea) for random projection ensembles with 100 (RP-Ens M=100) or
1000 (RP-Ens M=1000) members, and competing methods (see text for details). For both RP-ensembles and
RS-ensembles k = ρ/2 was used

Dataset ρ/2 Method Error t tests CPU Time (s)

Colon 24 RP-Ens M=100 13.50 ± 0.88 0.18 ± 0.002

RP-Ens M=1000 13.08 ± 0.88 1.48 ± 0.008

FLD-full 15.50 ± 0.89 −− 10.01 ± 0.064

SVM 11.58 ± 0.89 ++ 0.54 ± 0.001

SVM L1 15.83 ± 1.01 −− 0.53 ± 0.002

RS-Ens M=100 12.83 ± 0.82 + 0.12 ± 0.025

RS-Ens M=1000 12.58 ± 0.81 0.88 ± 0.000

Leukaemia 29 RP-Ens M=100 2.08 ± 0.40 0.35 ± 0.004

RP-Ens M=1000 1.67 ± 0.33 3.31 ± 0.029

FLD-full 2.17 ± 0.39 − 44.99 ± 0.261

SVM 1.67 ± 0.36 1.09 ± 0.004

SVM L1 6.08 ± 0.66 −− 1.07 ± 0.003

RS-Ens M=100 1.83 ± 0.35 0.18 ± 0.000

RS-Ens M=1000 1.83 ± 0.37 1.81 ± 0.001

Leuk-large 29 RP-Ens M=100 2.25 ± 0.44 0.59 ± 0.003

RP-Ens M=1000 1.92 ± 0.41 6.30 ± 0.056

FLD-diag 13.33 ± 1.09 −− 0.48 ± 0.003

SVM 3.50 ± 0.46 −− 2.18 ± 0.012

SVM L1 2.83 ± 0.55 − 7.03 ± 0.075

RS-Ens M=100 3.33 ± 0.56 −− 0.44 ± 0.006

RS-Ens M=1000 2.33 ± 0.49 4.16 ± 0.044

Prostate 44 RP-Ens M=100 7.42 ± 0.70 0.82 ± 0.005

RP-Ens M=1000 7.00 ± 0.70 8.15 ± 0.054

FLD-diag 38.33 ± 1.57 −− 0.35 ± 0.000

SVM 7.33 ± 0.72 2.91 ± 0.023

SVM L1 6.75 ± 0.73 2.85 ± 0.008

RS-Ens M=100 8.75 ± 0.71 −− 0.56 ± 0.009

RS-Ens M=1000 8.92 ± 0.73 −− 4.95 ± 0.026

Duke 15 RP-Ens M=100 17.50 ± 1.28 0.33 ± 0.002

RP-Ens M=1000 15.67 ± 1.25 + 3.28 ± 0.023

FLD-diag 30.58 ± 1.57 −− 0.47 ± 0.000

SVM 13.50 ± 1.10 ++ 0.90 ± 0.001

SVM L1 17.42 ± 1.05 1.14 ± 0.004

RS-Ens M=100 19.25 ± 1.30 − 0.21 ± 0.000

RS-Ens M=1000 18.67 ± 1.32 − 2.12 ± 0.002
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Table 2 continued

Dataset ρ/2 Method Error t tests CPU Time (s)

Dorothea 399 RP-Ens M=100 8.66 ± 0.044 211.56 ± 1.944

RP-Ens M=1000 8.80 ± 0.038 2149.00 ± 24.910

Bernoulli NB 33.43 −− 4.00

FLD-diag 71.34 −− 72.98

SVM 86.86 −− 308.64

SVM L1 6.00 ++ 958.53

RS-Ens M=100 8.57 ± 0.000 122.33 ± 1.312

RS-Ens M=1000 8.63 ± 0.000 1233.33 ± 10.563

The symbols in the t tests column indicate if the error rates of a competing method is statistically significantly
superior (+) or inferior (−) to that of RP-Ensembles in a paired t test with 95 % confidence level. The symbol
in the first position is a comparison with RP-Ens with M = 100 members and the second symbol is a comparison
with RP-Ens with M = 1000 members

The random subspace FLD ensemble wins over our RP-FLD ensemble with respect to
computation time, although this difference is of course confined to the training time only since
the time complexity for classification is still O(d). Interestingly for the random subspace
ensembles the overall error performance is just slightly behind that of the random projection
ensembles. Since trading off a small amount of accuracy for a speed-up may be desirable for
some applications, an interesting research question is whether similar theoretical guarantees
to those we obtained for our RP-FLD ensemble can be proved in the random subspace
case. Nevertheless the computation time of our RP-FLD ensemble is comparable with the
sophisticated liblinear implementation of 1-regularised SVM, as is its performance. In fact
on three of the six data sets tested none of the competing methods outperformed our RP-FLD
ensemble at the 95 % confidence level.

In Fig. 1 we plot the results for the regularized data space FLD (Bernoulli Naïve Bayes for
dorothea), for a single RP-FLD, and for ensembles of 10, 100, and 3000 RP-FLD classifiers
(1000 for dorothea). We see in all cases that our theoretical analysis is well supported, the RP-
FLD ensemble outperforms traditional FLD on a range of choices of k and M , and the rule of
thumb choice k = ρ/2 is not far from the optimal performance—on these data sets ρ = N −2.
It is interesting to see that, despite the statistically insignificant difference in performance of
full-vs-diagonal covariance models we found for the two lower-dimensional data sets in the
data space, for the three higher dimensional data sets (where we used a diagonality constraint
for computational tractability) the gap in generalization performance of the data space FLD
vs the competing approaches is very large, whereas the gap in performance between the
RP-FLD ensembles and the competing approaches is small. Empirically we see, as we might
reasonably expect, that capturing the feature covariances via our ensemble approach pro-
duces better classification results than working in the data space with a diagonal covariance
model.

We ran further experiments on the colon and leukaemia-large data sets to compare the
performance of the fast random projections from Achlioptas (2003) to Gaussian random
projection matrices, and to compare our decision rule to majority vote. Quite interestingly,
the picture is very similar and we find no statistically significant difference in the empirical
results in comparison with the ensemble that we have presented and analyzed in detail here.
The results of these experiments are plotted in Fig. 2. The performance match between the
different choices of random matrix is unsurprising, but the agreement with majority vote is
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Fig. 1 Effect of k. Plots show test error rate versus k and error bars mark 1 standard error estimated from
100 runs (10 repeated runs on the same split for dorothea). In these experiments we used Gaussian random
matrices with i.i.d N (0, 1) entries. In each case the projection dimension runs along the x-axis from 1 through
to ρ − 2 (Color figure online)
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Fig. 2 Effect of different random projection matrices and comparison with majority vote. Left hand column
shows results on the Colon dataset, right hand column shows results on Leukaemia-large. Row 1 RP Majority
Vote using Gaussian random matrices with i.i.d N (0, 1) entries; Row 2 RP Averaging using Gaussian random
matrices with i.i.d N (0, 1) entries; Row 3 RP Averaging using ±1 random matrices with i.i.d entries; Row 4
RP Averaging using the sparse {−1, 0, +1} random matrices from Achlioptas (2003) (Color figure online)
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both striking and rather unexpected - we do not yet have an explanation for this behaviour,
although it does not appear to arise from the unsigned confidences of the individual ensemble
members being concentrated around a particular value.

7 Discussion and future work

We considered a randomly projected (RP) ensemble of FLD classifiers and gave theory
which, for a fixed training set, explicitly links this ensemble classifier to its data space ana-
logue. We have shown that the RP ensemble implements an implicit regularization of the
corresponding FLD classifier in the data space. We demonstrated experimentally that the
ensemble can recover or exceed the performance of a carefully-fitted ridge-regularized data
space equivalent but with generally lower computational cost. Our theory guarantees that,
for most choices of projection dimension k, the error of a large ensemble remains bounded
even when the number of training examples is far lower than the number of data dimensions
and we gained a good understanding of the effect of our discrete regularization parame-
ter k. In particular, we argued that the regularization parameter k allows us to finesse the
known issue of poor eigenvector estimates in this setting. We also demonstrated empiri-
cally that with an appropriate choice of k we can obtain good generalization performance
even with few training examples, and a rule of thumb choice k = ρ/2 appears to work
well.

We showed that, for classification, the optimal choice of k depends on the true data
parameters (which are unknown) thereby partly answering—in the negative—the question
in Marzetta et al. (2011) concerning whether a simple formula for the optimal k exists.

It would be interesting to extend this work to obtain similar guarantees for ensembles of
generic randomly-projected linear classifiers in convex combination, and for an ensemble
of random subspace FLDs: we are working on ways to do this. Furthermore, it would be
interesting to derive a concentration inequality for matrices in the p.s.d ordering to quantify
with what probability a finite ensemble is far from its expectation; this however appears
to be far from straightforward—the rank deficiency of �̂ is the main technical issue to
tackle.

Appendix 1: Proof of Lemma 4.4

We prove the statement of Eq. (4.8) fully, and outline the proof of (4.9) which is very similar.
Let t > 0 be a positive real constant (to be optimized later), then:

Pr
{‖X‖2 � (1 + ε)

(
Tr (�) + ‖μ‖2)}

= Pr
{
exp

(
t‖X‖2) � exp

(
t (1 + ε)

(
Tr (�) + ‖μ‖2))}

� exp
(−t (1 + ε)

(
Tr (�) + ‖μ‖2))E

[
exp

(
t‖X‖2)] (8.1)

where (8.1) follows by Markov’s inequality. Now, X ∼ N (μ,�) and so ‖X‖2 = ∑d
i=1 X2

i
has a non-central χ2 distribution, and therefore E

[
exp

(
t‖X‖2

)]
is the moment generating

function of a non-central χ2 distribution. Hence (e.g. Maniglia and Rhandi 2004, proposition
1.2.8) for all t ∈ (0, 1/2λmax(�)) we have (8.1) is equal to:
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(8.2)

Now taking t = 1−(1+ε)
− 1

2

2λmax(�)
∈ (0, 1/2λmax(�)) and substituting this value of t into (8.2)

yields, after some algebra, (4.8):

Pr
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(
Tr (�) + ‖μ‖2)} � exp

(
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(√
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)2
)

The second inequality (4.9) is proved similarly. We begin by noting:

Pr
{‖X‖2 � (1 − ε)

(
Tr (�) + ‖μ‖2)}

= Pr
{
exp

(−t‖X‖2) � exp
(−t (1 − ε)

(
Tr (�) + ‖μ‖2))}

� exp
(
t (1 − ε)

(
Tr (�) + ‖μ‖2)− t

(
Tr (�) + ‖μ‖2) /1 + 2tλmax(�)

)

and then complete the proof as before, substituting in the optimal t = 1+(1−ε)
− 1

2

2λmax(�)
to give the

bound.

Appendix 2: Details for the end of proof of Theorem 3.2

There are five terms to simultaneously bound with high probability, namely the two By, A,
and the two extreme eigenvalues involved in the condition number bound. We use the standard
approach of setting each of the confidence probabilities no greater than δ/5 and solving for
ε (or a function of ε appearing in the bound) then back-substituting and applying the union
bound to derive a guarantee which holds with probability 1 − δ.

Firstly, for the extreme eigenvalues we have (twice):

exp
(−ε2

3/2
)

� δ/5 �⇒ √
2 log(5/δ) � ε3 (9.1)

For the upper bounds on the By we have:

exp

(
−d

2

(√
1 + εy − 1

)2
)

� δ/5

and solving for
√

1 + εy we obtain:√
2 log(5/δ)

d
� ±

(√
1 + εy − 1

)
�⇒ 1 +

√
2 log(5/δ)

d
�
√

1 + εy (9.2)
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Finally, for the lower bound on A (which holds for both classes simultaneously) we solve for√
1 − ε2 to obtain:

exp

(
−
(

d N/N0 N1 + ‖�− 1
2 (μ1 − μ0)‖2

2N/N0 N1

)(√
1 − ε2 − 1

)2
)

� δ/5

⇐⇒ 2N log(5/δ)/N0 N1

d N/N0 N1 + ‖�− 1
2 (μ1 − μ0)‖2

�
(√

1 − ε2 − 1
)2

⇐⇒
√

2N log(5/δ)/N0 N1

d N/N0 N1 + ‖�− 1
2 (μ1 − μ0)‖2

� ±
(√

1 − ε2 − 1
)

�⇒ 1 −
√

2N log(5/δ)/N0 N1

d N/N0 N1 + ‖�− 1
2 (μ1 − μ0)‖2

�
√

1 − ε2 (9.3)

Plugging the left hand sides of the inequalities (9.1), (9.2) and (9.3) into the bounds on
κ, B0, B1 and A for ε3,

√
1 + ε0,

√
1 + ε1 and

√
1 − ε2 respectively gives, after some algebra,

the stated Theorem 3.2.
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