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Abstract Weighted majority votes allow one to combine the output of several classifiers
or voters. MinCq is a recent algorithm for optimizing the weight of each voter based on
the minimization of a theoretical bound over the risk of the vote with elegant PAC-Bayesian
generalization guarantees. However, while it has demonstrated good performance when com-
bining weak classifiers, MinCq cannot make use of the useful a priori knowledge that one
may have when using a mixture of weak and strong voters. In this paper, we propose P-MinCq,
an extension of MinCq that can incorporate such knowledge in the form of a constraint over
the distribution of the weights, along with general proofs of convergence that stand in the
sample compression setting for data-dependent voters. The approach is applied to a vote of
k-NN classifiers with a specific modeling of the voters’ performance. P-MinCq significantly
outperforms the classic k-NN classifier, a symmetric NN and MinCq using the same voters.
We show that it is also competitive with LMNN, a popular metric learning algorithm, and
that combining both approaches further reduces the error.
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1 Introduction

A weighted majority vote is an ensemble method (Dietterich 2000; Re and Valentini 2012)
where several classifiers (or voters) are assigned a specific weight. Such approaches are moti-
vated by the idea that a careful combination can potentially compensate for the individual
classifiers’ errors and thus achieve better robustness and performance. For this reason, ensem-
ble learning has been a prominent research area in machine learning and many methods have
been proposed in the literature, among which Bagging (Breiman 1996), Boosting (Schapire
and Singer 1999) or Random Forests (Breiman 2001). The problem has also been studied
from a Bayesian learning perspective, for instance with Bayesian model averaging (Haussler
et al. 1994; Domingos 2000). Multimedia analysis is an example of prolific application, for
instance to combine classifiers learned from different modalities of the data (Atrey et al.
2010).

Even though combining weak classifiers such as in Boosting (Freund and Schapire 1996)
is supported by a solid theory, understanding when weighted majority votes perform better
than a classic averaging of the voters is still a difficult question. In this context, PAC-Bayesian
theory (McAllester 1999) offers an appropriate framework to study majority votes and learn
them in a principled way and with generalization guarantees. In particular, the recently-
proposed MinCq (Laviolette et al. 2011) optimizes the weights of a set of voters H by
minimizing a bound—the C-bound (Lacasse et al. 2007)—involving the first two statistical
moments of the margin achieved on the training data. The authors show that minimizing this
bound allows one to minimize the true risk of the weighted majority vote and boils down
to a simple quadratic program. MinCq returns a posterior distribution on H that gives the
weight of each voter. It is based on an a priori uniform belief on the relevance of the voters,
which is well-suited when combining weak classifiers. For instance, it has been successfully
applied to weighted majority votes of decision stumps and RBF kernel functions. However,
this uniform prior is not appropriate when one wants to combine efficiently various classifiers
with different levels of performance.

In this paper, we claim that MinCq can be extended to deal with variable-performing
classifiers when one has an a priori belief on the voters. We generalize MinCq in two respects.
First, we propose a new formulation by extending the original notion of aligned distribution
(Germain et al. 2011) to P-aligned distributions. P models a constraint over the distribution
on the weights of the voters, allowing us to incorporate an a priori belief on each voter,
constraining the posterior distribution. Our extension, called P-MinCq, does not induce any
loss of generality and we show that this new problem can still be formulated in a efficient
way as a quadratic program. Second, we extend the proofs of convergence of Laviolette et al.
(2011) to the sample compression setting (Graepel et al. 2005), where the voters are built
from training examples, such as NN classifiers. Our results use similar arguments as those
proposed in (Germain et al. 2011; Laviolette and Marchand 2007) but our setting requires a
specific proof, since the results of Germain et al. (2011) are only valid for surrogate losses
bounding the 0 — 1 loss.

The second part of the paper makes use of these two general contributions to optimize a
weighted majority vote over a set of k-NN classifiers (k = {1, 2, ...}) to hightlight the benefit
of an a priori on the voters. We propose a suitable a priori constraint P modeling the fact that
we have more confidence in close neighborhoods. The idea is to a priori constrain larger (resp.
smaller) weights on classifiers with small (resp. large) values of k to reflect the belief that local
neighborhoods convey more relevant information than distant ones, which cannot be modeled
by the uniform belief used in MinCq. Using P-MinCq in this context constitutes an original
approach to learning a robust combination of NN classifiers that achieves better accuracy.
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This is confirmed by experiments conducted on twenty benchmark datasets: P-MinCq clearly
outperforms k-NN, a symmetric version of it (Nock et al. 2003), as well as MinCq based on
the same voters. Moreover, for high-dimensional problems, P-MinCq turns out to be quite
robust to overfitting. We also show that it is competitive with the metric learning algorithm
LMNN (Weinberger and Saul 2009) and that plugging the learned distance into P-MinCq
can further improve the results. Finally, we apply our approach to an object categorization
dataset, on which P-MinCq again achieves good performance.

This paper is organized as follows. Section 2 reviews MinCq and its theoretical basis.
In Sect. 3, we introduce P-MinCq, our extension of MinCq to P-aligned distributions. We
derive generalization bounds for the sample compression case in Sect. 4. Section 5 shows
that MinCq does not perform well when using NN-based voters and presents a P-aligned
distribution that is suitable to this context. Experiments are presented in Sect. 6.

2 Notations and background
2.1 Preliminaries

Throughout this paper, we consider the framework of the algorithm MinCq (Laviolette et al.
2011) for learning a weighted majority vote over a set of real-valued voters for binary classi-
fication problems. Let X' € RY be the input space of dimension d and Y = {—1, 41} be the
output space (i.e., the set of possible labels). S denotes the training sample made of m labeled
examples (x, y) drawn i.i.d over X x ) according to a fixed and unknown distribution D. The
distribution of S of size m is denoted by D™. MinCq takes its roots from the PAC-Bayesian
theory [first introduced by McAllester (1999)]. Given a set of voters H, this theory is based
on a prior distribution P and a posterior distribution Q, both of support H. P models the
a priori information on the relevance of the voters: those that are believed to perform best
have larger weights in P.! By taking into account the information carried by S, the learner
aims at adapting P to get the posterior distribution Q that implies the O-weighted majority
vote with the best generalization performance.

Definition 1 Let H = {hy, ..., h,} be a set of voters (or classifiers) from X to R. Let Q
be a distribution over H. A Q -weighted majority vote classifierfootnoteSometimes By is
called the Bayes classifier. By is defined:

Vx € X, Bp(x) = sign [hEQh(x):| = sign |:2 Q(h)h(x)i| .

heH
The true risk Rp(Bg) over the pairs (X, y) i.i.d. according to D is:

Rp(Bo)= E_ I[Bo(x) # ],

where I[.] is an indicator function.

Laviolette et al. (2011) and Lacasse et al. (2007) make the link between the risk Rp(Bg)
and the following notion of Q-margin which models the confidence of By in its labeling.

Definition 2 (Laviolette et al. 2011) The Q-margin of an example (x, y) over Q is:
Mox,y) =y E h(x).
o) =y B hx)

I As we will see, a key limitation of MinCq is that it requires an a priori uniform belief on the weights.
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The first and second moments of the Q-margin are:

MB= E Mo(x,y)= E E_yh(x), and

x,y)~D ~Q(x,y)~D
MP, = E Mop(x,v)>= E E h(x)h' (x).
0? (x,y)~D oy (h,h")~QXx,y)~D

It is easy to see that By correctly classifies an example x if the Q-margin is strictly positive.
Thus, under the convention that if Mo (x, y) = 0, then By errs on (X, y), we get:

Rp(Bg)= Pr (Mg(x,y) <0). (1)
x.y)~D
Let us finally introduce the following necessary notations:
MP = E yhx), and MP, = E hxH(x). 2)
P= B e = B hor ®) (

If we use the training sample S ~ D™ instead of the unknown distribution D, we get the
empirical risk Rs(Bg), the empirical first and second moments of theQ -margin MSQ

and MSQZ, and the associated M}Sl and M,Slyh,‘

2.2 MinCq and theoretical results

We now review three recent results of Laviolette et al. (2011), Lacasse et al. (2007), which
constitute the building blocks of our contributions. The first one takes the form of a bound—
the C-bound (Theorem 1)—over Rp(Bg). It shows that the true risk can be minimized
by only considering the first two moments of the Q-margin. Then, following some PAC-
Bayesian generalization bounds, Theorem 2 justifies that the posterior distribution Q can
be learned by minimizing the empirical C-bound. Finally, the authors show that learning an
optimal Q-weighted majority vote boils down to a simple quadratic program called MinCq.

The C-bound is obtained by making use of Eq. (1) and the Cantelli-Chebychev’s inequality
(Devroye et al. 1996) applied on the random variable M (X, y).

Theorem 1 (The C-bound (Laviolette et al. 2011)) For any distributions Q over a class H
of functions and D over X x ), if.Mg > 0 then Rp(Bg) < CLQ) where:

2
e ()
Ex.y)~p (MQ(X’ y))2 /\/ILQ)2

(M)
Cg =1- e

is its empirical counterpart.

Thus, minimizing the C-bound appears to be a nice strategy for learning a O that implies a
Q-weighted majority vote B with low true risk. To justify this strategy, the authors derive a
PAC-Bayesian generalization bound for C g . To do so, they assume a quasi-uniform distri-

bution Q over an auto-complemented set of 2n voters H = {hy, ..., by, hpyt1, ..., honl,
where: hyy, = —hj (auto-complementation) and Q (hg) + O (hkyn) =% (quasi-uniformity)
for every k € {1, ..., n}. Note that, for the sake of simplicity, we will denote Q (/) by Q.

They claim that this assumption is not too strong a restriction and characterizes situations
where, in the absence of ground truth, one gives the same a priori belief on the voters.
Moreover, such distributions have two advantages. On the one hand, they allow us to get rid
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of the classic term which captures the complexity of .% This is a clear advantage since such
a term can be a bad regularization (Laviolette et al. 2011). On the other hand, this assumption
plays the role of a regularization by giving the same a priori belief on the voters and provides
a simple way to avoid overfitting.

The generalization bound is then obtained by taking the lower (resp. upper) bound on
/\/lg together with the upper (resp. lower) bound on ./\/lg2 from the following theorem.

Theorem 2 (Laviolette et al. 2011) For any distribution D over X x ), anym > 8, any auto-
complemented family H of B-bounded real-valued voters, for all quasi-uniform distribution

Q onH, and for any § € (0, 1], we have:
2B/In 2"

D S
oFE, ‘MQ _MQ‘ SRl I
and

b g 2B mm
~ m m

The authors have proved that their setting does not induce any lack of generality. From
Theorems 1 and 2, they suggest the minimization of the empirical C-bound under the con-
straint MSQ > w. Due to the quasi-uniformity assumption, they show that this minimization
problem is equivalent to solving a simple quadratic program involving only the first n voters
of ‘H. Their algorithm MinCq is given in Algorithm 1. It consists in minimizing the denomi-
nator Méz, i.e., the second moment of the Q-margin (Line 3), under the constraints M‘é =U
(Line 4) and Q is quasi-uniform (Line 5). This leads to minimizing the C-bound and thus
the true risk of the majority vote by only taking into account the diversity between the voters
expressed by the empirical second moment.

The Q-weighted majority vote learned by MinCq is:

! 1
Bo(x) = sign [z (2Qk - ;) hk(x):| .

k=1

3 Generalization of MinCq to P-aligned distributions

Rather than constraining Q to be a quasi-uniform on the auto-complemented set of 21 voters
HNke{l,....n}, Qk+ Qk4n = %) as done in MinCq, we generalize this approach to any
P-aligned distribution Q: Vk € {1,...,n}, O + Qk4n = Px, where P = (Py, ..., PHT
sums to 1. In this context, P plays the role of an a priori belief on the voters.

3.1 Expressiveness of P-aligned distributions

We generalize the setting of Laviolette et al. (2011) for quasi-uniform distributions to any
P-aligned distribution on a set of auto-complemented classifiers H, in fact this constraint
does not restrict the possible outcomes of an algorithm that would minimize C 5

2 In the PAC-Bayesian theory, this term is related to the Kullback—Leibler divergence between the posterior
distribution Q and the prior distribution P. See (Laviolette et al. 2011) for more details.
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Algorithm 1 MinCq: a quadratic program for learning Q-weighted majority vote, under
quasi-uniformity constraint

input A sample S ~ D™, the first n voters of an auto-complemented set H, a desired margin & > 0
output A posterior vector Q = (01, ..., Qn)T.

Solve argmin Q' MgQ — AEQ, 3)
Q
TR
T - ~ - N
st. mgQ= 5 +2n M, » 4)
k=1
Vkell,..., n}, 0<Qr<1/n, (®)]
where Q = (01, ..., Q,,)T is the vector of the first n weights Oy, Mg the n x n matrix formed by Mﬁk_hk/
for (k, k') € {1,...,n}? (as defined in Eq. (2)), mg = (M;l e ./\/lg")—r, and:
1 < 1 < !
I N o S
As=(- thl,hk,..., - ;Mhmhk .

Proposition 1 For all distributions Q on 'H, there exists a P-aligned distribution Q' on the
auto-complemented H that provides the same majority vote as Q, and that has the same
empirical and true C-bound values.

Proof 1t follows from Proposition 4 of Germain et al. (2011) and is given in section ‘Proof
of Proposition 1’ of Appendix.

From this proposition, similarly as for MinCq, it is then justified that under the constraint
Mz = 11, the C-bound can be optimized by minimizing the second moment M5, of the
Q-margin. This is done by solving the quadratic program P-MinCq described in the following.

3.2 The quadratic program P-MinCq

P-MinCq is described in Algorithm 2. Similarly to MinCq, thanks to the P-aligned assump-
tion, we only need to cope with the first n voters in H. The objective function (Line (6))
minimizes the second moment of the Q-margin while the first constraint (Line (7)) enforces
a margin equal to . Note that the left-hand side of this constraint is the weighted average
(with weights of 2Qy — Py) of the individual margins (My, ). Finally, Line (8) restricts Q
to be P-aligned. The proof of derivation of the algorithm can be found in section ‘Proof of
Algorithm 2 : P-MinCq’ of Appendix.
The Q-weighted majority vote learned by P-MinCq is:

Bo(x) =sign [Z(ZQk —Py) hk(X)i| .

k=1
The next section addresses the generalization guarantees for P-MinCq.
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Algorithm 2 P-MinCq: quadratic program for learning Q-weighted majority vote, under
P-aligned constraint

input A sample S ~ D™, the first n voters of an auto-complemented set 7, a desired margin u > 0, a prior

vector P = (Py, ..., Py) T, a matrix Mg of size n x n made of elements Mgk Iy
output A posterior vector Q = (01, ..., Qn)T.
Solve argmin (Q — P) T M;Q, ©)
Q
st. m{(2Q —P) = p, 7
Vkefl,....n}, 0< QO < P, (@)
where m}— =My, Mhn)T‘

4 PAC-Bayesian generalization guarantees under sample compression

The proof of the generalization bounds of Theorem 2 is still valid for P-aligned distribution
Q over data-independent voters. Indeed, it only makes use of the P-aligned assumption
corresponding to Qx + Qk4n = Pr + Pk+n.3 This theorem is nevertheless not valid in the
sample compression setting, where the set of voters is data-dependent (such as the set of
k-NN classifiers). Laviolette et al. (2011) have argued that it can be extended to this setting
by using techniques from Laviolette and Marchand (2007). This section is devoted to derive
generalization bounds for P-MinCq in this sample compression setting, allowing us to deal
with data-dependent voters. Our result is rather general (and not restricted to k-NN voters).
It differs from previous PAC-Bayesian results with sample compressed classifiers (Graepel
et al. 2005; Laviolette and Marchand 2007; Germain et al. 2011) in that it is tailored to the
first two moments of the Q-margin with P-aligned distributions.

4.1 Sample compression setting

In the sample compression framework (Floyd and Warmuth 1995) the learning algorithm
A has access to a data-dependent set of classifiers. Each classifier is then represented by
two elements: a compression sequence which is a sequence of examples, and a message
representing the additional information needed to obtain the classifier from the compression
sequence. Then, we can define a reconstruction function able to output a classifier from
a compression sequence and a message. More formally, a learning algorithm A is called a
compression scheme if it is defined as follows.

Definition 3 Let S € (X x )™ = Z™ be the learning sample of size m. We define J,, to
be the set containing all the possible vectors of indices:

m

In=U {01 et omy}.

i=1

3 See (Laviolette et al. 2011) for more details.
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Given a family of hypothesis 7S from X to ) and an index vector j € J, let Sj be the
subsequence indexed by j, Sj is called the compression sequence:

Sj = (Zj17"'7zji)'

An algorithm A : Z(>) 1 H< is a compression scheme if, and only if, there exists a triplet
(C, R, w) such that for all training sample S:

A(S) =R (Ses), ) ,

where C : 2% > Js_| Ju is the compression function, R : 2% x 2, — H the
reconstruction function, and w is a message chosen from the set -QScm (a priori defined)
of all messages that can be supplied with the compression sequence Sc¢(s).

Put into words, given a learning sample S ~ D™, a sample compression scheme is a
reconstruction function R mapping a compression sequence C(S) = Sj to some set HS
of functions h‘;j such that A(S) = R (Sj, a)) = hg’j. For example, k-NN classifiers can
be reconstructed from a compression sequence only, which encodes the nearest neighbors
(Floyd and Warmuth 1995; Graepel et al. 2005). Other classifiers, such as the decision list
machines (Marchand and Sokolova 2005), need both a compression sequence and a message
string. In the next section, we consider the general setting to avoid any loss of generality.

4.2 PAC-Bayesian generalization bounds under sample compression

Let Sj be a sample compression sequence consisting of |j| elements of the learning sample
S. In the PAC-Bayesian sample compression setting, the risks Rp and Rg can be biased by
these elements: we often prefer to compute the empirical risk Rg from §\Sj (Laviolette and
Marchand 2007). However, in order to derive risk bounds in such a situation, Germain et al.
(2011) have proposed another strategy by directly considering the bias. As mentioned in the
introduction, we cannot apply their result to our setting. Indeed, it is valid for loss functions
defining a surrogate of the 0 — 1 loss, which is not suited for the second moment of the margin
we have to consider. Moreover, it depends on the value of the surrogate at —1, which may
lead to a degenerate bound (this does not occur in our bounds).

The derivation of our result is nevertheless based on a similar setting: given a sample S, we
consider HS the set of all possible classifiers h“)j = R(Sj, w) such that w € £25;. We denote
by Qy,, (j), the probability that a compression sequence Sj is chosen by Q, and Qs;(w) the
probability of choosing the message w given Sj. Then, we have:

01,0 = [0, ad 05() = QUS).

a)E.QSj

In the usual PAC-Bayesian setting, the risk bounds depend on the prior distribution P over
the set 5. This prior distribution is supposed to be known before observing the learning
sample S, implying P independent from S. However, in our setting the classifiers in H5
are data-dependent. To tackle this problem, we propose to follow the principle of Laviolette
and Marchand (2007), Germain et al. (2011) by considering a prior distribution defined by
a pair: (Py,,, (Ps; )jel,) » Where Py, is a distribution over J,,, and for all possible com-
pression sequence Sj, Ps; is a distribution over £2g;. Given a training sample S, the data-
independent prior distribution P corresponds to the distribution on H* associated with the
prior (Py,,, (Pspjel, ) then we have: P(h§) = Py, Ps;(w).
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Definition 4 In the sample compression setting, the Q -margin of a point (x, y) over Q is:
Mo, y) =y E h§(x).
[ h?j ~o i

The first two moments ./\/18 and Mgz of the O-margin are defined similarly as before:

MB = E Mo,y and M2, = E WMop(x,y)>.
o=k, o(X,y) 0? (X’y)ND( o(x,y))

In our setting, we assume P-aligned distributions on an auto-complemented set 5. For each
classifier h§ € HS, we denote its complement by —h§. Given S, the associated message set
is 25 x{+,—} and Vo € 25, hg”H = —h(sa’_). We now give the main result of this section.

Theorem 3 For any distribution D over X X ), any m > 8, any auto-complemented set
HS of B-bounded real valued voters of sample compression size at most |j™| < %, for all
P-aligned distribution Q on HS, and for any § € (0, 1], we have:

2B [B% 4in (@)

P ‘ D_MS ‘< >1-5, 9
S,Vll;m My Mo = 20m — [ = ®)
232\/—2‘~2“§X' +1In (24)
Pr ‘MD —MS,| < >1—s. 10
s~pm | 17700 O E G — 2 - (1o
Proof Deferred to section ‘Proof of Theorem 3’ of Appendix.
For data-independent classifiers, i.e. [j"®*| = 0, we recover Theorem 2. As expected, the

theorem indicates that when the compression size |j™#*| is large, the bound becomes looser,
suggesting that the compression size should not be too large to preserve consistency. Note that
the bound B over the classifiers’ output can generally be controlled by the use of appropriate
normalization.

In the next section, we instantiate P-MinCq in the specific k-NN setting by introducing a
rather intuitive but statistically well-founded a priori constraint P.

5 Instantiation of P-MinCq for nearest neighbor classifiers
5.1 Limitations of MinCq in the context of nearest neighbor classifiers

At first sight, one may think that MinCq is a good way to overcome two limitations of k-NN
classifiers. First, while the theory tells us that the higher k, the better the convergence to the
optimal bayesian risk, this holds only asymptotically. In practice the choice of k requires
special care. Therefore, optimizing a Q-weighted majority vote, where the set of voters H
consists of the k-NN classifiers (k = {1, 2,...}), would prevent us from tuning k while
offering a principled way to combine these classifiers.* Second, by making use of the PAC-
Bayesian setting, the minimization of the C-bound provides generalization guarantees that
cannot be obtained with a standard k-NN algorithm in finite-sample situations.

4 Note that other strategies may be used to define the voters, e.g., the nth neighbor can be the nth voter.
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Table 1 Error rates of NN,

SRR, LMNN. VinCo and Dataset NN SNN  LMNN  MinCq  P-MinCq

P-MinCq on twenty datasets Australian 3121 3324 2746 3064 2919
Blood 2647 2487 2674 2540 2567
Breast 0514 0200 0400 0314 0257
Colon 1613 1200 2258 1613 .1290
German 2940 3040 2760 2780 2720
Glass 0370 0648 0648 0370 0370
Haberman 2597 2532 2922 2597 2727
Heart 3481 3926 2148 3926 3556
Ionosphere .1420 1591 1193 .1420 .0795
Lete:AB 0176 0143 0151 0176 0176
Lette:DO 0268  .0293 0126 0268 0260
Lette:OQ 0961 0961 0334 0995 0892
Liver 3584 3468 3584 3410 3584
Musk1 1339 1464 2092 1715 .1297
Parkinsons 2041 2143 1531 2041 2347
Pima 2526 2474 2604 2422 2370
Sonar 2762 2952 0762 2952 2000
Voting 0596 0596 0413 0688 0688
wdbe 0596 0842 0491 0561 0456
wpbe 2200 2500 2300 2500 2500
Avg.error L1788 1844 1607  .1818  .1689
Avg. rank 2.9 3.1 2.65 29 2.25

We conduct a preliminary experimental study to compare a standard k-NN classifier
(where k is tuned by cross-validation) with MinCq (see Sect. 6 for details on the setup). Over
twenty datasets, MinCq achieves an average classification error of 18.18 % against 17.88 %
for k-NN (see Table 1 for more details). It is worth noting that using a Student paired t-test,
we cannot statistically distinguish between the two approaches. This is also confirmed by a
sign test, which gives a record win/loss/tie equal to 7/6/7 leading to a p-value of about 0.5, as
illustrated by Fig. 1. This serie of experiments clearly shows that MinCq performs no better
than a single well-tuned k-NN classifier.

We claim that these disappointing results can be explained by the fact that the quasi-
uniformity assumption on Q is not appropriate to settings where one has an a priori belief
on the relevance of the voters, which is typically the case in NN classification. Indeed, for
obvious reasons, close neighborhoods are likely to provide more relevant information than
distant ones. We propose to overcome these limitations by using an instantiation of P-MinCq
based on a constraint P suitable for NN classification.

5.2 A statistically well-founded constraint P

In standard k-NN classification, the theory tells us that the higher &, the better the convergence
to the optimal bayesian risk. However, this property holds only asymptotically, i.e., when the
size m of the training sample goes to infinity. In practice, training data is limited and one
has to set k carefully. On the one hand, we want to use a large value of k to obtain a reliable
estimate. On the other hand, only points in a very close neighborhood lead to an accurate
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Fig.1 Comparison of MinCq VS NN. Each point in the scatter plot shows the test error rate of the algorithms
on a single dataset. A dataset above the bisecting line is in favor of MinCq

classification rule. Several theoretical and experimental studies in the literature have tried
to analyze this trade-off between small and large values of k. As suggested by Duda et al.
(2001), a good solution consists in using a small fraction of the training examples, equal to
about /m/|Y| neighbors, where |)| is the number of classes.

The context is slightly different in P-MinCq, since we aim at linearly combining k-NN
classifiers (k = 1, 2, ...). Rather than setting k, we aim at choosing a suitable constraint P,
which plays the role of an a priori belief on the voters. As suggested by Devroye et al. (1996),
in a weighted nearest neighbor rule, nearer neighbors should provide more information than
distant ones. Following this, we propose the following constraint P (normalized so that they
sum to 1):

Vk>1, Pr.=1/k. (11)

P concentrates the weights on voters that are based on a small fraction of the training data,
i.e., points in a close neighborhood (as suggested by Duda et al. (2001)), but also takes into
account (to a smaller extent) the information provided by (potentially) the entire training set.
To justify this choice, we establish in the following a strong relationship between Eq. (11)
and the popular choice /m /2 for k in k-NN binary classification. Our analysis is based on
the characterization of P by its median M, which corresponds to the number of neighbors
involved in the voters accumulating half of the total weight. While defining the median of a
continuous distribution is rather straightforward, finding it in the discrete case of interest (i.e.,
where x € {1, ..., m}) is slightly more tricky and requires an approximation. Let us define
Hy = Zi”: 1 % and H, = >0, % They correspond to the sum of terms of a harmonic
series for which no closed form is available. However, using the partial sums of the series,
for all n we can define H, such that: H, = > 7_, % = In(n) + y + €,, where y is the
Euler-Mascheroni constant (y >~ 0.5772156) and €, ~ 2% Therefore, we have:

1
HM:E m
M 1m
©2 =52y
x=1 x=1

@ Springer



140 Mach Learn (2014) 97:129-154
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Fig. 2 Comparison between the median of the harmonic series > % and /m /2

1 1
< In(M) +y + ey = S(nlm) +y) + Sem

1 1
& In(M) = In(v/m) = 5y + ~ém — €u

2 2
S In(M) = In() =~y — — (usi Ly
n = In(V/m 2y iy using €, o

1 1
= In(M) <In(v/m) — 5)/ — 4—(since Equation (11) =M <m/2)
m

=M < \/m exp(—y) exp (—ﬁ) ~ \/? (12)

The main information provided by Eq. (12) is that the approximation of the median of P
is very close to «/m/2, the value suggested for k in the k-NN rule for binary classification
problems. Figure 2 shows a graphical illustration of the closeness between the median of the
harmonic series and 4/n/2. We have thus established a strong relationship between a classic
choice for & in standard k-NN classification and our P constraint in a weighted majority vote
of k-NN voters. The next section will feature a large comparative experimental study that
validates our choice for P.

Before that, recall that the generalization bound derived in Sect. 4 suggests to limit the
prototype set for the k-NN classifiers. A first approach could be to divide the learning sample
in two sets: one for defining the k-NN classifiers and one for learning the parameters of
the model. However, this strategy does not stand in the sample compression scheme and
has the disadvantage to discard useful information. Another solution is to apply—for each
k-NN voter—some prototype selection or reduction techniques (Duda et al. 2001) in order to
remove training examples that do not change the labeling of any test example. This implies
that each k-NN must use its own compressed sample corresponding to a subset of the training
sample S. However, in addition to its computational cost, this strategy is not always relevant
in the context of NN since it may be difficult to obtain a good (i.e. small) compression scheme
for some distributions. Nevertheless, in the particular setting we consider for k-NN, we have
noticed that using large |j™**| (even equals to m) does not influence the practical performance
of P-MinCq.
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6 Experimental results

In this section, we propose a comparative study of P-MinCq applied to the context of NN
classification (as described in Sect. 3). We compare it against four different approaches.
categorization task.

— The standard Nearest Neighbor algorithm (NN) which plays the role of the baseline.

— The Symmetric Nearest Neighbor algorithm (Nock et al. 2003) (SNN), a variant of NN
where the class of an instance x is determined by the majority class among the training
points that belong to the k-neighborhood of x (like in NN) plus those that include x in
their own k-neighborhood.

— Large Margin Nearest Neighbor (Weinberger and Saul 2009) (LMNN) which learns a
Mahalanobis distance by optimizing the k-NN training error (with a safety margin).
Then, k-NN is applied using the learned distance. Note that LMNN has been shown to
be competitive with a RBF kernel SVM.

— MinCq (Laviolette et al. 2011) which considers a quasi-uniform distribution.

We evaluate these methods on twenty benchmark datasets and an object categorization task.

6.1 Benchmark datasets

Experimental setup. These twenty binary classification datasets are of varying domain and
difficulty, mostly taken from the UCI Machine Learning Repository.> We compute neigh-
borhoods using the standard Euclidean distance. We randomly split each dataset into 50 %
training and 50 % test data, except for letterAB, letterDO and letterOQ for which we split
20 %/80 %. We tune the following parameters by 10-fold cross-validation on the training set:
the margin parameter © for MinCq and P-MinCq (among 14 values between .0001 and .5)
and the parameter k for k.-NN and LMNN (among {1, ..., 10}). The trade-off parameter of
LMNN was set to .5, as done by Weinberger and Saul (2009).

Results. We report the results in Table 1. We make the following remarks. First, P-MinCq
significantly outperforms a standard NN classifier. On average over the datasets, P-MinCq
achieves a classification error of 16.89 % while NN reaches a level of 17.88 %. Using a
Student paired t-test, this difference is statistically significant with a p value of .06. This is
further supported by a sign test, which gives a record win/loss/tie equals to 12/5/3 leading to
a p value of .07. P-MinCq also outperforms SNN despite the fact that the latter performs well
on a few datasets (p value of .01 with a Student test and .24 with a sign test). Furthermore,
P-MinCq performs significantly better than MinCq with a p value of .02 using a Student
test. With a sign test, the p value is about .03 with a record win/loss/tie equals to 12/4/4.
This shows the usefulness of our generalization of MinCq to P-aligned distributions, and that
P = } is a suitable a priori distribution in the context of NN. Finally, despite the fact that
P-MinCq is not a metric learning algorithm, it is competitive with LMNN (.1689 vs .1607
with a p value of about .10 with a Student test). A sign test leads to a p value of .5, indicating
that one method is equally likely to perform better than the other.

In fact, we claim that P-MinCq and LMNN are rather complementary. Indeed, on the one
hand, LMNN is a metric learning algorithm that can tweak the neighborhoods of the points
(sometimes with great success, e.g., heart, parkinsons or sonar) but may perform worse than
NN, especially because it often overfits when dimensionality is high (e.g., colon or musk1).
On the other hand, P-MinCq does not change the neighborhoods of the points but combines

5 http://archive.ics.uci.edu/ml/.
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Table 2 Error rates of LMNN

and LMNN+P-MinCq on twenty Dataset LMNN LMNN+P-MinCq
datasets Australian 2746 2832
Blood 2674 2701
Breast .0400 0257
Colon 2258 2258
German 2760 .2820
Glass .0648 .0370
Haberman 2922 2727
Heart 2148 1926
Ionosphere .1193 0795
Letter:AB .0151 .0151
Letter:DO .0126 .0084
Letter:0Q .0334 .0386
Liver 3584 3584
Muskl 2092 1297
Parkinsons 1531 1020
Pima 2604 2370
Sonar 0762 .0952
Voting .0413 0367
wdbc .0491 .0456
wpbc 2300 .2800
Avg. error 1607 1508

several nearest neighbor rules, and as a combination of classifiers, appears to be quite stable
(as shown at the bottom of Table 1, it achieves the best average rank) and robust to overfitting.
To highlight how P-MinCq and LMNN complement each other, we perform an additional
series of experiments aiming at combining LMNN and P-MinCq when this seems relevant. To
do so, we make use of the validation performance: if LMNN performs better than P-MinCq,
then we plug the distance learned by LMNN in P-MinCq (otherwise we keep the standard
Euclidean distance). We report the results in Table 2. The combination LMNN+P-MinCq
outperforms all other methods, including LMNN alone (p values of .05 with a Student test
and .17 with a sign test). Notice that on some datasets where LMNN was by far the best
performing method in the first series of experiments (e.g., on heart, parkinsons or voting),
LMNN+P-MinCq is able to further improve these results (Fig. 3).

6.2 Object categorization

Experimental setup. We provide additional experiments on Graz-01 (Opelt et al. 2004), a
popular object categorization database that has two object-class (bike and person) and a
background class. It is known to have large intra-class variation and significant background
clutter (see Fig. 4). The tasks are bike versus non-bike and person versus non-person and we
follow experimental setup from Opelt et al. (2004): for each object, we randomly sample 100
positive examples and 100 negative examples (of which 50 are drawn from the other object
and 50 from the background). Images are represented as frequency histograms of 200 visual
words built from SIFT interest points. We thus compute neighborhoods using two popular
histogram distances: the x2 and the intersection distances.
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Fig. 3 Comparison of P-MinCq versus LMNN (leff) and P-MinCq+LMNN versus LMNN (right)

Fig. 4 Some examples of bikes (left column), persons (middle) and background (right) taken from Graz-01.
Only parts of the objects of interest may be visible, and the background class features difficult counter-examples
to the bike class, such as motorbikes

Table 3 Error rates of NN, R . K
SNN, MinCq and P-MinCq on Distance Task NN SNN MinCq P-MinCq
the Graz 01 database, averaged 2 Bike 2310 2090 2160 2095
over 10 runs
x2 Person 2385 2305 2730 2250
Intersection Bike 2260 2185 2130 2055
Intersection Person .2350 2370 3180 2255
Avg. error 2326 2238 2550 2164

Results. We report the results in Table 3, averaged over 10 runs. P-MinCq is again the most
stable method and also the best on average across tasks and distance measures. Indeed,
it significantly outperforms MinCq (p value smaller than .01 with a Student test), again
illustrating the importance of a good prior P for learning the majority vote. Moreover, P-
MinCq performs significantly better than NN ( p value smaller than .01 with a Student test) and
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to a smaller extent than SNN (p value of .13). It is worth noting that SNN performs rather well
on this database: with large intra-class variation, it seems that extending the neighborhood
can pay off. However, while the symmetry heuristic used by SNN is not relevant for all
datasets, P-MinCq provides a principled and robust alternative.

7 Conclusion and future research

In this work, we have proposed a novel approach called P-MinCq for learning a weighted
majority vote over variable-performing classifiers in the context of a recent algorithm MinCq
which finds its grounds in the PAC-Bayesian theory. Our method is based on a generalization
of MinCq to P-aligned distributions allowing us to incorporate an a priori knowledge in the
form of a distribution on the voters. This approach does not restrict the expressiveness of
the majority vote and we have provided generalization guarantees for data-dependent voters
such as k-NN classifiers. Moreover, we have defined a specific P-aligned distribution adapted
to the case of k-NN and provided experimental evidence of its good behavior.

Many promising perspectives arise from this work. First, the setting proposed in this paper
is general enough to be used to combine virtually any set of classifiers (provided that they
are bounded). For instance, our approach allows one to combine strong and weak classi-
fiers and incorporate some a priori knowledge about their performance. Another interesting
application is multi-view learning (Xu et al. 2013; Sun 2013), where P-MinCq could be used
to combine classifiers (such as SVM) trained on multi-modal data coming from different
sources and/or feature types (Morvant et al. 2014). In this case, P could encode the prior
knowledge about the relative relevance of each modality for the task at hand. In general, in
the absence of background knowledge, we note that defining a relevant P distribution for a set
of learners can be difficult. Developing strategies to automatically assess P from (held-out)
data could be very helpful in practice (Lever et al. 2013).

It would also be interesting to combine P-MinCq with other metric learning algorithms,
such as the recent y 2 distance learning method for histogram data (Kedem et al. 2012). Lastly,
extending P-MinCq to a multi-class setting is also of high interest. However, this requires
margin and loss definitions tailored to multi-class problem that imply technical difficulties,
with the need of different theoretical tools such as in Morvant et al. (2012).
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Appendix
Tools

Theorem 4 (Markov’s inequality) Let Z be a random variable and t > 0, then:
P(Z| =z 1) <E(Z])/1.

Theorem 5 (Jensen’s inequality) Let X be an integrable real-valued random variable and
g(+) convex, then: g(E[Z]) < E[g(2)].
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Lemma 1 (from inequalities (1) and (2) of Maurer (2004))

Letm > 8, and X = (X1, ..., X;m) be a vector of i.i.d. random variables, 0 < X; < 1.
Then:1 Jm < Eexp(mkI(L > X;|E[X;]) < 2/m, where Kl(a|b) = aln$ + (1 —
a)ln 1=%.

Proof of Proposition 1

We give here another version of the proof of Proposition 4 of Germain et al. (2011).Let O
be a distribution over H, let M = maxy¢(1,....n) P%|Qk’+n — Qyl, and let Q' be defined as

0, = B %+ Qk—Q"*” , where by convention (k+n)+n = k and Py, = Py. First, let us show

that Q’ 1s actuallyP aligned on the auto-complemented H, thatis Vk € {1, ..., n}, Qk < P
and Q) + Q) = Px. The following always holds:
Qk Qk+n Qi — Qk+n
<P = =" <p kT Xkin _ p
oj=r =73 2 o ST Ty S

1
— — - < max —|Qan— Orl,
P (Qk Qktn) = ] ) P [Qkr4n — Qi

P - P _
and: Qf + Q. = 716 i Ok ZA/?kJrn n k2+n n Qk+;M Ok
Qk — Qk+n + Ok+n — Ok
=P = P
k + T %

Then, let us show that using Q’ does not restrict the set of possible majority votes:

2n n
JE ) = > 0ih(x) = D (0= Oy )k (X)
= k=1
1 n 2n
= 27 2 Q= Qurn)hic(x) = ZQkhk(x) 2 nE 0.
k=1 k 1

Therefore, we deduce that Vx € X, Bo/(x) = Bg(x) and since the constant term ﬁ is
present in both first and second moments Mg/ and ./\/18,2, it vanishes in the C-bound.

Hence, C 3, =C 3 regardless of the distribution D over X x ).

Proof of Algorithm 2 : P-MinCq

The Objective Function. We show how to obtain Line (6) from the definition of MZZ

2n 2n

h n Z z Ok Qk’th hyr

L=
0 <hh’> ~0? Pty

—Z Z[Qka/ E he 00+ Qi Qi B hicen 0y (09
k=1k'=1 I
0K E IOy + Qtn Qprn B Bty ]

n n

—ZZQka/ E 0y (0 = Ot Qp B i)y ()
k=1k'=1

— Ok Qk’+n F;‘ hi(X)hyr (X) + Qkgn Qk/+n l% hi (X)hy(x) (becausehy, = —hy)

@ Springer



146 Mach Learn (2014) 97:129-154

=2 2 M [0k Qu — (P = Q0 Qp = Qu(Ppr = Qp) + (P — Qi) (P = Q)]
k=1k'=1

n n
=>> M,Slk'hk, [4Qx O — 2P Oy — 2Py Ok + Py Pyl
k=1k'=1

n n n n n n

a3y Qk/\/l;fk_hk/ O —4> > PkM;fk’hk/ EDIDD PkPk/Mﬁk’hk,
k=1k'=1 k=1k'=1 k=1x=1

41Q - P "™MsQ1+ €y,

where C1 = >} >}/ Px P My n,, and the multiplicative value 4 can be considered as
constant w.x.t. Q. Therefore, we get Line (6) of the optimization problem.

The Margin Constraint.

‘We now show how to obtain Line (7) from M‘é We have:

2n

DMy, =D (Ok — Quin) M,
k=1 k=1

S N
= E
MG = E M;

> 20k — POM;, =mg(2Q — P),
k=1

where mg = (Mp,, ..., My,)T . Replacing M‘é by w, we get Line (7) of the optimization
problem.

Proof of Theorem 3

Proof of Equation (9). Let S be any training sequence of size m. Suppose that H5 is auto-
complemented. Moreover, a distribution on HS is P-aligned if for any (j, o) € J, X Q2s; we
have:

Q(hga,+))+Q(_hga,+)) _ Q(h(so,+))+Q(h(Sa,7)) _ (h(so,+>)+P(h(So,7))

(h (Su,+)) 4P (_h(SU’H)'

P
P
It implies that: M}?(U.Jr) = —MZ)(U,_), and:

N N

2 2 2
S D _ S D _ S D
(Mh(a.+) - Mh(a,+)) - (_Mh(a,—) - (_Mh(zr.))) = (Mh(”‘_) - Mh(rr,)) .
S; Si i S S M)
j J il J ] i

Similarly as in McAllester (2003), we now consider the following Laplace transform:

m — |j 2
exp( (./\/li(g' — MhD‘é’J) ) .

Xp =

e~
Si

2B2

Remark that f(a, b) = ﬁ(a — b)? is convex because its Hessian matrix is positive semi-
m— i
definite. For lightening the proof reading, we denote mj = 282“" For any P-aligned

distribution Q, we have:

_ . S 44D \2
2Xp _h”gjlj:vP exp (mj(/\/lh?j ./\/lh(su]) )
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h(S‘j”HeH
+ /P(hé‘j’))eXP(mJ'(Mh(n ) Mh(a )))dh(s?)
hg,;'_)eHS

= / (P<h§j.”“>+P(—h&j’“))exp(mJ(MW Mh<a+)))dh(s?+)

hy P ens
.l

= / (Q(hfg‘j"*))+Q(—h(s‘;’+)))exp(mj(/\/lh(g+) MW)))dhé;."*)

hg Y ens
2
/Q(h(rf+))exp(mj(./\/lh(a+) M}Il)(s{,,“))dhg;’*)
hgens :
/Q(h(“ ))exp(mj(./\/lh(a 5 Mh@, )))dh(” -
ho D ens

Using Markov’s inequality (Theorem 4) we have:

1
Pr (prf EXP)ZI—B.
S~Dm S S~Dm

Taking the logarithm on each side of the innermost inequality, for any § € (0, 1], with a
probability at least 1 — 8 over the choice of S ~ D", for all P-aligned distribution Q on H5,

we get:
JAMS — mDP? 1
In |:h“S’jEiQeXp (mJ(thqj MhaS,J) ):| <In |:6S EmXpi|.

We apply Jensen’s inequality (Theorem 5) on the concave function In(-):

In| E exp|mj(M>, —MPE, 2) > E mj(MS, — MP, %,
|:h‘§j~Q P( i g, hsj) w0 i g, hsj)
Recall that [j™®] is the maximal size of the compression sample. Then by again applying

the Jensen’s inequality on the convex function (m — |j™**|) f(a, b) = m_zllj;ax‘ (a—b)? =

mj(a — b)? for the left side of the previous inequality, we have:

E
ng~0

. S _a4bD\2_ M T S a4D\2
mj (th’J Mh‘g;) ~5B2 (h%)EQ |.]|(th§; thsvj) )
J
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m |jmaxl s D2
> — E Mo — Mo
2B? hg}j~Q( ks th)

m — ledXI
2B2

2
(Mg — Mg)™.
Then:

m — [j7] s p\2 1
I < _ >1_
sfgm ( 2B2 (M MQ) <ln (SSNED’”XP z1-s

We thus have to bound E X p. We consider M % the empirical margin computed on

the examples of the 1earmng sample S that are not in the compression sequence Sj. While
S\S;
M;jw may contain some bias, M "y is an arithmetic mean of truly i.i.d. (m — |j|) random

Varlables Note also that these two random variables have very close values.
We have:

0= mMjy = (m - |J|)MS\SJ < Bjl,

then :
. . S\Sj S\Sj . . S\Sj .
—Bljl < —[jIMs” <mMgy —mM,," < |jl — lilMe" < Bljl,
Sj Sj Sj Sj
and thus :
}M,Slw — M| < B
Sj Sj m
Then:

E Xp= E E Msw MPE, )
s~pn” ¥ S~D"h§~P cxp (mj( hsj)

2
=E E E E _exp|mM, —Mp) ).
i~ P~ Dl Ps; S;~ pm—lil S S

Forallje J,, Sje 2ilwe 25, % {+, —}, we have :

2
E Xp= E e (M3, — MD,
S~Dm P Sj,\,Dm—m xP (m']( th th)

S: S:
E exp (mj(M;jw - M3+ M, —M,?w)z)
il 5 5 5 5

Sj’va7 j
2 S: S:
= E o[ (e, - ] T2l ML lagh - M2

+ [k - mp 7).

From Equation (A.4) and since exp(.) is increasing, we obtain:
Blj B
E Xp< E exp |:mj (|:|J|] 2J + [./\/i /\/lth ]2)] .
S~Dpm Sj,va—L]I m Sj
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Since we suppose that for all j: [j| < [j™*| < m, then:

m =il (Tl lil . m—1jl [l 2 [
o 2 ML}~ jymax ki “ < )
2B (|:m + m ]~ . 2B m? + m|)]~ B

|jmaX| S= D 2
+mj (Mhlas) - thj)

Then: E Xp< E exp (
S~Dm S ~ Dm=lil

- ™
< exp 2 E exp M - MPE, s, ]

NDm lil
MSJ: MD
T gy 1 Mig 12
ieXP( 5 ) DmHeXP m—IJI) 5 )—(2 5 )] .

By definition 2(a — b)*> < kl(a||b) = aln 4 s+ 0—-a) ln % is valid for any a, b € [0, 1]
provided that if @ = O then so is b and if @ = 1 then so is b. Since the elements of H° are
B-bounded and SJr is drawn i.i.d. from D, we have:

S:
MP, =—-B= M} =—-B, and Mw—B:>Mw—
[ h, h e

Then:
D 55 D 55
! Mh?j = ! Mh?j 0 d ! Mh?j = ! hg}j 1
_—— = _—— =, an _—— = _— =
2 2B 2 2B 2 2B 2 2B

Moreover since:

S=
J D
1 Mg 1 Mig
< - _ 1 <1, and 0<—-— L <1,
-2 2B 2 2B
we have:
S:
J D
£ X, < [jmax] E ( . 1 h‘;’j 1 Mh‘g’j
X —_— X X m — ~— — Q| —
S~Dm P = p B Sj,\,Dm—\jI P J 2 2B 2 2B

We apply Maurer’s Lemma (Lemma 1):

JmaX|
E Xp < E 2 —1j
E p_exp( = )ijmm_u m —1iD

|jmaX| |de|
§exp( 3 )x2 (m—|j|)§exp( )XZ\F

Finally:
for allP-aligned distributionQ on H5,

max
Pr 23\/“3 1 (z‘f) >1-5

S~Dm D s
|MQ - MQl =

2(m — [j™])
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Proof of Eq. (10). Using similar arguments as the beginning of the proof Eq. (9), we have:

2 2

S D _ S D
(Mh(o.+) h(0,+) - Mh(a,+) h((r,+)) _(Mh(a.—) h(0,+) - Mh(a,f) h(a,+))
Sj ’ Sj/ Sj ’ Sj/ Sj > Sj/ Sj ’ Sj/
_ S D 2
_(Mh(a.+) h(Uﬁ) - Mh(0.+) h(G,*))
S5 Sj/ Sj Sj/

_ S D 2
—(th,—) po Mh«x—) hw,—>) .
Sy s Sy TS

Similarly as in McAllester (2003), we now consider the following Laplace transform:

m—[juj] S D 2
Xp = E exp 74(/\/“] o — M7 w,)
h‘g’j,h‘;er 2B hs; s, sy I,
For I : . m—[juj| _
or lightening the proof reading, we denote mjyuy = gt Remark that f(a, b) =

ﬁ (a — b)? is convex. For any P-aligned distribution Q, we have:

2
4Xp = E exp(rn~u~/(/\/ts , —MP /) )
0 o . p2 I e h® "2 h%
th’hs.’ P 5 ’sj, Sy
_ (o,+) (0.+) N D 2\ 41 (0,4), (0,+)
= / PGPS exp(my (M o =ME 4y (o)) ) R
j j hsj g gy g i
j j

h(S‘,"“,h(S‘Z'ﬂe(HS)2
J J

(0,-) (0,—) N D 2\ 41, (0.7, (0,—)
+ / P TP )exp(mjuj/(/\/lh(aﬁ)’h(aﬁ)7./\/lh(sm_),h(sm_)))dhsj B
ng T g T erS)? R U
J §
' ©)y pplot) s D 2) 450 2) 0.
+ / PG PUG D expm g (M) oy =MBy ) )G R
Sj ’Sj/ Sj ’Sj/

hg‘;*‘),h(s‘?“e(HSﬂ
i
(0,4) (0.-) N D 2\ ;1 (0. +) (0,-)
+ / P(hs TIPS, )exp(mjuj,(Mh(H)h(m_)—Mh(ﬁ)h(k)))dhsj g
hga’+)‘h(€’7)E(HS)2 S: Sj/ Sj Sj/
i ]

= PG+ PRI (PR )+ PR )
SJ S,l Sj/ Sj/
h§7.+),h(sa/.+)e(Hs)2
i
2\ ;. (0,4), (0.,4)
) )thj th/

S D
By (Mo 4y 00~ Mot 04)
Sj Sj/ Sj Sj/

_ / (Q(h(;}*+>)+ Q(—h(;}‘*'))) (Q(h<§j’/+))+ Q(_h(gj’+)))

Izg‘;‘+).h§{;'+)e(ﬁs)2

N D 2\ ;. (0,4), (0,+)
exp(mjuj/(Mh(a‘_*_) o) _Mn("-“ﬁ(”~+)) )dhsi s
Sj Sy Si Ssr h
J J J
S D 2
= 4hw hg 0 exp (’”juj/ (Mh‘” w M o Lo ) ) =4Xg.
Sj’ s/ Sj‘ Sj/ Sj' Sj/

J

1
Now, by Markov’s inequality (Theorem 4) we have: SPLI;'" (X p < 3s Fb X p) >1-36.
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By taking the logarithm on each side of the innermost inequality, for any § € (0, 1], with
a probability at least 1 — § over the choice of § ~ D™, for all P-aligned distribution Q on
HS we have:

1
| B exp(my (M, —ME L)) =i < E Xl
h‘gj’hg{/NQZ Xp mJUJ( h%,h%’ h‘“ hm) = 5 s~bm P
J

We apply Jensen’s inequality (Theorem 5) on In(.):

D 2 D 2
In E exp| mjuy (th hw th hw ) = E mjuy (th ha) th ha) ) :
h(u ha) "’QZ hw h(:) ,\,QZ

Recall that |j"*| < % the maximal size of the compression sample. Then by again applying
the Jensen’s inequality on the convex function (m — [j™*|) f(a, b) = == e ‘( —b)? =

2B%
mijuj (@ — b)? for the left side of the previous inequality, we have:

2 s D 2
E mjymS,  —MP = E ujn(m -M
h") h”’ QZJUJ( ](u hw hw hu) ) 2B4 /1"’ hw NéZ |.] .] |)( h(‘) hw hw h"’ )
m = 2[j"| S )
N Y E (M w lL) M (z) (4),
2B* I b~ 02 g, ,)
m — 2|jm

2
= T (Mz)z - Mgz) .

Then:

m = 20§ o D2 1
T, (T(MQZ_MQZ) <h|= E Xp|)z1-4

We thus have to bound E X p.

\(SJus/

We consider Mh the empirical second moment of the margin computed on the

SJ S/
examples of the learning sample S that are not in the compression sequence Sj. While

s S\(S;USy)
th ” may contain some bias, th 0

S _] Si Sy
random variables. We can also note that these two random variables have very close values.

We have:

is an arithmetic mean of truly i.i.d. (m — |jUj'|)

. . S\(S;US:/) . .

<mMsw = m—=[uipsm T < B2juy),

h h h%’j,h%/

then:
e s . S\(Sj S) S\(S;US:r)
-BYjujl < —jujim Msw — M
" h‘“ hg h"’ g,
L . S\(SUSy) o
SUiT-luim, 7 < Bjujl,
Sj' Sj/
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thus
S\(S;USy B2juj
ME S| o BIOTT (13)
hsj’hsj, hsj’hsj, m

Given two compression sequences Sj and Sy, Let j be the vector of indices that are not in
jUj. Then:

2
E Xp=E E exp(myM,  —M )
i / /
S~Dm SNDmhl;’ji 'h%’/ NPZ hg{l’hf;]’ hg{l ,hgﬁ:i/
2
- E E E E - exp (mjy (M5, 0 =MD )7)
3§/~ P25, S ~Dlil x DIV 10,0~ Ps; X Ps., g~ p—liy'| hg. kS, he he,
1°°) J ] L | L
. 0 H i
Forallj,j € (Jn)%, Sj, Sy € Zilx 20w, o' € (ng x {+, =} x (.Q’j, x {+, —}), we
have:
s D 2
E  exp (mjuj/ ('Mh’” we th h“”) )
S:~ Dm—ljui’| Si0'ts., Si 'Sy
J J T A |
S: S 2
_ . s _aqd i 4D
= E_exp (m‘,UJ,(th”hw, My MY = MP ) )
sij Vi’ Sjrsy S sj, S Sj, Sj Sj/

S
s j 2
< E exp I:mjujr([./\/lhw p th h‘”/]
SjNDmf\M\ S tsy Sisy

55

/
h2 he
Sj Sj/

S:
J D
he pe -M
Si? Sj/

7
" he
Sj Sj/

+2|M5, - M

/
h()). ,hO)
58y

Sz 2
J D
|Mm HM =My ] )]
Sj’ Sj/ Sj’ Sj/

From Eq. (13), since exp(.) is increasing we obtain:

2
B2iUi B2liUi
EXp < E exp[mjuj/([ i J|] +2 -]
S~Dm Sj,\,DmfljUj’\ m m

MY P ]2)].

7 /
h$ h¢ h§ h
Sj Sj/ Sj Sj/

Since we suppose that for all j we have |j| < |j"*| < %, we can easily compute:

12 - - max
Uil Uil s Uil , 2 205
ijj’( [7 +250 ) =20 miup\ N t ) | = T

Then:
[jmax| s b )
E Xp< E exp| ——5— +muy| M — M ,
S~D" Sy~ D1y B? il g, hg?j,hogj,]
2|jmex| 5 .
.. J _ D
= eXP|: B2 TG CXp | mjuy [th ho' Mh“’ h“,’/]
Sz~ pm—liVi’| KYRICKYW sio /s,
J L | I
2|jmaX|
<exp 5
B SjNDm—\jUj’\
5 D
he ,h‘”/ ho ,h“’,
S; j 1 Sj Sj/

xexp | 2(m — [jUj']) (% - %) - (5 - T)
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We know 2(a — b)? < kl(a||b) is valid for any a, b € [0, 1] provided that if a = 0 then so is
b and if a = 1 then so is b. Since the elements of H5 are B-bounded and Sj is i.i.d. from D,
we have:

S S
D _ _p2 j _ 2 D _ 2 f _p2
th w = B = 'Mh“’ ne = B-, and Mh‘“ ! = B = Mh‘” o = B~
Sj’ Sj’ Sj’ Sj’ Sj’ Sj/ Sj’ Sj’
Then:
S S
D j D §
th h(l)/ hu) ha)/ w a)’ Mhu) hlu/
1 Sitsy 0 1 Sitsy 0 d Siotsy 1 850y
- - =0= - — =0, and = — = -
2 2B2 2 2B2 2 2B? 2B?
Since
5 D
/ /
1 LR by by
055—7232 <1, and 055—7232 <l,
we have:
2 jmaX|
E mXp < exp 3 o
S~D B SjNDnz—\JUJ’\
S5
J , MD

0
Si Sy

xexp | (m — [jUJDKI (% — i

!
| hgiri ,hg{i/
27 2B

By applying Maurer’s Lemma (Lemma 1), we obtain:

jmaX|

2 2
E X E 2J/m—|juj) <
s~on” " exp( B2 ) i~ D licy | (m = Wo¥D = exp(

|jmaX|

B2

IA

)2\/ (m —1jUj'

jmaX|

exp (2 o ) 2.

IA

Finally:
for allP-aligned distribution Q on 5,
2 ymax 2
Pr 22 [ (B |2
S~Dm P S B2 )
— <
M2 = Mepl = 20m — 2[™])
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