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Abstract Automated data acquisition systems, such as wireless sensor networks, surveil-
lance systems, or any system that records data in operating logs, are becoming increasingly
common, and provide opportunities for making decision on data in real or nearly real time.
In these systems, data is generated continuously resulting in a stream of data, and predictive
models need to be built and updated online with the incoming data. In addition, the predictive
models need to be able to output predictions continuously, and without delays. Automated
data acquisition systems are prone to occasional failures. As a result, missing values may
often occur. Nevertheless, predictions need to be made continuously. Hence, predictive mod-
els need to have mechanisms for dealing with missing data in such a way that the loss in
accuracy due to occasionally missing values would be minimal. In this paper, we theoreti-
cally analyze effects of missing values to the accuracy of linear predictive models. We derive
the optimal least squares solution that minimizes the expected mean squared error given an
expected rate of missing values. Based on this theoretically optimal solution we propose a
recursive algorithm for producing and updating linear regression online, without accessing
historical data. Our experimental evaluation on eight benchmark datasets and a case study
in environmental monitoring with streaming data validate the theoretical results and confirm
the effectiveness of the proposed strategy.
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1 Introduction

The amount of automated data acquisition systems installed in the urban and natural environ-
ments is rapidly increasing. It is predicted that sensor data collected from satellites, mobile
devices, outdoor and indoor cameras will become the largest information trove for our society
in the coming years (Brobst 2010). Predictive models using such streaming data as an input
are widely applied in production quality control, air pollution monitoring, detecting traffic
jams or severe road conditions, route recognition, road navigation, cargo tracking and many
more (Gama and Gaber 2007). In the last decade a lot of predictive modeling approaches
for streaming data have been developed (Gama et al. 2014), however, the majority assume a
standard operational setting where input data is available clean and preprocessed, ready for
prediction.

In real automated data acquisition systems, missing values often occur. Physical mea-
surement sensors are exposed to various risks due to, for instance, severe environmental
conditions, physical damage or wear and tear. Moreover, often data acquisition systems rely
on limited power sources (batteries), are installed in remote or hardly accessible locations, or
are unaccessible during operation runtimes. Under such circumstances it is very common to
have time intervals when some data values are missing; however, at the same time a predictive
model needs to deliver predictions continuously and without delays.

As an example, consider a remote environment monitoring system, which measures mete-
orological variables, such as temperature, humidity, and air pressure. Suppose the goal is to
monitor and predict the level of solar radiation, that cannot be directly measured. It has been
observed in a case study (Zliobaite and Hollmen 2013) that at least some readings may be
missing 25 % of the times; however, solar radiation estimation need to be provided all the
time.

This paper investigates how to deal with missing values in predictive modeling with
streaming data. Discarding the incoming observations that contain missing values is not an
option, since there will be no predictions for these periods of time, when some of the input
values are missing. We could maintain a set of predictive models built on feature subspaces
of the input data, and for each combination of missing values apply a model that does not
require this data, e.g. Polikar et al. (2010). However, such an approach is practical when
small number of missing values is expected and models do not need to be updated online.
If we consider models for all possible combinations of missing values, we will end up with
keeping and updating online 2" predictive models, where r is the number of input features,
which is impractical and quickly becomes computationally infeasible.

Hence, we need to consider missing value imputation. Missing value imputation has been
widely studied for static data scenarios (Allison 2001; Little and Rubin 2002). Two main
approaches to missing value imputation can be distinguished: single imputation and model-
based imputation. The simplest single imputation approach is to replace missing values by a
constant value, for instance, a sample mean. The approach is computationally simple, how-
ever, it ignores relationship between variables in the data and therefore weakens variance and
covariance estimates. Regression imputation takes into account the relationship between vari-
ables, by building regression models for missing features that take the non-missing features as
inputs. However, it requires 2" imputation models (for each combination of missing values)
and is impractical and often computationally infeasible for streaming data applications.

Model-based imputation includes probably the most popular and the most powerful
approaches, but carry even higher computational costs. Two main approaches are: maximum
likelihood imputation and multiple imputation. Maximum likelihood imputation chooses as
estimates those values that, if true, maximize the probability of observing the non-missing
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data, estimation requires iterative computations. Multiple imputation averages across multiple
imputed data sets, using randomized imputation method. Model-based imputation methods
are powerful for static datasets where the goal is to reconstruct the data as accurately as
possible, but they have a big computational overhead, and are impractical or even infeasible
for streaming data, where missing values need to be estimated in real time and the imputation
models need to be continuously updated, considering that the missing value rates may vary
over time.

Therefore, the only realistically feasible approach for data steams is single unconditional
imputation, such as sample mean imputation. While it ignores relations between the input
variables, on the positive side, we are not required to reconstruct the input data accurately, the
goal is to make accurate predictions. We will leverage this by optimizing predictive models
in such a way that the deficiencies of the imputation approach are taken into account and
compensated for, and the expected prediction accuracy is maximized.

Our study contributes a theoretically supported least squares optimization criteria for
building regression models robust to missing values, and a corresponding algorithm for
building and updating robust regression online in a recursive manner without the need to store
historical data in memory. Theoretical findings, experimental validation on eight benchmark
datasets and a case study in environmental monitoring domain demonstrate the effectiveness
of the proposed approach.

This paper builds upon our conference paper (Zliobaite and Hollmen 2013). While the
conference paper introduced the problem of missing data in predictive modeling with data
streams, the present paper considers a broader problem setting and presents new solutions.
New contributions with respect to the conference version are as follows. Generalization
of the problem setting from a fixed number of missing values, to a probabilistic setting,
where each feature may have missing values with a different probability. Moreover, the
probabilities of missing values may vary over time. New theoretical analysis based on this
extended problems setting is presented. The conference paper presented only intuition driven
guidelines on how to build robust predictive models, this paper presents a theoretically optimal
least squares solution. Finally, the conference paper considered only pre-trained and fixed
predictive models and the main focus was on diagnosing how robust the model is to missing
values. Now predictive models can be updated over time, and we present a theoretically
supported recursive algorithm for doing that.

The paper is organized as follows. Section 2 presents background and problem setting. In
Sect. 3 we theoretically analyze prediction accuracy of linear regression models with missing
data. Section 4 develops a theoretically optimal least squares solution for data streams with
missing data, and presents an online algorithm for building and updating robust regression
models. Experimental evaluation is reported in Sect. 5. Section 6 discusses related work, and
Sect. 7 concludes the study.

2 Background and problem setting

Suppose we have r data sources generating multidimensional streaming data vectors x € )"
(e.g. weather observation sensors). Our task is to predict the target variable y € %! (e.g. solar
radiation) using these data vectors as inputs. Data arrives in a sequence over time, predictions
need to be made in real or near real time.

There may be time periods when some values in the input data are missing. We assume
that for each data source i the probability of missing data p; does not depend on other data
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sources, neither it depends on the value of the target variable y, i.e. data is missing at random.
The probabilities of missing data p; may vary over time.

The goal is to build a predictive model, that may be continuously updated online if needed,
such that the prediction error is minimized, considering that input data may contain missing
values. In this study, we consider linear regression models for prediction. We analyze linear
regression models; which are among the simplest regression models, but at the same time
linear models can be very powerful and flexible, especially when used with non-linear input
features. Also, any non-linear process can be thought of being approximated by linear models.
Linear models are easy to interpret. Last but not least, for linear models we can provide
theoretical guarantees of the missing value handling solutions.

2.1 Linear regression

Linear regression models (Hastie et al. 2001) assume that the relationship between r input

variables xp, x2, ..., x, and the target variable y is linear. The model takes the form
y=by+bix1+brxo+...+bxr +€ =x8+e¢, (1)

where € is the error variable, the input vectorx = (1, xy, ..., x,) isaugmented by 1 for taking

into account the additive bias, and the vector 8 = (b, by, ..., b)T contains the parameters

of the linear model (regression coefficients).

There are different ways to estimate the regression parameters (Golub and Van Loan 1996;
Hastie et al. 2001). Ordinary least squares (OLS) is a simple and probably the most common
estimator. It minimizes the sum of squared residuals giving the following solution

Pors = argmin (v —Xp)" (v =Xp)) = X"X)~'X"y. @)

where X, ., is a sample data matrix containing n records from r sensors, and y, 1 is a vector
of the corresponding n target values. Having estimated a regression model g the predictions
for on new data Xy, can be made as 0 = X, 8.

2.2 Prediction error

For measuring the prediction error we use the mean squared error (MSE), which is a popular
measure due to its convenient analytical properties. For a test dataset it is computed as

1 < 1
MSE= - (0" —y")? = ~0-y" (-, ©)
n = n
where y is the true target value, o is a prediction and n is the number of observations in the

testing set.
The expected MSE can be analyzed as follows:

E[MSE] = E[% Z (0[11 _ ym)2] = E[(0 — y)*)
=1

= E[0®> — 20y + y*] = E[0°] — 2E[oy] + E[y’]
= Varlo] — 2Covlo, y] + Var[y] + (0 — )7)2. “4)

Here 0 and y denote the means of the prediction and the true target variable respectively. The
last equation follows from Var[z] = E[Z3] - (E[z])2 and Cov|[x, z] = E[xz] — E[x]E|[z].
Let the prediction be 0 = x8. Then the variance of this prediction is
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Varlo] = Var[Zbixi] = > > bibjCovlxi.x;] = B CB, )

i=1 j=i

where C = %(XTX — xT%) is the covariance matrix of the input data, and X denotes the
mean of the input data.
The covariance between the prediction and the target is

Covlo, y] = CovixB.y] = D b;iCovlx;. y] = "z, ©)

i=1

where z = %(XTy — Xy) is the relation vector of the input data and the target variable. Our
decomposition can be assimilated with the bias-variance decomposition, since we express
the error in terms of the bias component as well as terms accounting for variance of the
prediction.

2.3 Handling missing values

Detecting sensor failures is beyond the scope of this work. To keep the focus we assume
that it is known when values are missing and there is no need to detect that. We assume that
the data collection system can signal sensor failures automatically. If this is not the case one
can set up a simple rule based detector, such as: if the value is constant for a period of time
declare sensor failure.

We consider the following strategy for handling missing values. Predictions need to be
made for every observation, therefore, we cannot ignore observations with missing values.
We consider replacing the missing values by the sample mean, as they arrive. As discussed in
the introduction, this is a computationally light method, suitable for streaming data settings.

However, for training and updating the predictive model itself, we can use case deletion.
Since data streams produce large amounts of data, even after deleting, say, 25 % of the
observations, there is still plenty of data left for training the model. We consider training
the model only on complete observations, that contain no missing values. This alleviates the
problem of weakening the variance and the covariance estimates (Allison 2001), when using
mean imputation.

Biased estimates would not pose a problem for prediction, if the probabilities of missing
data stay fixed over time. In such a case the variances and the covariances in the testing
data would be biased in the same way as in the training data. However, as we will see in
the theoretical analysis and experiments, if the probabilities of missing values vary, biased
estimations largely distort the predictions. To correct for such discrepancies, we introduce
a special optimization criteria for linear regression, that enables using computationally light
mean imputation in data stream applications.

3 Theoretical analysis of prediction errors with missing data
We start from analyzing, what happens to the prediction error of a linear model when some
input values are missing. The following proposition gives the expected error.

Proposition 1 Suppose data sources produce missing values independently from each other.
Letp = (p1, p2, ..., p)! be the probabilities of missing values for each data source.
Considering missing values, the expected error of a linear model is

E[MSEp] = fTHDS + TH(C — D)HB — 28T Hz + Varo[y] + (X8 — )°.
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where B is a vector of the regression coefficients, C is the covariance matrix of the input data, Z
is the relation vector of the input data and the target variable, D = diag(C), H = I—diag(p),
I, « is the identity matrix.

Proof can be found in the Appendix.

Let us first analyze boundary cases. If no data is missing, p = (0, 0, .. ., 0)7, thenH = L
The error resorts to the expression in Eq. 4, hence, E[MSE,]| = MSE).
If all the input values are missing, that is p = (1, 1,..., I)T, then H = 0,, and

E[MSEp] = Vargly] + X8 — $)2. If we make naive predictions 0 = ¥, the prediction
error will be equal to the variance of the target E[MSE}p] = Varo[y].

In order to analyze the effects of missing values further, we investigate a more conve-
nient case, where the input data and the target are assumed to be standardized (zero mean,
unit variance). There is no loss of generality, since any data can be easily standardized by
subtracting the sample mean and dividing by the sample variance.

Proposition 2 If the input data and the target variable is standardized (zero mean, unit
variance), suppose data sources produce missing values independently from each other.
Letp = (p1, pas ..., pr)T be the probabilities of missing values for each data source.
Considering missing values, the expected error of a linear model is

E[MSE}) = B"HB + pTH(C — DHB — 28" Hz + 1.

The proof follows directly from Proposition 1, and can be found in the Appendix.

From Proposition 2 we can find an interesting characteristic of the error. If the input data
is independent, then the covariance matrix is diagonal, in this case C = I, and the second
term in Proposition 2 disappears, the error becomes 87 HB — 287 Hz + 1.

We can see that if the input data is independent, the error linearly depends on the probabilities
of missing values.

For further analysis and clarity of exposition, let us make a simplifying assumption that
all data sources have equal probability of producing missing values,i.e. py = po = ... = p.

Proposition 3 [fthe input data and the target variable is standardized (zero mean, unit vari-
ance), and data sources produce missing values independently with equal prior probability
D, the expected error of a linear model is

E[MSE}] = (1 — p)E[MSEo] + p — p(1 — p)p” (C — DB.

Proof can be found in the Appendix.

From Proposition 3 we can see that if input data is not correlated (C = I), then the error
increases linearly with the probability of missing values, £ [MSE‘]',] = (1—-p)E[MSEp]+ p.
However, if C # I the speed of increase in error depends on the term 87 (C — I) 8. The next
proposition analyzes its behavior.

Proposition 4 Given an r x r covariance matrix C and a vector B € R" with at least one
non-zero element, the term BT (C — I)B is bounded by

-Tp<pT(C-Dp < —-DTB.

Proof can be found in the Appendix.

From Proposition 4 we see that the term 87 (C —1I)8 can be positive or negative depending
on the regression model (8). That means, that it is possible to find such g that would make
the term A7 (C — I)B positive, and, as a result, make the increase in error (Proposition 3)
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Table 1 Summary of analyzed

MSE cases. Notation  Proposition ~ Missing  Equal . Standardlzed
values probabilities  inputs and
of missing target
MSE Eq. 4 No - -
MSEp Prop. 1 Yes No No
MSE;, Prop. 2 Yes No Yes
MSE, Prop. 3 Yes Yes Yes

even slower than linear, which happens if the input data is independent or no dependence is
captured by the predictive model. In other words, the proposition suggests that it is possible
to utilize the redundancy in input data to slow down the increase in error, that happens due
to missing values. In the next section we will investigate, how to achieve that.

Table 1 summarizes the cases that were analyzed. Now, as we have theoretical expressions
for the expected errors with missing values, we can proceed with developing predictive
models, that would minimize those errors.

4 Building regression models robust to missing data

We will develop a robust linear regression model for data streams in two stages. First we will
find an optimal solution in the static learning scenario assuming fixed probabilities of missing
values p. Next we will develop online learning algorithms utilizing that optimal solution in
streaming data scenario with evolving probabilities of missing data.

4.1 Optimization criteria for robust regression

For convenience and interpretability, and without loss of generality we continue assuming
standardized data. Our goal is to optimize a linear regression model in such a way that
the expected error with missing data, given in Proposition 2, is minimized. The following
proposition gives the solution.

Proposition 5 If the input data and the target variable is standardized (zero mean, unit
variance), and data sources produce missing values independently with prior probabilities
p = (p1, p2. ..., pr)L. The expected prediction error is minimized with regression model

N -1
fros = (XX — diag(p)) + diagpn) ~ X'y,
where n is the training sample size.

Proof is given in the Appendix.
The next proposition provides a special case, where the prior probabilities of missing
values are equal for all the data sources.

Proposition 6 [fthe input data and the target variable is standardized (zero mean, unit vari-
ance), and data sources produce missing values independently with equal prior probabilities
p. The expected prediction error is minimized with regression model

~ -1
Bros = ((1 = pXTX+ pnl) X7y,

where n is the training sample size.
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Proof can be found in the Appendix.

This solution down-weights the off-diagonal elements of the covariance matrix. Observe,
that it is closely related to the Ridge regression (RR) (Hoerl and Kennard 1970; Hastie et al.
2001). If the input data is correlated, regularization is often used for estimating the regression
parameters. The ridge regression (RR) regularizes the regression coefficients by imposing a
penalty on their magnitude. The RR solution is

Brr = XTX + D)Xy,

where A > 0 controls the amount of shrinkage: the larger the value of A, the greater the
amount of shrinkage.

An alternative form of the ROB regression (Proposition 6) may be useful. If the covariance
matrix C and the relation vector between the input data and the target variable z are known,
the regression model resorts to

Bros = (1 — p)C+ pD~' z, (7

4.2 An illustrative example

Let us consider a toy example for illustrating the performance of the new robust regression.
Suppose there are four data sources identical to each other, and the target variable is identical
to all sources: x; ~ N(0,1),x; =xy =x3=x4 = y.

Consider four regression models, that would all give perfect predictions, i.e. MSEg = 0:

— Independent: 0 = x1;

— Shared: 0 = 0.25x; + 0.25x3 + 0.25x3 + 0.25x4;

— Overfitted: 0 = 1.75x1 — 1.25x2 + 0.75x3 — 0.25x4;
ROB regression: different model for each value of p.

The Independent model is the simplest approach, which does not utilize any redundancy
in the data, and takes only one data source as an input. The shared model takes equal con-
tributions from each data source. In fact, this solution is equivalent to PCA regression, that
would build a model on the data rotated towards the first principle component. Here vari-
ance and redundancy in all the data sources is utilized. The overfitted model also utilizes
redundancy, but intuitively we can see that the weights at each data source are unnecessarily
high. Finally, the new ROB regression (Proposition 6) produces a different regression model
taking the probability of missing values p as an input. For example, if p = 0.5, the model
would be 0 = 0.4x; 4 0.4x3 + 0.4x3 + 0.4x4. This model is theoretically optimal for this
fixed probability of missing data (p = 0.5). The model originates from Proposition 6 after
substituting the parameters of the toy data XTX = nlyya, and XTy = nlyx1, where 1is a
matrix of ones. Note, that n cancels out.

Figure 1 compares the performance of the four models over all spectrum of p, where
p = 0 means that no data is missing and p = 1 means that all input data is missing. A
dashed line indicates a naive prediction that would not use any input data, and always predict
a constant value o = 0. The left plot depicts theoretical errors, and the right plot empirical
errors tested over 10,000 samples. We see that the performance nearly identical, which, as
well, validates the theoretical results.

The Overfitted model performs worse than a naive prediction would perform, which can
be explained by the theoretical expression for error in Proposition 3. The performance is so
bad because of the magnitude of the term —87 (C — I) = 4.25. For the Independent model
BT(C —T)B = 0 and hence the increase in error is linear with the increase in probability
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Theoretical errors Empirical errors
1.5 = Overfitted 15 B
—— Independent
N 1r -| ----Shared (PCA) 1 4
g ROB

0.5 - - naive 0.5 - =
0l - 0l .

0 0.5 1 0 0.5 1

probability of missing (p) probability of missing (p)

Fig. 1 Prediction error as a function of prior probability of missing values (p) with four regression models.

of missing values p. The Shared model has —g87 (C — I) = —0.75, which makes the
increase in error lower than than linear, and we see that in the figure. Finally, the ROB model
adjusts the regression coefficients based on expectations about p. For example, if p = 0.5,
the ROB model would have —5T(C — DB = —1.92, but higher initial error MSEy = 0.4.
Nevertheless, the theoretical error (in Proposition 3) of ROB would be lower than that of
the Shared model: MSE(5(ROB) = (1 — 0.5)0.4 4+ 0.5 — 0.5(1 — 0.5)1.92 = 0.22, and
MSE 5(Shared) = (1 — 0.5)0 4+ 0.5 — 0.5(1 — 0.5)0.75 = 0.31. The example illustrates
how ROB achieves optimal solution by dynamically balancing minimization of the initial
error and robustness to missing data.

4.3 Online learning

Now as we have a theoretically optimal solution for handling missing data in batch learning,
we can proceed to constructing an online algorithm for streaming data settings. The main
restriction for online algorithms is no access to the historical data. All the parameter esti-
mations need to be done recursively and only data summaries of a fixed size (that does not
depend on the amount of data observed) can be stored.

We will construct online algorithms for data streams with missing data in two stages.
First, we consider the probabilities of missing values to be fixed, the goal is to train a model
incrementally with the incoming data that would be equivalent to the batch model trained
on all that data. In the final stage we will consider evolving probabilities of missing values,
and possibly evolving relation between the input data and the target (known as concept drift
(Gama et al. 2014)).

Online learning version for the OLS regression (2) is a known result (Scharf 1990). This
algorithm has no adaptation mechanisms, it is meant for learning over stationary data that
arrives in a stream. Algorithm 1 gives the pseudocode for the solution.

Algorithm 1: Online OLS regression (Scharf 1990)

Data: previous model B;_1, new observation X;, yr,

previous covariance estimate S, _ _11

Result: updated model §; and covariance estimate Sfl
—1 Tg—1
-1 _ 1 S,Cixex 8,7
18 =8, - Tg—T . °
I4+x; S, %

2 B =Bt + 87 % O — X! Br1)s

@ Springer



56 Mach Learn (2015) 99:47-73

Proposition 7 The iterative OLS solution (provided in Algorithm 1) is equivalent to the OLS
solution.

The proof, following Jordan (1998), is provided in the Appendix.

We propose an online version for ROB regression, that was introduced in Proposition 5.
This version is meant for stationary data streams, and the prior probabilities of missing values
diag(p) need to be input as a parameter. The algorithmic solution is given in Algorithm 2.

Algorithm 2: Online ROB regression

Data: previous model B;_1, new observation X;, yr,

prior probabilities of missing values p = (p1, p2, ..., p,)T,

previous estimate of the regularized covariance S;_

Result: updated model B; and covariance estimate S¢

1 if no missing values in x; then

2 | S =Sy +xx] —diag(p)(x/x] —1);

s | Br=Br +8 % —x{ i) = S diag @) (xix] — DBy
4 end

Proposition 8 The online ROB regression (Algorithm 2) is equivalent to the batch ROB
regression (Proposition 5).

Proof can be found in the Appendix.

Recall that in Proposition 5 prior standardization of the input data and the target variable
is assumed. That means, that Algorithm 2 as well operates under the assumption of standard-
ized data. Online standardization can be easily achieved following the following procedure
summarized in Algorithm 3.

Algorithm 3: Online standardization

Data: new observation x;,
previous mean and standard deviation estimates m;_1, s;_|
Result: standardized data x,* , updated estimates m;, s

1 standardize data x; = (x; —m;_1)/s;—1;

2 update mean estimate m; = nx; + (1 — n)m;_1, where n = %;

3 update standard deviation estimate s; = \/n(xt —mp)?+ (- 77)5,2,] ;

In this procedure there is no forgetting, all the observations are taken into account with
equal weights. The absolute weights of individual observations in the mean and standard
deviation estimates are decreasing over time to keep the contributions equal. This is achieved
by having 7 as a function of . However, in the data streams scenario sometimes it is desired
to give more emphasis to more recent observations. That can be achieved by replacing n in
Algorithm 3 by a fixed constant value, for example n = 0.001. Then the mean and standard
deviation estimates will be equivalent to taking the exponential moving average.

4.4 Full algorithmic solution for streaming data (ROBstream)
Online ROB regression in Algorithm 2 recursively learns a model that is optimal for fixed

probabilities of missing values p. Finally, we propose a full algorithm for predictive modeling
over streaming data with missing values, where the probabilities of values to be missing may
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Table 2 Storage memory

requirements, 7 is the number of Estimate Size Memory
data sources. C Covariance matrix rxr 2
z Input-target relation rx 1 r
P Probabilities of missing rx1 r
Mean and SD of inputs 2xrxl1 2r
Mean and SD of target 2x1x1 2
Total memory r2+4r +2

change over time, as well as the relation between the input variables and the target variable
potentially may evolve over time. The algorithm has adaptation mechanisms, which allow to
gradually forget old data, and focus on the new data distribution.

Hence, we need to be able to adjust the optimization criteria depending on p. We can
do that if we have a pure (not regularized) up to date estimate of the covariance matrix C
and an up to date estimate of the relation between the input data and the target z. Since we
continue assuming standardized data, the estimates can be expressed as C, = %X,T X; and

zZ; = %XIT y:. Then, from Proposition 5, the regression model at time ¢ can be expressed as

B = (C; — diag(p,)(C; — 1) ' z,. ®)

Hence, the algorithm would need to keep and incrementally update five estimates, summa-
rized in Table 2 together with storage memory requirements. The total required storage is
quadratic to the number of input features.

Algorithm 4 presents the algorithm. Online standardization is not included, it can be done
following the procedure presented in Algorithm 3.

Algorithm 4: ROB regression for data streams

Data: stream of observations X,
stream of true target values y,
forgetting factors @ € (0, 1), ¥ € (0, 1)
Result: stream of predictions o
1 Initialization: C <~ Lz < (1,..., DT p < 0,...,007, 8 < (0,...,0)7;

2 forr < 1to oo do

3 new observation x arrives, predict o = X8 ;

4 true target value y arrives ;

5 if no missing values in x then

6 update covariance C < axIx + (1 —-a)C;

7 update relation z <— axTy + (1 —a)z;

8 update missing value estimate p <— (1 — y)p;

9 end

10 else

1 record missing value indicator m, where m; = 1if i th yalue in x is missing, and 0 otherwise ;
12 update missing value estimates p <— ym + (1 — y)p;
13 end

14 update model 8 = (C — diag(p)(C — D) lz

15 end

The parameters o and y are forgetting factors (weights) for the standard exponential
moving average procedure, which is used as a forgetting mechanism. The weights need to be
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between 0 and 1, where 0 means no forgetting, close to 0 corresponds to very slow forgetting,
and close to 1 corresponds to very fast forgetting, and very dynamic updates.

If the forgetting factors « and y are fixed, then more recent observations are emphasized
and old observations are gradually forgotten. In case one wishes only to include new informa-
tion, but not forget any old information, then the following settings should be used: y = 1/1,
where ¢ is the time count since the beginning, and « = 1/(j + 1), where j is the number of
covariance matrix updates so far.

The operation of matrix inversion in line 14 is the most expensive computationally. If
computational resources are scarce, one may chose to update the model more rarely (i.e.
execute line 14 say every 10" time). The only requirement is that the missing value estimates
are being updated continuously (lines 8 and 12).

The algorithm assumes immediate availability of the target value, the way it is typically
assumed in the standard streaming data research settings. In case labels are arriving with a
delay, one could consider fixing a maximum time period to wait for the label to arrive. If the
label has arrived, treat it as prescribed in the algorithm. If the label has not arrived within the
specified time, then just discard the instance without using it for model update.

5 Experimental analysis

In this section, we experimentally evaluate the proposed techniques on real benchmark
datasets with simulated missing values, and a real world case study with real missing values.
Firstly, we experimentally compare the proposed ROB regression to state-of-the art linear
regression models on a set of benchmark datasets in the batch learning setting. Secondly,
we analyze the performance of the online version of the ROB regression. Finally, we evalu-
ate the proposed adaptive learning algorithm ROBstream on a case study in environmental
monitoring domain.

5.1 Comparison to the state-of-the art linear regression models

Theoretically, ROB regression is the optimal solution minimizing the expected error. In this
experiment we investigate how ROB regression performs in practice as compared to seven
state of the art regressions.

5.1.1 Linear regression models for comparison

We compare the performance of ROB with seven regression models in Table 3. ALL builds a
regression model on all r input variables. SEL selects k input variables that have the largest
absolute correlation with the target variable (correlation is measured on the training data)
and builds a regression model on those k variables. PCA rotates the input data towards k
principal components and then builds a regression model on those k new attributes. PLS
is a popular technique in chemometrics (Qin 1998). Input data is rotated to maximize the
covariance between the inputs and the target. A regression model is built on k& new attributes.
For feature selection SEL, PCA and PLS models we set the number of components to be a
half of original number of features: k = r/2.

ALL, SEL and PCA use the OLS optimization procedure (OLS) for parameter estimation.
In addition, we test the same approaches but using the regularized RR, these models are
denoted as rALL, rSEL and rPCA. PLS uses its own iterative optimization procedure, there
is no regularization. The regularization parameter in the RR experiments is fixed to 100.
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Table 3 Linear regression
models for comparison:

OLS - ordinary least squares, all r selected k PCA k PLS k
RR - Ridge regression.

Inputs

Optimization OLS ALL SEL PCA PLS
RR rALL rSEL rPCA

Table 4 Datasets r - number of input variables, n - number of observations, Xi - collinearity.

r n Xi Source Domain
Catalyst 13 8 687 0.54 NiSIS? Chemical production
Chemi 70 17 562 0.21 INFER! Chemical production
Concrete 8 1030 0.23 ucr Civil engineering
CPU 19 8192 0.25 DELVE* Computing
Gaussian 30 10 000 0.14 - Synthetic
Protein 9 45 730 0.57 ucr Protein structure
Wine 10 4897 0.18 ucr Chemical analysis
Year 90 515 345 0.11 ucr Music songs

Input data Target variable
Catalyst Sensor readings Catalyst activity
Chemi Sensor readings Concentration of product
Concrete Measurement Strength of concrete
CPU Activity measures Time in user mode
Gaussian N, sTs), where s ~ U(—1, 1) >3 xi + u, where u ~ N(0, 6)
Protein Physicochemical properties Size of residue
Wine Chemical measurements Wine quality
Year Timbre features Year of a song

' Source: http://infer.eu/

2 Source: http://www.nisis.risk-technologies.com/
3 Source: http://archive.ics.uci.edu/ml/

4 Source: http://www.cs.toronto.edu/~delve/

5.1.2 Datasets

We consider eight regression datasets collected from different sources. For a wide coverage
we chose datasets from various domains and to be different in sizes. The characteristics
are summarized in Table 4. Among other characteristics we report collinearity &, which is
measured as the mean absolute covariance between input variables, & = % The
input data is standardized, thus & € [0, 1], where 0 means that data is independent, and 1

means that it is fully collinear.

5.1.3 Experimental protocol
The experimental protocol is as follows. We investigate how the prediction error depends

on the probability of missing values. For easier interpretation of the results we consider the
prior probabilities of missing data to be equal, i.e. p = (p, ..., p)T. The original datasets
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do not have missing values. We introduce missing values with a probability p for each input
variable independently at random. We investigate all the range of probabilities p from O to 1.

Each dataset is splitinto training and testing at random (equal sizes). The regression models
are trained on the training part and the reported errors and sample covariances are estimated
on the testing part. The input data and the target variable is standardized, the mean and the
variance for standardization is calculated on the training data. We repeat every experiment
100 times and report averaged results.

5.1.4 Results

The results of this experiment are presented in Fig. 2, which plots testing errors as a function
of the probability of missing values. We can see that the proposed ROB regression clearly
demonstrates the best performance on all the datasets. The advantage of ROB is particularly
prominent when the probability of missing values is high (around 50 % or so). The lower the
probability p, the more close the performance of ROB is to ALL, which is a theoretically
supported result. From Proposition 6 we can see that if p = 0 then ROB regression becomes
the same as ordinary regression optimized using the ordinary least squares, that is ALL.

We can also observe that on some datasets ALL and PLS perform particularly badly
generating a huge peak in error near p = 0.5. This happens because of the term 7 (C — 1)
in Proposition 1. If input data is highly collinear and g is not regularized in any way, then
the term —p(1 — p) BT (C —I)B is likely to be positive and boost the error. Table 5 presents
empirical —37 (C —I)B for all the eight datasets, estimated on full datasets. For ROB we set
p = 0.5, other models do not depend on p. We see that on Chemi, Gaussian and Catalyst
datasets ALL indeed has much higher —87 (C —I)A term that most of the other models. This
corresponds to large deterioration in performance in Fig. 2 on these datasets.

5.2 What if estimation of the prior probabilities is incorrect?

The proposed ROB requires an accurate estimate of the missing value rate p. In this section
we analyze how ROB performs, if the estimate of p is noisy.

5.2.1 Experimental protocol

The experimental protocol is the same as in the previous section. We introduce missing values
in data at random with a fixed prior probability p. We compare the best performing off-the-
shelf approach PCA regression, and ROB regression with a fixed estimate of the missing
value rate p* (ROB uncertain). For comparison, we also analyze the performance of ROB
with an exact estimate of p (ROB ideal).

For each plot we suppose that the missing value rate is set to p = p*, and investigate
what happens, if the actual p varies £10 %. We analyze the performance on the toy example
presented in Sect. 4.2, and the Chemi dataset, which is a representative sensory dataset with
underlying high dimensional prediction problem.

5.2.2 Results
Figure 3 plots the results. We see that within the vicinity of the assumed p*, indicated by

a black dot, the performance of ROB fixed is very close to that of ROB exact, and clearly
better that the best alternative (PCA regression).
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Fig. 2 Empirical MSE versus the probability of input data source failing averaged over 100 runs.
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Table 5 Empirical —j T(C = 1)B, the smaller the better

ALL rALL SEL rSEL PCA rPCA PLS ROB
Catalyst 1.6 0.8 0.5 0.1 0.0 —0.1 0.9 -0.4
Chemi 6.4 3.1 0.4 0.2 —0.2 —0.2 5.9 -0.8
Concrete 0.6 0.3 0.0 0.0 -0.0 -0.0 0.5 0.1
CPU —0.1 —0.2 —0.2 —-0.3 —-0.3 -0.3 —0.1 -0.8
Gaussian 0.6 —0.1 —0.1 —0.2 -0.3 —0.3 —0.0 -0.6
Protein -0.3 —0.4 —0.2 —0.2 —0.7 —0.7 —0.6 =22
Wine 0.2 0.1 0.1 0.1 -0.1 -0.1 0.1 -0.1
Year —0.3 —0.3 -0.3 -0.3 —0.4 —0.4 -0.3 -14

The best result on each dataset is in bold
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Fig. 3 Performance with noisy estimates of p. The white windows denote p within £10 %
of the assumed p*.

5.3 Different prior probabilities of missing values

The previous section experimentally investigated ROB regression assuming equal prior prob-
abilities of missing values for all data sources. In this section we analyze the performance
of the generic variant in Proposition 5, which assumes that each input data source can
have a different prior probability of missing values, the probabilities are recorded in vec-
torp = (p1. p2..... pr)’.

5.3.1 Experimental protocol
We simulate missing values by randomly selecting a prior probability for missing values for

each data source, p; € [0, 1]. We repeat the experiment 1,000 times, each time resampling
the prior probabilities and then generating missing values according to those probabilities.
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We test the same seven state-state-of-the-art models ALL, rALL, SEL, rSEL, PCA, rPCA,
PLS. We compare the performance of ROB(p) and ROB(p), where the former uses one fixed
prior probability of missing value for all data sources, and the latter considers a different
prior probability for each data source.

5.3.2 Results

Table 6 presents the results averaged over 1,000 runs. We see that ROB(p) with fixed prior
probability outperforms all the competing methods on all the datasets, even though the
assumption about fixed probability of missing is does not match the data. This happens,
since the other methods (ALL, rALL, SEL, rSEL, PCA, rPCA and PLS) do not take miss-
ing data into consideration at all, this explains superior performance of ROB(p). The more
generic version of ROB regression, ROB(p), that takes into account different prior probabili-
ties, outperforms ROB(p) and all the other regressions on all datasets. This is an expected and
intuitive result, since ROB is the theoretically optimal solution, as we proved in Proposition 5.

5.4 Online ROB regression

Next we investigate the performance of online ROB regression (Algorithm 2). Our first
goal is to analyze how the performance of online ROB regression, tailored to handling
missing values, compares to the performance of the ordinary online regression (Algorithm 1).
The second goal of this experiment is to investigate, how the performance of online ROB
regression depends on the training sample size.

5.4.1 Experimental protocol

The experimental protocol is as follows. We split a dataset into two equal parts at random,
and designate one part as a hold out testing set. In the testing set we introduce missing values
at random with a fixed probability p = 0.5. The other half of data is used for sequential
training, it contains no missing values. We present training observations one by one, the
predictive model is updated with each observation recursively. After each update we test the
performance on the holdout testing set.

We run this experiment on the eight datasets used in the previous experiments. To keep
the focus we standardize the datasets offline before the experiment.

Table 6 Testing errors with different prior probabilities of missing data

ALL rALL SEL rSEL PCA rPCA PLS ROB(p) ROB(p)

Catalyst 1.12 0.83 1.06 0.89 0.75 0.74 0.91 0.70 0.69
Chemi 2.79 1.37 1.23 0.96 0.71 0.71 2.57 0.65 0.63
Concrete 0.91 0.81 0.85 0.84 0.95 0.95 0.87 0.80 0.79
CPU 0.62 0.60 0.59 0.59 0.59 0.59 0.62 0.54 0.52
Gaussian 1.17 0.51 0.56 0.56 0.51 0.52 0.53 0.45 041
Protein 0.42 0.39 0.46 0.43 0.30 0.30 0.34 0.16 0.13
Wine 0.91 0.88 0.90 0.89 0.90 0.90 0.88 0.86 0.85
Year 0.60 0.60 0.61 0.61 0.58 0.58 0.60 0.48 0.47

The best performance is in bold
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Fig. 4 Testing MSE versus training set size, averaged over 100 runs.

5.4.2 Results

Figure 4 plots the testing error as a function of training sample size seen. For clarity of
exposition we plot only what happens in the first 1,000 training instances, since, as it can
be seen from the plots, by reaching 1,000 instances learning stabilizes and later approach
asymptotically the batch learning version. ALL is not visible in the Gaussian data plot, it
performs by orders of magnitude worse than ROB. The plots demonstrate stable perfor-
mance of ROB regression, the testing error consistently decreases as more training samples
arrive, which should be expected, since more data allows to estimate model parameters more
accurately. The ordinary regression (ALL) in all cases shows worse performance. Moreover,
ALL sometimes even exhibits the opposite behavior, where testing error increases as more
training observations arrive. This can be explained by the fact that the model is initialized by
assuming that all the regression coefficients are equal to zero, which corresponds to the naive
prediction by the target mean. Later on correlations between the input data are learned into
the model and predictions become worse than naive, similarly to the Overfitted regression
example that was presented in Fig. 1.
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Fig. 5 Distribution of missing
values in the case study data.

missing values %
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Overall, we can conclude from this experiment that the proposed online ROB consis-
tently outperforms the ordinary online regression, and the predictive accuracy asymptotically
approaches that of batch learning algorithm, as expected.

5.5 A case study in environmental monitoring

To validate the proposed algorithms ROBstream (Algorithm 4) we perform a case study in
environmental monitoring with real missing values. The task is to predict the level of solar
radiation from meteorological sensor data (such as temperature, precipitation, wind speed).
We use a data stream recorded at SMEAR 1I station in Hyytidld, Finland and delivered via
web interface (Junninen et al. 2009).

5.5.1 Data and experimental protocol

We use data over a 5 years period (2007-2012), recorded every 30 min. from 39 meteorolog-
ical sensors at one station. The data coming from the station has about 7 % of missing values.
There is no single sensor that would provide non interrupted readings over those 5 years;
for any sensor from 1 % up to 30 % values are missing. To simply capture seasonality we
include in the input feature space a delayed target variable, which indicates the last known
solar radiation (30 min ago). The distribution of missing values over the dataset is given in
Fig. 5. The plot shows that about 50 % of the observations contain no missing values at all,
the rest contain at least one missing value. The solar radiation (target variable) is available
99 % of the times, we eliminate from the experiment the instances having no target value.

The average probability of missing values over time is plotted in Fig. 6. We can see that
the rate of missing values is evolving over time. A distinct increase is visible in the second
half of the observation time. The evolution of probabilities motivates the need for adaptive
handling of missing values, as proposed in this study.

Our final dataset contains 105 216 observations over 41 input variables, consisting of 39
raw sensor measurements, theoretical maximum radiation (calculated mathematically), and
the last known value of the target variable. No prior standardization of data is used. Incoming
data is standardized online following the procedure in Algorithm 3 with n = 0.001. In
order to eliminate possible effects of autocorrelation in the data we work with the first order
differences of the time series. The prediction accuracies are reported with respect to the
original target variable.

For testing we use the test-then-train approach, that is common in evaluating data streams
algorithms. Data is presented in the time order. When an observation arrives, first a prediction
is made and recorded assuming that the true target value is unknown. Then the corresponding
true target value arrives and the predictive model is updated with the latest observation.
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Table 7 Average testing errors . ) o .
(MSE) on the case study data. ALL ALLimp ROBstream persistent naive
2,954 2,450 2,408 2,625 22,995

The best performance is in bold

We compare the performance of ROBstream (Algorithm 4) with the ordinary sequential
regression (Algorithm 1) in two versions: ALL is incrementally trained on incoming observa-
tions that contain no missing values (the same way as ROBstream), and ALLimp is incremen-
tally trained on all the observations, where missing values are replaced by the mean values.

For ROBstream the decay factor for covariance matrix estimates is fixed to « = 0.001,
and the decay for missing value rate estimates is fixed to y = 0.01. The value of y is larger
than «, because we expect more rapid changes in the missing value situation (captured by
¥ ), than changes in the data generating distribution (captured by «). We compare to a naive
prediction, which always predicts the mean of the target variable, and a persistent prediction,
which does not use any input data, but predicts the target value to be the same as the last
observed target value.

5.5.2 Results

Table 7 shows the testing errors MSE. We see that the intelligent predictors with incre-
mental update (ALL, ALLimp and ROBstream) outperform the baseline by a large mar-
gin. However, the standard regression without missing value treatment performs worse than
another baseline—persistent predictor. ALLimp that uses mean replacement and incremen-
tally updates itself performs reasonably well, and ROBstream that reacts to changes in the
missing value rates perform even better. The performance is consistent with our expectations.

In Fig. 7 we analyze the sensitivity of the performance to the choice of forgetting factor
¥, when estimating missing value rates online. The performance of ROBstream is compared
to the second best alternative ALLimp. We can see from the figure that the performance is
not very sensitive to an exact choice of y, and the performance remains competitive along
all the spectrum of tested y values.

In Fig. 8 we closer inspect prediction errors over time of ROBstream and the persistent
predictor, which is a baseline for the performance. We see that the persistent predictor often
makes much larger errors. The error curves have four distinct peaks. This is the daylight time
in summer, hence the variance of the target variable is larger and there are more opportunities
to make an error. We can see ROBstream shows consistently the best performance among
the peer methods. The results support our theoretical findings.
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Fig. 8 A snapshot of predictions over time (case study data).

6 Related work

Our study is closely connected with handling missing data research, see e.g. Little (1992),
Allison (2001), Alippi et al. (2012) and Ciampi et al. (2012). The main techniques are:
imputation procedures where missing values are filled in and the resulting compete data is
analyzed, reweighing procedures where instances with missing data are discarded or assigned
low weights, and model-based procedures that define models for partially missing data. We
investigate what happens affer missing values are imputed during real-time operation using
a very popular and practical mean value imputation. In our setting discarding streaming data
is not suitable, since there would be continuous periods when we have no input data and thus
no predictions. Model-based procedures could handle one-two missing sensors; however,
when many sensors may fail, such a procedure is computationally impractical and likely
infeasible, as we would need to keep an exponential number of models to account for all
possible situations.

Handling missing values inregression is reviewed in (Little 1992). The majority of research
focuses on training regression models from data with partially missing values. In our setting
discarding some training data with missing values is not a problem, since the volumes of data
are typically large. The problem arises during real-time operation. We not only need to input
missing values, but also make the regression models fault tolerant. Hence, our work solves a
different problem and is not directly comparable with missing value imputation techniques.

Topic-wise our work relates to fault tolerant control that is widely studied in industrial and
aerospace systems (Patton 1997; Zhang and Jiang 2008). The main focus is on detecting the
actual fault, not operating with a fault present. In our setting there is no fault in the system,
just sensors fails, our model needs to remain accurate.

Redundancy in engineering duplicates critical components of a system to increase reli-
ability, see e.g. Frank (1990). A common computational approach is to use an average the
redundant sensors to reduce the impact of possible missing values. In fact, this is the effect
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we are aiming to achieve by minimizing the expected MSE. The main difference from our
setting is in availability of backup sensors, it is even possible to install duplicate sensors on
demand. In our setting; however, the data is given as is and we aim at exploiting it.

Robust statistics aims at producing models that are robust to outliers, or other small
departures from model assumptions, see e.g. Huber (1981). The main idea is to modify loss
functions so that they do not increase so rapidly, to reduce the impact of outliers. In our setting
there are no large deviations in the input data due to missing data, but in fact the opposite. In
our setting the variance of a missing sensor goes to zero. Hence, robust statistics approaches
target a different problem.

Robust linear regression (Huber 1973) belongs to the robust statistics domain. Robust
regression differs from our approach technically and conceptually. Conceptually, robust sta-
tistics solutions are aimed at reducing the contribution of individual instances (e.g. outliers).
Our solution, similarly to ridge regression, does not prioritize instances in any way, the same
treatment is applied to all instances. Technically, robust statistics solutions typically modify
the form of the loss function, while we add a penalty component related to the resulting
regression model.

Our theoretical analysis of the MSE resembles bias-variance analysis [see e.g. Geman
et al. (1992)] in the way we decompose MSE into components. Regarding the connection
of the bias-variance decomposition to the RR solution, we well know that enforcing strong
regularization is likely to decrease variance and to increase bias. Further investigation is left
for future work.

Finally, the setting relates to concept drift (Gama et al. 2014) and transfer learning (Pan
and Yang 2010) settings in a sense that the training and the testing data distributions are
different. However, in our setting there is no model adaptation during real-time operation.

7 Summary and conclusions

Systems relying on predictive models should be robust with regard to missing data, due to
transient failures in the sensors, for instance. We focused on linear models for predictions,
and theoretically analyzed the criteria for linear regression to be robust to missing values.
We derived an optimization criteria for linear regression with missing values. Based on
this optimization criteria we developed an algorithm for learning predictive models from
streaming data with missing values. Our experiments with benchmark data and a case study
in environmental monitoring domain confirmed the theoretical results and demonstrated the
effectiveness of the proposed strategy.

Our analysis relies on theoretical variance and covariance of the prediction. Potentially
it could be extended to higher order regression models (e.g. quadratic), that would require
much more involved theoretical analysis due to interaction terms. Alternatively, one could
obtain non linear prediction models by using the same linear regression with non-linear input
features.
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Appendix: Proofs

In this appendix we provide proofs of Propositions 1, 2, 3,4, 5, 6, 7 and 8.
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Proof (Proof of Proposition 1) From Eq. (4) the error can be decomposed into E[MSEy] =
Varolo] — 2Covolo, y] + Vargly] + (0 — y)2. Here MSE( denotes the error when no data is
missing. We will analyze how missing data affects each component.

We can decompose the variance from Eq. (5) into Varg[o] = 7D = T p+87 (C—D)8,
where D = diag(C).

Consider the first part 87 DS = > bi2 Var(x;], which describes the variance of input
variables. If an i’ data source fails, its variance becomes zero, Var[x;] = 0. The probability
of the i""* source not failing is 1 — p;, hence with missing values considered is

Varplol(partI) = » (1 — pi)b} Var[x;] = B"DHB, )

i=1

where H = I — diag(p).

Now consider 7 (C — D)g = 22;;1] Z§:i+1 bibjCov(x;i, x;), which describes the
covariance between input variables. If either source i or j fails, then the covariance becomes
zero, Cov(x;, xj) = 0. The probability that neither source i nor j fails, and the covariance
does not become zero, is (I — p;)(1 — p;). Taking missing values into account the term
becomes

r—1 r
Varglol(part ) =2 > (1= pi)(1 — pj)bib;jCov(xi, x;) = BT H(C — D)HB. (10)
i=1 j=i+1

Next we consider the covariance between the prediction and the target, which From Eq. (6)
can be expressed as Covplo, y] = Z;:l b;Covlx;, y] = BTz. If the i'" data source fails,
then the data from that source becomes constant, x; = x; and independent from the target y.
As a result, the term becomes zero, (E[yx;] — yx;) = E[y]x; — yx; = yx; — yx; = 0. For
any term in the sum, the probability of not becoming zero, i.e. that data source not failing, is
1 — p;. Therefore, taking missing values into consideration

r

Covplo. y] = D (1 = pi)biCovlx;, y] = BT Haz. (11)

i=1
Missing input data does not affect the true target, thus
Var[y] = Vargly]. (12)
The last term is not affected by missing values as well, since if a data source fails, then
the values are replaced by the mean x; = X;, but in this term the mean is used anyway.
r
@—9>=Q biki — > =& - (13)
i=1
After inserting the results from Eqgs. (9), (10), (11), (12) and (13) into the expression for
error in Eq. (4) we get

E[MSEp] = pTHCB + TH(C — D)HB — 28T Hz + Varo[y] + (X8 — )°.

Proof (Proof of Proposition 3) Since p = (p, p, ..., p)T, we can simplify H as
H=1-diag(p)=1—- pl=(1 — p)L
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Substituting this expression into the equation in Proposition 2 gives
EIMSE}] = " (1 = p)Ip + 7 (1 = p)IC =D = pIp = 26" (1 = p)lz+ 1
=pl—pB"B+1—p?BTCR—21-p)pTz+1
m]

From Eq. 4, if data is standardized the error is E[MSEy] = Vary — 2Covg + 1 = ,BTCﬁ —
287z + 1. The error with missing values can be expressed as

EIMSE}] = p(1—p)B" B+ (1 —p)*B'CB—201 — p)pTz+1
=(-pB'Ccp-200—pplz+U-p +p—pl-ppC-Dp
= (1 — p)E[MSEo] + p — p(1 — p)BT(C - Dp

Proof (Proof of Proposition 2) The proof follows directly from Proposition 1. Since the input
data is standardized, variances are equal to one, hence D = I, and Var[y] = 1. Moreover,
the mean of the target is zero y = 0, the means of the input variables are also zero, x; = 0
fori =1,...,r,and bg = y = 0, therefore X8 = 0. With the terms in place we get

E[MSE}] = B"HB + B"H(C — DHB — 28" Hz + 1.
O

Proof (Proof of Proposition 4) The Rayleigh quotient of the covariance matrix is defined as
BTCB
BTB ,

of C, Uypin < % < {nax, Where £ are eigenvalues, and takes the extreme values when S

for non-zero B € R” and is bounded by the maximum and the minimum eigenvalues

is equal to the corresponding eigenvectors.
Since Cis a covariance matrix, all eigenvalues are non-negative and their sumis equal to the

sum of the trace. As the data is standardized the sum of eigenvalues is r, hence the maximum

.
eigenvalue does not exceed r, 0 < £,,i,, < i}

5T < £nax < r. Algebraic manipulations give
the bound

"B <BT(C-DB < —DTB.
O

Proof (Proof of Proposition 5) In order to minimize the expected error we take the derivative
of the MSE expression in Proposition 2 with respect to j.
dE[MSE]
op

Since data is standardized, the covariance and relation between inputs and target simplify to
C =X"X/n and z = X"y/n. Recall that H = I — diag(p). Solving for 8 gives

I8+ (C—-DHB —z=0,

I+ CH-H) =1z,

I+ CI — diag(p)) — I+ diag(p))p =z,

XXX~ diag(p))/n + diag(P))p = X"y/n,

-1
B = (XTX(I — diag(p)) + diag(p)n) xTy.

= 2HB + 2H(C — DHB — 2Hz = 0.

@ Springer



Mach Learn (2015) 99:47-73 71

Proof (Proof of Proposition 6) The proof follows directly from Proposition 5, where p =
(p, p» ..., p)T. We substitute diag(p) = pI into the expression in Proposition 5. Standard
algebraic manipulations give the result:

Bros = (XTX(I —pD) + pnI)_l XTy = ((1 —pXTX + pnI)_l XTy.

[m}

Proof (Proof of Proposition 7) Let X; be a matrix of all the observations up to time #,
X; = (XIT, XZT, R xlT). Let y; be a vector of all the true target values up to time ¢, y, =
(1, ¥2, ..., y)T. The covariance matrix can be expressed as

St = XtTXt = X[T_IX[—I +X[XtT = S[_l +XtXtT
Likewise,
X;TYI = X;Tfl)’t—l + X yr.

An offline OLS regression model estimated from all the data up to time ¢ is given by S;8; =
XTy,. Substituting the recursive expressions defined above gives

S8 = XIT71Y171 + X¢ Yt

SiBr =Si—1Br—1 + Xe )t

SiBr = (S — XtXtT)ﬂr—l + Xy

SiBr =SiBi—1 +x(yr — X,Tﬁtfl)
Bt = Bi—1 + S;lxt()ﬁ - X;Tﬂt—l)'

Following standard matrix algebra the inverse can be computed as

-1 Tg—1
S, 1XiX; S,

ST =S +xx)H =87 — :
t t t &y t—1 1+XtTS;_11X[

which is the update equation given in Algorithm 1. O

Proof (Proof of Proposition 8) Let X; be a matrix of all the observations up to time 7,
X, = (XIT, XZT, ce, X,T). Let y; be a vector of all the true target values up to time ¢, y, =
(1, ¥2, ..., )T . A covariance estimate can be expressed as

S = (I — diag(p))X{ X; + diag(p)t
= (I — diag(P)X"_ | X;—1 + (I — diag(p))x,x! + diag(p)(tr — 1) + diag(p)
=S,_1 + (I — diag(p))x,x! + diag(p) = S;—1 +x,x! — diag(p)(x;x! — I).

Likewise,
XtTYt = XIT_1Yt—1 + Xt ).
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An offline ROB regression model estimated from all the data up to time ¢ is given by S; 8, =
XTy,. Substituting the recursive expressions defined above gives

S:iBr = XtT—1Yl—l + X; v
SiBr =Si—1Bi—1 + X )1

Sipr = (S: = xx] +diag(®)xx] = D) Bt + %13
SiB: = SiBr—1 + X (e — X/ Br—1) — diag(p)(x,x; —Dp—1
Br = Br—1 + S, "% vy — x! Bi—1) — S; ' diag(p) (x,x! —)Br_1.
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