
Mach Learn (2015) 101:415–435
DOI 10.1007/s10994-014-5442-3

DEARank: a data-envelopment-analysis-based ranking
method

Chunheng Jiang · Wenbin Lin

Received: 7 November 2013 / Accepted: 6 April 2014 / Published online: 27 June 2014
© The Author(s) 2014

Abstract A new weak-ranker construction method based on Data Envelopment Analysis
technique is presented. Eachweak ranker represents a feature subset drawn from the complete
feature space. Two linear programming models are formulated, both of which treat the docu-
ments to be ranked as the decision making units. By solving the models, we construct a
pool of weak-ranker candidates from the optimal weight vectors, and then develop
DEARank algorithm based on Boosting technique. We conduct extensive experiments on
LETOR 3.0 and LETOR 4.0 collections, with twelve well-known algorithms as the baselines.
The experimental results indicate that DEARank is a competitive learning to rank algorithm.

Keywords Learning to rank · Listwise · Data envelopment analysis · Boosting

1 Introduction

Ranking is a core problem in information retrieval, specially in web search engine. Recently,
learning to rank, a rapidly developing branch of machine learning, has shown its strong
ability for the ranking task. When being applied to document retrieval, learning to rank first
establishes a ranking model learned from the training data sets, which consist of queries
and associated documents with relevance grades. For a new query and a set of associated
documents, the trained ranker (model) assigns each document a score, and then sorts them by
their scores. To evaluate the ranker’s accuracy, evaluation measures such as Mean Average
Precision (MAP) (Baeza-Yates et al. 1999) and Normalized Discounted Cumulative Gain
(NDCG) (Järvelin and Kekäläinen 2000) can be utilized.

Editors: Vadim Strijov, Richard Weber, Gerhard-Wilhelm Weber, and Süreyya Ozogur Akyüz.

C. Jiang
School of Mathematics, Southwest Jiaotong University, Chengdu, China
e-mail: chiangchunheng@my.swjtu.edu.cn

W. Lin (B)
School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, China
e-mail: wl@swjtu.edu.cn

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-014-5442-3&domain=pdf

416 Mach Learn (2015) 101:415–435

Recent works on learning to rank can be categorized into threemain paradigms: pointwise,
pairwise, and listwise. The pointwise approach, such as Pranking (Crammer and Singer 2001)
and McRank (Li et al. 2007), formulates ranking as an ordinal regression or classification
problem. Unfortunately, this approach fails to handle pairwise preferences and the orders of
retrieved documents. The pairwise approach, such as Ranking SVM (Smola 2000; Joachims
2002), RankBoost (Freund et al. 2003) and RankNet (Burges et al. 2005), deals with the
ranking problem by treating documents pairs as training instances, and trains models via the
minimization of related risks, such as the number of misordered pairs and the cross-entropy
loss (Burges et al. 2005). However, in this approach, the ground truth labels with respect to
partial orders of documents are ignored. The listwise approach, such as ListNet (Cao et al.
2007), AdaRank (Xu and Li 2007), ListMLE (Xia et al. 2008) and RankCosine (Qin et al.
2008), views list of documents as a whole in the training, and focus on recovering the true
permutation of the retrieved documents.

Previous works (Cao et al. 2007; Lan et al. 2009; Liu 2011; Niu et al. 2012) demon-
strated that the listwise approach can capture enough information, and therefore can address
the ranking problem in a very natural way. However, the majority of existing algorithms
depend heavily upon the human-elicited relevance grades, and ignore the intrinsic relation-
ships between documents and ranking features (Moon et al. 2010).

The aim of our work is to fill the gap, and shows a different way of constructing weak
learners to improve ranking performance. We employ Data Envelopment Analysis (DEA)
(Charnes et al. 1978; Seiford and Thrall 1990) technique to recover the information which
the conventional listwise approaches lost. Since the 1970s, DEA had been widely used in
evaluating the relative efficiencies of a set of homogenous Decision Making Units (DMUs)
with multiple inputs and outputs. Without explicit specification of the functional relation
between the inputs and outputs, DEA assigns each unit an efficiency score. One unit which
gets a higher score is considered to be more efficient. A score of one implies an ideal efficient
unit. The efficient DMUs form a piecewise linear frontier to assist in measuring the degree of
efficiency for units. DEA has the natural ability for dichotomized classification and ranking,
and it is straightforward to group DMUs into two sets: efficient and inefficient. It has been
applied to dealwith tasks such as classification (Troutt et al. 1996; Seiford andZhu1998;Emel
et al. 2003; Xu and Wang 2009; Pendharkar 2011; Yan and Wei 2011), clustering (Po et al.
2009) and association rule mining (Chen 2007; Toloo et al. 2009). To assist decision making,
a variety of methods have also been proposed for DMUs ranking in the literature of DEA,
and a comprehensive survey can be found in the works (Adler et al. 2002; Jahanshahloo et al.
2008). All the DMUs ranking approaches in DEA context, such as cross-efficiency method
(Sexton et al. 1986) and super-efficiency method (Andersen and Petersen 1993), directly use
the calculated efficiency scores to rank the given DMUs. However, they are unable to make
prediction for other unknown DMUs.

In this paper, two DEA models, namely CCR-I and CCR-O are derived to evaluate doc-
uments’ relative efficiency. Both models are based on the assumption that each document is
a DMU, but there is a difference in the role of documents’ feature vectors. In the model of
CCR-I, documents are represented as units with multiple outputs (the features) and the same
input (a query). In the model of CCR-O, each document is represented as a unit with multiple
inputs (the features) and one output (a human-elicited relevance score).

On the basis of these two DEA models, we propose a novel weak construction method
to build a pool of weak ranker candidates. Each candidate in the pool is an optimal weight
solved from CCR-I or CCR-O. Inspired by the works (Freund et al. 2003; Xu and Li 2007;
Qin et al. 2008), we incorporate Boosting technique (Schapire 1990) into the rank learning.

123

Mach Learn (2015) 101:415–435 417

The combination of the objective evaluation of DEA and the weak learnability of Boosting
leads to an improved rank learning method called DEARank.

The rest of this paper is organized as follows. In Sect. 2, we give a brief review of DEA
technique, Boosting technique andAdaRank algorithm, aswell as some notations for readers’
convenience. The DEARank method is presented in Sect. 3, and the experimental results are
reported in Sect. 4. In Sect. 5, we discuss the effect of error diversity on ranking performance,
and present an alternative approach to weight the weak rankers, then end the work with a
conclusion.

2 Background

2.1 Data envelopment analysis

Data envelopment analysis (DEA) is a typical non-parametric LP approach for evaluating
DMU’s performance by a relative efficiency score, which is defined as a ratio of the sum
of weighted outputs to the sum of weighted inputs. It allows DMUs to search the most
advantageous weight vectors in the calculations of relative efficiency (Kao and Hung 2005).
When clear from context, we use the terms “DMU”, “unit”, “document”, and “document
unit” interchangeably.

Suppose there are N DMUs to be evaluated, and the nth DMU consumes M-inputs Xn ∈
RM and produces S-outputs Yn ∈ RS . We also assume that the inputs and the outputs are
nonnegative, i.e., Xn ≥ 0 and Yn ≥ 0. Let wn ∈ RM denote the weight vector of the inputs
Xn , and un ∈ RS be the weight vector of the outputs Yn .

The first classical DEA model CCR is pioneered by Charnes et al. (1978). The model
aims at maximizing the relative efficiency of the nth unit, with the constraints that the relative
efficiency of each DMU with the optimal weights wn and un is not greater than one. The
model can be formulated as follows

max
wn ,un

uTn Yn/w
T
n Xn

s.t. uTn Yi/w
T
n Xi ≤ 1, i = 1, 2, . . . , N

wn ≥ 0, un ≥ 0.

(1)

With the Charnes-Cooper transformation
⎧
⎪⎨

⎪⎩

t = 1/wT
n Xn,

ν = twn,

μ = tun,

(2)

we have νT Xn = twT
n Xn = 1, and

uTn Yn/w
T
n Xn = μT Yn . (3)

Therefore, Eq. (1) can be solved via an equivalent LP model

max
μ,ν

μT Yn

s.t. μT Yi − νT Xi ≤ 0, i = 1, 2, . . . , N

νT Xn = 1

ν ≥ 0, μ ≥ 0.

(4)

123

418 Mach Learn (2015) 101:415–435

The optimal solution (μ∗, ν∗) to Eq. (4) represents the nth DMU’s most advantageous pref-
erence weight pair, which may vary for different DMUs. It’s the diversity of preferences that
results in a very competitive performance in contrast to the weak feature rankers used in
(Freund et al. 2003; Xu and Li 2007).

2.2 Efficiency reference set

Definition 1 (Efficiency Reference Set) Suppose (u∗
n, w

∗
n) be an optimal weight vector pair

of unit n. The Efficiency Reference Set (ERS) of unit n is a set defined as

ERSn =
{

i
∣
∣
∣

(u∗
n)

T Yi
(w∗

n)
T Xi

= 1,∀i = 1, . . . , N

}

,

with a common weight vector pair (u∗
n, w

∗
n).

Theorem 1 The common optimal weight vector pair (u∗
n, w

∗
n) of ERSn, is also an optimal

solution of the problem CCRi associated to every unit i ∈ ERSn.

Proof According to CCR model, the pair (u∗
n, w

∗
n) satisfies the constraints

(u∗
n)

T Y j

(w∗
n)

T X j
≤ 1, j = 1, . . . , N .

which implies that it is a feasible solution to the programming CCRi . Since unit i is a member
of ERSn , we have

(u∗
n)

T Yi
(w∗

n)
T Xi

= 1 ,

i.e., the pair (u∗
n, w

∗
n) is also an optimal solution of the problem CCRi , and the i th unit is

efficient. ��
Each CCRmodel is represented by a LP problem, and corresponds to one DMU. Suppose

there are N units, in order to examine the relative efficiency of each unit, we have to run LP
solving procedure N times. Although LPs can be solved in polynomial-time, the repeated
solving of LPs tends to be computationally intensive and time consuming, especially when
large data sets are involved. According to Theorem 1, the units in a same Efficiency Reference
Set share a common optimal weight. This property helps to alleviate the computational
burden. Also, we can find different approaches (Ali 1993; Barr and Durchholz 1997; Zhu
2003; Emrouznejad and Shale 2009) (detailed discussion of which is beyond the scope of
this work) to address this issue.

2.3 Boosting technique

Boosting is a general method based on the idea of creating a highly accurate model by
combining many relatively weak rules. Boosting has its roots in the PAC model. Schapire
(1990) is the first to show that theweak learning algorithms which perform just slightly better
than coin flip can be combined to create an arbitrarily accurate strong learning algorithm.
The proof gives birth to the first polynomial-time Boosting procedure. Later, Freund (1990)
develops a boost-by-majority version. Both algorithms share a common limitation, they
require the losses of weak learners are bounded. Fortunately, AdaBoost (Freund and Schapire
1995) removes the inapplicable constraint and has been successfully applied to different
learning tasks.

123

Mach Learn (2015) 101:415–435 419

Due to its advantages of simplicity and ease of implementation, Boosting has been exten-
sively used to improve the performance of different learning algorithms. Several Boosting-
basedmethods, such asRankBoost (Freund et al. 2003), AdaRank (Xu andLi 2007), RankCo-
sine (Qin et al. 2008), PermuRank (Xu et al. 2008) and cascade ranking model (Wang et al.
2011) have been developed for rank learning. Among them, AdaRank is most suitable for
combining weak rankers that are generated independently, and also it can directly optimize
the evaluation metrics for ranking.

2.4 AdaRank algorithm

AdaRank is one of the state-of-the-art listwise learning to rank algorithms, which extends
the famous AdaBoost (Freund and Schapire 1995) philosophy from binary classification to
rank learning. It takes queries (with associated document lists) as instances, and directly
optimizes an exponential loss which bounds a specific IR measure (e.g., MAP, NDCG). With
the maintained weight distribution over the training queries, AdaRank minimizes the loss
function through continuously re-weighting the weight distribution over the queries. At each
round, AdaRank selects the weak ranker that performs best in terms of the specific measure,
and assigns it a weight according to its ranking accuracy, and combines it with the current
learned model. Simultaneously, the algorithm increases the weight of each query that has not
been ranked well by the current model, and decreases the weights of each query on which the
selected weak shows good performance, so that the training procedure in the next round can
focus on the hard-to-learn queries. AdaRank fits a forward stage-wise additive model (i.e.,
the final ranking function) represented in the form of a weighted combination of the selected
weak rankers.

2.5 Notations

Suppose the training data set S contains |Q| queries Q = {q1, . . . , q|Q|}. For any query
qi ∈ Q, S provides a set of associated documents Di = {di1, . . . , dini }, where ni denotes
the number of documents in Di . A query-document pair (qi , di j) can be represented by
one m-dimensional feature vector xi j , and each query corresponds to one vector set xi =
{xi1, . . . , xini }, wherem denotes the dimension of features. The relevance grades are denoted
by yi = {yi1, . . . , yini }, i = 1, . . . , |Q|.

The learned ranking function F assigns scores to documents, e.g., si j = F(xi j), and its
ranking performance can be evaluatedwith a genericmeasure denoted by E(xi , yi , F). Given
a well-defined loss function L , the ranker can also be evaluated by loss L(xi , yi , F). The
notation rules are summarized in Table 1.

3 DEARank method

In this section, we first formulate two modified DEA models CCR-I and CCR-O, then intro-
duce DEARank algorithm. To our knowledge, this is the first time that the DEA technique is
employed in the process of documents rank learning.

3.1 Modified DEA models

It is crucial for DEA to select the input and output variables, which may severely affect
the efficiency scores of DMUs. However, DEA does not provide a general rule for the

123

420 Mach Learn (2015) 101:415–435

Table 1 Summary of notations

Notation Description

S Training data set

Q = {qi , . . . , q|Q|} Query set in training data set

Di = {di1, . . . , dini } Document set associated with query qi
xi = {xi1, . . . , xini } Feature vector set of documents associated with qi
yi = {yi1, . . . , yini } Relevance grades for Di

xi j ∈ Rm Feature vector of document di j
yi j ∈ R Relevance label of document di j
Φ Pool of weak ranker candidates

Ft Combined ranker at epoch t

ht Weak ranker selected at epoch t

E(xi , yi , F) Performance measure of F on document set Di

L(xi , yi , F) Loss of ranker F on document set Di

specification of the inputs and outputs, rather, it is left to the analysts’ judgments. In the
rank learning, the variables are the blended document features. We propose two different
variable-selection methods, according to the relationships among queries, features, relevance
grades, and particularly, documents.

Given a query q , suppose there are n associated documents D = {d1, . . . , dn}. We take
all documents as the units with a constant input (e.g., 1) and multiple outputs. The document
features are all benefit, and used as the output variables. For two documents di and d j , if
one feature value of di is higher than that of d j (e.g., page rank score (Brin and Page 1998)),
while the other features being the same, then di should be preferred and deserves a higher
relevancy score. In DEA, a larger relevancy score results in a higher relative efficiency level.
With the aforementioned assumption, we formulate a degenerated DEAmodel with one input
and multiple outputs (Lovell and Pastor 1999; Liu et al. 2011; Kostrzewa et al. 2011), and
named CCR-I:

max
μ

μT xk

s.t. μT xi ≤ 1, i = 1, . . . , n

μ ≥ 0.

(5)

In document ranking problem, the relevance grades of documents for the training set
are assumed to be given. Here, we explore the human-judgement procedure: how relevance
grades of documents with respect to the associated queries are generated. We assume that, in
the procedure, the input features characterizing a document are the major factors dominating
assessors’ decision, and the units (i.e., the documents) invest multiple input features and
harvest from the assessors the relevance scores. According to the model CCR-I, a document
with absolutely higher features deserves a higher score. Alternatively, wemay assume that the
assessor gives the document a lower score. This counterintuitive assumption is not well self-
explained. For instance, one document with duplicate keywords has higher feature values,
e.g., term frequency, sometimes is suspicious of black-hat-backed spam pages, therefore,
may be punished by search engines (Ntoulas et al. 2006). In order to cope with this case, we
propose to use another model named CCR-O:

123

Mach Learn (2015) 101:415–435 421

min
ν

νT xk

s.t. νT xi ≥ ϕ(yi), i = 1, 2, . . . , n

ν ≥ 0,

(6)

where ϕ is a continuous real-valued, order-preserving function.
The documents formulated via CCR-Omodel are viewed as the units with multiple inputs

(features) and one output (the relevance score). The documents under CCR-Imodel, however,
are viewed as the units with one input (a constant, e.g., 1) and multiple outputs (features).

Both models are standard LP problems, and can be efficiently solved by the well-known
simplex method or interior-point method. To seek a high relative efficiency score, DMUs
tend to search a perfect weighting structure on features. Each optimal weight vector μ∗ in
(5) or ν∗ in (6) corresponding to unit k represents the underlying importance it places on
the features. In economical words, the weight vector is a pricing list, the sum of weighted
inputs/outputs indicates a intrinsic value of the resources. These optimal weights, therefore
can be used as weak rankers on documents and make up the building blocks for our method.

3.2 Feature subset weak construction: DEARank

AdaRank directly uses the raw features as the weak rankers. Instead of using the raw features,
we apply DEA technique to create weak ranker candidates. Specifically, given a query and
its associated documents, we formulate a CCR-I or CCR-O model for each document, and
then solve it. Within the query, each document has at least one optimal solution to the
corresponding derived DEA model. The solution, representing a weighting strategy adopted
by the unit under consideration, is used as aweak ranker candidate.With a pool ofweak ranker
candidates, we start the training procedure, as described in Algorithm 1. Notice that MAP or
NDCG (to be defined in Sect. 4.2) is used as the evaluation measure throughout this paper.

Algorithm 1 DEARank
Solve models CCR-I or CCR-O to populate Φ on S

Input: Training set S, weak ranker candidates Φ, initialized queries probability distribution P1(i) = 1/|Q|
and combined ranker F0 = ∅

for t = 1, . . . , T do

1. Learn a weak ranker ht with distribution Pt on Q using Eq. (8).
2. Weight the selected weak ranker ht using Eq. (9).
3. Combine the learned weak ranker ht with the current ensemble ranker Ft−1

Ft = Ft−1 + βt ht .

4. Re-weight the queries with the distribution

Pt+1(i) = exp{−E(xi , yi , Ft)}
∑|Q|

j=1 exp{−E(x j , y j , Ft)}
.

end for

Output: The final ranker FT = ∑T
t=1 βt ht .

At each round, DEARank examines all the weak ranker candidates in the pool in step 1,
and the one who performs best on the whole training queries with the weight distribution will

123

422 Mach Learn (2015) 101:415–435

be selected. Then, the selected weak ranker is assigned with a weight which is obtained by
Eq. (9) in step 2, and it is combined with the current learned model to make the empirical loss
decrease in step 3. To focus on the hard-to-learn queries, DEARank decreases the weights
of queries on which the current learned model performs well, and increases the weights of
queries that are not ranked well by the learned model. The weight distribution over queries
is updated (step 4) according to this adaptive strategy.

Another modification is made due to the fact that AdaRank may be dominated by the
weak ranker which performs well for most training queries, and the weak learning procedure
cannot further improve the performance of the ranking model consequently (Cartright et al.
2009). We adopt the strategy given by Cartright et al. (2009) to deal with this domination
problem in DEARank.

In the algorithm, we minimize an upper bound of the exponential loss of the combiner Ft
on the training set to maximize the ranking accuracy with respect to the generic IR measure
E

min
h∈Φ,β∈R

|Q|∑

i=1

exp
{ − E(xi , yi , Ft−1 + βh)

}
. (7)

To minimize the surrogate loss function, we select a weak ranker

ht = argmax
h∈Φ

|Q|∑

i=1

Pt (i)E(xi , yi , h), (8)

and assign it a weight

βt = 1

2
ln

1 + ∑|Q|
i=1 Pt (i)E(xi , yi , h)

1 − ∑|Q|
i=1 Pt (i)E(xi , yi , h)

, (9)

according to its performance
∑|Q|

i=1 Pt (i)E(xi , yi , h) based on the training set with the query
weight distribution Pt at round t , as indicated in (Xu and Li, 2007).

In summary, DEARank first constructs the candidates of weak rankers via the optimal
weights of documents obtained by DEA. Each optimal weight represents the most advan-
tageous preference on the inputs/outputs for one document. With the boosting technique,
DEARank trains the ranking model by repeatedly selecting weak rankers, which may come
from different queries. The variety of the weak ranker, representing the collective intelligence
of units, helps to improve the ranking performance of the whole set of documents.

4 Experimental evaluation

4.1 Data sets

To examine the performance of DEARank, we conduct experiments on LETOR (Qin et al.
2010), which is a collection of benchmark data sets for research on learning to rank. LETOR
contains standard features, relevance judgments, as well as the results of dozen state-of-the-
art learning to rank algorithms. The versions LETOR 3.0 and LETOR 4.0 are used in this
work. LETOR 3.0 contains seven data sets: HP2003, HP2004, NP2003, NP2004, TD2003,
TD2004 and OHSUMED. LETOR 4.0 contains two data sets: MQ2007 and MQ2008.

LETOR 3.0 is composed of two document corpora: the Gov corpus and the OHSUMED
corpus. The OHSUMED corpus (Hersh et al. 1994) is a set of medical publications, and

123

Mach Learn (2015) 101:415–435 423

contains millions of records from 270medical journals. There are 106 queries used to retrieve
records in OHSUMED. TheGovweb page collection is searched using three query sets: topic
distillation (TD), home page finding (HP) and named page finding (NP). While NP is related
to the traditional information retrieval task, TD andHP are related to more navigational tasks,
in which only one document is the right answer to a query. LETOR 4.0 is created based on the
Gov2 web page collection and two query sets from Million Query track of TREC 2007 and
TREC 2008, respectively. There are about 1,700 queries in MQ2007 and about 800 queries
in MQ2008 with labeled documents.

Each query-document pair in LETOR is represented by standard features, including the
traditional information retrieval features, such as tf × idf, document title length as well as
some link-based features, e.g., PageRank (Brin and Page 1998) and HostRank (Xue et al.
2005). Each of these data sets generates five fold partitions for cross validation, with about
the same number of queries. In each fold, there are three subsets for learning: training set
(3/5), validation set (1/5, for model selection) and testing set (1/5). All experimental results
reported are those averaged over the five trails.

4.2 Evaluation measures

Two popular information retrieval measures: MAP (Baeza-Yates et al. 1999) and NDCG
(Järvelin and Kekäläinen 2000) are used for evaluation in our experiments.

4.2.1 Mean average precision

MAP is a measure on precision of ranking results. It is assumed that there are two relevance
levels for each item: relevant and irrelevant. Given a ranking list π , precision at k measures
the accuracy of top k results according to the ground truth labels

P@k = 1

k

k∑

i=1

yπ−1(i) , (10)

where π−1(i) represents the item ranked at the position i in the list π , and yπ−1(i) denotes
the item’s ground truth label. The average precision (AP) of the ranking list π is calculated
based on the precision at k

AP = 1

mr

n∑

k=1

yπ−1(k)P@k , (11)

where n is the total number of items in the ranking list, mr denotes the number of relevant
items. The measure MAP is defined as the mean value of AP over all the test queries. The
relevance degrees of documents with respect to the queries in the data sets of MQ2007,
MQ2008 and OHSUMED, are judged by human on three levels: definitely relevant, partially
relevant, or irrelevant. We define ‘definitely relevant’ and ‘partially relevant’ as relevant for
MAP calculation.

4.2.2 Normalized discounted cumulative gain

NDCG is designed to evaluate ranking quality in multiple level graded ranking applications
(Busa-Fekete et al. 2012). The higher NDCG is, the better the ranking quality is. Given a

123

424 Mach Learn (2015) 101:415–435

ranking list π , DCG at position k can be computed via

DCG@k =
k∑

i=1

2yπ−1 (i) − 1

log(i + 1)
, (12)

where the numerator denotes a gain, and the denominator serves as a discount. To balance
the influence of individual queries, the acknowledged measure NDCG is used. It divides the
DCG by the ideal discounted cumulative gain, which is the maximum possible DCG until
position k, and it is defined as

NDCG@k = DCG@k

I DCG@k
. (13)

4.3 Experimental results

Depending on which DEA variant (CCR-I or CCR-O) is used to construct the weak rankers,
we denote DEARank as DEARank-I or DEARank-O. Furthermore, during the weak learning
process, both MAP and NDCG can be used as evaluation measure to select weak rankers.
Correspondingly, DEARank-I or DEARank-O is given the suffixMAP or NDCG. For conve-
nience, we denote DEARank-I-MAP, DEARank-I-NDCG, DEARank-O-MAP, DEARank-
O-NDCG in abbreviated forms: DIM, DIN, DOM, and DON, respectively. Both DIN and
DON use NDCG@5 for weak learning. The number of iterations in DEARank is fixed at
200, we select models on the validation set basing on the mean value ofMAP and NDCG@1.
The implementation of DEARank has two components: the computation of DEA models,
and the learning procedure of boosting weak models to a stronger one. The transformation
function ϕ(x) = ln(1 + x) is used for the CCR-O model. The source codes for DEARank
algorithm are available at the Google code repository (https://code.google.com/p/l2r/).

We compare the ranking performance of DEARank with twelve learning to rank base-
lines,1 including two pointwise algorithms (Linear Regression and Ridge Regression), five
pairwise algorithms (RankSVM,RankSVM-Primal (Chapelle andKeerthi 2010), RankSVM-
Struct (Joachims 2006), RankBoost and FRank (Tsai et al. 2007)), and five listwise algorithms
(SVM-MAP (Yue et al. 2007), AdaRank-MAP, AdaRank-NDCG, ListNet and SmoothRank
(Chapelle and Wu 2010)). For ease of reference, they are denoted in order as LR, RR, RS,
RSP, RSS, RB, FR, SM, ARM, ARN, LN and SR, respectively. Except FRank and Rank-
Boost, all methods are linear ranking functions. At the LETOR website, only five reported
baseline algorithms (including RB, RSS, LN, ARM and ARN) are available for LETOR 4.0.

We conduct experiments on all data sets in LETOR collections, and report the comparison
results in Tables 2, 3, 4, and 5. According to the experimental results, several observations
can be made: (1) Different algorithms perform differently on different data sets and no
algorithm can always give the best performance on all data sets, with respect to different
measures. For instance, RankBoost outperforms all the other methods on TD2004, but it
tends to be nearly the worst one on NP2004. (2) It’s generally believed that the listwise
learning to rank approach is superior to the pairwise and pointwise approaches. However, the
results in Table 3 seems do not support this viewpoint, and the simplistic pointwise Ridge
Regression can also yield impressive results on NP2003. (3) DEARank learns the boosted
ranking model using weak ranker candidates, which are created from two DEA variants:
CCR-I or CCR-O. Compared with CCR-O model, CCR-I utilizes less information about the
training set, since it does not take into account the human-elicited labels of the documents.

1 See http://research.microsoft.com/en-us/um/beijing/projects/letor/

123

https://code.google.com/p/l2r/
http://research.microsoft.com/en-us/um/beijing/projects/letor/

Mach Learn (2015) 101:415–435 425

Table 2 Ranking performances (data bolded and italicized indicate the best results, and data bolded indicate
the second best results w.r.t a particular measure) on HP2003 and HP2004

Method N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP

HP2003

LR 0.420 0.470 0.510 0.535 0.546 0.551 0.569 0.571 0.580 0.594 0.497

RR 0.693 0.787 0.809 0.815 0.814 0.815 0.815 0.816 0.816 0.822 0.749

RS 0.693 0.747 0.775 0.788 0.795 0.802 0.805 0.807 0.807 0.808 0.741

RSP 0.740 0.767 0.791 0.802 0.808 0.813 0.816 0.816 0.817 0.818 0.765

RSS 0.740 0.770 0.791 0.800 0.807 0.810 0.812 0.816 0.816 0.816 0.763

RB 0.667 0.770 0.792 0.793 0.803 0.807 0.814 0.816 0.817 0.817 0.733

FR 0.653 0.730 0.743 0.763 0.778 0.788 0.789 0.789 0.791 0.797 0.710

SM 0.713 0.757 0.779 0.790 0.792 0.797 0.799 0.799 0.799 0.799 0.742

ARM 0.733 0.800 0.805 0.816 0.825 0.828 0.832 0.835 0.836 0.838 0.771

ARN 0.713 0.767 0.790 0.795 0.801 0.804 0.805 0.805 0.805 0.806 0.748

LN 0.720 0.797 0.813 0.824 0.830 0.832 0.835 0.835 0.836 0.837 0.766

SR 0.713 0.780 0.808 0.821 0.829 0.831 0.831 0.831 0.831 0.833 0.763

DIM 0.753 0.793 0.810 0.818 0.830 0.834 0.838 0.841 0.841 0.843 0.780

DIN 0.747 0.783 0.802 0.810 0.822 0.829 0.834 0.836 0.838 0.838 0.775

DOM 0.733 0.763 0.790 0.799 0.813 0.819 0.823 0.823 0.826 0.827 0.762

DON 0.720 0.753 0.783 0.800 0.807 0.813 0.817 0.823 0.824 0.825 0.753

HP2004

LR 0.387 0.540 0.575 0.607 0.613 0.629 0.629 0.635 0.643 0.647 0.526

RR 0.533 0.620 0.655 0.686 0.698 0.703 0.713 0.713 0.719 0.719 0.630

RS 0.573 0.680 0.715 0.740 0.751 0.759 0.759 0.763 0.765 0.769 0.668

RSP 0.573 0.687 0.713 0.741 0.753 0.768 0.771 0.771 0.772 0.772 0.671

RSS 0.587 0.673 0.725 0.747 0.752 0.765 0.765 0.767 0.767 0.767 0.678

RB 0.507 0.660 0.699 0.704 0.721 0.726 0.726 0.734 0.743 0.743 0.625

FR 0.600 0.707 0.729 0.737 0.749 0.755 0.755 0.755 0.758 0.762 0.682

SM 0.627 0.740 0.754 0.795 0.801 0.806 0.806 0.806 0.806 0.806 0.718

ARM 0.613 0.773 0.816 0.825 0.828 0.833 0.833 0.833 0.833 0.833 0.722

ARN 0.587 0.733 0.751 0.786 0.792 0.797 0.797 0.802 0.804 0.806 0.691

LN 0.600 0.687 0.721 0.762 0.769 0.780 0.785 0.785 0.785 0.785 0.690

SR 0.613 0.753 0.796 0.804 0.817 0.822 0.822 0.822 0.822 0.822 0.717

DIM 0.667 0.740 0.787 0.811 0.811 0.811 0.813 0.815 0.819 0.827 0.747

DIN 0.640 0.780 0.794 0.819 0.822 0.822 0.824 0.824 0.829 0.837 0.732

DOM 0.547 0.647 0.689 0.722 0.739 0.750 0.750 0.756 0.758 0.758 0.656

DON 0.547 0.653 0.695 0.731 0.742 0.763 0.763 0.763 0.765 0.765 0.657

Here, NDCG@m is denoted as N@m

However, on average, DEARank-I method performs better than DEARank-O method, as
shown in Fig. 1. We evaluate every raw feature ranker in terms of NDCG@10 in each data
set, and compute the standard variance of their performances. We discover that, DEARank-I
outperforms DEARank-O with 2–10% gains in HP2003, HP2004, NP2003 and NP2004,
whose standard variances are about three times greater than those in TD2003, TD2004 and

123

426 Mach Learn (2015) 101:415–435

Table 3 Ranking performances (data bolded and italicized indicate the best results, and data bolded indicate
the second best results) on NP2003 and NP2004

Method N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP

NP2003

LR 0.447 0.557 0.614 0.635 0.642 0.653 0.660 0.660 0.663 0.666 0.564

RR 0.547 0.727 0.773 0.783 0.789 0.794 0.799 0.796 0.799 0.803 0.682

RS 0.580 0.723 0.765 0.774 0.782 0.785 0.794 0.792 0.794 0.800 0.696

RSP 0.573 0.700 0.763 0.775 0.775 0.777 0.786 0.781 0.785 0.789 0.688

RSS 0.553 0.717 0.750 0.770 0.779 0.780 0.787 0.787 0.789 0.796 0.679

RB 0.600 0.730 0.764 0.770 0.782 0.787 0.798 0.795 0.803 0.807 0.707

FR 0.540 0.697 0.726 0.749 0.760 0.766 0.768 0.768 0.768 0.776 0.664

SM 0.560 0.740 0.767 0.782 0.788 0.791 0.798 0.793 0.795 0.798 0.687

ARM 0.580 0.703 0.729 0.735 0.748 0.755 0.757 0.757 0.759 0.764 0.678

ARN 0.560 0.687 0.716 0.736 0.745 0.756 0.762 0.759 0.765 0.767 0.668

LN 0.567 0.720 0.758 0.773 0.784 0.788 0.800 0.796 0.798 0.802 0.690

SR 0.580 0.733 0.754 0.778 0.789 0.794 0.797 0.792 0.799 0.799 0.696

DIM 0.593 0.723 0.753 0.771 0.775 0.783 0.788 0.783 0.792 0.797 0.700

DIN 0.613 0.733 0.773 0.777 0.779 0.790 0.797 0.790 0.798 0.800 0.714

DOM 0.580 0.683 0.734 0.744 0.752 0.756 0.757 0.755 0.759 0.761 0.678

DON 0.567 0.683 0.725 0.735 0.744 0.749 0.753 0.754 0.756 0.756 0.669

NP2004

LR 0.373 0.513 0.555 0.602 0.614 0.639 0.654 0.654 0.654 0.654 0.514

RR 0.573 0.700 0.735 0.775 0.777 0.790 0.800 0.800 0.804 0.804 0.687

RS 0.507 0.727 0.750 0.793 0.796 0.796 0.801 0.801 0.805 0.806 0.659

RSP 0.560 0.700 0.724 0.766 0.772 0.782 0.786 0.791 0.795 0.795 0.676

RSS 0.560 0.700 0.732 0.775 0.775 0.784 0.789 0.794 0.798 0.798 0.677

RB 0.427 0.553 0.627 0.643 0.651 0.667 0.681 0.685 0.685 0.691 0.564

FR 0.480 0.600 0.643 0.670 0.687 0.699 0.709 0.713 0.722 0.730 0.601

SM 0.520 0.700 0.749 0.785 0.787 0.795 0.799 0.804 0.804 0.808 0.662

ARM 0.480 0.660 0.698 0.714 0.731 0.741 0.743 0.750 0.750 0.750 0.622

ARN 0.507 0.613 0.672 0.712 0.712 0.723 0.727 0.738 0.738 0.738 0.627

LN 0.533 0.727 0.759 0.788 0.797 0.804 0.808 0.813 0.813 0.813 0.672

SR 0.547 0.700 0.744 0.780 0.783 0.798 0.808 0.808 0.808 0.808 0.676

DIM 0.540 0.680 0.712 0.737 0.744 0.746 0.756 0.751 0.753 0.758 0.656

DIN 0.540 0.690 0.713 0.743 0.757 0.763 0.770 0.765 0.767 0.770 0.662

DOM 0.527 0.623 0.653 0.679 0.702 0.708 0.717 0.713 0.715 0.715 0.626

DON 0.507 0.653 0.683 0.706 0.715 0.717 0.726 0.725 0.727 0.727 0.626

Here, NDCG@m is denoted as N@m

MQ2007. DEARank-O wins DEARank-I with only 0.5–4% gains in the latter three data
sets. These facts indicate that CCR-O is vulnerable to noisy features (Gomes et al. 2013) and
duplicate features (Geng et al. 2007). Moreover, when the training set contains many noises,
CCR-I is more suitable to formulate the relationships between features and documents. (4)
It is very important for a ranking model to assign higher scores to the most relevant items.
DEARank performs best in terms of NDCG@1 and MAP on two thirds of all the data sets.

123

Mach Learn (2015) 101:415–435 427

Table 4 Ranking performances (data bolded and italicized indicate the best results, and data bolded indicate
the second best results) on TD2003 and TD2004

Method N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP

TD2003

LR 0.320 0.320 0.307 0.308 0.298 0.311 0.316 0.324 0.325 0.326 0.241

RR 0.340 0.360 0.357 0.340 0.338 0.326 0.332 0.332 0.328 0.330 0.243

RS 0.320 0.330 0.344 0.353 0.362 0.355 0.346 0.344 0.345 0.346 0.263

RSP 0.320 0.370 0.355 0.363 0.366 0.363 0.358 0.352 0.355 0.357 0.265

RSS 0.340 0.340 0.343 0.358 0.365 0.358 0.356 0.348 0.350 0.347 0.271

RB 0.280 0.300 0.325 0.321 0.315 0.320 0.313 0.313 0.312 0.312 0.227

FR 0.300 0.280 0.267 0.257 0.247 0.254 0.254 0.255 0.265 0.269 0.203

SM 0.320 0.340 0.320 0.338 0.332 0.327 0.325 0.323 0.323 0.328 0.245

ARM 0.260 0.310 0.307 0.297 0.303 0.308 0.311 0.309 0.306 0.307 0.228

ARN 0.360 0.280 0.291 0.296 0.294 0.295 0.303 0.301 0.303 0.304 0.237

LN 0.400 0.340 0.337 0.325 0.339 0.348 0.354 0.348 0.350 0.348 0.275

SR 0.380 0.360 0.332 0.335 0.335 0.333 0.336 0.336 0.334 0.337 0.270

DIM 0.400 0.380 0.346 0.343 0.351 0.353 0.350 0.350 0.347 0.347 0.259

DIN 0.460 0.370 0.349 0.344 0.343 0.337 0.328 0.329 0.337 0.339 0.273

DOM 0.440 0.380 0.366 0.368 0.352 0.350 0.345 0.340 0.342 0.348 0.284

DON 0.460 0.370 0.344 0.345 0.335 0.327 0.325 0.324 0.340 0.341 0.278

TD2004

LR 0.360 0.340 0.335 0.328 0.326 0.313 0.308 0.309 0.306 0.303 0.208

RR 0.293 0.320 0.304 0.296 0.292 0.290 0.290 0.286 0.284 0.283 0.199

RS 0.413 0.347 0.347 0.341 0.324 0.318 0.316 0.311 0.306 0.308 0.224

RSP 0.307 0.307 0.313 0.303 0.306 0.300 0.295 0.292 0.294 0.291 0.206

RSS 0.347 0.347 0.337 0.329 0.319 0.313 0.310 0.315 0.308 0.309 0.220

RB 0.507 0.433 0.430 0.405 0.388 0.377 0.364 0.359 0.353 0.350 0.261

FR 0.493 0.407 0.388 0.358 0.363 0.355 0.347 0.339 0.333 0.333 0.239

SM 0.293 0.307 0.304 0.300 0.301 0.294 0.298 0.293 0.291 0.291 0.205

ARM 0.413 0.393 0.376 0.368 0.360 0.353 0.344 0.336 0.334 0.329 0.219

ARN 0.427 0.380 0.369 0.352 0.351 0.338 0.330 0.328 0.321 0.316 0.194

LN 0.360 0.347 0.357 0.347 0.333 0.327 0.325 0.321 0.319 0.318 0.223

SR 0.400 0.420 0.383 0.370 0.356 0.343 0.344 0.343 0.339 0.334 0.233

DIM 0.413 0.353 0.337 0.325 0.314 0.304 0.306 0.303 0.298 0.301 0.214

DIN 0.427 0.400 0.368 0.352 0.341 0.338 0.330 0.329 0.332 0.327 0.221

DOM 0.400 0.353 0.331 0.327 0.321 0.315 0.312 0.309 0.310 0.310 0.219

DON 0.480 0.427 0.390 0.381 0.364 0.362 0.351 0.349 0.349 0.345 0.232

Here, NDCG@m is denoted as N@m

To give an overall rank for all the algorithms in the experiments, we use one pairwise
comparison method (Liu 2011) to count their winning numbers (the number of one algorithm
beats others) with respect to all measures over all data sets:

WA =
∑

B

∑

E

∑

S

I
{
per f (A, E, S) > per f (B, E, S)

}
, (14)

123

428 Mach Learn (2015) 101:415–435

Table 5 Ranking performances (data bolded and italicized indicate the best results, and data bolded indicate
the second best results) on OHSUMED, MQ2007 and MQ2008

Method N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP

OHSUMED

LR 0.446 0.453 0.443 0.437 0.428 0.422 0.422 0.419 0.414 0.411 0.422

RR 0.536 0.478 0.474 0.460 0.457 0.454 0.445 0.444 0.443 0.444 0.444

RS 0.496 0.433 0.421 0.424 0.416 0.416 0.413 0.407 0.412 0.414 0.433

RSP 0.546 0.501 0.486 0.477 0.469 0.455 0.453 0.450 0.449 0.450 0.445

RSS 0.552 0.500 0.485 0.482 0.473 0.458 0.457 0.459 0.457 0.452 0.448

RB 0.463 0.450 0.456 0.454 0.449 0.444 0.441 0.436 0.433 0.430 0.441

FR 0.530 0.501 0.481 0.469 0.459 0.455 0.453 0.448 0.446 0.443 0.444

SM 0.523 0.491 0.466 0.463 0.452 0.441 0.434 0.433 0.430 0.432 0.445

ARM 0.539 0.479 0.468 0.472 0.461 0.458 0.456 0.451 0.446 0.443 0.449

ARN 0.533 0.492 0.479 0.469 0.467 0.460 0.460 0.458 0.454 0.450 0.450

LN 0.533 0.481 0.473 0.456 0.443 0.440 0.441 0.446 0.446 0.441 0.446

SR 0.558 0.515 0.496 0.485 0.478 0.470 0.467 0.461 0.456 0.457 0.447

DIM 0.548 0.497 0.484 0.483 0.476 0.468 0.466 0.461 0.457 0.456 0.450

DIN 0.520 0.524 0.502 0.495 0.486 0.480 0.476 0.468 0.468 0.465 0.454

DOM 0.590 0.530 0.504 0.490 0.481 0.474 0.475 0.469 0.463 0.462 0.451

DON 0.568 0.480 0.468 0.475 0.466 0.460 0.449 0.449 0.448 0.447 0.447

MQ2007

RSS 0.410 0.407 0.406 0.408 0.414 0.420 0.425 0.431 0.436 0.444 0.464

RB 0.413 0.409 0.407 0.412 0.418 0.423 0.427 0.432 0.439 0.446 0.466

ARM 0.382 0.390 0.398 0.402 0.407 0.411 0.415 0.422 0.428 0.434 0.458

ARN 0.388 0.397 0.404 0.407 0.410 0.416 0.420 0.426 0.432 0.437 0.460

LN 0.400 0.406 0.409 0.414 0.417 0.423 0.428 0.433 0.438 0.444 0.465

DIM 0.393 0.397 0.405 0.410 0.415 0.418 0.422 0.427 0.433 0.439 0.461

DIN 0.400 0.406 0.411 0.411 0.415 0.419 0.424 0.429 0.434 0.440 0.461

DOM 0.393 0.397 0.404 0.411 0.415 0.420 0.424 0.429 0.434 0.440 0.462

DON 0.403 0.403 0.409 0.412 0.416 0.420 0.426 0.430 0.434 0.439 0.461

MQ2008

RSS 0.363 0.398 0.429 0.451 0.470 0.485 0.491 0.456 0.224 0.228 0.470

RB 0.386 0.399 0.429 0.448 0.467 0.482 0.490 0.457 0.221 0.226 0.478

ARM 0.375 0.414 0.437 0.461 0.479 0.492 0.497 0.461 0.225 0.229 0.476

ARN 0.383 0.421 0.442 0.465 0.482 0.495 0.499 0.464 0.227 0.231 0.482

LN 0.375 0.411 0.432 0.457 0.475 0.489 0.498 0.463 0.227 0.230 0.478

DIM 0.385 0.410 0.432 0.460 0.479 0.492 0.499 0.462 0.227 0.231 0.480

DIN 0.395 0.416 0.436 0.464 0.481 0.495 0.500 0.466 0.231 0.234 0.484

DOM 0.386 0.412 0.437 0.458 0.477 0.490 0.496 0.460 0.226 0.229 0.479

DON 0.386 0.414 0.436 0.460 0.478 0.491 0.497 0.461 0.229 0.232 0.481

Here, NDCG@m is denoted as N@m

where A and B denote the index of algorithms, E denotes the index for measures (NDCG@1,
. . ., NDCG@10 or MAP), and S is the index of data sets. per f (A, E, S) represents the
ranking performance of algorithm Awith respect to the measure E on the data set S. Because

123

Mach Learn (2015) 101:415–435 429

Fig. 1 Average performances of DEARank-I and DEARank-O. Each bar represents the average performance
of two DEARank methods (DIM and DIN for the bars in blue, DOM and DON for the bars in red) with respect
to the mean value of NDCG@1–NDCG@10 and MAP (Color figure online)

Table 6 Winning numbers on LETOR 3.0 (including HP2003, HP2004, NP2003, NP2004, TD2003, TD2004
and OHSUMED) (data bolded indicate the best result)

Method LR RR RS RSP RSS RB FR SM

W 190 1006 1034 1210 1274 900 704 1014

Method ARM ARN LN SR DIM DIN DOM DON

W 1210 900 1502 1744 1538 1750 1112 1056

Table 7 Winning numbers on LETOR 4.0 (including MQ2007 and MQ2008) (data bolded indicate the best
result)

Method RSS RB ARM ARN LN DIM DIN DOM DON

W 122 178 78 164 212 142 244 140 204

only five baselines are used for comparisons in LETOR 4.0, we present the winning numbers
separately, as shown in Tables 6 and 7. From the two tables, we notice that DIN is the best
method in both collections, and the second best is SmoothRank in LETOR 3.0, and ListNet
in LETOR 4.0.

4.4 Experiments with a reduced pool

In DEARank, at each round, all the weak ranker candidates in the pool should be examined,
and the one who performs best on the training set with the weight distribution over queries, is
selected. The training process requires amount of time for weak learning. It is clearly, as the
iteration proceeds, many candidates perform so badly that they have little chances of being
selected. Therefore, we keep only top K (N , the total number of documents in the training

123

430 Mach Learn (2015) 101:415–435

Table 8 Performance of DEARank training with a reduced candidates’ pool

N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP

HP2003

DIM 0.747 0.800 0.812 0.820 0.833 0.837 0.840 0.840 0.843 0.844 0.777

DIN 0.753 0.803 0.817 0.821 0.835 0.838 0.845 0.845 0.849 0.850 0.785

DOM 0.707 0.743 0.768 0.783 0.796 0.799 0.811 0.815 0.816 0.817 0.743

DON 0.700 0.743 0.776 0.795 0.801 0.807 0.814 0.821 0.822 0.823 0.740

P. C. (%) −1.58 −0.11 −0.37 −0.29 −0.22 −0.41 −0.08 −0.04 0.04 0.04 −0.79

NP2003

DIM 0.587 0.703 0.733 0.754 0.762 0.764 0.776 0.769 0.778 0.783 0.688

DIN 0.613 0.727 0.767 0.770 0.773 0.786 0.790 0.785 0.791 0.792 0.711

DOM 0.513 0.643 0.694 0.712 0.728 0.731 0.733 0.731 0.735 0.739 0.635

DON 0.527 0.667 0.713 0.731 0.740 0.746 0.748 0.745 0.750 0.752 0.648

P. C. (%) −4.82 −2.95 −2.65 −1.95 −1.61 −1.68 −1.55 −1.70 −1.66 −1.56 −2.91

TD2003

DIM 0.380 0.370 0.339 0.327 0.333 0.333 0.334 0.340 0.337 0.341 0.253

DIN 0.420 0.360 0.353 0.331 0.323 0.328 0.323 0.315 0.316 0.319 0.256

DOM 0.440 0.380 0.366 0.368 0.352 0.350 0.345 0.340 0.342 0.348 0.284

DON 0.440 0.370 0.339 0.347 0.335 0.327 0.324 0.323 0.338 0.338 0.275

P. C. (%) −4.55 −1.33 −0.57 −1.85 −2.67 −2.06 −1.59 −1.95 −2.36 −2.14 −2.26

OHSUMED

DIM 0.548 0.502 0.499 0.496 0.485 0.476 0.472 0.468 0.467 0.469 0.459

DIN 0.539 0.520 0.502 0.491 0.493 0.485 0.478 0.473 0.469 0.466 0.456

DOM 0.596 0.528 0.509 0.496 0.491 0.485 0.483 0.478 0.470 0.468 0.462

DON 0.565 0.518 0.503 0.488 0.476 0.468 0.461 0.464 0.460 0.460 0.456

P. C. (%) 1.00 1.76 2.78 1.43 1.85 1.70 1.42 1.94 1.65 1.88 1.75

MQ2008

DIM 0.388 0.404 0.427 0.459 0.478 0.491 0.496 0.461 0.226 0.231 0.479

DIN 0.391 0.416 0.437 0.463 0.483 0.495 0.500 0.463 0.229 0.233 0.483

DOM 0.385 0.410 0.436 0.456 0.476 0.490 0.497 0.461 0.226 0.230 0.480

DON 0.386 0.414 0.437 0.460 0.480 0.494 0.499 0.465 0.230 0.234 0.481

P. C. (%) −0.14 −0.44 −0.16 −0.22 0.10 0.16 −0.05 0.04 −0.15 0.05 −0.11

The performance changes w.r.t a measure are abbreviated as “P. C.” in the table, in which a positive value
implies an improvement, and a negative one means the performance is deteriorated, comparing with the
corresponding performance of DEARank using a complete pool (data bolded and italicized indicate the best
results, and data bolded indicate the second best results)

set) candidates which perform best with respect to an IR measure (e.g., MAP, NDCG) on the
whole training set.

We conduct experiments on five representative data sets: HP2003, NP2003, TD2003,
OHSUMED and MQ2008, with a reduced pool of candidates. Here, we fix K = 100, and
use the training measure (MAP for DIM and DOM, NDCG@5 for DIN and DON) to filter
candidates for the training process. The experimental results on the reduced pool are reported
in Table 8.

It can be seen from the results that,on average, the performance change of DEARank
ranges from the worst 4.82% loss on NP2003 with respect to NDCG@1, to the best 2.78%

123

Mach Learn (2015) 101:415–435 431

gain on OHSUMED in terms of NDCG@3.When compared with the baselines, however, the
rank of our method in terms of winning number does not hurt. Taking HP2003 for instance,
DIM dominates the performance in terms of NDCG@1, NDCG@5 to NDCG@10, and
MAP on the complete pool. With the reduced pool of weak ranker candidates, DIN obtains
the highest scores on all measures except NDCG@4, on which DIN is ranked at the second
best place. After filtering the candidates, DEARank can be more efficient without much loss
of performance.

5 Discussions and conclusions

The proposed DEARank shows to be a useful rank learningmethod. In this section, we would
like to discuss the impact of one special local property of the weak candidates and a new
weak weighting strategy on the ranking performance of the method.

5.1 Local overfitting and error diversity

To learn a ranking model, DEARank requires to construct plenty of weak candidates from
the training set. Each weak candidate has a strong relationship with a query and its associated
documents, and may perform better on its associated query over other queries. We call this
phenomena as local overfitting, and the corresponding query and its associated documents
are referred to as the home-set.

At the weak learning stage, the weak rankers are selected based on their average per-
formances. If local overfitting occurs, the selection will be biased and may deteriorate the
overall ranking accuracy.

To speculate whether there exists local overfitting on the used data sets, all the constructed
candidates are examined. Firstly, all the candidates are used as linear rankers to sort the
associated document of the queries, andmeasured byMAP.Secondly, the overall performance
is averaged and comparedwith the performance on the home-set. Finally, we simply count the
number of rankers that attain better performance on their home-sets than the overall average
performances, and the percentages are then calculated, as shown in Fig. 2.

The two groups, one is CCR-I based, the other is CCR-O based, report the percentages
of home-set biased rankers on all data sets. For example, on average, about 64.3% of the
candidates which are built upon CCR-O may produce biased ranking accuracy towards the
home-set in MQ2007. With higher proportion (seven out of nine data sets), the candidates
based on CCR-O may produce biased ranking accuracy. We notice that, the home-set biased
ranker candidates can produce higher ranking accuracy on their home-set queries. If they
do not generalize well for other queries, the local overfitting may deteriorate the ranking
performance, as shown by the results on HP2003, HP2004, NP2003, NP2004, TD2003 and
MQ2008 (see Fig. 1). On the other side, according to previous works (Cunningham and Car-
ney 2000; Tsymbal et al. 2005), the base learners who have error diversity in their predictions
can effectively improve the ensemble’s accuracy. If the home-set biased ranker candidates
can alsomake accurate predictions for other queries, the local overfittingmay bring beneficial
effects on increasing the error diversity of the ensemble model, and results in an improved
overall performance, as indicated by the results on TD2004, OHSUMED and MQ2007 in
Fig. 1.

To further improve the combined ranker’s overall performance, we should carry out a
series thorough experiments on the local overfitting phenomenon, and investigate its effect
on the error diversity of the ensemble model.

123

432 Mach Learn (2015) 101:415–435

Fig. 2 Local diversity with local overfitting

5.2 Feature subset weighting strategy

In this work, we adopt the strategy (see Eqs. (8) and (9)) given in AdaRank to minimize
the empirical risk on training set. In this case, all the selected features are treated equally,
and the contribution from each single feature is ignored. Actually, each weak ranker can
be decomposed into multiple single feature rankers, and thus each selected feature can be
assigned a weight proportional to its contribution to the overall ranking performance

βtk ∝
|Q|∑

i=1

E(xi , yi , fk), k = 1, . . . ,m, (15)

where fk represents the kth feature selected by the weak ranker ht . This kind of weighting
scheme deservers further critical appraisal.

5.3 Conclusions

The key contribution of this work is to introduce data envelopment analysis (DEA) into the
field of learning to rank and propose DEARank algorithm. Making use of DEA’s power-
ful potential in capturing the intrinsic characteristics of documents, we construct the weak
ranker candidates using the optimal weights of features for units. The optimal weights are all
solved from the DEA variant: CCR-I or CCR-O, and experimental results demonstrate that
DEARank provides a promising alternative for rank learning. The incorporation of DEA
into rank learning also opens up many challenges and possibilities, e.g., the computational
complexity, the generalization ability, the performance of other kinds of DEA models (e.g.,
BCC (Banker et al. 1984), additivemodel (Charnes et al. 1985)), and the relationship between
the local overfitting phenomenon and the error diversity. We plan to explore these issues in
further detail in our future works.

123

Mach Learn (2015) 101:415–435 433

Acknowledgments The authors would like to thank the anonymous reviewers for valuable comments and
many constructive suggestions on improving the quality of this paper. This work was supported in part by the
Program for New Century Excellent Talents in University (Grant No. NCET-10-0702).

References

Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment
analysis context. European Journal of Operational Research, 140(2), 249–265.

Ali, A. I. (1993). Streamlined computation for data envelopment analysis. European Journal of Operational
Research, 64(1), 61–67.

Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis.
Management Science, 39(10), 1261–1264.

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern information retrieval (Vol. 463). New York: ACM
press.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale ineffi-
ciencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

Barr, R. S., & Durchholz, M. L. (1997). Parallel and hierarchical decomposition approaches for solving large-
scale data envelopment analysis models. Annals of Operations Research, 73, 339–372.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.Computer Networks
and ISDN Systems, 30(1), 107–117.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning
to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning
(pp. 89–96).

Busa-Fekete, R., Szarvas, G., Elteto, T., Kégl, B. et al. (2012). An apple-to-apple comparison of learning-
to-rank algorithms in terms of normalized discounted cumulative gain. In 20th European Conference on
Artificial Intelligence (ECAI 2012): Preference Learning: Problems and Applications in AI Workshop.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: from pairwise approach to listwise
approach. In Proceedings of the 24th International Conference on Machine Learning (pp. 129–136).

Cartright, M.-A., Seo, J., & Lease, M. (2009). Umass amherst and ut austin@ the TREC 2009 relevance
feedback track. In Proceedings of the 18th Retrieval Conference (TREC 2009). NIST.

Chapelle, O., & Keerthi, S. S. (2010). Efficient algorithms for ranking with SVMs. Information Retrieval,
13(3), 201–215.

Chapelle, O., &Mingrui, W. (2010). Gradient descent optimization of smoothed information retrieval metrics.
Information Retrieval, 13(3), 216–235.

Charnes, A., Cooper,W.W.,&Rhodes, E. (1978).Measuring the efficiency of decisionmaking units.European
Journal of Operational Research, 2(6), 429–444.

Charnes, A., William, W., Cooper, B. G., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment
analysis for Pareto–Koopmans efficient empirical production functions. Journal of Econometrics, 30(1),
91–107.

Chen, M. C. (2007). Ranking discovered rules from data mining with multiple criteria by data envelopment
analysis. Expert Systems with Applications, 33(4), 1110–1116.

Crammer,K.,&Singer,Y. (2001). Prankingwith ranking.Advances inNeural InformationProcessing Systems,
14, 641–647.

Cunningham, P., & Carney, J.. (2000). Diversity versus quality in classification ensembles based on feature
selection. InMachine learning: Ecml 2000. (pp. 109–116). Springer.

Emel, A. B., Oral, M., Reisman, A., & Yolalan, R. (2003). A credit scoring approach for the commercial
banking sector. Socio-Economic Planning Sciences, 37(2), 103–123.

Emrouznejad, A., & Shale, E. (2009). A combined neural network and dea for measuring efficiency of large
scale datasets. Computers & Industrial Engineering, 56(1), 249–254.

Freund, Y. (1990). Boosting a weak learning algorithm by majority, vol. 90. In Colt (pp. 202–216).
Freund, Y., & Schapire, R. (1995). A desicion-theoretic generalization of on-line learning and an application

to boosting. In Computational learning theory. (pp. 23–37). Springer.
Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining

preferences. The Journal of Machine Learning Research, 4, 933–969.
Geng, X., Liu, T.-Y., Qin, T., & Li, H. (2007). Feature selection for ranking. In Proceedings of the 30th annual

international acm sigir conference on research and development in information retrieval (pp. 407–414).
Gomes, G. de C. M., de Oliveira, V. C., de Almeida, J. M., & Gonçalves, M. A. (2013). Is learning to rank

worth it? a statistical analysis of learning to rank methods. arXiv:1303.2277.

123

http://arxiv.org/abs/1303.2277

434 Mach Learn (2015) 101:415–435

Hersh, W., Buckley, C., Leone, T. J., & Hickam, D. (1994). OHSUMED: An interactive retrieval evaluation
and new large test collection for research. In Sigir94 (pp. 192–201). New York: Springer.

Jahanshahloo, G. R., Hosseinzadeh Lotfi, F., Sanei, M., & Jelodar, M. Fallah. (2008). Review of ranking
models in data envelopment analysis. Applied Mathematical Sciences, 2(29), 1431–1448.

Järvelin, K., & Kekäläinen, J. (2000). IR evaluation methods for retrieving highly relevant documents. In
Proceedings of the 23rd Annual International ACM Sigir Conference on Research and Development in
Information Retrieval (pp. 41–48).

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 133–142).

Joachims,T. (2006). Training linear svms in linear time. InProceedings of the 12thACMSIGKDDInternational
Conference on Knowledge Discovery and Data Mining (pp. 217–226).

Kao, C., & Hung, H. T. (2005). Data envelopment analysis with common weights: The compromise solution
approach. Journal of the Operational Research Society, 56(10), 1196–1203.

Kostrzewa, K., Okninski, A., & Radziszewski, B. (2011). Data envelopment analysis without input or output.
Krakow, Poland: AGH University of Science and Technology Press.

Lan, Y., Liu, T.-Y., Ma, Z., & Li, H. (2009). Generalization analysis of listwise learning-to-rank algorithms.
In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 577–584).

Li, P., Burges, C. J. C., Wu, Q. (2007). Mcrank: Learning to rank using multiple classification and gradient
boosting. In Nips’07.

Liu, T. Y. (2011). Learning to rank for information retrieval (Vol. 13). Berlin: Springer.
Liu, W. B., Zhang, D. Q., Meng, W., Li, X. X., & Xu, F. (2011). A study of DEA models without explicit

inputs. Omega, 39(5), 472–480.
Lovell, C. A., & Pastor, J. T. (1999). Radial DEAmodels without inputs or without outputs. European Journal

of Operational Research, 118(1), 46–51.
Moon, T., Smola, A., Chang, Y., & Zheng, Z. (2010). IntervalRank: Isotonic regression with listwise and

pairwise constraints. In Proceedings of the Third ACM International Conference on Web Search and Data
Mining (pp. 151–160).

Niu, S., Guo, J., Lan, Y., & Cheng, X. (2012). Top-k learning to rank: Labeling, ranking and evaluation. In
Proceedings of the 35th International ACMSIGIRConference onResearch andDevelopment in Information
Retrieval (pp. 751–760).

Ntoulas, A., Najork, M., Manasse, M., & Fetterly, D. (2006). Detecting spam web pages through content
analysis. In Proceedings of the 15th International Conference on World Wide Web (pp. 83–92).

Pendharkar, P. C. (2011). A hybrid radial basis function and data envelopment analysis neural network for
classification. Computers & Operations Research, 38(1), 256–266.

Po, R. W., Guh, Y. Y., & Yang, M. S. (2009). A new clustering approach using data envelopment analysis.
European Journal of Operational Research, 199(1), 276–284.

Qin, T., Liu, T. Y., Xu, J., & Li, H. (2010). Letor: A benchmark collection for research on learning to rank for
information retrieval. Information Retrieval, 13(4), 346–374.

Qin, T., Zhang, X.-D., Tsai, M.-F., Wang, D.-S., Liu, T.-Y., & Li, H. (2008). Query-level loss functions for
information retrieval. Information Processing & Management, 44(2), 838–855.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
Seiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: The mathematical programming

approach to frontier analysis. Journal of Econometrics, 46(1), 7–38.
Seiford, L. M., & Zhu, J. (1998). An acceptance system decision rule with data envelopment analysis. Com-

puters & Operations Research, 25(4), 329–332.
Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions.

New Directions for Program Evaluation, 1986(32), 73–105.
Smola, A. J. (2000). Advances in large margin classifiers. Cambridge, MA: MIT Press.
Toloo, M., Sohrabi, B., & Nalchigar, S. (2009). A new method for ranking discovered rules from data mining

by DEA. Expert Systems with Applications, 36(4), 8503–8508.
Troutt, M. D., Rai, A., & Zhang, A. (1996). The potential use of DEA for credit applicant acceptance systems.

Computers & Operations Research, 23(4), 405–408.
Tsai, M.-F., Liu, T.-Y., Qin, T., Chen, H.-H., & Ma, W.-Y. (2007). Frank: A ranking method with fidelity loss.

In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 383–390).

Tsymbal, A., Pechenizkiy, M., & Cunningham, P. (2005). Diversity in search strategies for ensemble feature
selection. Information Fusion, 6(1), 83–98.

Wang, L., Lin, J. J., & Metzler, D. (2011). A cascade ranking model for efficient ranked retrieval, vol. 11. In
SIGIR (pp. 105–114).

123

Mach Learn (2015) 101:415–435 435

Xia, F., Liu, T. Y., Wang, J., Zhang, W., & Li, H. (2008). Listwise approach to learning to rank: Theory and
algorithm. In Proceedings of the 25th International Conference on Machine Learning (pp. 1192–1199).

Xu, J., & Li, H. (2007). Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp.
391–398).

Xu, J., Liu, T.-Y., Lu, M., Li, H., & Ma, W.-Y. (2008). Directly optimizing evaluation measures in learn-
ing to rank. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 107–114).

Xu, X., & Wang, Y. (2009). Financial failure prediction using efficiency as a predictor. Expert Systems with
Applications, 36(1), 366–373.

Xue, G.-R., Yang, Q., Zeng, H.-J., Yu, Y., & Chen, Z. (2005). Exploiting the hierarchical structure for link
analysis. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (pp. 186–193).

Yan, H., &Wei, Q. (2011). Data envelopment analysis classification machine. Information Sciences, 181(22),
5029–5041.

Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average
precision. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 271–278).

Zhu, J. (2003). Imprecise data envelopment analysis (idea): A review and improvement with an application.
European Journal of Operational Research, 144(3), 513–529.

123

	DEARank: a data-envelopment-analysis-based ranking method
	Abstract
	1 Introduction
	2 Background
	2.1 Data envelopment analysis
	2.2 Efficiency reference set
	2.3 Boosting technique
	2.4 AdaRank algorithm
	2.5 Notations

	3 DEARank method
	3.1 Modified DEA models
	3.2 Feature subset weak construction: DEARank

	4 Experimental evaluation
	4.1 Data sets
	4.2 Evaluation measures
	4.2.1 Mean average precision
	4.2.2 Normalized discounted cumulative gain

	4.3 Experimental results
	4.4 Experiments with a reduced pool

	5 Discussions and conclusions
	5.1 Local overfitting and error diversity
	5.2 Feature subset weighting strategy
	5.3 Conclusions

	Acknowledgments
	References

