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Abstract Lifted graphical models provide a language for expressing dependencies between
different types of entities, their attributes, and their diverse relations, as well as techniques for
probabilistic reasoning in such multi-relational domains. In this survey, we review a general
form for a lifted graphical model, a par-factor graph, and show how a number of existing
statistical relational representations map to this formalism. We discuss inference algorithms,
including lifted inference algorithms, that efficiently compute the answers to probabilistic
queries over such models. We also review work in learning lifted graphical models from
data. There is a growing need for statistical relational models (whether they go by that name
or another), as we are inundated with data which is a mix of structured and unstructured,
with entities and relations extracted in a noisy manner from text, and with the need to reason
effectively with this data. We hope that this synthesis of ideas from many different research
groups will provide an accessible starting point for new researchers in this expanding field.
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1 Motivation and scope

Multi-relational data, in which entities of different types engage in a rich set of relations, is
ubiquitous in many domains of current interest. For example, in social network analysis the
entities are individuals who relate to one another via friendships, family ties, or collaborations;
in computational biology, one is frequently interested in modeling how a set of chemical
substances, the entities, interact with, inhibit, or catalyze one another; in web and social
media applications, a set of users interact with each other and with a set of web pages or
other online resources, which may themselves be related via hyperlinks; in natural language
processing tasks, it is often necessary to reason about the relationships between documents,
or words within a sentence or a document. There is thus a need for formalisms that can
model such multi-relational data and for corresponding reasoning algorithms that allow one
to infer additional information. Furthermore, regularities in these domains are often hard to
identify manually, and methods that automatically learn them from data are thus desirable.
Indeed, by incorporating such relational information into learning and reasoning, rather than
relying solely on entity-specific attributes, it is usually possible to achieve higher predictive
accuracy for an unobserved entity attribute. For example, exploiting hyperlinks between web
pages can improve webpage classification accuracy, and taking into account both individual
attributes of users and relationships between users can improve inference of demographic
attributes in social networks. Developing algorithms and representations that can effectively
deal with relational information is important also because in many cases it is necessary to
predict the existence of a relation between the entities. For example, in an online social
network application, one may be interested in predicting friendship relations between people
in order to suggest new friends to the users; in molecular biology domains, researchers may
be interested in predicting how newly-developed substances interact.

While multi-relational data has long been considered in relational learning, multi-
relational data mining and inductive logic programming (De Raedt 2008; Muggleton and
De Raedt 1994; Muggleton 1991, 1992; De Raedt 1996; Dz̆eroski and Lavrac̆ 2001; Lavrac̆
and Dz̆eroski 1993), these techniques do not address the inherent uncertainty present in many
application domains. This limitation is overcome by explicitly modeling both relational and
probabilistic aspects, an approach pursued by the field of statistical relational learning (SRL)
(e.g., Dietterich et al. 2004; Fern et al. 2006; Getoor and Taskar 2007; Domingos and Kerst-
ing 2009; Kersting et al. 2010b; Kautz et al. 2012; Gogate et al. 2013), which has recently
experienced significant growth. A closely related field that also relies on both relational data
and probabilistic information is structured prediction (Bakir et al. 2007; Lafferty et al. 2001;
Tsochantaridis et al. 2004; Munoz et al. 2009; Weiss and Taskar 2010), and especially col-
lective classification (Jensen et al. 2004; Macskassy and Provost 2007; Wu and Schölkopf
2007; Sen et al. 2008b; Kuwadekar and Neville 2011; London and Getoor 2013).

This survey provides a detailed overview of developments in the field of SRL. We limit our
discussion to lifted graphical models (also referred to as templated graphical models), that is,
to formalisms that use relational languages to define graphical models, where we use Poole’s
par-factors (Poole 2003) as the unifying language. As their propositional counterparts, lifted
graphical models take advantage of independencies between random variables to compactly
represent probability distributions by factorizing them. In the same way as first-order logic lifts
propositional logic by making statements about all members of groups of objects represented
by logical variables, lifted graphical models define random variables and their correlations
on the level of groups of objects of the same type rather than for each individual object.
Furthermore, all members of such a group use the same tied parameters in the graphical
model, making it possible to define probabilistic models over flexible numbers of objects
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with a fixed number of parameters. Lifted graphical models thus exploit the structure of
both the relational domain and the probability distribution when representing probabilistic
models. Because of the great variety of existing SRL applications, we cannot do justice to
all of them; therefore, the focus is on representations and techniques, and applications are
mentioned in passing where they help illustrate our point.

By limiting the scope of the survey, we are able to provide a more focused and unified
discussion of the representations that we do cover, but also omit several important SRL
representations, such as stochastic logic programs (Muggleton 1996) and ProbLog (De Raedt
et al. 2007). These formalisms are representatives of the second main stream of SRL research
that focuses on extending logic-based representations and techniques to take into account
uncertainty. For more information on this type of representations, we refer the reader to De
Raedt and Kersting (2003), De Raedt and Kersting (2004), De Raedt et al. (2008), De Raedt
and Kersting (2010). An overview of the development of first-order probabilistic models
over time is provided by de Salvo Braz et al. (2008). Among the many other approaches in
machine learning and other fields that consider relational data and models and that we do
not consider here are lifted (PO)MDPs and relational reinforcement learning (van Otterlo
2009), probabilistic databases (Suciu et al. 2011), probabilistic programming (Roy et al.
2008; Mansinghka et al. 2012), (multi-)relational Gaussian processes (Chu et al. 2006; Xu
et al. 2009), relational LDA (Chang and Blei 2009), mixed membership models (Airoldi et
al. 2008), relational and graph SVMs (Tsochantaridis et al. 2004; Gaudel et al. 2007) and
relational PCA (Li et al. 2009).

This survey is structured as follows. In Sect. 2, we define SRL and introduce preliminaries.
In Sect. 3, we describe several SRL representations that are based on lifting a graphical
model. Our goal in this section is to establish a unified view on the available representations
by adopting a generic, or template, SRL model—a par-factor graph—and discussing how
particular models implement its various aspects. In this way, we establish not just criteria
for comparisons of the models, but also a common framework in which to discuss inference
(Sect. 4), parameter learning (Sect. 5.1), and structure learning (Sect. 5.2) algorithms.

2 Preliminaries

This section summarizes the key characteristics of SRL and provides background on both
graphical models and relational representations as relevant for the rest of the article.

2.1 What is SRL?

SRL studies knowledge representations and their accompanying inference and learning tech-
niques that allow for efficient modeling and reasoning in noisy and uncertain multi-relational
domains. In classical machine learning settings, the data consists of a single table of feature
vectors, one for each entity in the data. A crucial assumption made is that the entities in the
data represent independent and identically distributed (i.i.d.) samples from the general popu-
lation. In contrast, multi-relational domains contain entities of potentially different types that
engage in a variety of relations. Thus, a multi-relational domain can be seen as consisting of
several tables: a set of attribute tables that contain feature-vector descriptions for entities of a
certain type, and a set of relationship tables that establish relationships among two or more of
the entities in the domain. Relations also allow one to model complex, structured objects. As
a consequence of the relationships among the entities, they are no longer independent, and
the i.i.d. assumption is violated. Figure 1 shows a small example with two types of entities
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Fig. 1 Example database describing a publication domain, with attribute tables for publications and
researchers, and a relationship table connecting the two

and one relation in a publication domain. A further characteristic of multi-relational domains
is that they are typically noisy or uncertain. For example, there frequently is uncertainty
regarding the presence or absence of a relation between a particular pair of entities. Finally,
aggregation functions are a useful concept in relational domains, as they allow one to consider
properties of all entities participating in a certain relation, e.g., all authors of a given paper,
without the need to make assumptions on the number of such entities.

To summarize, an effective SRL representation needs to support the following two essential
aspects: (a) it needs to provide a language for expressing dependencies between different
types of entities, their attributes, and their diverse relations; and (b) it needs to allow for
probabilistic reasoning in a potentially noisy environment.

2.2 Background and notation

Lifted graphical models combine ideas from graphical models and relational languages. We
first summarize key concepts of graphical models and establish the notation and terminology
to be used in the rest of this survey. Probability theory and first-order logic sometimes use
the same term to describe different concepts. For example, the word “variable” could mean
a random variable (RV), or a logical variable. To avoid confusion, we distinguish between
different meanings using different fonts, as summarized in Table 1. Also, depending on
context, the word “model” may denote a specification of a probability distribution in a generic
sense (e.g., when talking about directed and undirected graphical models), a formalism to
define such models (such as the languages discussed in Sects. 3.2 and 3.3), or a specific
encoding of a distribution in such a formalism.

2.2.1 Probabilistic graphical models

As lifted graphical models extend probabilistic graphical models, we first summarize basic
concepts from that area. For a detailed introduction to graphical models, we refer the reader
to Koller and Friedman (2009). We discuss factor graphs, which are the propositional coun-
terpart of the par-factor graphs used as a unifying language in this survey, cf. Sect. 3.1,
as well as Markov networks and Bayesian networks as representatives of undirected and
directed graphical models, respectively, a distinction that will come back at the lifted level,
cf. Sects. 3.2 and 3.3.

In general, to describe a probability distribution on n binary RVs, one needs to store
2n − 1 parameters, one for each possible configuration of value assignments to the RVs.
However, sets of RVs are often conditionally independent of one another, and thus, many of
the parameters will be repeated. To avoid such redundancy of representation, several graphical
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Table 1 Notation used throughout this survey

Concept Representation

Parameterized random variable (par-RV) Sans serif upper-case letters X, Y, …

Vector of par-RVs Bold sans serif upper-case letters X, Y, …

Random variable (RV) Upper-case letters X , Y , …

Vector of RVs Bold upper-case letters X , Y , …

Value assigned to RV Lower-case letters x , y, …

Vector of values assigned to RVs Bold lower-case letters x, y, …

Logical variable Typewriter upper-case letters X, Y, …

Entity/constant Typewriter lower-case letters x, y, …

Factor-graph 〈X, F〉
Par-factor Φ = (A, φ, C)

Par-factor graph F = {Φ1, . . . , Φn}
Set of constraints C
Hypothesis space H
Training data / set of training examples D
Instances of par-factor Φ = (A, φ, C) I(Φ) = {A | A instance of A under C}
Set of integer linear program variables V

models have been developed that explicitly represent conditional independencies. One of the
most general representations is the factor graph (Kschischang et al. 2001). A factor graph
consists of a tuple 〈X, F〉, where X is a set of RVs, and F is a set of factors, each of which is
a function from the values of (a subset of) X to the non-negative real numbers. It is typically
drawn as an undirected bipartite graph (cf. Fig. 2b). The two partitions of vertices in the factor
graph consist of the RVs X in X (drawn as circular nodes) and the factors φ in F (drawn as
square nodes), respectively. There is an edge between an RV X and a factor φ if and only
if X is necessary for the computation of φ (cf. Fig. 2c); i.e., each factor is connected to its
arguments. As a result, the structure of a factor graph defines conditional independencies
between the variables. In particular, a variable is conditionally independent of all variables
with which it does not share factors, given the variables with which it participates in common
factors.

A factor graph 〈X, F〉 defines a probability distribution over X as follows. Let x be a
particular assignment of values to X . Then,

P(X = x) = 1

Z

∏

φ∈F

φ(xφ). (1)

Above, xφ represents the values of those variables in X that are necessary for computing φ’s
value. Z is a normalizing constant that sums over all possible value assignments x′ to X , and
is given by:

Z =
∑

x′

∏

φ∈F

φ(x′φ). (2)

As before, x′φ represents the values of only those variables in X that are necessary to compute
φ.
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(a) (b)

(c)
Fig. 2 Example of a Markov network structure, b corresponding factor graph, and c potential functions (all
random variables are Boolean). Circular nodes correspond to variables, whereas square nodes correspond to
factors

Factor graphs are a general representation for graphical models that subsumes both Markov
networks and Bayesian networks, two very common types of graphical models whose graph-
ical representations use RVs as nodes only, and implicitly provide the factors through the
graph structure.

A Markov network (Pearl 1988) is an undirected graphical model whose nodes correspond
to the RVs in X . It computes the probability distribution over X as a product of strictly positive
potential functions defined over cliques in the graph, i.e., for any set of variables that are
connected in a maximal clique, there is a potential function that takes them as arguments. For
instance, the Markov network in Fig. 2a has two cliques, and thus two potential functions,
one over variables A, B and D, the second over variables B, C and D, which are given in
tabular form in Fig. 2c. Alternatively, potential functions are often represented as a log-linear
model, in which each potential function φ(X1 . . . Xn) of n variables X1 . . . Xn is represented
as an exponentiated product exp(λ · f (X1 . . . Xn)). In this expression, λ ∈ R is a learnable
parameter, and f is a feature that captures characteristics of the variables and can evaluate
to any value in R. In general, there may be more than one potential function defined over a
clique. In this way, a variety of feature functions, each with its own learnable parameter λ,
can be defined for the same set of variables. There is a direct mapping from Markov networks
to factor graphs. To convert a Markov network to a factor graph, for each maximal clique in
the Markov network, we include a factor that evaluates to the product of potentials defined
over that clique. The factor graph corresponding to the Markov network in Fig. 2a is shown
in Fig. 2b.

A Bayesian network (Pearl 1988) is represented as a directed acyclic graph, whose vertices
again are the RVs in X . Figure 3a shows an example. The probability distribution over X is
specified by providing the conditional probability distribution for each node given the values
of its parents. The simplest way of expressing these conditional probabilities is via conditional
probability tables (CPTs), which list the probability associated with each configuration of
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(a) (b)
(c)

Fig. 3 Example of a Bayesian network structure, b corresponding factor graph, and c conditional probability
tables defining potential functions (all random variables are Boolean). Circular nodes correspond to random
variables, whereas square nodes correspond to factors

values to the nodes, cf. Fig. 3c. A Bayesian network can directly be converted to a factor graph
as follows. For each node X , we introduce a factor φX to represent the conditional probability
distribution of X given its parents. Thus, φX is computed as a function of only X and its
parents. In this case, the product is automatically normalized, i.e., the normalization constant
Z sums to 1. Figure 3b shows the factor graph corresponding to the Bayesian network of
Fig. 3a.

While factor graphs provide a general framework, it is often useful to restrict the discussion
to either directed or undirected models. More specifically, directed models are appropriate
when one needs to express a causal dependence, while undirected models are better suited
to domains containing cyclic dependencies. On the other hand, by describing algorithms for
factor graphs, they become immediately available to representations that can be viewed as
specializations of factor graphs, such as Markov and Bayesian networks. In this survey, we
therefore keep the discussion on the general level of factor graphs (or their lifted counterpart as
introduced in Sect. 3.1) whenever possible, and only consider special cases where necessary.

2.2.2 Inference in graphical models

The two most common inference tasks in graphical models are computing marginals and
most probable explanation (MPE) inference. The former computes the marginal probability
distributions for a subset X ′ ⊆ X of the random variables from the full joint distribution
defined by the graphical model, cf. Eq. (1). Setting Y = X \ X ′, this probability has the
following form:

P(X ′ = x′) =
∑

Y= y

1

Z

∏

φ∈F

φ(x′
φ, yφ). (3)

Computing the marginal probability thus corresponds to summing out the RVs Y . It also is
an important step in computing conditional probabilities P(X ′ = x′|Y ′ = y′) = P(X ′ =
x′, Y ′ = y′)/P(Y ′ = y′), where values y′ for some random variables Y ′ ⊆ Y are given as
evidence.

MPE inference computes the most likely joint assignment to a subset X ′ ⊆ X of the RVs
(sometimes also called MAP (maximum a posteriori) state), given values y of all remaining

123



8 Mach Learn (2015) 99:1–45

RVs Y = X \ X ′, that is

M P E(X ′ = x′|Y = y) = argmaxX ′=x′ P(X ′ = x′, Y = y) (4)

Even though the complexity of solving these tasks is exponential in the worst case and thus
intractable in general, cf. Koller and Friedman (2009), many instances occurring in practice
can be solved efficiently. We next summarize two common inference techniques for graphical
models, whose extensions to the lifted case will be discussed in Sect 4.

2.2.3 Variable elimination

One of the earliest and simplest algorithms for exact inference in factor graphs is variable
elimination (VE) (Zhang and Poole 1994; Poole and Zhang 2003). Suppose we would like to
compute the marginal probability distribution of a particular random variable X , as given in
Eq. (3). VE proceeds in iterations summing out all other RVs Y one by one, exploiting the fact
that multiplication distributes over summation and ignoring the constant normalization factor
1/Z during computations. An ordering over the variables in Y is established, and in each
iteration the next Y ∈ Y is selected, and the set of factors is split into two groups—the ones
that contain Y and the ones that do not. The latter can be pulled out of the sum over the current
variable Y . All factors containing Y are multiplied together and the results are summed, thus
effectively eliminating (or summing out) Y from Y . The efficiency of the algorithm is affected
by the ordering over Y that was used; heuristics for selecting good orderings are available.
In the end, the normalization constant Z is obtained by simply summing the results for all
values x of X and results are normalized.

This algorithm can be adapted to find the MAP state, cf. Eq. (4). This requires an argmax
computation over the variables of interest X ′ rather than a summation over all other variables
Y , but the structure of the problem is similar otherwise. As before, the algorithm imposes an
ordering over the variables X ′ to be processed, and proceeds in iterations, this time, however,
eliminating each variable X ∈ X ′ by maximizing the product of all factors that contain X
and remembering which value of X gave the maximum value.

2.2.4 Belief propagation

Pearl’s belief propagation (BP) (Pearl 1988) is another algorithm for computing marginals in
Bayesian networks. As the closely related forward-backward algorithm for hidden Markov
models (Rabiner 1989), BP is an instance of the sum-product algorithm for factor graphs
(Kschischang et al. 2001), which owes its name to the fact that it consists of a series of
summations and products. We adopt the latter view of operating on factor graphs for our
discussion of BP, and refer to Kschischang et al. (2001) for full details. The key idea behind
BP is that each node in the factor graph sends “messages” to all of its neighbors, based on
the ones received from the other neighbors. As the messages ultimately serve to compute
marginals at the variable nodes, each message is a function of the respective variable node X
involved in the exchange. Given the bipartite nature of the factor graph, there are two types
of messages. The first type is sent from a variable node X to a neighboring factor node φ.
Such a message provides a multiplicative summary of the messages from all other factors
the variable participates in:

μX→φ(X) =
∏

φ′∈n(X)\{φ}
μφ′→X (X). (5)
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Here, n(X) is the set of neighboring nodes of X in the factor graph. These messages are
initially set to 1. The second type of message is sent from a factor node φ to a neighboring
variable node X :

μφ→X (X) =
∑

X\{X}

⎛

⎝φ(Xφ)
∏

Y∈Xφ\{X}
μY→φ(Y )

⎞

⎠ (6)

Here, X denotes all RVs in the factor graph, Xφ those that are arguments of factor φ (and
thus φ’s neighbors in the factor graph). The message thus (a) multiplies for each variable
assignment the value of the factor φ and the corresponding messages received from all its
participating variables except X , and (b) sums these products for all assignments to all RVs
except X . These messages are initially set to

∑
X\{X} φ(Xφ).

During BP, a node sends a message to a specific neighbor once it has gotten messages from
all its other neighbors. If the factor graph is a tree, this process terminates once a message has
been sent for both directions of each edge, at which point the marginal of variable X is exactly
the product of all messages μφ→X (X) directed towards it. If the factor graph contains cycles,
marginals can be approximated by running BP for a sequence of iterations or with damped
updates, which is known as loopy BP. Although loopy BP is not guaranteed to output correct
results, in practice it frequently converges and, when this happens, the values obtained are
typically correct (Murphy et al. 1999; Yedidia et al. 2001).

As VE, BP can be easily adapted to compute the MAP state by replacing the summation
operator in Eq. (6) with a maximization operator. This is called the max-product algorithm,
or, if the underlying graph is a chain, the Viterbi algorithm.

2.2.5 Terminology of relational languages

We now briefly introduce the relational languages most popular to define lifted graphical
models. We focus on the key language elements required in this context, which are (1) how
to define RVs, that is, language elements whose values are governed by random processes;
(2) how to define parameterized random variables (par-RVs) (Poole 2003), whose instances
are RVs; and (3) how to define arguments of potential functions, that is, vectors of par-RVs
whose instances share the same factor structure and potential function. We refer to Sect. 3.1
for a formal treatment of par-RVs and par-factors, and to Sect. 3 for a detailed discussion of
lifted graphical model formalisms including additional examples.

Structured query language (SQL). When using SQL, one of the most popular query languages
for relational databases, to define graphical models, RVs typically correspond to attributes
of tuples in the database that take values from the corresponding range of values. Defining
vectors of RVs can therefore be done by means of select statements of the following type,
which return a set of tuples that all have the same attribute structure and will share the same
potential function:

SELECT <column names>
FROM <table names>
WHERE <selection constraints>

For instance, in the example of Fig. 1, we can obtain the affiliations of all pairs of co-authors
via
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SELECT r1.affiliation, r2.affiliation
FROM Researcher r1, Researcher r2, Author a1, Author a2
WHERE r1.person = a1.person and a1.paper = a2.paper

and a2.person = r2.person

which could be used for a potential function expressing that co-authors are more likely to
have the same affiliation. SQL is used for instance in relational Markov networks (RMNs),
cf. Sect. 3.2.1.

First-order logic. Another flexible and expressive representation of relational data fre-
quently used in SRL is first-order logic (FOL). FOL distinguishes among four kinds of
symbols: constants, variables, predicates, and functions. Constants, which we denote by
typewriter lower-case letters such as x and y in abstract discussions, and by typewriter
strings starting with lower-case letters in examples, e.g., p1 and r3 in the example of Fig. 1,
describe the objects in the domain of interest, which we will alternatively call entities. In this
survey, we assume that entities are typed. Logical variables, denoted by typewriter upper-
case letters such as X and Y, refer to arbitrary rather than concrete entities in the domain.
Predicates, denoted by strings starting with an upper-case letter such as Publication
and Author, represent attributes or relationships between entities. We assume predicates
to be typed, e.g., the predicate Author only applies to pairs of entities of type paper and
person, respectively. Functions, denoted by strings starting with an upper-case letter such as
AuthorOf, evaluate to an entity in the domain when applied to one or more entities, e.g.,
AuthorOf(x) = y. The number of arguments of a predicate or a function is called its arity.
A term is a constant, a variable, or a function on terms. A predicate applied to terms is called
an atom, e.g., Author(X,Y). Terms and atoms are ground if they do not contain variables,
e.g., Author(p1,r1). Ground atoms evaluate to true or false. Atoms are also called
positive literals, and atoms preceded by the negation operator¬ are called negative literals. A
formula consists of a set of (positive or negative) literals connected by conjunction (∧) or dis-
junction (∨) operators, e.g., ¬Publication(W,X,Y,Z) ∨ Author(W,AuthorOf(W)).
The variables in formulas are quantified, either by an existential quantifier (∃) or by a uni-
versal quantifier (∀). Here we follow the common assumption that when no quantifier is
specified for a variable, ∀ is understood by default. A formula expressed as a disjunction
with at most one positive literal is called a Horn clause; if a Horn clause contains exactly
one positive literal, then it is a definite clause. Using the laws of first-order logic, a defi-
nite clause ¬b1 ∨ . . . ∨ ¬bn ∨ h can also be written as an implication b1 ∧ . . . ∧ bn ⇒ h,
e.g., Publication(W,X,Y,Z) ⇒ Author(W,AuthorOf(W)) for the formula above.
The conjunction b1 ∧ . . . ∧ bn is called the body, the single atom h the head of the
clause. Grounding or instantiating a formula is done by replacing all variables with ground
terms. Formulas containing functions of arity at least one have infinitely many groundings,
which is often undesirable when using FOL to specify SRL models. One way to avoid
this is to only consider groundings where variables are replaced with constants in all pos-
sible type-consistent ways, e.g., Author(p1,X) can be grounded to Author(p1,r1),
Author(p1,r2), Author(p1,r3) and Author(p1,r4) in our example.

When using FOL to define graphical models, RVs typically correspond to ground atoms
with values in the set {true,false}. For example, for publication p3 and person r1, the
ground atom Author(p3,r1) represents the assertion that r1 is an author of p3. Non-
ground atoms correspond to par-RVs, which become instantiated to RVs by grounding. For
example, if X and Y are logical variables, Author(X,Y) is a par-RV because once we ground
it by replacing the parameters X and Y with actual entities, we obtain RVs. We note that the
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use of FOL in this context does not necessarily imply a FOL characterization of graphical
models, and also that such models often do not employ the full expressive power of FOL.

Lifted graphical models using elements of FOL include Markov logic networks (MLNS)
(cf. Sect. 3.2.2), probabilistic soft logic (PSL) (Sect. 3.2.3), Bayesian logic programs
(BLPs) (Sect. 3.3.1), relational Bayesian networks (RBNs) (Sect. 3.3.2) and Bayesian LOGic
(BLOG) (Sect. 3.3.4).

Object-oriented representations. As an alternative to FOL, the attributes and relations of
entities can be described using an object-oriented representation. Here again, x and y repre-
sent specific entities in the domain, whereas X and Y are variables, or entity placeholders. We
again assume that entities are typed, which allows us to use chains of attributes and relations,
expressed in a notation analogous to that commonly used in object-oriented languages, to
identify sets of entities of a certain type starting from a given entity. For example, using the
notation of Getoor et al. (2007), x.Venue refers to the (typically singleton) set of venues
of paper x, whereas x.Author refers to the set of its authors. Inverse relations are also
allowed, e.g., y.Author−1 refers to the set of papers of which y is an author. Longer chains
are followed for all elements of intermediate sets, e.g., x.Author.Author−1.Venue gives
the set of venues of all papers written by any author of x. Such chains can be used to spec-
ify par-RVs, which are instantiated by replacing variables with entities from the domain.
RVs thus correspond to attributes of relations, and aggregation functions, such as mean,
mode, max, or sum, are used to deal with sets of such variables. For example, we can write
mode(x.Author.Author−1.Venue).

Lifted graphical models using object-oriented aspects include relational Markov networks
(RMNs) (Sect. 3.2.1), probabilistic soft logic (PSL) (Sect. 3.2.3), FACTORIE (Sect. 3.2.4),
and probabilistic relational models (PRMs) (Sect. 3.3.3).

3 Overview of SRL models

Existing SRL representations can be split into two major groups. The first group consists
of lifted graphical models, that is, representations that use a structured language to define
a probabilistic graphical model. Representations in the second group impose a probabilistic
interpretation on logical inference. As discussed in the introduction, to allow for greater depth,
here we limit ourselves to the first group of languages. To provide a convenient representation
that describes the common core of lifted graphical models, we start with par-factor graphs,
short for parameterized factor graphs, defining them in the terminology of Poole (2003). A
par-factor graph is analogous to a factor graph (Kschischang et al. 2001), cf. Sect. 2.2.1,
in that it is a general representation for a large class of lifted graphical models, including
both directed and undirected representations. Using the language of par-factor graphs, we
can discuss how different models specialize them, while keeping the discussion of inference
and learning techniques on the general level as much as possible.

3.1 Par-factor graphs

Parametrized factors, or par-factors for short, provide a relational language to compactly
specify sets of factors in a graphical model that only differ in their vector of RVs, but share the
same structure and potential function. Such a set of par-factors defines a family of probability
distributions based on a set of relations, which can be combined with different instances of
the corresponding database to obtain specific distributions from that family. To emphasize
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Person(X) Movie(Y)

(a)

Movie(godFather)

Person(carl)

Person(ann)

Person(bob) Movie(rainMaker)

(b)
Fig. 4 Example of a par-factor graph and the corresponding factor graph obtained by instantiating par-RVs
Person(X) and Movie(Y) for X ∈ {ann,bob,carl} and Y ∈ {godFather,rainMaker}

the connection to factor graphs, we refer to a set of par-factors F = {(Ai , φi , Ci )} as a par-
factor graph. Par-factor graphs lift factor graphs analogously to how first-order logic lifts
propositional logic. For instance, Fig. 4a shows a par-factor graph with a single par-factor
over par-RVs Person(X) and Movie(Y), which could express a prior probability that any
person likes any movie, and Fig. 4b shows the corresponding factor graph instantiating the
par-RVs for X ∈ {ann,bob,carl} and Y ∈ {godFather,rainMaker}.

Formally, a par-factor is a triple Φ = (A, φ, C), where A is a vector of parameterized
random variables (par-RVs), φ is a function from the values of RVs instantiating these par-
RVs to the non-negative real numbers, and C is a set of constraints on how the par-RVs may
be instantiated. For typed relational languages, type constraints are included in C by default.
Let I(Φi ) denote the set of RV vectors A that are instantiations of Ai under constraints Ci .
For any A ∈ I(Φi ), we denote the value assignment x restricted to the RVs A by x A. The
par-factor graph F defines a probability distribution as follows, where X is the vector of all
RVs that instantiate par-RVs in F :

P(X = x) = F (x)

= 1

Z

∏

Φi∈F

∏

A∈I(Φi )

φi (x A) (7)

That is, the probability distribution is the normalized product of the factors corresponding
to all instances of par-factors in the par-factor graph, and as such directly corresponds to the
one defined by the underlying factor graph, cf. Eq. (1). However, here, all the factors that are
instantiations of the same par-factor share common structure and parameters. Especially in
the context of parameter learning (cf. Sect. 5.1), those shared parameters are also called tied
parameters. Parameter tying allows for better generalization, as it combines a flexible number
of RVs with a fixed number of parameters. Par-factor graphs thus exploit both probabilistic
and relational structure to compactly represent probability distributions.

As in the propositional case, cf. Sect. 2.2.1, even though par-factor graphs provide a very
general language to specify probabilistic models, it is often useful to restrict the discussion to
a specific subclass of such models, and indeed, most research has focused on either directed
or undirected models. In the remainder of this section, we discuss how several popular SRL
representations can be viewed as special cases of par-factor graphs, that is, how they express
the specific Ai -s, the φi -s, and the Ci -s they consider. This is not meant to be an exhaustive
list; rather, our goal is to highlight some of the different flavors of representations.

123



Mach Learn (2015) 99:1–45 13

Fig. 5 RMN example: a
hyperlink structure, b Markov
network

doc1
doc2

doc4
doc3

(a)

doc1.cat

doc4.cat

doc2.cat

doc3.cat

(b)

3.2 Undirected SRL representations

This subsection discusses undirected lifted graphical models, which all define Markov net-
works when instantiated. The key differences of these representations lie in the way par-
factors are specified, namely using SQL (relational Markov networks), different subsets of
first-order logic (Markov logic networks and probabilistic soft logic), or imperative program-
ming (FACTORIE).

3.2.1 Relational Markov networks

As their name suggests, relational Markov networks (RMNs) (Taskar et al. 2002) define
Markov networks through a relational representation, more specifically, an object-oriented
language and SQL. We illustrate the key principles using an example from collective clas-
sification of hyperlinked documents, as presented by Taskar et al. (2002). In an RMN, each
par-factor Φ = (A, φ, C) is given by an SQL select statement defining A and C and a
potential function φ over instantiations of A in log-linear form. More specifically, the vector
A of par-RVs corresponding to attributes is established by the select...from part, and
the constraints C over instantiations by the where part. Par-RVs are instantiated to multino-
mial RVs, that is, RVs corresponding to attributes of specific tuples that take one of multiple
discrete values, and the Markov network contains a clique for each such RV vector. For
instance, the following par-factor sets up a clique between the category assignments of any
two hyperlinked documents in order to capture the intuition that documents on the web that
link to one another typically have correlated categories:

SELECT D1.Category, D2.Category
FROM Document D1, Document D2, Link L
WHERE L.From = D1.Key and L.To = D2.Key

Figure 5a shows a small example network, Fig. 5b the corresponding Markov network set up
by the par-factor above.

The log-linear potential function φ is defined separately via a parameter λ and a feature
function f , that is, for any instantiation A of the par-RVs in A and specific values a, we have
φ(A = a) = exp(λ · f (a)). The definition of φ can be used to incorporate further domain
knowledge. For example, if we know that most pages tend to link to pages of the same
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Friends(a,a) Friends(b,b)Friends(a,b)

Friends(b,a)

Smokes(a) Smokes(b)

Fig. 6 Markov network of MLN example

category, we can define φ(D1.Category,D2.Category) = exp(λ · 1[D1.Category =
D2.Category]), where the feature function takes the form of the indicator function 1[x]
that returns 1 if the proposition x is true and 0 otherwise. A positive λ encourages hyperlinked
pages to be assigned the same category, while a negative λ discourages this.

3.2.2 Markov logic networks

Markov logic networks (MLNs) (Richardson and Domingos 2006; Domingos and Lowd
2009) also define a Markov network when instantiated. As an illustration, we present an
example from (Richardson and Domingos 2006), in which the patterns of human interac-
tions and smoking habits are considered. Par-factors in MLNs are specified using first-order
logic. Each par-factor Φ = (A, φ, C) is represented by a first-order logic formula FΦ with an
attached weight wΦ . Each atom in the formula specifies one of the par-RVs in A. In the instan-
tiated Markov network, each instantiation, or grounding, of FΦ establishes a clique among
Boolean-valued RVs corresponding to the ground atoms that appear in that instantiation. For
instance, the following formula with weight w encodes that friends have similar smoking
habits, i.e., that if two people are friends, then they tend to either both be smokers or both be
non-smokers.

w : Friends(X,Y)⇒ (Smokes(X)⇔ Smokes(Y))

The par-RVs in the par-factor defined by this rule are

A = 〈Friends(X,Y),Smokes(X),Smokes(Y)〉,
and every possible instantiation of these par-RVs establishes a clique in the instantiated
Markov network, e.g., if there are only two entities, a and b, then the instantiated Markov
network is the one shown in Fig. 6.1

The potential function φ is implicit in the formula, as we describe next. Let A be the set
of RVs in a particular instantiation or grounding fΦ of the formula FΦ , and a be a particular
assignment of truth values to A; then, φ(A = a) = exp(λΦ · FΦ(a)), where λΦ = wΦ ,
and FΦ(a) = 1 if fΦ is true for the given truth assignment a and FΦ(a) = 0 otherwise. In
other words, clique potentials in MLNs are represented using log-linear functions in which
the first-order logic formula itself acts as a feature function, whereas the weight associated
with the formula provides the parameter.

So far, we have not discussed how MLNs specify the constraints C of a par-factor.
MLNs do not have a special mechanism for describing constraints, but constraints can be

1 When grounding the par-RV vector results in a vector with repeated RVs, e.g., 〈Friends(a,a),

Smokes(a),Smokes(a)〉 for X = Y = a, those repetitions are not depicted in the graphical representa-
tion, but the potential function is still evaluated on the full vector.
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implicit in the formula structure. Two ways of doing this are as follows. First, we can con-
strain groundings by providing constants as arguments of par-RVs. For example, writing
Friends(a,Y) ⇒ (Smokes(a) ⇔ Smokes(Y)) results in the subset of groundings of
the formula above where X = a. Second, when computing conditional probabilities, we
can treat some predicates as background knowledge that is given at inference time rather
than as definitions of RVs, similarly to the use of the Link relation in the RMN example
above. For example, suppose we know that at inference time we will observe as evidence
the truth values of all groundings of Friends atoms, and the goal will be to infer people’s
smoking habits. Then, the formula Friends(X,Y) ⇒ (Smokes(X) ⇔ Smokes(Y)) can
be seen as setting up a clique between the Smokes values only of entities that are friends.
If Friends(x,y) is false for a particular pair of entities x and y, then the corresponding
instantiation of the formula is trivially satisfied, regardless of assignments to groundings of
Smokes. Such an instantiation thus contributes the same constant factor exp(λ · 1) to the
probability of each truth value assignment consistent with the evidence, and can therefore be
ignored when instantiating the MLN.

A variant of MLNs are Hybrid MLNs (Wang and Domingos 2008), which extend MLNs
to allow for real-valued RVs. In Hybrid MLNs, the same formula can contain both binary-
valued and real-valued atoms. Such formulas are evaluated by interpreting conjunction as
a multiplication of values. Another related formalism are the relational continuous models
of Choi et al. (2010), which allow for par-factors with continuous valued variables, but
restricting φ to Gaussian potentials.

3.2.3 Probabilistic soft logic

Probabilistic soft logic (PSL) (Broecheler et al. 2010) is another lifted Markov network
model. As in MLNs, par-RVs in PSL correspond to logical atoms and RVs to ground atoms.
In contrast to MLNs, where RVs take Boolean variables, and to hybrid MLNs, where some
RVs take Boolean values while others take real values, all RVs in PSL take soft truth values
from the interval [0, 1]. This allows for easy integration of similarity functions. To define
par-factors, PSL uses a mixture of first-order logic and object-oriented languages, where the
latter provides convenient syntax for specifying sets. Each par-factor Φ = (A, φ, C) over a
set of atoms A is specified via a rule RΦ = l1 ∧ . . .∧ lm ⇒ lm+1 ∨ . . .∨ ln with weight wΦ ,
where each li is either an atom in A or the negation of such an atom. The potential function
φ is defined based on RΦ as discussed below. Constraints in C can be specified in a similar
manner as in MLNs. To illustrate, consider an example by Broecheler et al. (2010) in which
the task is to infer document similarities in Wikipedia based on document attributes and user
interactions with the document. One potentially useful rule states that two documents are
similar if the sets of their editors are similar and their text is similar:

({A.editor} ≈s1 {B.editor}) ∧ (
A.text ≈s2 B.text

)⇒ (
A ≈s3 B

)

Above, ≈si represent similarity functions, and a term enclosed in curly braces, as in
{A.editor}, refers to the set of all entities related to the variable through the relation. This
rule uses the par-RVs A = {({A.editor} ≈s1 {B.editor}) ,

(
A.text ≈s2 B.text

)
,(

A ≈s3 B
)}. Each grounding of such a rule introduces a clique between its RVs in the Markov

network, as illustrated in Fig. 7.
The clique potential φ is again implicitly given by the rule. The evaluation RΦ(a) of a

rule RΦ on an assignment a to an instantiation A of the par-RVs is obtained by interpreting
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s1(d1.eds,d2.eds) s3(d1,d2)

s2(d1.txt,d2.txt)

s1(d1.eds,d1.eds) s3(d1,d1)

s2(d1.txt,d1.txt)

s1(d2.eds,d2.eds) s3(d2,d2)

s2(d2.txt,d2.txt)

s1(d2.eds,d1.eds) s3(d2,d1)

s2(d2.txt,d1.txt)

Fig. 7 Markov network of PSL example for two documents

conjunction and disjunction using the Lukasiewicz t-(co)norms as follows:

x ∧ y = max{0, x + y − 1}
x ∨ y = min{x + y, 1}
¬x = 1− x

For instance, when assigning 1.0 to RV
({a.editor} ≈s1 {b.editor}), 0.9 to(

a.text ≈s2 b.text
)
, and 0.3 to

(
a ≈s3 b

)
, the value of the above rule is min{min{(1 −

1.0) + (1 − 0.9), 1} + 0.3, 1} = 0.4. The distance to satisfaction of a rule instantiation is
then defined as d(RΦ(a)) = 1 − RΦ(a), and the potential of the corresponding clique as
φ(A = a) = exp(−wΦ · (d(RΦ(a)))p), where p ∈ {1, 2} provides a choice of the type of
penalty imposed on violated rules.

3.2.4 Imperatively defined factor graphs

Par-factor graphs can also be specified using programming languages, as illustrated by FAC-
TORIE, an implementation of imperatively defined factor graphs (McCallum et al. 2009).
FACTORIE uses Scala (Odersky et al. 2004), a strongly-typed programming language that
combines object-oriented and functional elements. Both par-RVs and par-factors correspond
to classes programmed by the user, and RVs to objects instantiating their par-RV’s class.
Each par-factor Φ = (A, φ, C) is defined as a factor template class that takes the par-RVs
A as arguments. The instantiation constraints C are provided as a set of unroll meth-
ods in the class, one for each par-RV, which construct the RVs instantiating the par-RV
vector and their connections, and thus build (or “unroll”) the instantiated factor graph.
Random variables can have arbitrary domains. The potential function φ is defined as
φ(A = a) = exp(

∑
i∈I λi fi (a)), where λi are parameters and fi are sufficient statistics

which are implemented via a statistics method in the factor template class and thus
can have arbitrary form.

Consider a simplified version of an example from (McCallum et al. 2009). We are given
a set of mentions of objects in the form of strings, and a set of entities, i.e., actual objects.
The task is to determine for each mention which entity it refers to (and conversely, for each
entity, the set of its mentions). The idea is to set up a factor graph with one factor for each
pair of a mention m and an entity e (as shown in Fig. 8a), where the statistics fi (e, m) are 1 if
m is assigned to e and m and e are similar (see below), and 0 otherwise. The definition of this
factor graph uses two par-RV classes Entity and Mention. An instance m of a Mention
par-RV is identified by a string m.string, e.g., “Elizabeth Smith” or “Liz S.”, and takes
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e1 e2

m1 m2 m3

(a)

e1 e2

m1 m2 m3

(b)
Fig. 8 FACTORIE example with three mentions and two entities: a full factor graph, and
b factor graph as constructed by the unroll methods for assignment m1.entity = e1,
m2.entity = e1, m3.entity = e2, e1.mentions = {m1,m2}, e2.mentions = {m3}

an Entity as its value m.entity. An instance e of an Entity par-RV corresponds to
an actual entity in the domain of interest, e.g., a person. Its value e.mentions is a set of
Mentions, and it additionally contains a canonical representation e.canonical, which
is a unique string computed from the set e.mentions. Given an assignment to all instances
of these par-RVs, the following factor template generates the factor graph.

val corefTemplate = new Template[Mention, Entity]{
def unroll1(m:Mention) = Factor(m, m.entity)
def unroll2(e:Entity) = for (mention <- e.mentions)

yield Factor(mention, e)
def statistics(m:Mention,e:Entity) =

Bool(distance(m.string,e.canonical)<0.5)
}

More specifically, it sets up a pairwise factor for each mention and its assigned entity (via the
unroll1 method) as well as for each entity and every mention in its set (via the unroll2
method), as in the example in Fig. 8b. This template is programmed to take advantage of the
fact that the factor graph is always evaluated for a given assignment during inference, and
that all factors not related to this assignment evaluate to one and thus can be omitted. For
each factor in the unrolled graph, the statistics method produces sufficient statistics by
comparing the distance between the mention and the canonical representation of the entity
to a threshold.

3.2.5 Discussion

The SRL representations discussed so far all define undirected graphical models with log-
linear potential functions, but differ in the type of modeling freedom they provide. In MLNs
and PSL, the feature function takes a fixed form based on the logical structure of a par-factor,
whereas RMNs and FACTORIE let the user define the feature function. The probabilistic
interpretation is centered on different aspects of the domain in different models, with RMNs
focusing on values of attributes, MLNs and PSL on relations between objects, and FACTORIE
on objects themselves. MLNs and PSL further differ in the logical structure of par-factors
they allow, with PSL’s more restricted language allowing for more efficient inference, as we
will discuss in Sect. 4.
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3.3 Directed SRL representations

This subsection describes directed lifted graphical models, which all define Bayesian net-
works when instantiated. We again cover representations using different relational languages:
definite clauses and logic programming (BLPs), formulas expressing functions (relational
Bayesian networks), a relational database representation with object-oriented elements (prob-
abilistic relational models), and a generative model in a language close to first-order logic
(BLOG).

As all these models define Bayesian networks, a par-factor Φ = (A, φ, C) always has the
following form. The par-RVs A can be split into a child par-RV C and a vector of parent
par-RVs Pa(C), and the potential function φ represents a conditional probability distribution
(CPD) for any instance C of C given instances Pa(C) of Pa(C), that is,

φ(C = c, Pa(C) = pa) = P(C = c | Pa(C) = pa).

As a consequence, the expression in Eq. (7) is automatically normalized, i.e., Z = 1. When
specifying directed SRL models, care must be taken to ensure that their instantiations result in
cycle-free directed graphs. However, as discussed by (Jaeger, 2002, Sect. 3.2.1), this problem
is undecidable in general, and guarantees exist only for restricted cases.

Furthermore, when specifying directed models at the par-factor level, the number of par-
ents of a node in an instantiated factor graph might depend on the particular grounding. Con-
sider for instance a conditional probability P(X |Y1, Z1, . . . , Yn, Zn), where X depends on all
instances of Y and Z related to X in a specific way, and n will thus depend on the grounding.
We therefore need a way to specify this distribution for arbitrary n. Two common ways to do
this are aggregates (Perlich and Provost 2003) and combining rules (e.g., Jaeger 1997). Aggre-
gates first aggregate the values of all parent variables of the same type into a single value, and
provide the conditional probability of the child variable given these aggregated values. That is,
in the example, one would use two aggregate functions aggY and aggZ , together with a CPD
P ′, to define P(X |Y1, Z1, . . . , Yn, Zn) = P ′(X |aggY (Y1, . . . , Yn), aggZ (Z1, . . . , Zn)). An
approach based on combining rules, on the other hand, would specify the conditional
probability distribution for the child variable for n = 1 as well as a function that com-
putes a single conditional distribution from n conditional distributions. In the example,
one would thus use a distribution P ′′(X |Y, Z) and a combining function f , and define
P(X |Y1, Z1, . . . , Yn, Zn) = f (P ′′(X |Y1, Z1), . . . , P ′′(X |Yn, Zn)). For example, one com-
monly used combining function is the noisy-or:

P(X = x |Y1 = y1, . . . , Yn = yn) = 1−
∏

1≤i≤n

(1− P(X = x |Yi = yi ))

The idea behind noisy-or is that each of the Yi = yi can independently cause X = x with a
certain probability, and X thus takes value x if at least one such causation happens.

3.3.1 Bayesian logic programs

In Bayesian logic programs (BLPs) (Kersting and De Raedt 2001), par-RVs are expressed as
logical atoms. The dependency structure of a par-RV C on its parents Pa(C) is represented as
a definite clause, called a Bayesian clause, in which the head consists of C, the body consists
of the conjunction of the atoms in Pa(C), and the implication is replaced by a | to indicate
probabilistic dependency. Kersting and De Raedt (2001) give an example from genetics
(originally by Friedman et al. (1999a)), in which the blood type bt(X) of person X depends
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on inheritance of a single gene, one copy of which, mc(X) is inherited from X’s mother, while
the other copy pc(X) is inherited from her father. In BLPs, this dependency is expressed as

bt(X)|mc(X),pc(X)

RVs correspond to ground atoms and are not restricted to evaluating to just true or false,
but can have arbitrary finite domains. In the example, the RVs obtained by grounding mc(X)

and pc(X) can take on values from {a, b, 0}, whereas those for bt(X) can take on values
from {a, b, ab, 0}. Par-factors are formed by coupling a Bayesian clause with a potential
function φ in the form of a CPD over values for an instance of C given values for instances
of Pa(C), e.g., as a conditional probability table. The constraints C on instantiations can be
modelled via logical predicates. For instance,

mc(X)|mother(Y,X),mc(Y),pc(Y)

models the dependency of the gene inherited from the mother on the mother’s own genes,
where mother is a logical predicate. When instantiating this par-factor, only groundings for
whichmother(Y,X) holds are considered. In BLPs, the full power of the logic programming
language Prolog can be used to define logical predicates.

Using BLPs, we next give an example of the use of combining rules. Following the
example from (Kersting and De Raedt 2001), suppose that in the genetics domain we have
the following two rules:

bt(X)|mc(X)

bt(X)|pc(X)

Each of these rules comes with a CPD, the first one giving P(bt(X)|mc(X)), and the second
one P(bt(X)|pc(X)). However, what we need is a single CPD for predictingbt(X)given both
of these quantities. Using noisy-or as the combining rule, we get P(bt(X)|mc(X),pc(X)) =
1− (1− P(bt(X)|mc(X))) · (1− P(bt(X)|pc(X))).

3.3.2 Relational Bayesian networks

Relational Bayesian networks (RBNs) (Jaeger 2002) also represent par-RVs as logical atoms,
whose groundings take values from finite domains. In the most basic form, an RBN contains
one par-factor ΦR for each predicate R in its vocabulary, where the child par-RV C is an atom
of R with variables as arguments. Recursive dependencies between par-RVs with the same
predicate are possible if acyclicity of the resulting Bayesian network is ensured. The potential
φR is represented as a probability formula in a syntax that bears a close correspondence to
first-order logic and is evaluated as a function of the values of the instances of Pa(C). The par-
RVs A are implicitly given through these probability formulas, which are recursively defined
to consist of (i) constants in [0, 1], which in the extreme cases of 1 and 0 correspond to true
and false respectively; (ii) indicator functions, which take tuples of logical variables as
arguments and correspond to relational atoms; (iii) convex combinations of formulas, which
correspond to Boolean operations on formulas; and, finally, (iv) combination functions, such
as mean, that combine the values of several formulas.

To illustrate, consider a slight adaptation of an example by Jaeger (2002), where the task
is, given the pedigree of an individual x, to reason about the values of two relations, FA(x)

and MA(x), which indicate whether x has inherited a dominant allele A from its father and
mother respectively. The probability formula for FA(X) may be:

φFA(X) = φknownFather(X) · φA−from−father(X)+ (1− φknownFather(X)) · θ
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Fig. 9 PRM example
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Here, φknownFather(X) evaluates to 1 if the father of X is included in the pedigree and to 0
otherwise; φA−from−father(X) is defined as the mean over theFA andMA values ofX’s father:
φA−from−father(X) = mean{FA(Y),MA(Y)|father(Y,X)}; and θ is a learnable parameter
that can take values in the range [0, 1]. Sub-formulas in the form of indicator functions can be
used to specify the instantiation constraints C, as is the case with the φknownFather(X) sub-
formula above, and through selection formulas in combination functions, as father(Y,X)

for mean above.

3.3.3 Probabilistic relational models

Probabilistic relational models (PRMs) (Koller and Pfeffer 1998; Getoor et al. 2007) take a
relational database perspective and use an object-oriented language, akin to that described
in Sect. 2.2.5, to specify the schema of a relational domain. Both entities and relations are
represented as classes, each of which comes with a set of descriptive attributes and a set of
reference slots through which classes refer to one another. Internally, each reference slot is
defined by an arbitrary SQL query.

Using an example by Getoor et al. (2007), consider a document citation domain that con-
sists of two classes (illustrated in Fig. 9), the Paper class with attributes Paper.Topic
and Paper.Words, and the Cites class, which establishes a citation relation between two
papers via reference slots Cites.Cited and Cites.Citing. In the most basic form of
PRMs, the values of reference slots are assumed given, and the par-RVs correspond to descrip-
tive attributes of objects, either of the object itself, or of objects related to it through chains
of reference slots. Constraints C on par-RV instantiations can be expressed with the SQL
queries defining the reference slots. By starting from specific objects, par-RVs are grounded
to RVs that take values from the finite domain of the corresponding attribute. Each par-factor
is defined by specifying the par-RVs corresponding to the child node C and the parent nodes
Pa(C) respectively, and providing a conditional probability distribution for C given Pa(C).
For example, to express that a paper P’s topic probabilistically depends on the topics of
the papers P cites as well as those that cite P, one could construct a par-factor where C =
P.Topic, and Pa(C) = {P.Citing−1.Cited.Topic,P.Cited−1.Citing.Topic}.
Thus, in Fig. 9, the first parent par-RV starts from the paper P, first follows all Citing
arrows backwards to find all instances of Cites where P is the citing paper, and then for all
those follows the Cited arrow forwards to find all cited papers, whose Topic attributes
provide the RVs instantiating the par-RV. Clearly, the number of these instantiations can
vary across different papers. Like many other directed SRL models, PRMs use aggregation
functions to combine the values of such sets of RVs into a single value.

While we have focused here on uncertainty over the attributes of relations, more general
forms of PRMs that allow for uncertainty over the values of reference slots have been con-
sidered as well, focusing on two situations: when the number of links is known, but not the
specific objects that are linked (reference uncertainty), as well as when neither the number
of links nor the linked objects are known (existence uncertainty). In the above example, this
makes it possible to express uncertainty over the values of reference slots, e.g., the paper
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appearing as Cites.Citing in a given instance of Cites, or over the existence of entire
tuples of the Cites relation. We refer to Getoor et al. (2007) for the technical details on
these extensions.

3.3.4 BLOG

BLOG, short for Bayesian LOGic, is a typed relational language for specifying generative
models (Milch et al. 2005). Par-RVs in BLOG are represented as first-order logic atoms, RVs
as ground atoms. Par-factors are given by dependency statements of the form

C if C then ∼ φ(Pa(C)),

where the if C then part can be omitted if there are no constraints and φ is implemented
as a Java class. Such a statement expresses that the value of an instantiation of the child
par-RV C, respecting C, is drawn from the probability distribution φ given the values of
the corresponding instances of the parent par-RVs Pa(C). For example, Milch et al. (2005)
model the task of entity resolution in BLOG. They view the set of citations of a given paper
as being drawn uniformly at random from the set of known publications. This is captured by
the following BLOG statement:

PubCited(C) ∼ Uniform({Publication P}).
Similarly, the citation string is viewed as being generated by a string corruption model
CitDistrib as a function of the authors and title of the paper being cited:

CitString(C) ∼ CitDistrib(TitleString(C),AuthorString(C)).

A unique characteristic of BLOG is that it does not assume that the set of entities in a domain
is known in advance and instead allows reasoning over variable numbers of entities. This
functionality is supported by allowing number statements, in which the number of entities of
a given type is drawn from a given distribution. For example, in the entity resolution task, the
number of researchers #Researcher is not known in advance and is instead drawn from
a user-defined prior distribution:

#Researcher ∼ NumResearchersPrior().

3.3.5 Discussion

The directed SRL representations discussed here all define par-factor graphs whose potential
functions correspond to conditional distributions of one child par-RV given a set of parent
par-RVs. PRMs take an object-oriented view, where par-RVs correspond to attributes of
objects. BLPs, RBNs and BLOG all use logical atoms as par-RVs, but differ in how they
specify connections between these: logic programming (BLPs), probability formulas with a
syntax close to first-order logic (RBNs), or a relational language for generative models that
allows uncertainty over the number of objects (BLOG). To deal with flexible numbers of
parents, BLPs and RBNs use combining functions, PRMs use aggregates, and BLOG allows
arbitrary code to define the CPD.

3.4 Directed versus undirected models

The SRL representations discussed so far define either a directed or an undirected graphical
model when instantiated. These representations have relative advantages and disadvantages,
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analogous to those of directed and undirected graphical models, cf. (Koller and Friedman
2009). In terms of representation, directed models are appropriate when one needs to express
a causal dependence or a generative process as in BLOG. On the other hand, undirected
models are better suited to domains containing cyclic dependencies on the ground level, such
as a person’s smoking habits depending on the smoking habits of his or her friends (and
vice versa). In undirected models, the par-factors shared by a single par-RV can naturally
be combined by simply multiplying them, though this might not be the best combining rule
for the problem at hand, and can actually make the distribution dependent on the domain
size (Jain 2011). Directed models, on the other hand, rely on separately defined combining
functions, such as noisy-or, or aggregation functions, such as count, mode, max, and average.
The use of combining functions in directed models allows for multiple independent causes
of a given par-RV to be learned separately and then combined at prediction time (Heckerman
and Breese 1994), whereas this kind of causal independence cannot be exploited in undirected
models. Finally, because factors in directed models represent CPDs, they are automatically
normalized, which simplifies inference. In contrast, in undirected models one needs to find
efficient ways of computing, or estimating, the normalization constant Z (in Eq. (7)). We
will discuss issues pertaining to learning directed and undirected SRL models from data in
Sect. 5.

Hybrid SRL representations combine the positive aspects of directed and undirected mod-
els. One such model is relational dependency networks (RDNs) (Neville and Jensen 2007),
which can be viewed as a lifted dependency network model. Dependency networks (Heck-
erman et al. 2000) are similar to Bayesian networks in that, for each variable X , they contain
a factor φX that represents the conditional probability distribution of X given its parents, or
immediate neighbors, Pa(X). Unlike Bayesian networks, however, dependency networks
can contain cycles and do not necessarily represent a coherent joint probability distribution.
As in Markov networks, the set of parents Pa(X) of a variable X render it independent of all
other variables in the network. Marginals are recovered via sampling, e.g., Gibbs sampling
(see Sect. 4). RDNs lift dependency networks to relational domains. Par-factors in RDNs
are similar to those in PRMs and are represented as CPDs over values for a child par-RV C
and the set of its parents Pa(C). Analogous to dependency networks, however, cycles are
allowed and thus, as in dependency networks, RDNs do not always represent a consistent
joint probability distribution.

There has also been an effort to unify directed and undirected models by providing an
algorithm that converts a given directed model to an equivalent MLN (Natarajan et al. 2010).
In this way, one can model multiple causes of the same variable independently while taking
advantage of the variety of inference algorithms that have been implemented for MLNs.
Bridging directed and undirected models is important also as a step towards representations
that combine both directed and undirected sub-components.

4 Inference

As in graphical models, the two key inference tasks in lifted graphical models are marginal
inference, cf. Eq. (3), and MPE inference, cf. Eq. (4). The former computes the probability
of an assignment to a subset of the RVs, marginalizing out the remaining ones, and thus
summarizes all states corresponding to that assignment; the latter finds the most likely joint
assignment to a set of unknowns, given a set of observations, and thus focuses on a single
strong explanation for the observations (the MAP state).
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We first describe lifted inference, that is, inference approaches that operate on the first-
order level (Sect. 4.1), followed by a brief overview of techniques that ground the model
and perform propositional inference (Sect. 4.2). While most techniques use one specific
probabilistic language, often with Boolean RVs, the par-factor view taken here suggests that
much of the existing work could be generalized and applied in other settings as well. In
Sect. 4.3, we conclude with pointers to a variety of recent approaches in the field.

4.1 Lifted inference

Lifted graphical models compactly specify graphical models by grouping factors with identi-
cal structure and parameters into par-factors. Grounding such models to perform inference on
a propositional model (cf. Sect. 4.2) therefore results in potentially large amounts of repeated
computations. Lifted inference avoids this undesired blow-up by taking advantage of these
groups during inference. The literature often distinguishes between top-down approaches,
which start from a lifted model and avoid grounding par-factors as much as possible, and
bottom-up approaches, which start from a propositional model and detect repeated structure.
The earliest lifted techniques are based on recognizing identical structure that requires the
same computations, and performing the computation only the first time, caching the results
and subsequently reusing them (Koller and Pfeffer 1997; Pfeffer et al. 1999). Lifted inference
is receiving much attention recently, and a detailed account of all developments is beyond
the scope of this survey. In the following, we therefore illustrate key ideas focusing on two
prominent lines of work that lift popular propositional techniques, namely variable elimina-
tion (cf. Sect. 2.2.3) and belief propagation (cf. Sect. 2.2.4). We provide further pointers to
the literature in Sect. 4.3.

4.1.1 Lifted variable elimination

First-order variable elimination (FOVE) was introduced by Poole (2003) and later signifi-
cantly extended in a series of works (de Salvo Braz et al. 2005, 2006; Milch et al. 2008;
Apsel and Brafman 2011; Taghipour et al. 2012, 2013b). As in ordinary VE, cf. Sect. 2.2.3,
the goal of FOVE is to obtain the marginal distribution over a set of RVs X by summing out
the values of the remaining variables Y , that is, to compute

P(X = x) =
∑

Y= y

∏

Φi∈F

∏

A∈I(Φi )

φi ( yA, x A).

However, where VE sums out or eliminates one RV at a time, FOVE sums out an entire group
of RVs (grounding the same par-RV) simultaneously. We briefly discuss the main elimination
operators below. For more details, we refer the reader to the above papers; de Salvo Braz et
al. (2007) provide a unified treatment, and Kisyński and Poole (2009a) an excellent basic
introduction with examples.

FOVE makes two assumptions on the form of the par-factor graph, each of which can be
achieved by using a corresponding auxiliary operation first. The splitting operation (Poole
2003) ensures that the par-factors in the model are shattered (de Salvo Braz et al. 2005).
Two par-factors Φ1 and Φ2 are shattered if the corresponding ground factors are either
over the same sets of RVs or over completely disjoint ones, that is, I(Φ1) = I(Φ2)

or I(Φ1) ∩ I(Φ2) = ∅, where I(Φ) = {A | A instance of A under C}. For instance,
({p(a,X),q(X)}, φ1,∅) and ({p(b,X),q(X)}, φ2,∅) are shattered, as they do not share any
grounding of their par-RVs; but ({p(X,a),q(a)}, φ3,∅) and ({p(b,X),q(X)}, φ2,∅) are not,
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as {p(b,a),q(a)} instantiates both. Intuitively, this condition ensures that the same reason-
ing steps will apply to all of the factors resulting from grounding a given par-factor. The
fusion operation (de Salvo Braz et al. 2005) ensures that the par-RV Y to be eliminated only
participates in one par-factor in the model. It essentially multiplies together all par-factors
that depend on Y. To facilitate the remainder of this discussion, let Y be the par-RV to be
eliminated, and Φ = (A, φ, C) the single par-factor that depends on Y, that is, Y ∈ A. Thus,
we have to compute a sum of products, where the sum is over all value assignments y to all
RVs Y j obtained from Y, and the products are over the instantiations of this par-factor:

∑

Y1=y1

· · ·
∑

Ym=ym

∏

A∈I(Φ)

φ(y, x A\{Y })

The first elimination operation, inversion elimination (Poole 2003; de Salvo Braz et al.
2005), simplifies this sum of products to a product of sums. It only applies if there is a one-
to-one correspondence between the groundings of Y and those of A, in which case the sum is

∑

Y1=y1

· · ·
∑

Ym=ym

m∏

i=1

φ(yi , x Ai \{Y }).

This condition is violated when the logical variables that appear in Y are different from the
logical variables in A. For example, inversion elimination would not work for Y = q(X) and
A = {q(X),p(X,Y)}, because Y does not depend on the logical variable Y, while A does
and thus can have multiple groundings for each grounding of X. If the condition is satisfied,
each random variable Yi only appears once in the product, and the sum is thus equal to the
product of sums

m∏

i=1

∑

Yi=yi

φ(yi , x Ai \{Y }).

Each sum now only ranges over the possible truth assignments to a single Yi (e.g., true or
false), rather than over full truth assignments to all instances of Y.

Another elimination operation is counting elimination (de Salvo Braz et al. 2005), which is
based on the insight that frequently the factors (Ai , φ) resulting from grounding Φ form a few
large groups with identical members. These groups can be easily identified by considering
the possible truth assignments a to the RVs Ai . For each such truth assignment, counting
elimination counts the number of Ai s that would have that truth assignment. Then only one
factor from each group needs to be evaluated and the result exponentiated to the total number
of factors in that group. For instance, with Boolean values ai , we haveφ(x, a1)·. . .·φ(x, an) =
φ(x, true)ct · φ(x, false)c f , where ct and c f are the numbers of ai s that are true and false,
respectively. Thus, instead of computing the product for exponentially many assignments
a1, . . . , an , it suffices to consider linearly many cases (ct , c f ). For counting elimination
to be efficient, the choice of grounding substitutions for any of the par-RVs in A may not
constrain the choice of substitutions for the other ones. Although we have described counting
elimination in the context of eliminating the groundings of just one par-RV Y, in fact it can
be used to eliminate a set of par-RVs.

Elimination with counting formulas (Milch et al. 2008) extends this idea to par-RVs
within a par-factor. Such par-RVs are exchangeable if φ(A) is a function of the number
of RVs A ∈ A with a particular value rather than the precise identity of these variables.
The extended algorithm is called C-FOVE. Apsel and Brafman (2011) consider counting
formulas for joins of atoms, whereas Taghipour et al. (2012, 2013b) generalize C-FOVE
by decoupling its operators from the language used to specify the constraints on par-RV
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groundings, resulting in an algorithm, GC-FOVE, that provides more flexibility in grouping
computations.

As we discussed in Sect. 3.4, directed models may require aggregation over a set of
values. This may happen, for example, when there is a par-factor in which the parent par-
RVs contain logical variables that do not appear in the child par-RV. In order to aggregate
over such variables in a lifted fashion, Kisyński and Poole (2009b) introduced aggregation
par-factors and defined a procedure via which an aggregation par-factor is converted to a
product of two par-factors, one of which involves a counting formula. In this way, they are
able to handle aggregation using C-FOVE.

FOVE and its extensions are examples of top-down approaches that start from a par-factor
graph. The ideas underlying lifted variable elimination can also be exploited bottom-up, that
is, starting from a factor graph. Such an approach has been proposed by Sen et al. (2008a), who
first discover shared factors using bisimulation, and then only perform shared computations
once. Bisimulation simulates the operation of VE without actually computing factor values.
Larger groups and thus additional speedup can be achieved by approximate inference, where
factors are grouped based on similar computations or similar values rather than based on
equality (Sen et al. 2009). Another example of a bottom-up approach is the BAM algorithm
(Mihalkova and Richardson 2009), which clusters RVs in the factor graph based on the
similarity of their neighborhoods and performs computations only for one representative per
cluster.

4.1.2 Lifted belief propagation

Lifted BP algorithms (Jaimovich et al. 2007; Singla and Domingos 2008; Kersting et al. 2009;
de Salvo Braz et al. 2009) proceed in two stages. In the first stage, the grounded factor graph
F is compressed into a so-called template graph T , in which super-nodes represent groups
of variable or factor nodes that send and receive the same messages during BP, similarly to
what happens in the approach of Sen et al. (2008a) discussed above. Two super-nodes are
connected by a super-edge if any of their respective members in F are connected by an edge,
and the weight of the super-edge equals the number of ordinary edges it represents. In the
second step, a modified version version of BP is performed on the template graph T . For the
sake of understanding, we discuss a simplified version of this algorithm here. The message
sent from a variable super-node X to a factor super-node φ is given by

μX→φ(X) = μφ→X (X)w(X,φ)−1 ·
∏

φ′∈n(X)\{φ}
μφ′→X (X)w(X,φ′) (8)

In the above expression, w(X, φ) is the weight of the super-edge between X and φ, and n(X)

is the set of neighbors of X in the template graph. This message thus simulates the one sent
from a variable to a factor in the ground case, as given in Eq. (5), in that it summarizes the
messages received from all factors except the receiving one. Messages from factor super-
nodes to variable super-nodes are identical to those in the ground case, and the (unnormalized)
result for each variable X is obtained by multiplying all incoming messages exponentiated
with the weight of the corresponding super-edge.

Next, we describe how the template factor graph is constructed. The first algorithm was
given by Jaimovich et al. (2007). This algorithm targets the scenario when no evidence is
provided and is based on the insight that in this case, factor nodes and variable nodes can
be grouped into types such that two factor/variable nodes are of the same type if they are
groundings of the same par-factor/parameterized variable. The lack of evidence ensures that
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the grounded factor graph is completely symmetrical and any two nodes of the same type
have identical local neighborhoods, i.e., they have the same numbers of neighbors of each
type. As a result, using induction on the iterations of loopy BP, it can be seen that all nodes
of the same type send and receive identical messages. As pointed out by Jaimovich et al,
the main limitation of this algorithm is that it requires that no evidence be provided, and so
it is mostly useful during learning when the data likelihood in the absence of evidence is
computed.

Singla and Domingos (2008) built upon the algorithm of Jaimovich et al. (2007) and
introduced lifted BP for the general case when evidence is provided. In the absence of
evidence, their algorithm reduces to that of Jaimovich et al. In this case, the construction of
the template graph is a bit more complex and proceeds in stages that simulate BP to determine
how the propagation of the evidence affects the types of messages that get sent. Initially, there
are three variable super-nodes containing the true, false, and unknown variables respectively.
In subsequent iterations, super-nodes are continually refined as follows. First, factor super-
nodes are further separated into types such that the factor nodes of each type are functions
of the same set of variable super-nodes. Then the variable super-nodes are refined such that
variable nodes have the same types if they participate in the same numbers of factor super-
nodes of each type. This process is guaranteed to converge, at which point the minimal (i.e.,
least granular) template factor graph is obtained.

Kersting et al. (2009) provide a generalized and simplified description of Singla and
Domingos (2008)’s algorithm, casting it in terms of general factor graphs, rather than factor
graphs defined by probabilistic logical languages, as was done by Singla and Domingos.
Finally, de Salvo Braz et al. (2009) have extended lifted BP for the any-time case, combining
the approach of Singla and Domingos (2008) with that of Mooij and Kappen (2008).

4.2 Inference on the instantiated model

Much of today’s work on inference in lifted graphical models focuses on lifted inference.
However, especially in the presence of evidence which breaks the symmetries in the model,
how to efficiently perform propositional inference in the graphical model obtained by instan-
tiating a lifted graphical model is still of interest. In this section, we discuss ways to reduce
the size of the ground model in the first step, which can be combined with any existing
inference technique for graphical models, as well as a number of techniques that operate
on representations different from a factor graph for the instantiated model, and potentially
interleave instantiation and inference to further improve efficiency.

4.2.1 Knowledge-based model construction

Knowledge-based model construction (KBMC) is one of the earliest techniques used to
efficiently instantiate a given SRL model (Wellman et al. 1992). It dynamically instantiates
the model only to the extent necessary to answer a particular query of interest. KBMC has
been adapted to both directed (e.g., Koller and Pfeffer 1997; Pfeffer et al. 1999; Getoor
et al. 2002) and undirected models (e.g., Richardson and Domingos 2006). Application
of KBMC in these and other frameworks exploits the conditional independence properties
implied by the factor graph structure of the instantiated model; in particular, the fact that in
answering a query about a set of RVs X , one only needs to reason about variables that are
not rendered conditionally independent of X given the values of observed variables. KBMC
can also exploit the structure of par-factor definitions and the evidence, as done in the FROG
algorithm (Shavlik and Natarajan 2009) for MLNs. FROG discards groundings of clauses
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that are always satisfied because one of their atoms is true according to the evidence, which
often results in significantly smaller ground models.

4.2.2 MPE inference

MPE inference essentially is an optimization task, which, if represented suitably, can be
solved using existing methods (e.g., Taskar 2004; Wainwright et al. 2005; Yanover et al.
2006; Koller and Friedman 2009). For instance, given evidence Y = y, the MPE inference
task

argmaxX=x

∏

φ∈F
φ(xφ, yφ)

on a graphical model with discrete RVs can be represented as an integer linear program with
a variable vx

φ for each factor φ and each assignment x to the non-evidence RVs X . These vx
φ

are restricted to take values 0 or 1, and the program contains constraints requiring that (1)
for each factor φ exactly one of the vx

φ is set to 1 at any given time and (2) the values of vx
φ1

and vx
φ2

where φ1 and φ2 share variables are consistent. Intuitively, those variables “choose”
a consistent assignment to the RVs across all factors. Let V be the set of all such variables
vx
φ . MPE inference is then equivalent to solving

argmaxV
∑

φ∈F ,x

vx
φ · log φ(xφ, yφ)

subject to those constraints. While solving this integer linear program is still NP-hard in
general, it is tractable for certain classes of Markov networks. For instance, Taskar et al.
(2004) have shown that for associative Markov networks—that is, Markov networks whose
par-factors favor the same values for RVs in the same clique—it is tractable for binary RVs,
and can be closely approximated for the non-binary case.

This view of MPE inference as optimization has been applied for both MLNs (Riedel
2008) and PSL (Broecheler et al. 2010), but using language-specific representations that take
advantage of the structure of the potential functions. For both languages, MPE inference
maximizes a weighted sum of feature functions that are defined in terms of logical formulas
over ground atoms; namely, the truth value in case of MLNs, and the distance to satisfaction
for PSL. The optimization problem contains a variable for each ground atom with unknown
truth value, and a variable for each feature function, that is, each ground formula. Its objective
function replaces the feature functions in the weighted sum by the corresponding variables,
and its constraints relate the values of feature function variables to the value of the underlying
formula in terms of the atom variables and the truth values of evidence atoms.

In the case of MLNs, all variables take values 0 or 1, and the constraints express that
the value of feature variables has to be equal to the value of the underlying logical formula.
Noessner et al. (2013) introduce an improved formulation that aims at simplifying inference
in the integer linear program by decreasing the size of the program and better exposing
its symmetries. Mladenov et al. (2012) exploit the link between MPE inference and linear
programming on the lifted level and apply the resulting lifted linear programming approach
to MLNs.

For Boolean RVs, an alternative way to view the optimization is that of finding a joint
assignment to the par-RV instantiations that maximizes the weight of a set of logical formulas,
such as the ground instantiations of the clauses in an MLN. In other words, performing MPE
inference in such models is equivalent to solving a weighted satisfiability problem using, e.g,
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the MaxWalkSat algorithm (Kautz et al. 1997), as discussed by Richardson and Domingos
(2006). The memory efficiency of this approach can be improved using the general technique
of lazy inference, that is, by only maintaining active RVs and active formula instantiations
in memory, as done in the LazySAT algorithm (Singla and Domingos 2006). Initially, all
RVs are set to false, and the set of active RVs consists of all RVs participating in formula
instantiations that are not satisfied by the initial assignment of false values. A formula
instantiation is activated if it can be made unsatisfied by flipping the value of zero or more
active RVs. Thus the initial set of active formula instantiations consists of those activated by
the initially active RVs. The algorithm then carries on with the iterations of MaxWalkSat,
activating RVs when their value gets flipped and then activating the relevant rule instantiations.

In the case of PSL, variables take values from [0, 1] and the weights are constrained to
be nonnegative. The inference objective is to minimize the negative of the weighted sum of
feature functions, which measure the distance to satisfaction of the underlying logical rules.
Since the features are convex and the weights are nonnegative, we thus obtain a convex,
rather than discrete, optimization task for inference, which is more efficient to solve. Bach et
al. (2012, 2013) introduce efficient consensus-optimization algorithms to perform inference
in this setting.

In practice, in addition to using lazy inference (as discussed above), these approaches do
not construct the program for the entire instantiated model up front, but instead interleave
program construction and solving, an approach also known as cutting plane inference due
to its relation to cutting plane algorithms developed in the operations research community.
The key observation here is that many formula instantiations are satisfied by setting par-RV
instantiations to a default value of false (for MLNs) or 0 (for PSL), and that constraints
corresponding to such satisfied formulas do not influence the solution of the optimization
task. Inference therefore starts from an assignment of default values to all variables, and then
iterates between adding constraints for all formulas not satisfied by the current assignment,
and solving the resulting extended task to obtain the next assignment. This process continues
until a solution that satisfies all constraints is found. In the worst case, it may be necessary to
consider the full set of constraints; however, in practice, it is often possible to find a solution
based on a small subset only.

4.2.3 Approximate inference by sampling

As mentioned in Sect. 2.2.2, exact inference in graphical models is intractable in general.
An alternative approach is to perform approximate inference, based on sampling. Sampling
uses the probabilistic model to independently draw a large number of value assignments
(samples) to all RVs. It estimates marginal distributions as the relative frequencies of the
values occurring among those samples. Sampling from a Bayesian network respecting the
order of RVs from parents to children is straightforward; sampling from a Markov network is
much more difficult. Furthermore, the presence of evidence imposes additional constraints on
the form of useful samples. Markov chain Monte Carlo (MCMC) sampling algorithms form
a popular class of approaches addressing these issues. Rather than generating each sample
from scratch directly using the graphical model, MCMC algorithms draw a sequence of
samples by making random modifications to the current sample based on a so-called proposal
distribution, which is typically easier to evaluate than the actual distribution of interest. We
refer to Bishop (2006 Ch. 11) for a general introduction to sampling and MCMC, and to
Koller and Friedman (2009 Ch. 12) for one focused on graphical models.

Gibbs sampling is an example of an MCMC algorithm that has been used with both
directed and undirected lifted graphical models, e.g., FACTORIE (McCallum et al. 2009),

123



Mach Learn (2015) 99:1–45 29

BLOG (Arora et al. 2010) and MLNs (Richardson and Domingos 2006). Gibbs sampling
repeatedly iterates over all RVs whose values are not fixed by the given evidence, in each step
sampling a new value for the current variable V conditioned on the values of all other RVs in
the current sample. Due to the independencies encoded by the factor graph, this is equivalent
to sampling the value of V conditioned on its Markov blanket, that is, all RVs co-occurring
with V in a factor. For many types of graphical models, this distribution can effectively be
computed from the neighborhood of V in the factor graph. While Gibbs sampling converges
to the target distribution under fairly general conditions (Tierney 1994), those do not always
hold in lifted graphical models. One case where Gibbs sampling can converge to incorrect
results is in the presence of deterministic or near-deterministic dependencies, as these can
prevent sampling from leaving a certain region in the space of all variable assignments. This
problem can be avoided for instance by jointly sampling new values for blocks, or groups,
of variables with closely coordinated assignments. An alternative solution is slice sampling
(Damien et al. 1999). Slice sampling introduces auxiliary variables to identify “slices” that
“cut” across the modes of the distribution. It then alternates between sampling the auxiliary
variables given the current values of the original ones, thus identifying a slice, and sampling
the original RVs uniformly from the current slice. The MC-SAT algorithm for MLNs is based
on slice sampling (Poon and Domingos 2006). It introduces an auxiliary RV for each ground
clause, and thus each factor, in the MLN. A slice corresponds to a set of ground clauses that
have to be satisfied by the next sampled truth value assignment, where clauses with larger
weights are more likely to be included in this set. MC-SAT samples (nearly) uniformly from
this slice using the SampleSAT algorithm (Wei et al. 2004). Again, lazy inference can be
used to restrict the set of RVs that need to be considered explicitly (Poon et al. 2008).

An orthogonal concern is the efficiency of sampling. One approach to speeding up sam-
pling is to use memoization (Pfeffer 2007), in which values of past samples are stored and
reused, instead of generating a new sample. If care is taken to keep reuses independent of
one another, the accuracy of sampling can be improved by allowing the sampler to draw a
larger number of samples in the allotted time.

A variety of other approaches to and aspects of sampling for lifted graphical models have
been discussed in the literature, e.g., a Metropolis-Hastings algorithm for BLOG (Milch and
Russell 2006), an MCMC scheme to compute marginals in PSL (Broecheler and Getoor
2010), or FACTORIE’s support for user-defined MCMC proposal distributions (McCallum
et al. 2009). A number of recent works combine lifted inference and sampling (Niepert 2012;
Venugopal and Gogate 2012; Gogate et al. 2012; Niepert 2013).

4.3 Discussion

This section has surveyed inference techniques on the instantiated model as well as some of
the basic approaches to lifted inference. An overview of lifted inference from the perspective
of top-down vs bottom-up inference is given by Kersting (2012), and an in-depth tutorial
by Kersting et al. (2011). Lifted inference is a very active area of research, and there are
many recent publications that have not been discussed here, including work on knowledge
compilation (Van den Broeck et al. 2011; Van den Broeck and Davis 2012; Van den Broeck
et al. 2014), message passing (Ahmadi et al. 2011; Hadiji et al. 2011; Kersting et al. 2010a),
online inference (Nath and Domingos 2010), lifted inference for models with continuous
variables and Kalman filtering (Choi et al. 2010, 2011a), variational inference (Choi and
Amir 2012; Bui et al. 2013), lifted inference with evidence (Bui et al. 2012; Van den Broeck
and Davis 2012; Van den Broeck and Darwiche 2013), work that examines the completeness
of lifted inference formalisms (Van den Broeck 2011; Taghipour et al. 2013c; Jaeger and
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Van den Broeck 2012; Jaeger 2014), and many other advanced topics, e.g., (Kiddon and
Domingos 2011; Gogate and Domingos 2011; Choi et al. 2011b; Gomes and Santos Costa
2012; Jha et al. 2010; Van den Broeck et al. 2012; Hadiji and Kersting 2013; Taghipour et
al. 2013a; Sarkhel et al. 2014).

5 Learning

The task of learning a lifted graphical model in the form of a par-factor graph can be formalized
as follows: given a set of training examples D, that is, assignments x to random variables
X , a hypothesis space H in the form of a set of par-factor graphs over X , and a scoring
function score(h, D) for h ∈H (typically based on the probability of the training examples),
find a hypothesis h∗ ∈ H that maximizes the score, i.e., h∗ = arg maxh∈H score(h, D).
Analogous to learning of graphical models, learning of par-factor graphs can be decomposed
into parameter learning and structure learning. In parameter learning, the hypothesis space
consists of different parameters for a par-factor graph with given dependency structure,
i.e., where all sets of par-RVs Ai participating together in par-factors, their instantiation
constraints Ci , and the general form of potential functions φi are known, but values for the
parameters of these φi have to be learned. The goal of structure learning, on the other hand,
is to discover both the dependency structure of the model and the parameters of the potential
functions, that is, the hypothesis space H no longer uniquely determines the Ai and Ci . As
we will discuss in more detail below, structure learning is often cast as a heuristic search
through the space of possible structures, cf. (De Raedt and Kersting 2010).

Directed and undirected models pose different challenges to learning algorithms. In the
case of fully observed data, parameter learning has a closed form solution for directed models,
but requires optimization in the undirected case. When learning the structure of directed
models, care has to be taken to ensure acyclicity. Furthermore, structure learning approaches
typically learn parameters for many structures with only small local differences, in which
case high efficiency gains can be achieved by adapting the parameters of previous structures
locally instead of re-learning all parameters from scratch. However, this is only possible if
the scoring function is decomposable. This is often the case for directed models, where only
the CPDs of nodes whose sets of parents have changed need to be updated. In undirected
graphical models, on the other hand, all parameters are connected via the normalization
constant Z , and even local changes therefore require adjusting the parameters of the entire
model.

5.1 Parameter learning

Algorithms for parameter learning of graphical models can directly be extended for parameter
learning of lifted graphical models. This extension is based on the fact that, as discussed in
Sect. 3.1, an instantiated par-factor graph is simply a factor graph in which subsets of the
factors, namely the ones that are instantiations of the same par-factor, have tied parameters.
Thus, in its most basic form, parameter learning in par-factor graphs can be reduced to
parameter learning in factor graphs by forcing factors that are instantiations of the same
par-factor to have their parameters tied.

We now provide a brief overview of basic approaches to parameter learning in graphical
models (see Koller and Friedman (2009) for more details) and discuss how they can be eas-
ily extended to allow for learning with tied parameters. We follow the common distinction
between generative approaches such as maximum likelihood or Bayesian parameter estima-
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tion, whose aim is to approximate the joint distribution well, and discriminative approaches
such as max-margin methods, whose aim is to optimize the conditional probability P(X|Y)

used to predict values of X given evidence Y .
For generative models, the simplest case is that of fully observed training data D. In this

case, each training example in D is a complete assignment x to all random variables X
in the factor graph 〈X, F〉, where examples are assumed to be independent and identically
distributed (i.i.d.). We denote the vector of learnable parameters in the factors of F by
λ. Maximum likelihood parameter estimation (MLE) uses the likelihood of observing the
training data D as the scoring function score(h, D), i.e., we are interested in finding parameter
values λ∗ such that

λ∗ = arg max
λ

∏

x∈D
Pλ(X = x). (9)

We use subscript λ here to emphasize the dependency of P on the parameter values. For
directed models, e.g., Bayesian networks, parameter learning means learning a CPD for each
node given its parents. Thus, in the simplest scenario, λ consists of the parameters of a set of
CPTs, one for each node. The maximum likelihood estimate for the entry of a node C taking
on a value c, given that its parents Pa(C) have values pa, is found simply by calculating the
proportion of time that configuration of values is observed in D:

PMLE
D (C = c|Pa(C) = pa) = countD(C = c, Pa(C) = pa)∑

c′ countD(C = c′, Pa(C) = pa)
(10)

In undirected models, the MLE parameters cannot be calculated in closed form, and one needs
to use gradient ascent or some other optimization procedure. Supposing that, as introduced
in Sect. 2.2.1, our representation is a log-linear model with one parameter per factor, then the
gradient of the data log-likelihood with respect to the parameter λi of a potential function
φi (X) = exp(λi · fi (X)) is given by:

∂ log
∏

x∈D Pλ(X = x)

∂λi
=

∑

x∈D

(
fi (xi )− Eλ[ fi ( yi )]

)
(11)

Here, xi are the values in x for the variables participating in φi , and Eλ[ fi ( yi )] is the expected
value of fi according to the current estimate for all parameters λ.

In the case where the data is not fully observed, that is, each example in D assigns values to
a subset of the random variables X only, the standard approach is to resort to an expectation-
maximization algorithm, which requires to perform inference during parameter learning to
estimate unobserved values.

We next describe how Eqs. (10) and (11) are extended to work with tied parameters
coming from par-factors. This is done by computing counts and function values on the level
of par-factors rather than factors, that is, by aggregating them over all factors that instantiate
the same par-factor. In the relational setting, the training data D often consists of a single
“mega-example” that assigns values x to the random variables X in a factor graph 〈X, F〉
grounding the par-factor graph of interest for a specific domain. Because of parameter tying,
such an example typically contains many, often inter-dependent, instances of each par-factor,
which parameter learning approaches treat as i.i.d. data.

In directed models, factors with tied parameters share their CPDs. Thus, in this case, in
Eq. (10) counts are computed not just for a single node, or instantiation of a par-factor, but
for all nodes that are instantiations of that par-factor and thus share their CPD. Let C be that
set of nodes, and let Pa(C) be the set of parents of node C . Then for all C ∈ C, Eq. (10)
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becomes:

PMLE
D (C = c|Pa(C) = pa) =

∑
C∈C countD(C = c, Pa(C) = pa)∑

C∈C
∑

c′ countD(C = c′, Pa(C) = pa)
(12)

In the undirected case, instead of a separate instance of Eq. (11) for each factor, we now
get one gradient for each par-factor Φi ’s parameter λi , summarizing the ones for all its
instantiations:

∂ log
∏

x∈D Pλ(X = x)

∂λi
=

∑

A∈I(Φi )

∑

x∈D

(
fi (x A)− Eλ[ fi ( yA)]) (13)

As before, I(Φi ) is the set of factors that are instantiations of Φi , and x A are the values for
the RVs A in an instantiation of par-factor Φi .

While the above discussion focused on one particular scoring function, that of maximum
likelihood estimation, in practice other scoring functions exist. For example, rather than
optimizing the data likelihood, one can significantly improve efficiency by instead optimizing
the pseudo-likelihood (Besag 1975). To do so, the joint probability Pλ(X = x) in Eq. (9)
is replaced by

∏
X∈X Pλ(X = x |X M B = xM B), the product of the conditional probability

of each RV X given the variables X M B in its Markov blanket, that is, all RVs appearing
together with X in some factor. While using the pseudo-likelihood avoids the computational
complexity of dealing with the partition function, the price to be paid for the increased
efficiency is that it may no longer be possible to learn a model that covers all dependencies.
Again, in the case of lifted models, all instantiations of the i th par-factor contribute to the
sufficient statistics used to estimate λi .

An alternative to maximum (pseudo-)likelihood that is used, for instance, to reduce over-
fitting, is Bayesian learning, where one imposes a prior probability distribution over the
parameters that are learned, thus defining a joint distribution over parameters and data (e.g.,
Heckerman 1999; Koller and Friedman 2009).

Generative approaches to parameter learning in lifted graphical models have been devel-
oped for instance for PRMs, both with respect to a maximum likelihood criterion and a
Bayesian criterion (Getoor 2002), for PSL (Broecheler et al. 2010; Bach et al. 2013), and
for MLNs, where several approaches to improve efficiency of gradient descent parameter
learning methods have been considered (Lowd and Domingos 2007).

Discriminative approaches to parameter learning are motivated by the fact that probabilis-
tic models are often used to predict the values of one set of RVs X given the values of the
remaining variables Y , in which case it is sufficient to optimize the conditional probability
P(X|Y) rather than the joint probability P(X, Y). Specifically, max-margin approaches as
introduced by Taskar et al. (2003) learn parameters that maximize the margin between the
probability of the correct assignment x given y and that of other assignments x′. For lifted
graphical models, discriminative parameter learning has been considered e.g., for MLNs
(Singla and Domingos 2005; Huynh and Mooney 2009, 2011) and PSL (Bach et al. 2013).

One issue that arises when learning the parameters of an SRL model as described above is
computing the sufficient statistics, e.g., the counts in Eq. (12) and the sums in Eq. (13). Models
that are based on a database representation can take advantage of database operations to
compute sufficient statistics efficiently. For example, in PRMs, the computation of sufficient
statistics is cast as the construction of an appropriate view of the data, on which simple
database queries are run to obtain the statistics (Getoor 2002). Caching is used to achieve
further speed-ups.

Another issue for parameter learning in undirected SRL models is computing the expec-
tations in Eq. (13), which is intractable in general. This issue has been addressed for instance
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Algorithm 1 Structure learning algorithm (instantiation of procedures in lines 2, 3, 5 and 8
determines exact behavior)
Input: Hypothesis space H(describing par-factor graphs), training data D (assignments to random variables),

scoring function score(·, D)

Output: A par-factor graph h ∈H
Procedure:
1: G← ∅; h ← ∅;
2: while continue(G, h, H, score(·, D)) do
3: R←refineCandidates(G, H)

4: for each r ∈R do
5: r ←learnParameters(r, score(·, D))

6: end for
7: h ← arg maxh′∈R∪{h} score(h′, D)

8: G←select(R, score(·, D))

9: end while
10: return h

by using sampling to approximate the expectations (Richardson and Domingos 2006), by
using the values in the MAP state as expectations (Singla and Domingos 2005; Broecheler
et al. 2010), or by using the pseudo-likelihood as discussed above.

Using lifted inference for parameter learning is challenging, as evidence often breaks
the symmetries in the model and makes lifted techniques fall back on propositional tech-
niques. Ahmadi et al. (2012) address this problem by decomposing the factor graph into
possibly overlapping pieces, exploiting symmetries for lifted inference locally on the level
of pieces rather than globally. Their online learning method then iterates over these pieces to
update parameters. Ahmadi et al. (2013) further scale up this approach by extending it to a
MapReduce setting.

5.2 Structure learning

The goal of structure learning is to find the skeleton of dependencies and regularities that
make up the set of par-factors. Structure learning in SRL builds heavily on corresponding
work in graphical models and inductive logic programming. Algorithm 1 shows a schematic
structure learning procedure that realizes a search for the best par-factor graph h in the space
H of possible par-factor graphs according to the scoring function score(·, D) on the training
data set D. As for parameter learning, the data D often consists of a single, interconnected
“mega-example” containing many ground instances of the par-RVs of interest and their
relations. The schematic algorithm relies on a number of procedures (names in Caps) that
need to be instantiated to obtain a concrete algorithm. The algorithm proceeds in iterations
until a stopping criterion is met (line 2, procedure continue). In each iteration, a set R of new
candidate par-factor graph structures is derived from the current set of par-factor graphs G
(line 3, procedure refineCandidates), and for each of those candidate structures, parameters
are learned (line 5, procedure learnParameters). Then, the current best hypothesis h is
determined (line 7), and a subset of R is selected to be passed on to the next round (line 8,
procedure select). Finally, the best scoring model is returned. In principle, this algorithm
could be instantiated to perform a complete search of the hypothesis space H, but typically,
some form of greedy heuristic search will be realized. refineCandidates specifies how new
par-factor graph structures are derived from a given one. Initially, this will typically produce
trivial par-factors, e.g., ones consisting of single par-RVs, while later on, it will perform
several kinds of simple incremental changes, such as the addition or removal of a par-RV
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in a par-factor. Algorithm 1 is directly analogous to approaches for learning in graphical
models, such as those by Della Pietra et al. (1997) and Heckerman (1999), as well as to
approaches developed in ILP, such as the foil algorithm (Quinlan 1990). Variants of this
algorithm, adapted to the particular SRL representation, have been used by several authors.
We will illustrate such techniques for both directed and undirected models below, focusing
on PRMs and MLNs as representatives of the two classes, respectively. One of the difficulties
of learning the structure of par-factor graphs via search, as performed in Algorithm 1, is that
the space over possible structures is very large and contains many local maxima and plateaus.
Two ways to address these challenges are to modify the type of search performed (roughly,
the select procedure), or to restrict the hypothesis space H to be searched using some form
of pre-processing.

Directed models An instantiation of the general algorithm that learns PRMs is described
by Getoor (2002). In this case, the refineCandidates method checks for acyclicity in the
resulting structure and employs classic revision operators for directed graphical models, such
as adding, deleting, or reversing an edge. In addition to a greedy hill-climbing algorithm that
always prefers high-scoring structures over lower-scoring ones, Getoor (2002) presents a
randomized technique with a simulated annealing flavor where at the beginning of learning
the structure search procedure takes random steps with some probability p and greedy steps
with probability 1 − p. As learning progresses, p is decreased, gradually steering learning
away from random choices.

One approach to reduce the hypothesis space, used for PRM learning, is to constrain the
set of potential parents of each par-RV X (Friedman et al. 1999a). This algorithm proceeds in
stages, in each stage k forming the set of potential parents of X as those par-RVs that can be
reached from X through a chain of relations of length at most k. Structure learning at stage
k is then constrained to search only over those potential parent sets. The algorithm further
constrains potential parent candidates by requiring that they “add value” beyond what is
already captured in the currently learned set of parents. More specifically, the set of potential
parents of par-RV X at stage k consists of the parents in the learned structure from stage k−1,
and any par-RVs reachable through relation chains of length at most k that lead to a higher
value in a specially designed score measure. This algorithm directly ports scoring functions
that were developed for an analogous learning technique for Bayesian networks (Friedman
et al. 1999b).

Undirected models For the case of undirected models, Kok and Domingos (2005) introduced
a version of the search-based structure learning algorithm for MLNs. Their algorithm pro-
ceeds in iterations, each time searching for the best clause to add to the model. Searching
can be performed using one of two possible strategies. The first one, beam search, keeps the
best k clause candidates at each step of the search. On the other hand, with the second one,
shortest-first search, the algorithm tries to find the best clauses of length i before it moves
on to length i + 1. Candidate clauses in this algorithm are scored using the weighted pseudo
log-likelihood measure, an adaptation of the pseudo log-likelihood that weighs the pseudo
likelihood of each grounded atom by 1 over the number of groundings of its predicate to
prevent predicates with larger arity from dominating the expression.

Iterative local search techniques (Lourenço et al. 2003) alternate between two types of
search steps, either moving towards a locally optimal solution, or perturbing the current
solution in order to escape from local optima. This approach has been used to avoid local
maxima when learning MLNs in a discriminative setting, where the focus is on predicting a
specific target predicate given evidence on all other predicates (Biba et al. 2008).
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An alternative approach is to search for structures of increasing complexity, at each stage
using the structures found at the previous stage to constrain the search space. Such a strategy
was employed by Khosravi et al. (2010) for learning MLN structure in domains that contain
many descriptive attributes. Their approach, which is similar to the technique employed to
constrain the search space in PRMs (Friedman et al. 1999a) described above, distinguishes
between two types of tables—attribute tables that describe a single entity type, and relation-
ship tables that describe relationships between entities. The algorithm, called MBN, then
proceeds in three stages. In the first stage dependencies local to attribute tables are learned.
In the second stage, dependencies over a join of an attribute table and a relationship table are
learned, but the search space is constrained by requiring that all dependencies local to the
attribute table found in the first stage remain the same. Finally, in the third stage dependen-
cies over a join of two relationship tables, joined with relevant attribute tables, are learned,
and the search space is similarly constrained. An orthogonal characteristic of MBN is that,
although the goal is to learn an undirected SRL model, dependencies are learned using a
Bayesian network learner. The directed structures are then converted to undirected ones by
“moralizing” the graphs (i.e., by adding edges between all pairs of parents of the same node
and dropping edge directions). The advantage of this approach is that structure learning in
directed models is significantly faster than structure learning in undirected models due to
the decomposability of the score, which allows it to be updated locally, only in parts of the
structure that have been modified, and thus scoring of candidate structures is more efficient.
Schulte (2011) introduces a pseudo-likelihood measure for directed par-factor graphs and
shows that the algorithm of Khosravi et al. (2010) can be seen as optimizing this measure.
This algorithm has also been combined with a decision tree learner to obtain more compact
models (Khosravi et al. 2012), and generalized into a learning framework that organizes the
search space as a lattice (Schulte and Khosravi 2012). The latter also incorporates learning
recursive dependencies in the directed model as introduced by Schulte et al. (2012).

A series of algorithms have been developed to restrict the hypothesis space for MLN
structure learning. The first in the series was BUSL (Mihalkova and Mooney 2007), which
is based on the observation that, once an MLN is instantiated into a Markov network, the
instantiations of each clause of the MLN define a set of identically structured cliques in the
Markov network. BUSL inverts this process of instantiation and constrains the search space
by first inducing lifted templates for such cliques by learning a so-called Markov network
template, an undirected graph of dependencies whose nodes are not ordinary variables but
par-RVs. Then clause search is constrained to the cliques of this Markov network template.
Markov network templates are learned by constructing, from the perspective of each predicate,
a table in which there is a row for each possible instantiation of the predicate and a column
for possible par-RVs, with the value of a cell i, j being set to 1 if the data contains a true
instantiation of the j th par-RV such that variable substitutions are consistent with the i th
predicate instantiation. The Markov network template is learned from this table by any
Markov network learner.

A further MLN learner that is based on constraining the search space is the LHL algorithm
(Kok and Domingos 2009). LHL limits the set of clause candidates that are considered by
using relational pathfinding (Richards and Mooney 1992) to focus on more promising ones.
Developed in the ILP community, relational pathfinding searches for clauses by tracing paths
across the true instantiations of relations in the data. Figure 10 gives an example in which the
clause Credits(C,A) ∧ Credits(C,B)⇒ WorkedFor(A,B) is learned by tracing the
thick-lined path between brando and coppola and variablizing appropriately. However,
because in real-world relational domains the search space over relational paths may be very
large, a crucial aspect of LHL is that it does not perform relational pathfinding over the
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brando coppola

godFather rainMaker

WorkedFor

CreditsCreditsCredits

Fig. 10 Example of relational pathfinding

original relational graph of the data but over a so-called lifted hypergraph, which is formed
by clustering the entities in the domain via an agglomerative clustering procedure, itself
implemented as an MLN. Intuitively, entities are clustered together if they tend to participate
in the same kinds of relations with entities from other clusters. Structure search is then limited
only to clauses that can be derived as relational paths in the lifted hypergraph.

Kok and Domingos (2010) have proposed constraining the search space by identify-
ing so-called structural motifs, which capture commonly occurring patterns among densely
connected entities in the domain. The resulting algorithm, called LSM, proceeds by first
identifying motifs and then searching for clauses by performing relational pathfinding within
them. To discover motifs, LSM starts from an entity i in the relational graph and performs a
series of random walks. Entities that are reachable within a thresholded hitting time and the
hyperedges among them are included in the motif and the paths via which they are reachable
from i are recorded. Next, the entities included in the motif are clustered by their hitting
times into groups of potentially symmetrical nodes. The nodes within each group are then
further clustered in an agglomerative manner by the similarity of distributions over paths via
which they are reachable from i . This process results in a lifted hypergraph, analogous to the
one produced by LHL; however, whereas in LHL nodes were clustered based on their close
neighborhood in the relational graph, here they are clustered based on their longer-range
connections to other nodes. Motifs are extracted from the lifted hypergraphs via depth-first
search.

Structure learning techniques that do not follow the search-based pattern of Algorithm 1
have been developed as well. One technique developed in the graphical models community
that has been extended to par-factor graphs is that of structure selection through appropriate
regularization. In this approach (Lee et al. 2006; Lowd and Davis 2010), a large number of
factors of a Markov network are evaluated at once by training parameters over them and using
the L1 norm as a regularizer (as opposed to the typically used L2 norm). Since the L1 norm
imposes a strong penalty on smaller parameters, its effect is that it forces more parameters to
0, which are then pruned from the model. Huynh and Mooney (2008) extended this technique
for structure learning of MLNs by first using Aleph (Srinivasan 2001), an off-the-shelf ILP
learner, to generate a large set of potential par-factors (in this case, first-order clauses), and
then performed L1-regularized parameter learning over this set.

Khot et al. (2011) have extended the functional gradient boosting approach to learning
relational dependency networks of Natarajan et al. (2012) to MLNs. In contrast to previous
approaches, they learn structure and parameters simultaneously, thus avoiding the cost of
repeated parameter estimation. Essentially, for each par-RV to be queried, the approach
learns a set of non-recursive Horn clauses with that par-RV in the head. This is done through
a sequence of functional gradient steps, each of which adds clauses based on the point-wise
gradients of the training examples, that is, the ground instances of the respective par-RV, in
the current model.
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5.2.1 Structure revision and transfer learning

Our discussion so far has focused on learning structure from scratch. While approaches
based on search, such as Algorithm 1, can be easily adapted to perform revision by initial-
izing them with a given structure, some work in the area has also focused on approaches
specifically designed for structure revision and transfer learning. For example, Paes et al.
(2005) introduced an approach for revision of BLPs based on work in theory revision in the
ILP community, where the goal is, given an initial theory, to minimally modify it such that it
becomes consistent with a set of examples. The BLP revision algorithm follows the method-
ology of the FORTE theory revision system (Richards and Mooney 1995), first generating
revision points in places where the given set of rules fails and next focusing the search for
revisions to ones that could address the discovered revision points. The FORTE methodology
was also followed in TAMAR, an MLN transfer learning system (Mihalkova et al. 2007),
which generates revision points on MLN clauses by performing inference and observing
the ways in which the given clauses fail. TAMAR was designed for transfer learning (e.g.,
Banerjee et al. 2006), where the goal is to first map, or translate, the given structure from the
representation of a source domain to that of a target and then to revise it. Thus, in addition to
the revision module, it also contains a mapping module, which discovers the best mapping
of the source predicates to the target ones. The problem of mapping a source structure to a
target domain was also considered in the constrained setting where data in the target domain
is extremely scarce (Mihalkova and Mooney 2009).

Rather than taking a structure learned specifically for a source domain and trying to adapt it
to a target domain of interest, an alternative approach to transfer learning is to extract general
knowledge in the source domain that can then be applied to a variety of target domains. This
is the approach taken in DTM (Davis and Domingos 2009), which uses the source data to
learn general clique templates expressed as second-order Markov logic clauses, i.e., with
quantification both over the predicates and the variables. During this step, care is taken to
ensure that the learned clique templates capture general regularities and are not likely to be
specific to the source domain. Then, in the target domain DTM allows for several possible
mechanisms for using the clique templates to define the hypothesis space.

5.2.2 Learning causal models

Learning the causal structure in a domain is an important type of structure learning task that
is receiving growing attention (Pearl 2009), but is notoriously difficult given observational
data only. As many have argued, there are advantages to building models that are causal,
which, assuming that one has the right set of variables, tend to be simpler models (e.g., Pearl
1988; Heckerman 1999; Koller and Friedman 2009). Many SRL models are based on rules,
which makes it tempting to interpret the direction of these rules as the direction of causal
influence. However, as in the propositional case, structure learning approaches are typically
based on correlation rather than causation between variables, and therefore do not necessarily
justify this interpretation. Specifically, knowing the joint distribution, or correlations, between
RVs is often not sufficient to make decisions or take actions that result in changes to other
variables of interest in the domain. This additionally requires knowledge about the underlying
mechanisms of the domain, that is, about which variable values, if changed, will change the
values of which other variables. More generally, if one wishes to make scientific discoveries,
this requires discovering and understanding the underlying causal processes in the domain.

Despite its growing importance, learning causal models has so far received little attention
in the SRL community. Recent examples are the algorithms of Maier et al. (2010, 2013),
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who build upon principles that infer the directionality of rules used for causal discovery
in propositional domains by Spirtes et al. (2001), and the work by Rattigan et al. (2011),
who introduce a strategy to factor out common causes by grouping entities with a common
neighbor in a relational structure.

5.3 Discussion

This section has surveyed learning for lifted graphical models. While there are important
differences in approaches to learning in directed versus undirected models, there are many
important commonalities as well. Parameter learning often requires the ability to perform
inference, as such, it relies on methods for inference in lifted graphical models. Structure
learning often involves some form of search over potential rules or factors in some systematic
yet tractable manner. Beyond the work described here, examples of recent work in structure
learning include (Lowd 2012; Nath and Richardson 2012; Khot et al. 2013).

6 Conclusion

Multi-relational data, in which entities of different types engage in a rich set of relations,
is ubiquitous in many domains of current interest, such as social networks, computational
biology, web and social media applications, natural language processing, automatic knowl-
edge acquisition, and many more. Furthermore, for applications to be successful, modeling
and reasoning needs to simultaneously address the inherent uncertainty often present in such
domains as well as their relational structure. Learning in such settings is much more chal-
lenging as well, as the classical assumption of i.i.d. data no longer applies. Instead, we face
highly structured but noisy data, often in the form of a single, large, interconnected example
or network. While SRL provides powerful tools to address this challenge, it is still a young
field with many open questions, concerning specific inference and learning settings as dis-
cussed throughout this paper, but also fundamental questions on the theory of learning in this
setting and the guarantees that can or cannot be achieved. In this survey, we have provided a
synthesis of the current state of the field by outlining the main ideas underlying representa-
tion, inference and learning of lifted graphical models. We have reviewed a general form for
a lifted graphical model, a par-factor graph, and shown how a number of existing statistical
relational representations map to this formalism. We have discussed inference algorithms,
including lifted inference algorithms, that efficiently compute the answers to probabilistic
queries. We have also reviewed work in learning lifted graphical models from data. It is our
belief that the need for statistical relational models (whether they go by that name or another)
will grow in the coming decades, as we are inundated with structured and unstructured data,
including noisy relational data automatically extracted from text and noisy information from
sensor networks, and with the need to reason effectively with this data. We expect to see
further applications of SRL methods in such domains, and we hope that this synthesis of
ideas from many different research groups will provide an accessible starting point for new
researchers in this expanding field.
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