
Mach Learn (2015) 99:231–256
DOI 10.1007/s10994-014-5465-9

Multilabel classification through random graph
ensembles

Hongyu Su · Juho Rousu

Received: 16 January 2014 / Accepted: 14 July 2014 / Published online: 15 August 2014
© The Author(s) 2014

Abstract We present new methods for multilabel classification, relying on ensemble learning
on a collection of random output graphs imposed on the multilabel, and a kernel-based
structured output learner as the base classifier. For ensemble learning, differences among the
output graphs provide the required base classifier diversity and lead to improved performance
in the increasing size of the ensemble. We study different methods of forming the ensemble
prediction, including majority voting and two methods that perform inferences over the graph
structures before or after combining the base models into the ensemble. We put forward a
theoretical explanation of the behaviour of multilabel ensembles in terms of the diversity and
coherence of microlabel predictions, generalizing previous work on single target ensembles.
We compare our methods on a set of heterogeneous multilabel benchmark problems against
the state-of-the-art machine learning approaches, including multilabel AdaBoost, convex
multitask feature learning, as well as single target learning approaches represented by Bagging
and SVM. In our experiments, the random graph ensembles are very competitive and robust,
ranking first or second on most of the datasets. Overall, our results show that our proposed
random graph ensembles are viable alternatives to flat multilabel and multitask learners.

Keywords Multilabel classification · Structured output · Ensemble methods · Kernel
methods · Graphical models

1 Introduction

Multilabel and multitask classification rely on representations and learning methods that
allow us to leverage the dependencies between the different labels. When such dependencies
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are given in form of a graph structure such as a sequence, a hierarchy or a network, structured
output prediction (Taskar et al. 2004; Tsochantaridis et al. 2004; Rousu et al. 2006) becomes
a viable option, and has achieved a remarkable success. For multilabel classification, limiting
the applicability of the structured output prediction methods is the very fact they require the
predefined output structure to be at hand, or alternatively auxiliary data where the structure
can be learned from. When these are not available, flat multilabel learners or collections of
single target classifiers are thus often resorted to.

In this paper, we study a different approach, namely using ensembles of graph labeling
classifiers, trained on randomly generated output graph structures. The methods are based on
the idea that variation in the graph structures shifts the inductive bias of the base learners and
causes diversity in the predicted multilabels. Each base learner, on the other hand, is trained
to predict as good as possible multilabels, which makes them satisfy the weak learning
assumption, necessary for successful ensemble learning.

Ensembles of multitask or multilabel classifiers have been proposed, but with important
differences. The first group of methods, boosting type, rely on changing the weights of the
training instances so that difficult to classify instances gradually receive more and more
weights. The AdaBoost boosting framework has spawned multilabel variants (Schapire and
Singer 2000; Esuli et al. 2008). In these methods the multilabel is considered essentially as
a flat vector. The second group of methods, Bagging, are based on bootstrap sampling the
training set several times and building the base classifiers from the bootstrap samples. Thirdly,
randomization has been used as the means of achieving diversity by Yan et al. (2007) who
select different random subsets of input features and examples to induce the base classifiers,
and by Su and Rousu (2011) who use majority voting over random graphs in drug bioactivity
prediction context. Here we extend the last approach to two other types of ensembles and
a wider set of applications, with gain in prediction performances. A preliminary version of
this article appeared as Su and Rousu (2013).

The remainder of the article is structured as follows. In Sect. 2 we present the structured
output model used as the graph labeling base classifier. In Sect. 3 we present three aggregation
strategies based on random graph labeling. In Sect. 4 we present empirical evaluation of the
methods. In Sect. 5 we present concluding remarks.

2 Multilabel classification through graph labeling

We start by detailing the graph labeling classification methods that are subsequently used as
the base classifier. We examine the following multilabel classification setting. We assume
data from a domain X ×Y , where X is a set and Y = Y1 ×· · ·×Yk is the set of multilabels,
represented by a Cartesian product of the sets Y j = {1, . . . , l j }, j = 1, . . . , k. In particular,
setting k = 1, l1 = 2 (Y = {1, 2}) corresponds to binary classification problem. A vector y =
(y1, . . . , yk) ∈ Y is called the multilabel and the components y j are called the microlabels.
We assume that a training set {(xi , yi )}m

i=1 ⊂ X × Y has been given. A pair (xi , y) where xi

is a training pattern and y ∈ Y is arbitrary, is called a pseudo-example, to denote the fact that
the pair may or may not be generated by the distribution generating the training examples.
The goal is to learn a model F : X �→ Y so that the expected loss over predictions on future
instances is minimized, where the loss function is chosen suitably for multilabel learning
problems. By 1{·} we denote the indicator function 1{A} = 1, if A is true, 1{A} = 0 otherwise.

Here, we consider solving multilabel classification with graph labeling classifiers that, in
addition to the training set, assumes a graph G = (V, E) with nodes V = {1, . . . , k} corre-
sponding to microlabels and edges E ⊆ V × V denoting potential dependencies between the
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microlabels. For any edge e = ( j, j ′) ∈ E , we denote by ye = (y j , y j ′) the edge label of e
in multilabel y, induced by concatenating the microlabels corresponding to end points of e,
with corresponding domain of edge labels Ye = Y j × Y j ′ . By yie we denote the label of the
edge e in the i’th training example. Hence, for a fixed multilabel y, we can compute corre-
sponding node label y j of node j ∈ V and edge label ye of edge e ∈ E . We also use separate
notation for node and edge labels that are free, that is, not bound to any particular multilabel.
We denote by u j a possible label of node j , and ue a possible labels of edge e. Naturally,
u j ∈ Y j and ue ∈ Ye. See supplementary material for a comprehensive list of notations.

2.1 Graph labeling classifier

As the graph labeling classifier in this work we use max-margin structured output prediction,
with the aim to learn a compatibility score for pairs (x, y) ∈ X × Y , indicating how well
an input goes together with an output. Naturally, such a score for coupling an input x with
the correct multilabel y should be higher than the score of the same input with an incorrect
multilabel y′. The compatibility score between an input x and a multilabel y takes the form

ψ(x, y) = 〈w, ϕ(x, y)〉 =
∑

e∈E

〈we, ϕe(x, ye)〉 =
∑

e∈E

ψe(x, ye), (1)

where by 〈·, ·〉 we denote the inner product and parameter w contains the feature weights
to be learned. ψe(x, ye) is a shorthand for the compatibility score, or the potential, between
the input x and an edge label ye, defined as ψe(x, ye) = 〈we, ϕe(x, ye)〉, where we is the
element of w that associates to edge e.

The joint feature map

ϕ(x, y) = φ(x)⊗ ϒ(y) = φ(x)⊗ (ϒe(ye))e∈E = (ϕe(x, ye))e∈E

is given by a tensor product of an input feature φ(x) and the feature space embedding
of the multilabel ϒ(y) = (ϒe(ye))e∈E , consisting of edge label indicators ϒe(ye) =(
1{ye=ue}

)
ue∈Ye

. The benefit of the tensor product representation is that context (edge label)
sensitive weights can be learned for input features and no prior alignment of input and output
features needs to be assumed.

The parameters w of the model are learned through max-margin optimization, where the
primal optimization problem takes the form (e.g. Taskar et al. 2004; Tsochantaridis et al.
2004; Rousu et al. 2006)

min
w,ξ

1

2
||w||2 + C

m∑

i=1

ξi

s.t. 〈w, ϕ(xi , yi )〉 ≥ max
y∈Y

(〈w, ϕ(xi , y)〉 + �(yi , y))− ξi ,

ξi ≥ 0, ∀i ∈ {1, . . . ,m}, (2)

where ξi denotes the slack allotted to each example, �(yi , y) is the loss function between
pseudo-label and correct label, and C is the slack parameter that controls the amount of
regularization in the model. The primal form can be interpreted as maximizing the minimum
margin between the correct training example and incorrect pseudo-examples, scaled by the
loss function. The intuition behind loss-scaled margin is that example with nearly correct
multilabel would require smaller margin than with multilabel that is quite different from the
correct one. Denoting �ϕ(xi , y) = ϕ(xi , yi ) − ϕ(xi , y), the Lagrangian of the problem is
given by
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L(w, ξ, α, ρ) = 1

2
||w||2 + C

m∑

i=1

ξi −
∑

i,y

α(i, y) (〈w,�ϕ(xi , y)〉 + �(yi , y))−
∑

i

ξiρi ,

where by setting derivatives to zero with respect to w we obtain

w =
∑

i,y

α(i, y)�ϕ(xi , y), (3)

and the zero derivatives for ξ give the box constraint
∑

y α(i, y) ≤ C for all i , while the dual
variables ρi are canceled out. Maximization with respect to α’s gives the dual optimization
problem as

max
α≥0

αT �− 1

2
αT Kα

s.t.
∑

y

α(i, y) ≤ C,∀i ∈ {1, . . . ,m}, (4)

where α = (α(i, y))i,y denotes the vector of dual variables and � = (�(yi , y))i,y is the vector
of losses for each pseudo-example (xi , y). The joint kernel

K (xi , y; x j , y′) = 〈ϕ(xi , yi )− ϕ(xi , y), ϕ(x j , y j )− ϕ(x j , y′)〉
= 〈φ(xi ), φ(x j )〉φ · 〈(ϒ(yi )− ϒ(y), ϒ(y j )− ϒ(y′)〉ϒ
= Kφ(xi , x j ) · (

Kϒ(yi , y j )− Kϒ(yi , y′)− Kϒ(y, y j )+ Kϒ(y, y′)
)

= Kφ(xi , x j ) · K�ϒ(yi , y; y j , y′)

is composed by product of input kernel Kφ(xi , x j ) = 〈xi , x j 〉φ and output kernel

K�ϒ(yi , y; y j , y′) = (
Kϒ(yi , y j )− Kϒ(yi , y′)− Kϒ(y, y j )+ Kϒ(y, y′)

)
,

where Kϒ(y, y′) = 〈ϒ(y′), ϒ(y)〉.
2.2 Factorized dual form

The dual optimization problem (4) is a challenging one to solve due to the exponential-sized
dual variable space, thus efficient algorithms are required. A tractable form is obtained via
factorizing the problem according to the graph structure. Following Rousu et al. (2007), we
transform (4) into the factorized dual form, where the edge-marginals of dual variables are
used in place of the original dual variables

μ(i, e,ue) =
∑

y∈Y
1{ϒe(y)=ue}α(i, y), (5)

where e = ( j, j ′) ∈ E is an edge in the output graph and ue ∈ Y j × Y j ′ is a possible label
for the edge ( j, j ′).

The output kernel decomposes by the edges of the graph as

Kϒ(y, y′) = 〈ϒ(y′), ϒ(y)〉 =
∑

e

Kϒ,e(ye, y′
e),

123



Mach Learn (2015) 99:231–256 235

where Kϒ,e(u, u′) = 〈ϒe(u), ϒe(u′)〉ϒ . Given the joint features defined by the tensor prod-
uct, the joint kernel also decomposes as

K (xi , y; x j , y′) = Kφ(x, x ′)K�ϒ(yi , y; y j , y′) =
=

∑

e

Kφ(x, x ′)K�ϒ,e(ye, y′
e) =

∑

e

Ke(x, ye; x ′, y′
e),

where we have denoted

K�ϒ,e(yie, ye; y je, y′
e) =

(
Kϒ,e(yie, y je)− Kϒ,e(yie, y′

e)− Kϒ,e(ye, y je)+ Kϒ,e(ye, y′
e)

)
.

Using the above, the quadratic part of the objective factorizes as follows

αT Kα =
∑

e

∑

i, j

∑

y,y′
α(i, y)Ke(xi , ye; x j , y′

e)α( j, y′)

=
∑

e

∑

i, j

∑

u,u′
Ke(xi ,u; x j ,u′)

∑

y:ye=u

∑

y′:y′
e=u′

α(i, y)α( j, y′)

=
∑

e

∑

i, j

∑

u,u′
μ(i, e,u)Ke(xi ,u; x j ,u′)μ( j, e,u′)

= μT KEμ, (6)

where K E = diag (Ke, e ∈ E) is a block diagonal matrix with edge-specific kernel blocks Ke

and μ = (μ(i, e, u))i,e,u is the vector of marginal dual variables. We assume a loss function
that can be expressed in a decomposed form as

�(y, y′) =
∑

e

�e(ye, y′
e),

a property that is satisfied by the Hamming loss family, counting incorrectly predicted nodes
(i.e. microlabel loss) or edges, and are thus suitable for our purpose. With a decomposable
loss function, the linear part of the objective satisfies

m∑

i=1

∑

y∈Y
α(i, y)�(yi , y) =

m∑

i=1

∑

y

α(i, y)
∑

e

�e(yie, ye) =

=
m∑

i=1

∑

e∈E

∑

u∈Ye

∑

y:ye=u

α(i, y)�e(yie, u)

=
m∑

i=1

∑

e∈E

∑

u∈Ye

μ(e, u)�e(yie, u) =
m∑

i=1

μT
i �i = μT �E , (7)

where �E = (�i )
m
i=1 = (�e(i, u))mi=1,e∈E,u∈Ye

is the vector of losses. Given the above, we
can state the dual problem (4) in equivalent form (c.f. Taskar et al. 2004; Rousu et al. 2007)
as

max
μ∈M

µT �− 1

2
µT KEµ, (8)
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where the constraint set is the marginal polytope (c.f. Rousu et al. 2007; Wainwright et al.
2005)

M = {μ|∃α ∈ A s.t. μ(i, e,ue) =
∑

y∈Y
1{yie=ue}α(i, y),∀i,ue, e}

of the dual variables, the set of all combinations of marginal dual variables (5) of training
examples that correspond to some α in the original dual feasible set A = {α|α(i, y) ≥
0,

∑
y α(i, y) ≤ C,∀i} in (4). Note that the above definition of M automatically takes care

of the consistency constraints between marginal dual variables (c.f. Rousu et al. 2007).
The factorized dual problem (8) is a quadratic program with a number of variables linear

in both the size of the output network and the number of training examples. There is an
exponential reduction in the number of dual variables from the original dual (4), however,
with the penalty of more complex feasible polytope M. For solving (8) we use MMCRF
(Rousu et al. 2007) that relies on a conditional gradient method. Update directions are found
in linear time via probabilistic inference (explained in the next section), making use of the the
exact correspondence of maximum margin violating multilabel in the primal (2) and steepest
feasible gradient of the dual objective (4).

2.3 Inference

In both training and prediction, efficient inference is required over the multilabel spaces.
In training any of the models (2, 4, 8), one needs to iteratively solve the loss-augmented
inference problem

ȳ(xi ) = argmax
y∈Y

(〈w, ϕ(xi , y)〉 + �(yi , y))

= argmax
y∈Y

∑

e

〈we, ϕe(xi , ye)〉 + �e(ye, yie) (9)

that finds for each example the multilabel that violates its margins the most (i.e. the worst
margin violator) given the current w. Depending on the optimization algorithm, the worst-
margin violator may be used to grow a constraint set (column-generation methods), or to
define an update direction (structured perceptron, conditional gradient).

In the prediction phase, the inference problem to be solved is simply to find the highest
scoring multilabel for each example:

ŷ(x) = argmax
y∈Y

〈w, ϕ(x, y)〉 = argmax
y∈Y

∑

e

〈we, ϕe(x, y)〉 (10)

Both of the above inference problems can be solved in the factorized dual, thus allowing
us to take advantage of kernels for complex and high-dimensional inputs, as well as the
linear-size dual variable space.

Next, we put forward a lemma that shows explicitly how the compatibility score
ψe(x, ye) = 〈we, ϕe(x, ye)〉 of labeling an edge e as ye given input x can be expressed
in terms of kernels and marginal dual variables. We note that the property is already used in
marginal dual based structured output methods such as MMCRF, however, below we make
the property explicit, to facilitate the description of the ensemble learning methods.

Lemma 1 Letw be the solution to (2), ϕ(x, y) be the joint feature map, and let G = (V, E)
be the graph defining the output graph structure, and let us denote

He(xi ,ue; x, ye) = Kφ(x, xi ) · (
Kϒ,e(yie, ye)− Kϒ,e(ue, ye)

)
.
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Then, we have

ψe(x, ye) = 〈we, ϕe(x, ye)〉 =
∑

i,ue

μ(i, e,ue) · He(xi ,ue; x, ye),

where μ is the marginal dual variable learned by solving optimization problem (8).

Proof Using (3) and (5), and elementary tensor algebra, the compatibility score of a example
(x, y′) is given by

〈w, ϕ(x, y′)〉 =
∑

i

∑

y

α(i, y)〈�ϕ(xi , y), ϕ(x, y′)〉

=
∑

i

∑

e

∑

ue

∑

y:ye=ue

α(i, y)〈�ϕe(xi ,ue), ϕe(x, y′
e)〉

=
∑

e

∑

i

∑

ue

μ(i, e,ue)〈φ(xi )⊗ (ϒe(yie)− ϒe(ue)), φ(x)⊗ ϒe(y′
e)〉

=
∑

e

∑

i

∑

ue

μ(i, e,ue)Kφ(xi , x)〈ϒe(yie)− ϒe(ue), ϒe(y′
e)〉

=
∑

e

∑

i

∑

ue

μ(i, e,ue)Kφ(xi , x) · (
Kϒ,e(yie, y′

e)− Kϒ,e(ue, y′
e)

)

=
∑

e

∑

i,ue

μ(i, e,ue) · He(xi ,ue; x, y′
e).

The loss-augmented inference problem can thus be equivalently expressed in the factorized
dual by

ȳ(x) = argmax
y∈Y

∑

e

ψe(x, ye)+ �e(ye, yie)

= argmax
y∈Y

∑

e,i,ue

μ(i, e,ue)He(i,ue; x, ye)+ �e(ye, yie). (11)

Similarly, the inference problem (10) solved in prediction phase can be solved in the factorized
dual by

ŷ(x) = argmax
y∈Y

∑

e

ψe(x, ye) = argmax
y∈Y

∑

e

〈we, ϕe(x, ye)〉

= argmax
y∈Y

∑

e,i,ue

μ(i, e,ue)He(i,ue; x, ye). (12)

To solve (11) or (12) any commonly used inference technique for graphical models can
be applied. In this paper we use MMCRF that relies on the message-passing method, also
referred as loopy belief propagation (LBP). We use early stopping in inference of LBP, so
that the number of iterations is limited by the diameter of the output graph G.

3 Learning graph labeling ensembles

In this section we consider generating ensembles of multilabel classifiers, where each base
model is a graph labeling classifier. Algorithm 1 depicts the general form of the learning
approach. We assume a function to output a random graph G(t) for each stage of the ensemble,
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a base learner F (t)(·) to learn the graph labeling model, and an aggregation function A(·) to
compose the ensemble model. The prediction of the model is then obtained by aggregating
the base model predictions

F(x) = A(F (1)(x), . . . , F (T )(x)).

Given a set of base models trained on different graph structures we expect the predicted
labels of the ensemble have diversity which is known to be necessary for ensemble learning.
At the same time, since the graph labeling classifiers aim to learn accurate multilabels, we
expect the individual base classifiers to be reasonably accurate, irrespective of the slight
changes in the underlying graphs. Indeed, in this work we use randomly generated graphs to
emphasize this point. We consider the following three aggregation methods:

– In majority-voting-ensemble, each base learner gives a prediction of the multilabel. The
ensemble prediction is obtained by taking the most frequent value for each microlabel.
Majority voting aggregation is admissible for any multilabel classifier.

Second, we consider two aggregation strategies that assume the base classifier has a
conditional random field structure:

– In average-of-maximum-marginals aggregation, each base learner infers local maximum
marginal scores for each microlabel. The ensemble prediction is taken as the value with
highest average local score.

– In maximum-of-average-marginals aggregation, the local edge potentials of each base
model are first averaged over the ensemble and maximum global marginal scores are
inferred from the averages.

In the following, we detail the above aggregation strategies.

3.1 Majority voting ensemble (MVE)

The first ensemble model we consider is the majority voting ensemble (MVE), which was
introduced in drug bioactivity prediction context by Su and Rousu (2011). In MVE, the
ensemble prediction on each microlabel is the most frequently appearing prediction among
the base classifiers

F MVE
j (x) = argmax

y j ∈Y j

(
1

T

T∑

i=1

1{F (t)j (x)=y j }

)
,

where F (t)(x) = (F (t)j (x))
k
j=1 is the predicted multilabel in the t’th base classifier. When

using (8) as the base classifier, predictions F (t)(x) are obtained via solving the inference
problem (12). We note, however, in principle, any multilabel learner will fit into the MVE

Input: Training sample S = {(xi , yi )}m
i=1, ensemble size T , graph generating oracle function

outputGraph : t ∈ {1, . . . , T } �→ Gk , aggregation function A(·) : F × · · · × F �→ Y
Output: Multilabel classification ensemble F(·) : X �→ Y
1: for t ∈ {1, . . . , T } do
2: G(t) = outputGraph(t)
3: Ft (·) = learnGraphLabelingClassifier((xi )

m
i=1 , (yi )

m
i=1 ,G(t))

4: end for
5: F(·) = A(F(1)(·), . . . , F(T )(·))

Algorithm 1: Graph Labeling Ensemble Learning
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framework as long as it adapts to a collection of output graphs G = {G(1), · · · ,G(T )} and
generates multilabel predictions accordingly from each graph.

3.2 Average-of-max-marginal aggregation (AMM)

Next, we consider an ensemble model where we perform inference over the graph to extract
information on the learned compatibility scores in each base model. Thus, we assume that
we have access to the compatibility scores between the inputs and edge labels

�
(t)
E (x) = (ψ(t)e (x,ue))e∈E (t),ue∈Ye

.

In the AMM model, our goal is to infer for each microlabel u j of each node j its max-marginal
(Wainwright et al. 2005), that is, the maximum score of a multilabel that is consistent with
y j = u j

ψ̃ j (x, u j ) = max{y∈Y:y j =u j }
∑

e

ψe(x, ye). (13)

One readily sees (13) as a variant of the inference problem (12), with similar solution tech-
niques. The maximization operation fixes the label of the node y j = u j and queries the
optimal configuration for the remaining part of output graph. In message-passing algorithms,
only slight modification is needed to make sure that only the messages consistent with the
microlabel restriction are considered. To obtain the vector �̃(x) = (ψ̃ j (x, u j )) j,u j the same
inference is repeated for each target-microlabel pair ( j, u j ), hence it has quadratic time
complexity in the number of edges in the output graph.

Given the max-marginals of the base models, the AMM ensemble is constructed as follows.
Let G = {G(1), · · · ,G(T )} be a set of output graphs, and let {�̃(1)(x), · · · , �̃(T )(x)} be the
max-marginal vectors of the base classifiers trained on the output graphs. The ensemble
prediction for each target is obtained by averaging the max-marginals of the base models and
choosing the maximizing microlabel for the node:

F AMM
j (x) = argmax

u j ∈Y j

1

|T |
T∑

t=1

ψ̃
(t)
j,u j
(x),

and the predicted multilabel is composed from the predicted microlabels

F AMM(x) =
(

F AMM
j (x)

)

j∈V
.

An illustration of AMM ensemble scheme is shown in Fig. 1. Edge information on indi-
vidual base learner are not preserved during AMM ensemble, which is shown as dash line
in Fig. 1. In principle, AMM ensemble can give different predictions compared to MVE,
since the most frequent label may not be the ensemble prediction if it has lower average
max-marginal score.

3.3 Maximum-of-average-marginals aggregation (MAM)

The next model, the maximum-of-average-marginals (MAM) ensemble, first collects the
local compatibility scores �(t)E (x) from individual base learners, averages them and finally
performs inference on the global consensus graph with averaged edge potentials. The model
is defined as
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V1

V2 V3

V1

V2 V3

V1

V2 V3

V1

V2 V3

AMM 

G(1) G(2) G(3)

ψ̃
(1)
1,u1

(x) ψ̃
(2)
1,u1

(x) ψ̃
(3)
1,u1

(x)
∑T

t=1 ψ̃
(t)
1,u1

(x)

Fig. 1 An example of AMM scheme, where three base models are learned on the output graph

G(1),G(2),G(3). Given an example x , each base model computes for node v1 local max-marginals ψ̃(t)1,u1

for all u1 ∈ {+,−}. The AMM collects local max-marginals
∑T

t=1 ψ̃
(t)
1,u1

(x), and outputs F1(x) = + if
∑T

t=1 ψ̃
(t)
1,+(x) ≥ ∑T

t=1 ψ̃
(t)
1,−(x), otherwise outputs F1(x) = −

V1

V2 V3

V1

V2 V3

V1

V2 V3

V1

V2 V3

MAM 

e2 e2 e2 e2

e1 e1 e1 e1e3 e3 e3 e3
G(1) G(2) G(3) G

ψ
(1)
e2 (x,ue) ψ

(2)
e2 (x,ue) ψ

(3)
e2 (x,ue)

∑T
t=1 ψ

(t)
e2 (x,ue)

Fig. 2 An example of MAM scheme, where three base models are learned on the output graph

G(1),G(2),G(3). Given an example x , each base model computes for edge e2 local edge potentialsψ(t)e2 (x, ue)

for all ue = {−−,−+,+−,++}. For graph G(3) where e2 /∈ E(3), we first impute corresponding marginal
dual variable of e2 on G(3)according to local consistency constraints. Similar computations are required for
edge e1 and e3. The finial prediction is through inference over averaged edge potentials on consensus graph G

F MAM(x) = argmax
y∈Y

∑

e∈E

1

T

T∑

t=1

ψ(t)e (x, ye) = argmax
y∈Y

1

T

T∑

t=1

∑

e∈E

〈w(t)
e , ϕe(x, ye)〉.

With the factorized dual representation, this ensemble scheme can be implemented simply
and efficiently in terms of marginal dual variables and the associated kernels, which saves
us from explicitly computing the local compatibility scores from each base learner. Using
Lemma (1), the above can be equivalently expressed as

F MAM(x) = argmax
y∈Y

1

T

T∑

t=1

∑

i,e,ue

μ(t)(i, e,ue) · He(i,ue; x, ye)

= argmax
y∈Y

∑

i,e,ue

μ̄(i, e,ue)He(i,ue; x, ye),

where we denote by μ̄(i, e,ue) = 1
T

∑T
t=1 μ

(t)(i, e,ue) the marginal dual variable averaged
over the ensemble.

We note that μ(t) is originally defined on edge set E (t), μ(t) from different random output
graph are not mutually consistent. In practice, we first construct a consensus graph G =
(E, V ) by pooling edge sets E (t), then complete μ(t) on E where missing components are
imputed via exploring local consistency conditions and solving constrained least square
problem. Thus, the ensemble prediction can be computed in marginal dual form without
explicit access to input features, and the only input needed from the different base models
are the values of the marginal dual variables. An example that illustrates the MAM ensemble
scheme is shown in Fig. 2.
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3.4 The MAM ensemble analysis

Here, we present theoretical analysis of the improvement of the MAM ensemble over the
mean of the base classifiers. The analysis follows the spirit of the single-label ensemble
analysis by Brown and Kuncheva (2010), generalizing it to the multilabel MAM ensemble.

Assume there is a collection of T individual base learners, indexed by t ∈ {1, · · · , T },
that output compatibility scores ψ(t)e (x,ue) for all t ∈ {1, . . . , T }, e ∈ E (t), and ue ∈ Ye.
For the purposes of this analysis, we express the compatibility scores in terms of the nodes
(microlabels) instead of the edges and their labels. We denote by

ψ j (x, y j ) =
∑

e=( j, j ′),
e∈N ( j)

1{y j =u j }
1

2
ψe(x,ue)

the sum of compatibility scores of the set of edges N ( j) incident to node j with consistent
label ye = (y j , y j ′), y j = u j . Then, the compatibility score for the input and the multilabel
in (1) can be alternatively expressed as

ψ(x, y) =
∑

e∈E

ψe(x, ye) =
∑

j∈V

ψ j (x, y j ).

The compatibility score from MAM ensemble can be similarly represented in terms of
the nodes by

ψ MAM(x, y) = 1

T

∑

t

ψ(t)(x, y) =
∑

e∈E

ψ̄e(x, ye) =
∑

j∈V

ψ̄ j (x, y j ),

where we have denoted ψ̄ j (x, y j ) = 1
T

∑
t ψ

(t)
j (x, y j ) and ψ̄e(x, ye) = 1

T

∑
t ψ

(t)
e (x, ye).

Assume now the ground truth, the optimal compatibility score of an example and multilabel
pair (x, y), is given by ψ∗(x, y) = ∑

j∈V ψ
∗
j (x, y j ). We study the reconstruction error of

the compatibility score distribution, given by the squared distance of the estimated score
distributions from the ensemble and the ground truth. The reconstruction error of the MAM
ensemble can be expressed as

�R
MAM(x, y) = (

ψ∗(x, y)− ψ MAM(x, y)
)2
,

and the average reconstruction error of the base learners can be expressed as

�R
I (x, y) = 1

T

∑

t

(
ψ∗(x, y)− ψ(t)(x, y)

)2
.

We denote by � j (x, y j ) a random variable of the compatibility scores obtained by the

base learners and {ψ(1)j (x, y j ), · · · , ψ(T )j (x, y j )} as a sample from its distribution. We have
the following result:

Theorem 1 The reconstruction error of compatibility score distribution given by MAM
ensemble �R

MAM(x, y) is guaranteed to be no greater than the average reconstruction error
given by individual base learners �R

I (x, y).
In addition, the gap can be estimated as

�R
I (x, y)−�R

MAM(x, y) = V ar(
∑

j∈V

� j (x, y j )) ≥ 0.
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The variance can be further expanded as

V ar

⎛

⎝
∑

j∈V

� j (x, y j )

⎞

⎠ =
∑

j∈V

V ar(� j (x, y j ))

︸ ︷︷ ︸
diversi t y

+
∑

p,q∈V,
p �=q

Cov(�p(x, yp),�q(x, yq))

︸ ︷︷ ︸
coherence

.

Proof By expanding and simplifying the squares we get

�R
I (x, y)−�R

MAM(x, y) = 1

T

∑

t

(
ψ∗(x, y)− ψ(t)(x, y)

)2 − (
ψ∗(x, y)− ψ MAM(x, y)

)2

= 1

T

∑

t

⎛

⎝
∑

j∈V

ψ∗
j (x, y j )−

∑

j∈V

ψ
(t)
j (x, y j )

⎞

⎠
2

−
⎛

⎝
∑

j∈V

ψ∗
j (x, y j )−

∑

j∈V

1

T

∑

t

ψ
(t)
j (x, y j )

⎞

⎠
2

= 1

T

∑

t

⎛

⎝
∑

j∈V

ψ
(t)
j (x, y j )

⎞

⎠
2

−
⎛

⎝ 1

T

∑

t

∑

j∈V

ψ
(t)
j (x, y j )

⎞

⎠
2

= V ar(
∑

j∈V

� j (x, y j ))

≥ 0.

The expression of variance can be further expanded as

V ar

⎛

⎝
∑

j∈V

� j (x, y j )

⎞

⎠ =
∑

p,q∈V

Cov(�p(x, yp),�q(x, yq))

=
∑

j∈V

V ar(� j (x, y j ))+
∑

p,q∈V,
p �=q

Cov(�p(x, yp),�q(x, yq)).

The Theorem 1 states that the reconstruction error from MAM ensemble is guaranteed to
be less than or equal to the average reconstruction error from the individuals. In particular,
the improvement can be further addressed by two terms, namely diversity and coherence. The
classifier diversity measures the variance of predictions from base learners independently on
each single labels. It has been previously studied in single-label classifier ensemble context
by Krogh and Vedelsby (1995). The diversity term prefers the variabilities of individuals that
are learned from different perspectives. It is a well known factor to improve the ensemble
performance. The coherence term, that is specific to the multilabel classifiers, indicates that
the more the microlabel predictions vary together, the greater advantage multilabel ensem-
ble gets over the base learners. This supports our intuitive understanding that microlabel
correlations are keys to successful multilabel learning.
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Table 1 Statistics of multilabel
datasets used in our experiments.
For NCI60 and Fingerprint
dataset where there is no explicit
feature representation, the rows
of kernel matrix is assumed as
feature vector

Dataset Statistics

Instances Labels Features Cardinality Density

Emotions 593 6 72 1.87 0.31

Yeast 2417 14 103 4.24 0.30

Scene 2407 6 294 1.07 0.18

Enron 1702 53 1001 3.36 0.06

Cal500 502 174 68 26.04 0.15

Fingerprint 490 286 490 49.10 0.17

NCI60 4547 60 4547 11.05 0.18

Medical 978 45 1449 1.14 0.03

Circle10 1000 10 3 8.54 0.85

Circle50 1000 50 3 35.63 0.71

4 Experiments

4.1 Datasets

We experiment on a collection of ten multilabel datasets from different domains, includ-
ing chemical, biological, and text classification problems. The NCI60 dataset contains 4547
drug candidates with their cancer inhibition potentials in 60 cell line targets. The Finger-
print dataset links 490 molecular mass spectra together to 286 molecular substructures used
as prediction targets. Four text classification datasets1 are also used in our experiment. In
addition, two artificial Circle dataset are generated according to Bian et al. (2012) with dif-
ferent amount of labels. An overview of the datasets is shown in Table 1, where cardinality
is defined as the average number of positive microlabels for each example

cardinali t y = 1

m

m∑

i=1

|{ j |yi j = 1}|,

and density is the average number of labels for each example divided by the size of label
space defined as

densi ty = cardinali t y

k
.

4.2 Kernels

We use kernel methods to describe the similarity between complex data objects in some
experiment datasets. We calculate linear kernel on datasets where instants are described by
feature vectors. For text classification datasets, we first compute weighted features with term
frequency inverse document frequency model (TF-IDF) (c.f. Rajaraman and Ullman 2011).
TF-IDF weights reflect how important a word is to a document in a collection of corpus
defined as the ratio between the word frequency in a document and the word frequency in
the a collection of corpus. We compute linear kernel of the weighted features.

1 Available at http://mulan.sourceforge.net/datasets.html.
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As the input kernel of the Fingerprint dataset where we have for each instant a mass
spectrometry (MS) data, we calculated quadratic kernel over the ’bag’ of mass/charge peak
intensities. As the input kernel of the cancer dataset where each object is described as a
molecular graph, we used the hash fingerprint Tanimoto kernel (Ralaivola et al. 2005) that
enumerates all linear fragments up to length n in a molecule x . A hash function assigns each
fragment a hash value that determines its position in descriptor space φ(x). Given two binary
bit vectors φ(x) and φ(y) as descriptors, Tanimoto kernel is defined as

K (x, y) = |I (φ(x)) ∩ I (φ(y))|
|I (φ(x)) ∪ I (φ(y))| ,

where I (φ(x)) denotes the set of indices of 1-bits in φ(x).
In practice, some learning algorithms required kernelized input while others need feature

representation of input data. Due to the intractability of using explicit features for complex
data and in order to achieve a fair comparison, we take precomputed kernel matrix as rows
of feature vectors for the learning algorithms that required input of feature vectors.

4.3 Obtaining random output graphs

The structure of the output graph is significant both in term of efficiency of learning and
inference, and the predictive performance. We consider the following two approaches to
generate random output graphs.

– In the random pair approach, one takes each vertex in turn, randomly draw another vertex
and couples the two with an edge.

– In the random spanning tree approach, one first draws a random k × k weight matrix W
with non-negative edge weights and then extracts a maximum weight spanning tree out
of the matrix, using wi j as the weight for edge connecting labels i and j .

The random pair approach generally produces a set of disconnected graphs, which may
not let the base learner to fully benefit from complex multilabel dependencies. On the other
hand, the learning of the base classifier is potentially made more efficient due to the graph
simplicity. The random spanning tree approach connects all targets so that complex multilabel
dependencies can be learned. Also, the tree structure facilitates efficient inference.

4.4 Compared classification methods

For comparison, we choose the following established classification methods form different
perspectives towards multilabel classification, accounting for single-label and multilabel, as
well as ensemble and standalone methods:

– MMCRF (Rousu et al. 2007) is used both as a standalone multilabel classifier and the
base classifier in the ensembles. Individual MMCRF models are trained with two kinds
of output graphs, random tree and random pair graph.

– SVM is a discriminative learning method that has become very popular over recent
years, described in several textbooks (Cristianini and Shawe-Taylor 2000; Schölkopf
and Smola 2001). For multilabel classification task, we split the multilabel task into a
collection of single-label classification problems. Then we apply SVM on each single
problem and compute the predictions. The drawback of SVM on multilabel classification
task is the computation becomes infeasible as the number of the labels increases. Beside,
this approach assumes independency between labels, it does not get any benefit from
dependencies defined by complex structures of the label space. SVM serves as the single-
label non-ensemble baseline learner.
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– MTL is a multi-task feature learning methods developed in Argyriou et al. (2008), which
is used as multilabel baseline learner. The underlying assumption of MTL is that the task
specific functions are related such that they share a small subset of features.

– Adaboost is an ensemble method that has been extensively studied both empirically and
theoretically since it was developed in Freund and Schapire (1997). The idea behind
the model is that a distribution is assigned over data points. In each iteration, a weak
hypothesis is calculated based on current distribution, and the distribution is updated
according to the performance of the weak hypothesis. As a results, the difficult examples
will receive more weight (probability mass) after the update, and will be emphasized by
the base learner in the next round.
In addition, Adaboost for multilabel classification using Hamming loss (AdaboostMH),
is designed for incorporating multilabel learner into Adaboost framework (Schapire and
Singer 1998). The only difference is the distribution is assigned to each example and
microlabel pair and updated accordingly. In our study, we use real-valued decision tree
with at most 100 leaves as base learner of AdaboostMH, and generate an ensemble with
180 weak hypothesises.

– Bagging (bootstrapping aggregation) was introduced in Breiman (1996) as an ensemble
method of combining multiple weak leaners. It creates individual weak hypothesises for
its ensemble by calling base learner repeatedly on the random subsets of the training set.
The training set for the weak learner in each round is generated by randomly sampling
with replacement. As a result, many original training examples may be repeated many
times while others may be left out. In our experiment, we randomly select 40% of the
data as input to SVM to compute a weak hypothesis, and repeat the process until we
collect an ensemble of 180 weak hypotheses.

4.5 Parameter selection and evaluation measures

We first sample 10 % data uniform at random from each experimental dataset for the purpose
of parameter selection. SVM, MMCRF and MAM ensemble each have a margin softness
parameter C , which potentially needs to be tuned. We tested the value of parameter C from
a set {0.01, 0.1, 0.5, 1, 5, 10} based on tuning data, then keep the best ones for the following
validation step. We also perform extensive selection on γ parameters in MTL model in the
same range as margin softness parameters.

We observe that most of the multilabel datasets are highly biased with regards to multilabel
density. Therefore, we use the following stratified 5-fold cross validation scheme in the
experiments reported, such that we group examples in equivalence classes based on the
number of positive labels they have. Each equivalence class is then randomly split into five
local folds, after that the local folds are merged to create five global folds. The proposed
procedure ensures that also the smaller classes have representations in all folds.

To quantitatively evaluate the performance of different classifiers, we adopt several per-
formance measures. We report multilabel accuracy which counts the proportion of multilabel
predictions that have all of the microlabels being correct, microlabel accuracy as the pro-
portion of microlabel being correct, and microlabel F1 score that is the harmonic mean of
microlabel precision and recall F1 = 2 · Pre×Rec

Pre+Rce .

4.6 Comparison of different ensemble approaches

We evaluate our proposed ensemble approaches by learning ensemble with 180 base learners.
The learning curves as the size of ensemble on varying datasets are shown in Figs. 3, 4, and
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5 for microlabel accuracy, multilabel accuracy, and microlabel F1 score, respectively. The
base learners are trained with random tree as output graph structure.

There is a clear trend of improving microlabel accuracy for proposed ensemble approaches
as more individual base models are combined. On most datasets and algorithms the ensemble
accuracy increases fast and levels off rather quickly, the most obvious exception being the
Circle10 dataset where improvement can be still seen beyond ensemble size 180. In addition,
all three proposed ensemble learners (MVE, AMM, MAM) outperform their base learner
MMCRF (horizontal dash lines) with consistent and noticeable margins, which is best seen
from the learning curves of the average performance.

Similar patterns of learning curves are also observed in microlabel F1 (Fig. 4) and multil-
abel accuracy (Fig. 5), with a few exceptions. The Fingerprint and Cal500 datasets prove to
be difficult to learn in that very few multilabels are perfectly predicted, this is not surprising
as these datasets have a large number of microlabels. The datasets also have the largest pro-
portion of positive microlabels, which is reflected in the low F1 score. Scene dataset is the
only exception where increasing the number of base learners seems to hurt the ensemble per-
formance in microlabel F1 and multilabel accuracy. In fact Scene is practically a single-label
multiclass dataset, having very few examples with more than one positive microlabel. This
contradicts the implicit assumption of graph based learners that there are rich dependency
structures between different labels that could be revealed by the different random graphs.
Among the extreme label sparsity, the ensemble learners appear to predict more negative
labels for each example which leads to decreased performances in F1 and multilabel accu-
racy space. We also observe large fluctuations in the initial part of MVE learning curves of
Fingerprint and Cal500 datasets in F1 score space, implying MVE is not as stable as AMM
and MAM approaches.

In particular, the performance of MAM ensemble surpasses MVE and AMM in eight out of
ten datasets, the exceptions being Scene and Medical, making it the best among all proposed
ensemble approaches. Consequently, we choose MAM for the further studies described in
the following sections.

4.7 Effect of the structure of output graph

To find out which is the more beneficial output graph structure, we carry out empirical studies
on MAM ensemble with random tree and random pair graph as output graph structure. Table 2
illustrates the performance of two output structures in terms of microlabel accuracy, multilabel
accuracy and microlabel F1 score. The results show that random tree and random pair graph
are competitive output graph structures in terms of microlabel accuracy and F1 score, with
random tree achieves slightly better results. In addition, we observe noticeable difference
in multilabel accuracy, where random tree behaves better than random pair graph. One way
to understand this is to realize that random tree is able to connect all output labels so that
learning and inference can work over the the whole label space. On the other hand, random
pair approach divides the label space into isolated pairs where there is no cross-talk between
pairs.

We continue by studying learning curves of average performance of MAM ensemble on
two different output structures. Fig. 6 illustrates that MAM ensemble with random tree as
output structure consistently outperforms random pair in accuracy space. The performance
differences in F1 space are not clear where we see the random pair approach fluctuating
around random tree curve. Base on the experiments, we deem random tree the better of the
two output graph structures.
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Table 2 Prediction performance of MAM ensemble with random tree and random pair graph in terms of
microlabel accuracy, multilabel accuracy, and microlabel F1 score

Dataset Microlabel Acc % Multilabel Acc % Microlabel F1 %

Pair Tree Pair Tree Pair Tree

Emotions 80.4 ± 2.4 80.3 ± 1.4 27.8 ± 3.4 29.2 ± 4.2 65.7 ± 4.3 66.3 ± 2.3

Yeast 80.2 ± 0.7 80.3 ± 0.5 15.9 ± 1.1 16.7 ± 0.4 63.5 ± 1.4 63.7 ± 1.1

Scene 84.0 ± 0.5 84.0 ± 0.1 16.4 ± 1.9 15.0 ± 0.9 28.9 ± 2.5 27.4 ± 2.4

Enron 94.1 ± 0.1 94.0 ± 0.2 7.7 ± 1.0 8.1 ± 2.3 51.1 ± 1.9 51.1 ± 1.3

Cal500 86.2 ± 0.1 86.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 35.2 ± 0.8 35.6 ± 0.4

Fingerprint 89.8 ± 0.5 89.8 ± 0.3 1.2 ± 0.6 1.4 ± 0.6 66.9 ± 2.5 67.0 ± 1.9

NCI60 85.9 ± 0.8 86.0 ± 0.9 37.9 ± 1.2 38.9 ± 1.2 57.1 ± 3.8 57.1 ± 3.2

Medical 97.9 ± 0.2 97.9 ± 0.1 37.6 ± 4.3 37.6 ± 2.5 52.2 ± 4.6 52.2 ± 3.2

Circle10 97.5 ± 0.4 97.8 ± 0.4 79.0 ± 2.0 83.2 ± 3.5 98.5 ± 0.2 98.7 ± 0.3

Circle50 97.6 ± 0.3 98.4 ± 0.3 47.6 ± 5.9 59.4 ± 5.6 98.3 ± 0.2 98.9 ± 0.2

4.8 Multilabel prediction performance

In the following experiments we examine whether our proposed ensemble model (MAM)
can boost the prediction performance in multilabel classification problems. Therefore, we
compare our model with other advanced methods including both single-label and multilabel
classifiers, both standalone and ensemble frameworks. Table 3 shows the performance of
difference methods in terms of microlabel accuracy, multilabel accuracy and microlabel F1

score, where the best performance in each dataset is emphasised in boldface and the second
best is shown in italics.

We observe from Table 3 that MAM receives in general higher evaluation scores than the
competitors. In particular, it achieves nine times as top two performing methods in microlabel
accuracy, eight times in multilabel accuracy, and eight times in microlabel F1 score. The only
datasets where MAM is consistently outside the top two is the Scene dataset. As discussed
above, the dataset is practically a single-label multiclass dataset. On this dataset the single
target classifiers SVM and Bagging outperform all compared multilabel classifiers.

In these experiments, MMCRF also performs robustly, being in top two on half of the
datasets with respect to microlabel and multilabel accuracy. However, it quite consistently
trails to MAM in all three evaluation scores, the Scene dataset again being the exception. We
also notice that the standalone single target classifier SVM is competitive against most multi-
label methods, performs better than Bagging, AdaBoost and MTL with respect to microlabel
and microlabel accuracy.

4.9 Statistical evaluation

To statistically evaluate the performance of different methods over multiple datasets, we
first apply paired t-test on the values shown in Table 3. In particular, we compute a test
statistic (with a p-value) for each ordered pair of methods to assess whether the average
performance of the first is better than the second in a statistically significant manner. The
result, shown in Table 4, indicates that, in terms of microlabel accuracy, MAM significantly
outperforms MMCRF, AdaBoost and Bagging and almost significantly outperforms MTL,
while the performance is not significantly different from SVM. In multilabel accuracy, MAM
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Table 3 Prediction performance of methods in terms of microlabel accuracy (top), microlabel F1 score
(middle), and multilabel accuracy (bottom). ‘–’ represents no positive predictions. ‘Avg. Rank’ is the average
rank of the performance over datasets

Dataset SVM Bagging AdaBoost MTL MMCRF MAM

Microlabel accuracy %

Emotions 77.3±1.9 74.1±1.8 76.8±1.6 79.8±1.8 79.0±0.9 80.3±1.4

Yeast 80.0±0.7 78.4±0.9 74.8±0.7 79.3±0.5 79.5±0.6 80.3±0.5

Scene 90.2±0.3 87.8±0.5 84.3±0.9 88.4±0.5 83.4±0.3 84.0±0.1

Enron 93.6±0.2 93.7±0.1 86.2±0.3 93.5±0.2 93.7±0.2 94.0±0.2

Cal500 86.3±0.3 86.0±0.2 74.9±0.7 86.2±0.3 85.3±0.3 86.2±0.2

Fingerprint 89.7±0.3 85.0±0.4 84.1±0.7 82.7±0.6 89.8±0.6 89.8±0.3

NCI60 84.7±0.7 79.5±0.4 79.3±0.8 84.0±0.6 85.5±1.3 86.0±0.9

Medical 97.4±0.0 97.4±0.1 91.4±0.3 97.4±0.1 97.9±0.1 97.9±0.1

Circle10 94.8±0.9 92.9±0.7 98.0±0.3 93.7±0.7 97.1±0.3 97.8±0.4

Circle50 94.1±0.5 91.7±0.5 96.6±0.3 93.8±0.5 96.7±0.3 98.4±0.3

Avg. Rank 3.0 4.5a 4.8a 4.0a 3.0 1.8

Microlabel F1 score %

Emotions 57.1±4.4 61.5±3.1 66.2±2.9 64.6±3.0 64.3±1.2 66.3±2.3

Yeast 62.6±1.1 65.5±1.4 63.5±1.2 60.2±1.2 62.6±1.2 63.7±1.1

Scene 68.3±1.4 69.9±1.4 64.8±2.1 61.5±2.1 34.0±2.7 27.4±2.4

Enron 29.4±1.5 38.8±1.0 42.3±1.1 – 50.0±1.0 51.1±1.3

Cal500 31.4±0.6 40.1±0.8 44.3±1.5 28.6±1.3 35.5±0.4 35.6±0.4

Fingerprint 66.3±0.7 64.4±0.5 62.8±1.2 0.4±0.3 66.9±0.8 67.0±1.9

NCI60 45.9±3.6 53.9±1.2 32.9±2.7 32.9±3.4 56.1±3.7 57.1±3.2

Medical – – 33.7±1.2 – 51.6±2.7 52.2±3.2

Circle10 97.0±0.6 96.0±0.4 98.8±0.2 96.4±0.4 98.3±0.2 98.7±0.3

Circle50 96.0±0.3 94.5±0.3 97.6±0.2 95.7±0.3 97.7±0.3 98.9±0.2

Avg. Rank 4.2a 3.8b 3.0 5.2a 3.0 1.9

Multilabel accuracy %

Emotions 21.2±3.4 20.9±2.6 23.8±2.3 25.5±3.5 25.8±3.1 29.2±4.2

Yeast 14.0±2.8 13.1±1.9 7.5±1.3 11.3±1.0 13.4±1.5 16.7±0.4

Scene 52.8±1.4 46.5±1.9 34.7±2.2 44.8±3.6 19.3±1.2 15.0±0.9

Enron 0.4±0.3 0.1±0.2 0.0±0.0 0.4±0.4 7.1±2.8 8.1±2.3

Cal500 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Fingerprint 1.0±0.7 0.0±0.0 0.0±0.0 0.0±0.0 1.2±0.5 1.4±0.6

NCI60 43.1±1.3 21.1±0.9 2.5±0.6 47.0±2.0 34.1±1.4 38.9±1.2

Medical 8.2±2.1 8.2±2.7 5.1±2.0 8.2±2.3 36.5±3.3 37.6±2.5

Circle10 69.1±3.8 64.8±3.3 86.0±2.7 66.8±3.4 76.4±2.1 83.2±3.5

Circle50 29.7±2.0 21.7±3.9 28.9±3.4 27.7±3.3 34.6±4.5 59.4±5.5

Avg. Rank 3.1 4.7a 4.5a 3.9b 2.9 2.0

The average rank is marked with a (resp. b) if the algorithm performs significantly different at p-value = 0.05
(resp. at p-value = 0.1) from the top performing one according to two-tailed Bonferroni–Dunn test
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Table 4 Paired t-test to assess whether the method from group A outperforms the one from group B in a
significant manner. By ‘†, ∗, ‡’ we denote the performance in microlabel accuracy, microlabel F1 score, and
multilabel accuracy, respectively

Group A Group B

SVM Bagging AdaBoost MTL MMCRF MAM

SVM − ††, ‡ †† ∗ − −
Bagging ∗∗ − − ∗∗ − −
Adaboost − − − ∗∗ − −
MTL − † †† − − −
MMCRF − †† †† ∗∗ − −
MAM − ††, ‡ ††, ‡ †, ∗∗ ††, ‡ −

By double marks (e.g. ‘††’) we denote p-value = 0.05, and by single mark (e.g. ‘†’) we denote p-value = 0.1.
By ‘−’ we denote not significant given above p-values

outperforms Bagging, Adaboost and MMCRF in almost significant manner. SVM, MTL and
MMCRF perform similarly to each other, and are better than Bagging and Adaboost with
respect to microlabel accuracy. In addition, in microlabel F1 score, we notice that all methods
are competitive against MTL, and SVM performs better than Bagging.

As suggested by Demšar (2006), several critical assumptions might be violated when
performing paired t-test to compare classifiers over multiple datasets. Similarly, other com-
monly used statistical tests might also be ill-posed in this scope (e.g. sign test, Wilcoxon
signed-ranks test, ANOVA with post-hoc Tukey test). We therefore follow the test procedure
proposed in Demšar (2006). First, we compute the rank of each model based on the perfor-
mance on different datasets, where the best performing algorithm getting the rank of one. In
case of ties, averaged ranks are then assigned. Then we use Friedman test (Friedman 1937)
which compares the average rank of each algorithm, and under null hypothesis, states that
all algorithms are equivalent with equal average ranks. P-values calculated from Friedman
test for microlabel accuracy, microlabel F1 score, and multilabel accuracy are 0.001, 0.002
and 0.005, respectively. As a result, we reject the null-hypothesis and proceed with post-hoc
two-tailed Bonferroni-Dunn test (Dunn 1961), where all other methods are compared against
the top performing control (MAM). We compute the critical difference C D = 2.2 at p-value
= 0.05, and C D = 1.9 at p-value = 0.1 (see details in supplementary material). The perfor-
mance of an algorithm is significantly different from the control if the corresponding average
ranks differ by at least C D. The corresponding rank is marked with ‘b’ (at p-value = 0.1)
or ‘a’ (at p-value = 0.05) in Table 3. We observe from the results that in microlabel accu-
racy and multilabel accuracy, the performance differences of SVM and MMCRF to MAM
fail to be statistically significant. On the other hand, Bagging, Adaboost and MTL perform
significantly worse than MAM in terms of microlabel accuracy and multilabel accuracy. In
addition, with respect to microlabel F1 score, the performances of MMCRF and Adaboost
are not significantly different from MAM, while SVM, Bagging and MTL perform worse
than MAM in a significant manner.

Overall, the results indicate that ensemble by MAM is a robust and competitive alternative
for multilabel classification.

4.10 Effect of diversity and coherence

To explain the performance of MAM as well as to empirically validate the diversity and
coherence arguments stated in Theorem 1, we conduct the following experiment.
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We train a MAM ensemble model for each dataset consist of 30 base learners with a
random spanning tree as output graph structure. For each example-label pair (xi , yi ) and
the corresponding set of microlabels yi = {yi,1, · · · , yi,l}, we then calculate from each base
learner t a set of node compatibility scores {ψ t (xi , yi,1), · · · , ψ t (xi , yi,l)}. Next, the node
compatibility scores from different base learners are pooled together to get � j (xi , yi, j ) =
{ψ1(xi , yi, j ), · · · , ψ30(xi , yi, j )} for all j ∈ {1, · · · , l}. Diversity and coherence of pair
(xi , yi ) can be calculated from {� j (xi , yi, j )}l

j=1 according to

Diversi t y =
∑

j∈{1···l}
V ar(� j (xi , yi j )),

Coherence =
∑

p,q∈{1···l},
p �=q

Cov(�p(xi , yip),�q(xi , yiq)),

which locates pair (xi , yi ) in the diversity-coherence space. We also compute the microlabel
accuracy from the microlabels in yi based on the prediction from MAM ensemble. The
accuracy of different diversity-coherence region in the space is computed as the average
microlabel accuracy of examples in that region. The results are shown in Fig. 7.

We observe from the results a pattern of increasing prediction performance from lower
left corner to upper right corner. In particular, microlabel accuracy are lower for examples
with both low diversity and coherence computed based on current set of base learners, shown
as the light blue blocks in lower left corner. On the other hand, we achieve higher prediction
accuracy on examples with high diversity and coherence, which are shown as red blocks in
the upper right corner. In addition, fixing one factor while increasing the other usually leads
to improved performance.

The observations demonstrates both diversity and coherence have positive effects on the
performance of MAM ensemble. They reflect different aspects of the ensemble. To improve
the quality of the prediction, one should aim to increase either the diversity of the base learner
on a single microlabel or the coherence among microlabel pairs.

5 Conclusions

In this paper we have put forward new methods for multilabel classification, relying on
ensemble learning on random output graphs. In our experiments, models thus created have
favourable predictive performances on a heterogeneous collection of multilabel datasets,
compared to several established methods. The theoretical analysis of the MAM ensemble
highlights the covariance of the compatibility scores between the inputs and microlabels
learned by the base learners as the quantity explaining the advantage of the ensemble pre-
diction over the base learners.

We note in passing that it is straightforward to generalize the theoretical analysis to any
multilabel classifiers that give scores to microlabels; there is no dependency on random graph
classifiers in the analysis.

The empirical evaluation supports the theoretical analysis, explaining the performance of
the proposed ensemble models. Our results indicate that structured output prediction methods
can be successfully applied to problems where no prior known output structure exists, and
thus widen the applicability of the structured output prediction.
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