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Abstract Learning distances that are specifically designed to compare histograms in the
probability simplex has recently attracted the attention of the machine learning community.
Learning such distances is important because most machine learning problems involve bags
of features rather than simple vectors. Ample empirical evidence suggests that the Euclidean
distance in general and Mahalanobis metric learning in particular may not be suitable to quan-
tify distances between points in the simplex. We propose in this paper a new contribution to
address this problem by generalizing a family of embeddings proposed by Aitchison (J R Stat
Soc 44:139–177, 1982) to map the probability simplex onto a suitable Euclidean space. We
provide algorithms to estimate the parameters of such maps by building on previous work on
metric learning approaches. The criterion we study is not convex, and we consider alternating
optimization schemes as well as accelerated gradient descent approaches. These algorithms
lead to representations that outperform alternative approaches to compare histograms in a
variety of contexts.
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1 Introduction

Defining a distance to compare objects of interest is an important problem in machine learn-
ing. Many metric learning algorithms were proposed to tackle this problem by considering
labeled datasets, most of which exploit the simple and intuitive framework of Mahalanobis
distances (Xing et al. 2002; Schultz and Joachims 2003; Kwok 2003; Goldberger et al.
2004; Shalev-Shwartz et al. 2004; Globerson and Roweis 2005). Within these contributions,
two algorithms are particularly popular in applications: the Large Margin Nearest Neighbor
(LMNN) approach described by Weinberger et al. (2006), Weinberger and Saul (2008, 2009),
and the Information-Theoretic Metric Learning (ITML) approach proposed by Davis et al.
(2007).

Among such objects of interest, histograms—the normalized representation for bags of
features—play a fundamental role in many applications, from computer vision (Julesz 1981;
Sivic and Zisserman 2003; Perronnin et al. 2010; Vedaldi and Zisserman 2012), natural
language processing (Salton and McGill 1983; Salton 1989; Baeza-Yates and Ribeiro-Neto
1999; Joachims 2002; Blei et al. 2003; Blei and Lafferty 2006, 2009), speech processing
(Doddington 2001; Campbell et al. 2003; Campbell and Richardson 2007) to bioinfor-
matics (Erhan et al. 1980; Burge et al. 1992; Leslie et al. 2002). Mahalanobis distances
can be used as such on histograms or bags-of-features, but fail however to incorporate
the geometrical constraints of the probability simplex (non-negativity, normalization) in
their definition. Given this issue, Cuturi and Avis (2011) and Kedem et al. (2012) have
very recently proposed to learn the parameters of distances specifically designed for his-
tograms, namely the transportation distance and a generalized variant of the χ2 distance
respectively.

We propose in this work a new approach to compare histograms that builds upon older
work by Aitchison (1982). In a series of influential papers and monographs, Aitchison and
Shen (1980), Aitchison and Lauder (1985), Aitchison (1982, 1986, 2003) proposed to study
different maps from the probability simplex onto a Euclidean space of suitable dimension.
These maps are constructed such that they preserve the geometric characteristics of the
probability simplex, yet make subsequent analysis easier by relying only upon Euclidean
tools, such as Euclidean distances, quadratic forms and ellipses. Our goal in this paper is to
follow this line of work and propose suitable maps from the probability simplex to a Euclidean
space of suitable dimension. However, rather than relying on a few mappings defined a priori
such as those proposed in Aitchison (1982), we propose to learn such maps directly in a
supervised fashion using Mahalanobis metric learning.

We build upon our earlier contribution (Le and Cuturi 2013) and provide new insights on
the empirical behaviour of our method, notably in terms of convergence speed and parameter
sensitivity. We also consider the adaptive restart heuristic (O’Donoghue and Candès 2013)
and show that it can prove beneficial. Source code for our tools can be obtained in http://
github.com/lttam/GenAitEmb.

This paper is organized as follows: after providing some background on Aitchison embed-
dings in Sect. 2, we propose a generalization of Aitchison embeddings in Sect. 3. In Sect. 4,
we propose algorithms to learn the parameters of such embeddings using training data. We
also review related work in Sect. 5, before providing experimental evidence in Sect. 6 that
our approach improves upon other adaptive metrics on the probability simplex. Finally, we
provide some observations on the empirical behavior of our algorithms in Sect. 7 before
concluding this paper in Sect. 8.
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2 Aitchison embeddings

We consider the probability simplex of d coordinates, Sd
def=

{
x ∈ R

d

∣∣∣∣
d∑

i=1
xi = 1 and xi ≥ 0,

1 ≤ i ≤ d

}
, throughout this paper. Aitchison (1982, 1986, 2003) claims that the informa-

tion reflected in histograms lies in the relative values of their coordinates rather than on their
absolute value. Therefore, Aitchison makes the point that comparing histograms directly with
Euclidean distances is not appropriate, since the Euclidean distance can only measure the
arithmetic difference between coordinates. Given two points x and z in the simplex, Aitchison
proposes to focus explicitly on the log-ratio of xi and zi for each coordinate i , which can be
expressed as the arithmetic difference of the logarithms of xi and zi ,

log
xi

zi
= log xi − log zi .

2.1 Additive log-ratio embedding

The first embedding proposed by Aitchison (1982, p. 144, 2003, p. 29) is the additive log-ratio
map (alr) which maps a vector x from the probability simplex Sd onto R

d−1,

alr (x)
def=

[
log xi+ε

xd+ε

]
1≤i≤d−1

∈ R
d−1,

where ε > 0 is small. The alr map for x ∈ Sd can be reformulated as:

alr (x) = U log (x + ε1d) , U =
⎡
⎢⎣

1 · · · 0 −1
...

. . .
...

...

0 · · · 1 −1

⎤
⎥⎦ , (1)

where U ∈ R
(d−1)×d , 1d ∈ R

d is the vector of ones, and log x is the element-wise logarithm
of x. The formula of the alr map is related to the definition of the logistic-normal distrib-
ution (Aitchison and Shen 1980; Blei and Lafferty 2006) on Sd . The density of a logistic
normal distribution at any point in the simplex is proportional to the density of the multivariate
normal density on the image of that point under the alr map. The alr map is an isomorphism
between (Sd ,⊕,⊗) and

(
R

d−1,+,×)
where⊕ and⊗ are the perturbation (Aitchison 2003,

p. 24) and power (Aitchison 2003, p. 26) operations in the probability simplex respectively,
but not isometric since it does not preserve the distance between them.

2.2 Centered log-ratio embedding

The second embedding proposed by Aitchison (2003, p. 30) is the centered log-ratio embed-
ding (clr), which considers the log-ratio of each coordinate of x with the geometric mean of
all its coordinates,

clr (x)
def=

[
log xi+ε

d
√∏d

j=1(x j+ε)

]
1≤i≤d

∈ R
d . (2)

The clr map can be also expressed with simpler notations in matrix form:

clr (x) =
(

I− 1d×d

d

)
log (x + ε1d) .
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Here, I and 1d×d stand for the identity matrix and the matrix of ones in R
d×d respectively.

The clr map is not only an isomorphism, but also an isometry between the probability simplex
Sd and R

d . Note that the clr map spans the orthogonal of 1d in R
d .

2.3 Isometric log-ratio embedding

Egozcue et al. (2003) proposed to project the images of the clr map onto R
d−1, to define the

isometric log-ratio embedding (ilr). The ilr map is defined as follows:

ilr (x)
def= Vclr (x) = V

(
I− 1d×d

d

)
log (x + ε1d) , (3)

where V ∈ R
(d−1)×d is a matrix whose row vectors describe a base of the null space of 1T

d
in R

d . The ilr map is also an isometric map between both spaces in Aitchison’s sense.
Aitchison’s original definitions do not consider explicitly the regularization coefficient

ε (1982, 1986, 2003). In that literature, the histograms are either assumed to have strictly
positive values or the problem is dismissed by stating that all values can be regularized
by a very small constant (Aitchison and Lauder 1985, p. 132; 1986, §11.5). We consider
explicitly this constant ε here because it forms the basis of the embeddings we propose in
the next section.

3 Generalized Aitchison embeddings

Rather than settling for a particular weight matrix—such as those defined in Eqs. (1), (2)
or (3)—and defining a regularization constant ε arbitrarily, we introduce in the definition
below a family of mappings that leverage instead these parameters to define a flexible gen-
eralization of Aitchison’s maps. In the following, S+d is the cone of symmetric positive
semidefinite matrices of size d × d .

Definition 1 Let P be a matrix in R
m×d and b be a vector in the positive orthant R

d+. We
define the generalized Aitchison embedding a(x) of a point x in Sd parameterized by P and
b as

a(x)
def= P log (x + b) ∈ R

m . (4)

Vector b in Eq. (4), can be interpreted as a pseudo-count vector that weights the importance
of each coordinate of x. Figure 1 illustrates how larger pseudo-count values tend to smoothen
the logarithm mapping. A large value for bi directly implies that the map for the coordinate
described in bin number i is nearly constant, thereby canceling the impact of that coordinate
in subsequent analysis. Smaller values for bi denote on the contrary influential coordinates.

We propose to learn P and b such that histograms mapped following a can be efficiently
discriminated using the Euclidean distance. The Euclidean distance between the images of
two histograms x and z under the embedding a is:

da(x, z) def= d (a (x) , a (z))

= ‖P log (x + b)− P log (z+ b)‖2
=

∥∥∥∥log

(
x + b
z+ b

)∥∥∥∥
Q

, (5)

where the division between two vectors is here considered element-wise and we have
introduced the positive semidefinite matrix Q = PT P, along with the Mahalanobis norm
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Fig. 1 Impact of variable pseudo-count values in the logarithm function

‖·‖Q def= √·T Q ·. Our goal is to learn both Q ∈ S+d (we may also consider P directly) and the
pseudo-count vector b to obtain an embedding that performs well with k-nearest neighbors.

4 Learning generalized Aitchison embeddings

4.1 Criterion

Let D = {(xi, yi )1≤i≤N } be a dataset of labeled points in the simplex, where each xi ∈ Sd

and each yi ∈ {1, · · · , L} is a label. We follow Weinberger’s approach to define a criterion
to optimize the parameters (Q, b) (2006, 2009). Weinberger et al. propose a large margin
approach to nearest neighbor classification: given a training set D, their criterion considers
for a single reference point xi the cumulated distance of its closest neighbors that belong to the
same class, corrected by a coefficient which takes into account whether points from a different
class are in the immediate neighborhood of xi. Taken together over the entire dataset, these two
factors promote metric parameters which ensure that each point’s immediate neighborhood
is mostly composed of points that share its label.

These ideas can be formulated using the following notations. Let κ be an integer. Given
a pair of parameters (Q, b), consider the geometry induced by da. For each point xi in the
dataset, there exists κ neighbors of xi which share its label. We single out these indices by
introducing the binary relationship j � i for two indices 1 ≤ i 	= j ≤ N . The notation
j � i means that the j-th point is among those close neighbors with the same class (namely
yi = y j ). The set of indices j such that j � i is called the set of target neighbors of the i-th
point. Note that j � i does not imply i � j .

Next, we introduce the hinge loss of a real number t as [t]+
def= max(t, 0), to define the

margin between three points: given a triplet (i, j, �) of distinct indices, the margin Hi j� is
derived as:

Hi j�
def= [

1+ d2
a

(
xi, xj

)− d2
a (xi, x�)

]
+ .

This margin is positive whenever the distance between the i-th and �-th points is not larger
than the distance between the i-th and j-th points plus an offset of 1. If, for instance, the i-th
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Algorithm 1 Alternating optimization (AO) Approach for Problem (6)
Input: data (xi, yi )1≤i≤N , neighborhood size κ , intialization b0, Q0.
Set t ← 0.
repeat

Find κ target neighbors for each point xi with da as in Equation (5) at (Qt , bt ).
Compute Qt+1 using theLMNN algorithm initialized with Qt and training data {(log (xi + bt ) , yi )1≤i≤N }.
Update target neighbors for each vector xi using parameters (Qt+1, bt ).
Compute bt+1 using Algorithm 2 initialized with bt , on {(xi, yi )1≤i≤N } and Qt+1.
Update the objective Ft+1 ← F(

Qt+1, bt+1
)
.

t ← t + 1.
until t < tmax or insufficient progress for Ft .
Output: matrix Qt , pseudo-count vector bt .

and j-th points share the same class but the �-th point comes from a different class, Hi j� will
be positive whenever the �-th point is not far enough from the i-th point relative to where the
j-th point stands.

Using these definitions, we can define the following metric learning problem:

min
Q,b

F def=
∑

i, j�i

d2
a

(
xi, xj

)+ μ
∑

i, j�i

∑
�

(1− yi�)Hi j� + λ‖b‖22

s.t. Q � 0

b > 0d , (6)

where yi� is equal to 1 if yi = y� and 0 otherwise, and μ > 0, λ > 0 are two regularization
parameters. The first term in the objective favors small distances between neighboring points
of the same class, while the second term ensures no points with a different label are in the
neighborhood of each point, complemented by a regularization term.

4.2 Alternating optimization

Unlike the original LMNN formulation, optimization problem (6) is not convex because
of the introduction of a pseudo count vector b. Although the objective is still convex with
respect to Q, it is non-convex with respect to b. We consider first a naive approach which
updates alternatively Q and b. This approach is summarized in Algorithm 1 and detailed
below.

When b is fixed, optimization problem (6) is equivalent to the Mahalanobis metric learning
problem: indeed, once each training vector x is mapped to log (x + b), problem (6) can be
solved with a LMNN solver.

When Q is fixed, we can use a projected subgradient descent to learn the pseudo-count

vector b. Defining gi j (b)
def= d2

a

(
xi, xj

)
, we can compute the gradient of gi j as:

∇gi j (b) = 2

(
Q log

xi + b
xj + b

)
◦

(
1

xi + b
− 1

xj + b

)
,

where ◦ is the Schur product between vectors or matrices. Since only terms such that Hi j� is
positive contribute to the gradient, a subgradient γ for the objective function F at bt can be
expressed as

γ =
∑

i, j�i

⎡
⎣∇gi j (bt )+ μ

∑
�|Hi j�>0

[∇gi j (bt )− ∇gi�(bt )
]
⎤
⎦+ 2λbt . (7)
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Algorithm 2 Subgradient Descent Update of b when Q is fixed.
Input: data (xi, yi )1≤i≤N , a matrix Q, a subgradient step size t0, an initial vector b0.
Set t ← 0.
Set bt ← b0.
repeat

Compute a subgradient γ at bt following Equation (7).

Compute bt+1 ← Π
(

bt − t0√
t
γ
)

.

Update the objective Ft+1 ← F(
Q, bt+1

)
.

Set t ← t + 1.
until t < tmax or insufficient progress for Ft .
Output: a pseudo-count vector bt .

This formula results in the following update for bt using a preset step size t0√
t
:

bt+1 = Π

(
bt − t0√

t
γ

)
,

where Π (x) is the projection of x on the positive orthant offset by a small minimum threshold
ε = 10−20, namely the set of all vectors whose coordinates are larger or equal to 10−20. A
pseudo-code of this approach is summarized in Algorithm 2. We can set the initial point
Q0 to be equal to PT P where P can be selected among the linear embeddings originally
considered by Aitchison presented in Sect. 2. We initialize the pseudo-count vector to the
uniform smoothing term 1d/d .

4.3 Projected subgradient descent with Nesterov acceleration

We propose in this section a more straightforward approach to the problem of minimizing
Problem (6) which bypasses the cost associated with running many iterations of the LMNN
solver. We consider a projected subgradient descent using Nesterov acceleration scheme (Nes-
terov 1983, 2004) to optimize the parameters (Q, b) in Problem (6) directly. Our experiments
show that this approach is considerably faster and equally efficient in terms of classification
accuracy.

Analogously to the previous section, we consider the distance d2
a

(
xi, xj

)
as a function

hi j (Q, b) of Q and b . Gradients of hi j with respect to Q and b are, introducing the notation
ui j below:

∇hi j (Q, b)|Q =
(

log
xi + b
xj + b

) (
log

xi + b
xj + b

)T

= ui j uT
i j ,

∇hi j (Q, b)|b = ∇gi j (b).

At iteration t + 1, a subgradient of the objective F with respect to b was given in Eq. (7).
We derive similarly a subgradient Γ with respect to Q:

Γ =
∑

i, j�i

⎡
⎣ui j uT

i j + μ
∑

�|Hi j�>0

[
ui j uT

i j − ui�uT
i�

]⎤⎦ .
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Nesterov acceleration scheme builds gradient updates using a momentum that involves two
iterations. bt and Qt can be updated analogously as follows:

bnes
t−1 = bt−1 + t − 2

t + 1
(bt−1 − bt−2) ,

bt = Π

(
bnes

t−1 −
t0√

t

∂F
∂b

(
Qt−1, bnes

t−1

))
.

Qnes
t−1 = Qt−1 + t − 2

t + 1
(Qt−1 −Qt−2) ,

Qt = πS+d

(
Qnes

t−1 −
t0√

t

∂F
∂Q

(
Qnes

t−1, bt−1
))

.

The projection πS+d of a matrix onto the cone of positive semidefinite matrices is carried out
by thresholding its negative eigenvalues.

4.4 Low-rank approaches

Torresani and Lee (2006) have proposed to learn low-rank embeddings for LMNN. We include
this variation here, which is beneficial in terms of computational speed, since it only involves
storing a low-rank Cholesky factor P ∈ R

m×d of Q where m < d is a predetermined
parameter. This gain comes at the cost of losing convexity when the problem is parameterized
by Q. The subgradient of F with respect to P is:

∂F
∂P
= 2P

∂F
∂Q
∈ R

m×d .

When using a descent expressed in terms of P, we obtain the updates

Pnes
t−1 = Pt−1 + t − 2

t + 1
(Pt−1 − Pt−2) ,

Pt = Pnes
t−1 −

t0√
t

∂F
∂P

(
Pnes

t−1

)
.

Since no constraints hold on P, we do not need a projection step.

4.5 Adaptive restart

The projected subgradient descent with Nesterov acceleration presented in Sect. 4.3 does
not guarantee a monotone decrease of the objective value. Indeed, it has been observed that
Nesterov acceleration scheme may create ripples in the objective value curve when plotted
against iteration count. This phenomenon happens when the momentum built from Nesterov
acceleration scheme becomes higher than a critical value (the optimal momentum value
described by Nesterov (1983, 2004)), and thus damage convergence speed. To overcome
this, we adopt the heuristic of O’Donoghue and Candès (2013), which sets the momentum
back to zero whenever an increase in the objective is detected. Whenever Ft > Ft−1 at some
point in time t , the idea of this heuristic is to erase the memory of previous iterations, reset
the algorithm counter to 0 and use the current iteration as a warm start.
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Table 1 Properties of datasets and their corresponding experimental parameters

Dataset #Train #Test #Class Feature Rep #Dim #Run

MIT Scene 800 800 8 SIFT BoF 800 5

UIUC Scene 1,500 1,500 15 SIFT BoF 800 5

DSLR 409 89 31 SURF BoF 800 5

WEBCAM 646 149 31 SURF BoF 800 5

AMAZON 2,262 551 31 SURF BoF 800 5

OXFORD Flower 680 680 17 SIFT BoF 400 5

CALTECH-101 3,060 2,995 102 SIFT BoF 400 3

Pascal Voc 2007 5,011 4,952 20 Dense Hue BoF 100 1

MirFlickr 12,500 12,500 38 Dense Hue BoF 100 1

MNIST 5,000 5,000 10 Normalized intensity 784 5

20 News Group 600 19,397 20 BoW LDA 200 5

Reuters 500 9,926 10 BoW LDA 200 5

5 Related work

Notwithstanding Aitchison’s work, the logarithm mapping has been consistently applied in
information retrieval to correct for the burstiness of feature counts (Salton 1989; Baeza-Yates
and Ribeiro-Neto 1999; Rennie et al. 2003; Lewis et al. 2004; Madsen et al. 2005), using the
mapping

x �→ log(x + α1d), (8)

for an unnormalized histogram of feature counts x, where α > 0 is a constant in R+ typically
set to α = 1. This embedding can be directly applied to the original histograms or used on
term-frequency inverse-document-frequency (TFIDF) and its variants (Aizawa 2003; Madsen
et al. 2005). These logarithmic maps can be interpreted as particular cases of the embeddings
we propose here.

In addition to the logarithm, Hellinger’s embedding, which considers the element-wise
square-root vector of a histogram (x �→ √x) is particularly popular in computer vision
(Perronnin et al. 2010; Vedaldi and Zisserman 2012). This embedding was also considered
as an adequate representation to learn Mahanlanobis metrics in the probability simplex as
argued by Cuturi and Avis, §6.2.1. Some other explicit feature maps such as χ2, intersection
and Jensen-Shannon are also benchmarked in Vedaldi and Zisserman (2012).

6 Experiments

6.1 Experimental setting and implementation notes

Datasets We evaluate our algorithms on 12 benchmark datasets of various sizes. Table 1
displays their properties and relevant parameters. These datasets include problems such as
scene classification, image classification with a single label or multi labels, handwritten digit
and text classification. We follow recommended configurations for these datasets. If they are
not provided, we randomly generate fivefolds to evaluate in each run. Additionally, we also
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repeat the experiments at least 3 times to obtain averaged results, except for PASCAL VOC
2007 and MirFlickr datasets where we use a predefined train and test set.

Parameters of the proposed algorithms We set the target neighborhood size κ = 3 as a
default parameter setting of the LMNN solver.1 We note that the number of target neighbor
κ is not necessary to be equal to parameter k in k-nearest neighbor classification. In our
experiments, κ is a fixed number while k varies. We also set the regularization μ = 1 as
in LMNN (Weinberger and Saul 2009) while the regularization λ is set to κ N (recall that N
is the size of the training set), guided by preliminary experiments. For the step size t0 in
the subgradient descent update, we choose from the set 1

κ N {0.01, 0.05, 0.1, 0.5} via cross
validation. For the alternating optimization (Algorithm 1), we set tmax = 20 iterations (in our
experiments, we observe that this number is generous, since usually 6–10 iterations suffice
for most datasets, as shown in Figs. 6, 7). For the projected subgradient descent with Nesterov
acceleration (PSGD-NES), the algorithm takes less than 500 iterations for converge (usually
about 300 iterations, illustrated in Figs. 10, 11). So, we set tmax = 500 for the PSGD-NES
algorithm.

Dense SIFT features for images Dense SIFT features are computed by operating a SIFT
descriptor of 16 × 16 patches computed over each pixel of an image as in (Le et al. 2011)
instead of key points (Lowe 2004) or a grid of points (Lazebnik et al. 2006). Addition-
ally, before computing the dense SIFT, we convert images into gray scale ones to improve
robustness. We obtained dense SIFT features by using the LabelMe toolbox2 (Russell et al.
2008).

6.2 Metrics and metric learning methods

We consider LMNNmetric learning for histograms using: their original representation; the ilr
representation (Sect. 2, Eq. (3)); their Hellinger map. We also include the simple Euclidean
distance in our benchmarks. To illustrate the fact that learning the pseudo-count vector b
results in significant performance improvements, we also conduct experiments with an algo-
rithm that learns Q through LMNN but only considers a uniform pseudo-count vector of α

chosen in {0.0001, 0.001, 0.01, 0.1, 1} by cross validation on the training fold. We call this
approach Log-LMNN.

6.3 Scene classification

We conduct experiments on the MIT Scene3 and UIUC Scene4 datasets. In these datasets,
we select randomly 100 train and 100 test points from each class. Histograms are obtained
by using dense SIFT features with bag-of-feature representation (BoF) where the number of
visual words is set to 800. We repeat experiments 5 times on each dataset and split randomly
onto train and test sets.

The two leftmost graphs in Fig. 2 shows averaged results with error bars on these datasets.
The performance of the proposed embedding improves upon that of LMNN on the original
histograms by more than 15 % and is slightly better than LMNN combined with the Hellinger

1 http://www.cse.wustl.edu/~kilian/code/lmnn/lmnn.html.
2 http://new-labelme.csail.mit.edu/Release3.0/browserTools/php/matlab_toolbox.php.
3 http://people.csail.mit.edu/torralba/code/spatialenve-lope/.
4 http://www.cs.illinois.edu/homes/slazebni/research/.
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Fig. 2 Classification on scene (MIT Scene & UIUC Scene), handwritten digit (MNIST) and text (20 News
Group & Reuters)

map. These graphs also illustrates that Hellinger is an efficient embedding for histograms.
The performance of k-NN seeded with the Hellinger distance is even better than that of LMNN
in these datasets. The performances of all alternative embeddings with LMNN are better than
those with Euclidean distance respectively.

6.4 Handwritten digits classification

We also perform experiments for handwritten digits classification on the MNIST5 dataset. A
feature vector for each point is constructed from a normalized intensity level of each pixel. We
randomly choose 500 points disjointly from each class for train and test sets, repeat 5 times
for averaged results. The middle graph in Fig. 2 illustrates that the generalized Aitchison
embedding also outperforms other alternative embeddings.

6.5 Text classification

We also carry out experiments for text classification on 20 News Groups6 and Reuters7 (the
10 largest classes) datasets. In these datasets, we calculate bag of words (BoW) for each
document, and then we use topic modelling (LDA) to reduce the dimension of histograms
using the gensim toolbox.8 We obtain a histogram of topics for each document (Blei et al.
2003; Blei and Lafferty 2009). We randomly choose 30 points and 50 points from each class
in 20 News Groups and Reuters datasets for training, and use the remaining points for testing
respectively. We randomly generate 5 different train and test sets for each dataset and average
results.

5 http://yann.lecun.com/exdb/mnist/.
6 http://qwone.com/~jason/20Newsgroups/.
7 http://archive.ics.uci.edu/ml/datasets/Reuters--21578+Text+Categorization+Collection.
8 http://radimrehurek.com/gensim/.
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Table 2 Averaged percentage of
zero-elements in a histogram
(sparseness) of single-label
datasets

Dataset Sparseness (%)

MIT Scene 20.04

UIUC Scene 20.33

DSLR 39.58

WEBCAM 64.44

AMAZON 83.20

OXFORD Flower 1.12

CALTECH-101 13.15

MNIST 80.68

20 News Group 98.01

Reuters 98.00
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Fig. 3 Single-label object classification on DSLR, AMAZON, WEBCAM, OXFORD FLOWER and
CALTECH-101

The two rightmost graphs in Fig. 2 show that the proposed embedding improves the perfor-
mance of LMNN by more than 10 % on each dataset. It also outperforms the ilr and Hellinger
representations on these datasets, except for the Reuters dataset where their performances are
comparable. Moreover, as in Table 2 which illustrates averaged percentages of zero-elements
in a histogram (sparseness), these datasets are very sparse. There are averaged more than 98 %
zero-elements in a histogram in these datasets. Therefore, the proposed algorithm may have
advantages for very sparse datasets.

6.6 Single-label object classification

DSLR, AMAZON and WEBCAM These datasets9 are split into fivefolds. Each point is a
histogram of visual words obtained by BoF representation on SURF features (Bay et al.

9 http://www1.icsi.berkeley.edu/~saenko/projects.html.
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Fig. 4 Multi-label object classification on PASCAL VOC 2007 & MirFlickr

2006) where the code-book size is set to 800. We repeat experiments 5 times on each dataset
with different random splits and average results.

The three leftmost graphs in Fig. 3 illustrate that the performance of the proposed embed-
ding outperforms that of LMNN on these datasets and even improves about 30, 25 and 10 %
on DSLR, WEBCAM and AMAZON dataset respectively. Our proposed algorithm also
improves the performances of Log-LMNN about 7 %.

OXFORD FLOWER 10 We randomly choose 40 flower images of each class for training and
use the rest for testing. We construct histograms using a BoF representation with 400 visual
words on a dense SIFT feature and repeat experiments 5 times on different random splits
to obtain averaged results. The fourth graph in Fig. 3 shows that the proposed embedding
outperforms that of histograms more than 30 %, and also improves about 15 % comparing to
the ilr embedding as well as the Hellinger representation with LMNN. As showed in Table 2,
this dataset is highly dense since there are only about 1 % zero-elements in a histogram. This
suggests that our approaches might work better with dense datasets.

CALTECH-101 We randomly choose 30 images for training and up to 50 other images for
testing. We use BoF representation with 400 visual words on a dense SIFT feature to construct
histograms for each image. The rightmost graph in Fig. 3 shows averaged results on 3 different
random splits of the CALTECH-10111 dataset, illustrating again the interest of our approach.

6.7 Multi-label object classification

We evaluate the proposed method on multi-label image categorization using the PASCAL
VOC 200712 and MirFlickr13 datasets. We follow the guidelines to define the train and test

10 http://www.robots.ox.ac.uk/~vgg/data/flowers/17/.
11 http://www.vision.caltech.edu/Image_Datasets/Cal-tech101/.
12 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/.
13 http://press.liacs.nl/mirflickr/.
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Fig. 5 Classification results for low-rank generalized Aitchison embedding

sets. Histograms for each image are built in these datasets based on BoF representation with
100 visual words on a dense hue feature. Then, we employ a one-versus-all strategy for k-
NN classification and calculate averaged precisions for each dataset. Figure 4 illustrates that
the proposed embedding outperforms original, ilr, and Hellinger representation with LMNN
again. Additionally, the performance of Hellinger distance is better than that of LMNN and
comparative with that of Log-LMNN in these datasets.

6.8 Low-rank embeddings

We conduct experiments for the low-rank version of our algorithm, where the dimension
is set to {80, 60, 40, 20 %} of the original dimension of the single-label datasets. Figure 5
indicates that reducing rank can be carried out to accelerate computations, but this speed up
can come, depending on the dataset, at the expense of a degradation in performance.

7 Experimental behavior of the algorithm

7.1 Convergence speed

Figures 6 and 7 illustrate the convergence of the objective with respect to computational
time on a log-log scale. We consider the naive alternating optimization approach (Sect. 4.2), a
standard projected subgradient descent, projected subgradient descent with Nesterov accel-
eration (Sect. 4.3), and a version with adaptive restart (PSGD-NES-AR in Sect. 4.5). We
use the LMNN solver directly and measure raw time using a single core. Gaps in that curve
indicate the value of the objective before and after running the LMNN solver.

The naive alternating optimization has computational cost that is about one order of
magnitude larger than that of a direct application of LMNN. This factor appears because
we run the LMNN solver multiple times. The burden of optimizing the pseudo-count vector
is small due to the fact that the gradient has a closed-form solution for each pair in the
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Fig. 6 Log–log plot illustration for the relation between behavior of the objective function and computational
time in the proposed algorithms on DSLR, AMAZON, WEBCAM, OXFORD FLOWER and CALTECH-101
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Fig. 7 Log–log plot illustration for the relation between behavior of the objective function and computational
time in the proposed algorithms on scene (MIT Scene & UIUC Scene), handwritten digit (MNIST) and text
(20 News Group & Reuters)

objective function. We only need to run a few iterations of the LMNN algorithm using a warm
start when alternating. Our experiments show that we only need to run 6–10 alternating
iterations for these datasets, but each iteration is costly. These results show the interest of
using Nesterov acceleration scheme here, and even suggest adopting the adaptive restart
heuristic of O’Donoghue and Candès (2013).

7.2 Sensitivity to parameters

Target neighbors Figures 8 and 9 illustrate the effect of the number of target neighbors κ

on the results of our algorithms. We evaluate for κ = {1, 3, 5, 7, 9} for single-label datasets,
except κ = {7, 9} for DSLR and κ = 9 for WEBCAM due to the size of the smallest
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Fig. 8 Illustration for the effect of target neighbors in the PSGD-NES on DSLR, AMAZON, WEBCAM,
OXFORD FLOWER and CALTECH-101
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Fig. 9 Illustration for the effect of target neighbors in the PSGD-NES scene (MIT Scene & UIUC Scene),
handwritten digit (MNIST) and text (20 News Group & Reuters)

class in these datasets. These results suggest that the number of target neighbors has a large
impact and should remain low, both from a computational viewpoint and performances of the
algorithm. Figures 8 and 9 also show that 3-target-neighbor setup is an appropriate choice
for those evaluated datasets.

Average test accuracy over iteration count Figures 10 and 11 show the average test accuracy
over iteration count. The curves of average test accuracy value seem to increase monotonically
with the iteration count, therefore suggesting that our algorithms do not overfit training data
in these evaluations.
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Fig. 10 Illustration for the average test accuracy over iteration count of the PSGD-NES to indicate that
the algorithm do not overfit to training data on DSLR, AMAZON, WEBCAM, OXFORD FLOWER and
CALTECH-101
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Fig. 11 Illustration for the average test accuracy over iteration count of the PSGD-NES to indicate that the
algorithm do not overfit to training data scene (MIT Scene & UIUC Scene), handwritten digit (MNIST) and
text (20 News Group & Reuters)

8 Conclusion

We have shown that a generalized family of embeddings for histograms coupled with different
procedures to estimate its parameters can be effective to represent histograms in Euclidean
spaces. Our variations outperform other common approaches such as the Hellinger map
or Aitchison’s original embeddings. Rather than using an alternative optimization scheme
and use LMNN solvers, our results indicated that a simple accelerated subgradient method
provides the best results both in performance and computational time. Other variations, such
as learning a low-rank embedding or using adaptive restart heuristic for PSGD-NES, can also
prove beneficial, depending on the datasets.
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