
Mach Learn (2014) 96:129–154
DOI 10.1007/s10994-013-5409-9

PAUTOMAC: a probabilistic automata and hidden
Markov models learning competition

Sicco Verwer · Rémi Eyraud · Colin de la Higuera

Received: 16 December 2012 / Accepted: 9 August 2013 / Published online: 3 October 2013
© The Author(s) 2013

Abstract Approximating distributions over strings is a hard learning problem. Typical tech-
niques involve using finite state machines as models and attempting to learn these; these
machines can either be hand built and then have their weights estimated, or built by gram-
matical inference techniques: the structure and the weights are then learned simultaneously.
The Probabilistic Automata learning Competition (PAUTOMAC), run in 2012, was the first
grammatical inference challenge that allowed the comparison between these methods and
algorithms. Its main goal was to provide an overview of the state-of-the-art techniques for
this hard learning problem. Both artificial data and real data were presented and contestants
were to try to estimate the probabilities of strings. The purpose of this paper is to describe
some of the technical and intrinsic challenges such a competition has to face, to give a broad
state of the art concerning both the problems dealing with learning grammars and finite state
machines and the relevant literature. This paper also provides the results of the competition
and a brief description and analysis of the different approaches the main participants used.

Keywords Grammatical inference · Probabilistic automata · Hidden Markov models ·
Programming competition

Editors: Jeffrey Heinz and Tim Oates.

S. Verwer (B)
Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen,
The Netherlands
e-mail: siccoverwer@gmail.com

R. Eyraud
QARMA team, Laboratoire d’Informatique Fondamentale de Marseille, Marseille, France
e-mail: remi.eyraud@lif.univ-mrs.fr

C. de la Higuera
TALN team, Laboratoire d’Informatique de Nantes Atlantique, Nantes University, Nantes Cedex 1,
France
e-mail: cdlh@univ-nantes.fr

mailto:siccoverwer@gmail.com
mailto:remi.eyraud@lif.univ-mrs.fr
mailto:cdlh@univ-nantes.fr


130 Mach Learn (2014) 96:129–154

1 Introduction

This paper describes the PAUTOMAC probabilistic automaton learning competition and pro-
vides an overview of the relevant literature on this topic. PAUTOMAC was an on-line chal-
lenge that took place in 2012 at http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/. The
goal of PAUTOMAC was to provide an overview of which probabilistic automaton learn-
ing techniques work best in which setting and to stimulate the development of new tech-
niques for learning distributions over strings. Many probabilistic automata learning meth-
ods have been produced in the past (see Sect. 2 for an overview). Most of these focus on
deterministic probabilistic automata (DPFA), where only the symbols are drawn from prob-
ability distributions but the transitions are uniquely determined given the generated symbol.
There exist some exceptions, however, which aim to learn hidden Markov models (Baum
1972), probabilistic residual automata (Esposito et al. 2002), and multiplicity automata (De-
nis et al. 2006). Another important approach is to learn Markov chains or n-grams by
simply counting the occurrences of sub-strings (Saul and Pereira 1997; Ney et al. 1997;
Jelinek 1998). These simple counting methods have been very successful in practice (Brill
et al. 1998).

Although many methods have been proposed, there has been so far no thorough investi-
gation of which model/algorithm is likely to perform best, why and when. Knowledge about
this would be very helpful to scientists/practitioners faced with a data set made of strings and
the problem of finding a likely distribution over these strings. PAUTOMAC aimed to fill this
knowledge gap by providing the first elaborate test-suite for learning string distributions.

In addition to being very helpful for applications of automata learning methods, PAU-
TOMAC was designed in such a way that it provided directions to future theoretical work
and algorithm development. For instance, unlike previous automata learning competitions
(see Sect. 2.4 for details), in PAUTOMAC, the type of automaton device was not fixed: learn-
ing problems were generated using automaton models of increasing complexity. This is not
only very useful for practical applications (where many different types of distributions can
be encountered), but also aims to answer to the interesting question whether it is best to
learn a non-deterministic model (e.g. HMM) or a deterministic model (e.g. DPFA) when the
data is drawn from a (non-)deterministic distribution,as described for instance in the work
of Gavaldà et al. (2006). PAUTOMAC also encouraged the development and use of new
techniques from machine learning that do not build an automaton structure, but do result
in a string distribution. Therefore, the actual structures of the learned automata were not
evaluated in PAUTOMAC. Instead, the performance of the different algorithms were tested
only on the quality of the resulting string distribution. Like previous automaton learning
competitions, this evaluation was performed on-line using a test set and an evaluation oracle
running on the competition server. Consequently, the participants could use the observed
performance (and that of the competition) to update their algorithms.

The competition setup in PAUTOMAC contained some novel elements that may also be
of interest for competitions of other (string) distribution learning algorithms. Above all, in
PAUTOMAC the performance was evaluated using the actual probabilities assigned by a
learned distribution, instead of the more traditional method of evaluating its predictive per-
formance. This has the advantage of not only testing whether the high probability events are
assigned the largest probabilities, but also whether the low probability events are assigned
the correct low probabilities. Furthermore, the actual strings that were being used for this
evaluation were given to the participants beforehand.

The traditional approach to compare language models, which had also been considered
for PAUTOMAC, is to test the learned model over some unseen data. Perplexity (Cover and

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/


Mach Learn (2014) 96:129–154 131

Thomas 1991) is the usual measure and, in order to perform well on such a metric, it is nec-
essary to learn a smoothed model, in which a non-null probability is assigned to all strings
(the penalty is infinite otherwise). Experience shows that in that case, the smoothing method
may become preponderant: the quality of the model can rely mainly on the smoothing. An-
other issue with such an evaluation task is that the model has to be checked somehow for
consistency, since the probabilities of all possible strings must sum up to one.

The goal of PAUTOMAC being to compare learning algorithms (and not smoothing algo-
rithms), a different protocol was chosen: the teams knew the test set in advance, and part of
the problem for them consisted in reassigning the mass of probabilities the learned model
used for the strings absent from the test set to those strings inside this set. In this way, a
perplexity-like evaluation measure could be used to evaluate the differences in the proba-
bilities assigned to different strings from the test-set. A couple of possible dangers of this
protocol were identified by the PAUTOMAC Scientific Committee1 and, later, by the partic-
ipants. A first one was that the extra information in the test set (which was also randomly
drawn from the unknown target distribution) could be used to learn. A second danger came
from the fact that the teams could submit various solutions to the same problem (with no
feedback about their score, but knowing their overall standing): this could have allowed
some hill-climbing strategy. Both the Scientific Committee’s analysis and the attempts by
some participants showed that the PAUTOMAC evaluation process was resistant: the win-
ning team is actually the one who submitted the least times. We detail in this paper the
choices that were made to handle these dangers.

As main contributions of this paper we provide an overview of the literature on prob-
abilistic automaton learning, and describe PAUTOMAC including its design issues and so-
lutions. The results of the competition and the approach followed by the main participants
are also provided. There is a clear winner to PAUTOMAC: a novel collapsed Gibbs sam-
pling method for PFA developed by team Shibata-Yoshinaka. As it is not common to use
such a method when learning distributions over strings, we hope and expect this result will
influence what people will use in practice. In addition to having an appealing winner, we
can draw several interesting conclusions by analyzing the results. In particular, it can be
observed that the ALERGIA-based method developed by team Llorens outperforms the win-
ning team on the deterministic instances. This provides some additional insights into the
important question whether it is better to learn deterministic or non-deterministic models
and can serve as an important starting point for further researches on this topic. Further-
more, we analyze the PAUTOMAC results with the goal of determining when which method
works best and why. Our analysis indicates the problem areas for each of the used meth-
ods, which forms a basis for future studies and hopefully further improvements of the used
methods. Last but not least, all methods developed by the participating teams significantly
outperform the provided baseline algorithms, clearly demonstrating the need for developing
and evaluating (new) methods for learning string distributions.

This paper is organized in six sections: introduction (Sect. 1), motivations and history
(Sect. 2), an overview of PAUTOMAC (Sect. 3), final results (Sect. 4), a brief description and
analysis of the approaches used by main participants (Sect. 5), and a conclusion (Sect. 6).

2 Motivations and history

We assume the reader to be familiar with the theory of languages and automata (Sudkamp
2006), their probabilistic counterparts such as hidden Markov models (Rabiner 1989), and

1http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/committee.php.

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/committee.php


132 Mach Learn (2014) 96:129–154

basic concepts from computational complexity (Sanjeev and Boaz 2009), computational
learning theory (Kearns and Vazirani 1994), and information theory (Cover and Thomas
1991). For more information on these topics the reader is referred to the corresponding
references.

2.1 Why learn a probabilistic automaton?

Finite state automata (or machines) are well-known models for characterizing the behavior
of systems or processes. They have been used for several decades in computer and software
engineering to model the complex behaviors of electronic circuits and software such as
communication protocols (Lee and Yannakakis 1996). A nice feature of an automaton model
is that it is easy to interpret, allowing one to gain insight into the inner workings of a system.
In many applications, unfortunately, the original design of a system is unknown. This is the
case for instance when one wants to:

– model DNA or protein sequences in bioinformatics (Sakakibara 2005),
– find patterns underlying different sounds for speech processing (Tzay 1994),
– infer morphological or phonological rules for natural language processing (Gildea and

Jurafsky 1996),
– model unknown mechanical processes in physics (Shalizi and Crutchfield 2001),
– discover the exact environment of robots (Rivest and Schapire 1993),
– detect anomaly for intrusion detections in computer security (Milani Comparetti et al.

2009),
– do behavioral modeling of users in applications ranging from web systems (Borges and

Levene 2000) to the automotive sector (Verwer et al. 2011),
– discover the structure of music styles for music classification/generation (Cruz-Alcázar

and Vidal 2008).

In all such cases, an automaton model is learned from observations of the system, i.e.,
a finite set of strings. Usually, the data gathered from observations is unlabeled, that is to
say that it is often possible to observe only strings that can be generated by the system, and
strings that cannot be generated are thus unavailable. The standard method of dealing with
this situation is to assume a probabilistic automaton model, i.e., a distribution over strings.
In such a model, different states can generate different symbols with different probabilities.
The goal of automata learning is then one of model selection (Grünwald 2007): find the
probabilistic automaton model that gives the best fit to the observed strings, i.e., that is most
likely to have generated the data. In addition to the data probability, this implies that the
model size has to be taken into account in order to avoid over-fitting. Otherwise, the model
that generates only the seen strings and whose probabilities correspond to the observed
frequency perfectly achieves the goal. But this naive model is of little use: it assigns null
probability to all unseen strings and therefore makes no generalization.

2.2 Which probabilistic automata to learn?

Several variants of probabilistic automata have been proposed in the past. An important and
obvious recurring rule with respect to these variants is the fact that the better the machine
is at modeling string distributions, the harder it is going to be to learn it. The best known
variants are probabilistic finite state automata (PFA) and hidden Markov models (HMM) (see
Fig. 1):



Mach Learn (2014) 96:129–154 133

Fig. 1 An HMM (a) and a PFA (b) that are equivalent: they correspond to the same probability distribu-
tion—this example is taken from Dupont et al. (2005)

– PFA (Paz 1971) are non-deterministic automata in which every state is assigned an initial
and a halting probability, and every transition is assigned a transition probability (weight).
The sum of all initial probabilities equals 1, and for each state, the sum of the halting and
all outgoing transition probabilities equals 1. A PFA generates strings probabilistically by
starting in a state determined at random using the initial state distribution, either halting
or executing a transition randomly determined using their probabilities, and iterating and
generating the transition symbol in case it has not halted. A study of these automata can
be found in Vidal et al. (2005a, 2005b).

– Hidden Markov models (HMMs)2 (Rabiner 1989; Jelinek 1998) are PFA (as described
in the previous paragraph) where the symbols are emitted at the states instead of at the
transitions which are only used to move. Initial probabilities are assigned to each state but
there are no final probabilities, defining therefore a distribution over Σn for each value
of n. In order to obtain a distribution over Σ∗ a special halting symbol or state can be
introduced. With such an addition an HMM generates strings like a PFA.

Interestingly, although HMMs and PFA are commonly used in distinct areas of research,
they are equivalent with respect to the distributions that can be modeled: an HMM can be
converted into a PFA and vice-versa (Vidal et al. 2005a; Dupont et al. 2005). Though it is
easy to randomly generate strings from these models, determining the probability of a given
string is more complicated because different executions can result in the same string. For
both models, computing this probability can be solved optimally by dynamic programming
using variations of the FORWARD (or BACKWARD) algorithm (Baum et al. 1970). However,
estimating the most likely parameter values (probabilities) for a given set of strings and a
given model (maximizing the likelihood of model given the data) cannot be solved optimally
unless RP equals NP (Abe and Warmuth 1992). The traditional method of dealing with this
problem is the BAUM-WELCH (Baum et al. 1970) greedy algorithm.

The deterministic counterpart of a PFA is a deterministic probabilistic finite automaton
(DPFA) (Carrasco and Oncina 1994). These have been introduced for efficiency reasons
essentially: in the non-probabilistic case, learning a DFA is provably easier than learning a
NFA (de la Higuera 2010). However, although non-probabilistic deterministic automata are

2We only consider discrete HMMs.



134 Mach Learn (2014) 96:129–154

Fig. 2 The hierarchy of the
different finite states machines.
Multiplicity automata (MA) can
model the most distributions (but
can also model other functions),
n-grams are the least expressive

equivalent to non-probabilistic non-deterministic automata in terms of the languages they
can generate, it is shown in Vidal et al. (2005a, 2005b), Dupont et al. (2005) that DPFA

are strictly less powerful than PFA. Furthermore, distributions generated by PFA cannot be
approximated by DPFA unless the size of the DPFA is allowed to be exponentially larger than
the one of the corresponding PFA (Guttman et al. 2005, 2006). There is a positive side to this
loss in power: estimating the parameter values of a DPFA is easy, and there exist algorithms
that learn a DPFA structure in a probably approximately correct (PAC) like setting (Clark and
Thollard 2004).3 This is not known to be possible for PFA or HMMs. For PFA it has only
been shown that they are strongly learnable in the limit (Denis and Esposito 2004), or PAC-
learnable (under some restrictions) using a (possibly exponentially larger) DPFA structure
(Gavaldà et al. 2006).

In addition to PFA, HMMs, and DPFA, other probabilistic finite state automata have
been proposed such as: Markov chains (Saul and Pereira 1997), n-grams (Ney et al. 1997;
Jelinek 1998), probabilistic suffix trees (PST) (Ron et al. 1994), probabilistic residual finite
state automata (PRFA) (Esposito et al. 2002), and multiplicity automata (MA) (Bergadano
and Varricchio 1996; Beimel et al. 2000) (or weighted automata—Mohri 1997). Probabilis-
tic accepting automata will use weights to assign probabilities to individual strings, whose
meaning is the probability of accepting (Vs not accepting) the string. Such automata are also
sometimes called fuzzy automata. Although Markov chains and n-grams are a lot less pow-
erful than DPFA (both the structure and parameters are easy to compute given the data), they
are very popular and often effective in practice. In fact, to the best of our knowledge, it is
an open problem whether PFA, HMM, or DPFA learners are able to consistently outperform
n-gram models on prediction tasks. Probabilistic suffix trees are acyclic DPFA that have a
PAC-like learning algorithm (Ron et al. 1994). Probabilistic residual finite state automata
are more powerful than DPFA, but less powerful than PFA. Though multiplicity automata
are more powerful than PFA, they are also shown to be strongly learnable in the limit (Denis
et al. 2006). The expressiveness power of the different types of probabilistic automata is
summarized in Fig. 2.

2.3 How to learn a probabilistic automaton?

Early work concerning the learning of distributions over strings can be found in Horning
(1969) and Angluin (1988). In the first case, the goal was to learn probabilistic context-

3The hardness of PAC-learning the structure of a DPFA is shown in Kearns et al. (1994).



Mach Learn (2014) 96:129–154 135

free grammars; in the second, convergence issues concerning identification in the limit with
probability 1 are studied. Although these initial studies were done decades ago, only three
techniques have become mainstream for learning PFA, HMMs, and DPFA.

Parameter estimation The first family of techniques takes a standard structure or architec-
ture for the machine, typically a complete graph, and then tries to find parameter settings
that maximize the likelihood of model given the data. If the structure is deterministic, the
optimization problem is quite simple: transition probabilities can be estimated using the
maximum likelihood (Wetherell 1980). If not, the standard method is the BAUM-WELCH

algorithm (Baum et al. 1970; Baum 1972) which iteratively computes a new estimate for the
transition probabilities using the probabilities assigned to the input data. Although this tech-
nique is known to be sensitive to initial probabilities and may get stuck in a local optimum,
it has frequently been applied successfully in practice.

Bayesian inference The second family of techniques correspond to Bayesian methods such
as Gibbs sampling (Gelfand and Smith 1990), see, e.g., Neal (2000), Gao and Johnson
(2008). Instead of learning a single model (a point4 estimate), these methods aim to make
predictions using the joint distribution formed by all possible models. This joint distribu-
tion is hard to compute and an HMM Gibbs sampler estimates it by iteratively sampling
the visited hidden states conditioned on earlier samples of all other state visits. The station-
ary distribution of the thus formed Markov chain is exactly this joint distribution. Although
these methods are not yet commonplace for PFA, we believe this is likely to change after
this competition.

State-merging Learning DPFA typically relies on the technique of state-merging (see, e.g.,
de la Higuera 2010): the idea is to start with a very large automaton with enough states
to describe the learning sample exactly, and then iteratively combining the states of this au-
tomaton in order to refine this model into a more compact one. The three main state-merging
algorithms for probabilistic automata that have had the largest impact were proposed in the
mid-nineties:

– ALERGIA by Carrasco and Oncina (1994),
– Bayesian model merging by Stolcke (1994), and
– Learn-PSA by Ron et al. (1995).

The first deals with learning a DPFA while the second tries to learn both the parameters and
the structure of an HMM. The third learns probabilistic suffix trees. Like the first technique,
these are greedy algorithms that can get stuck in local optima. However, they do come with
theoretical guarantees: probabilistic suffix trees can be PAC-learned (Ron et al. 1994), DPFA

have been proved to be learnable in the limit with probability 1 (Carrasco and Oncina 1994),
and more recently it has been shown that they can also be learned in a PAC-like setting (Clark
and Thollard 2004). Based on these three basic algorithms a number of refinements for state
merging learning algorithms have been proposed:

– There have been several extensions of ALERGIA (de la Higuera and Thollard 2000;
Carrasco et al. 2001; de la Higuera and Oncina 2003, 2004; Young-Lai and Tompa 2000;
Goan et al. 1996).

4One instance of a model is a point in the space of all possible models.



136 Mach Learn (2014) 96:129–154

– Improvements of Ron et al. (1995) based on the concept of distinguishable states have
been developed (Thollard and Clark 2004; Palmer and Goldberg 2005; Guttman 2006;
Castro and Gavaldá 2008). An incremental version also exists (Gavaldà et al. 2006).

– Algorithm MDI was introduced by Thollard and Dupont (1999), Thollard et al. (2000),
Thollard (2001). This algorithm also uses state merging.

– Recently, they have been extended to learn not only the distribution over strings of
events/symbols but also over their timing behaviors (Verwer et al. 2010) and from a con-
tinuous stream of data instead of a data set (Balle et al. 2012).

Other methods Several other methods have been proposed that have not yet become main-
stream, most notably:

– Esposito et al.’s (2002) approach has consisted in learning probabilistic residual finite
state automata based on the identification of the residuals of a rational language. These
are the probabilistic counterparts to the residual finite state automata introduced by Denis
et al. (2000, 2001).

– Denis et al. (2006) and Habrard et al. (2006) introduced the innovative algorithm DEES

that learns a multiplicity automaton (the weights can be negative but in each state the
weights sum to one) by iteratively solving equations on the residuals.

– Other algorithms learning multiplicity automata have been developed, using common ap-
proaches in machine learning such as recurrent neural networks (Carrasco et al. 1996),
Principal Component Analysis (Bailly et al. 2009) or a spectral approach (Bailly 2011).

Most of these methods estimate the model parameters based on maximum likelihood.
This can cause problems when computing probabilities, especially for strings of low fre-
quency. For some of these methods, therefore, smoothing methods have been developed
that adjust the maximum likelihood estimate in order to hopefully overcome these difficul-
ties (Chen and Goodman 1996). Typically, these smoothing methods assign larger prob-
abilities to infrequent strings, and consequently, less to more frequent ones. For n-gram
learning, smoothing is very often used and sophisticated methods such as back-off smooth-
ing exist (Zhai and Lafferty 2004). For DPFA learning, smoothing techniques can be found
in Dupont and Amengual (2000), Thollard (2001), Habrard et al. (2003). Smoothing PFA

and HMMs is still a question requiring further research.
In conclusion, many algorithms for learning probabilistic automata have been produced.

Due to the difficulty of the learning problem, most of them focus on some form of DPFA.
Another important approach is to learn Markov chains or n-grams by simply counting the
occurrences of sub-strings. As already stated, these simple methods have been very success-
ful in practice (Brill et al. 1998). When one is faced with a data set made of strings and one
needs to find a likely distribution over these strings for tasks such as prediction, anomaly
detection, or modeling, it would be very helpful to know which model is likely to perform
best and why. Due to the lack of a thorough test of all of these techniques, this is currently an
open question. Furthermore, the facts that all known algorithms are of the greedy type and
the recent successes of search-based approaches for non-probabilistic automaton learning
(Heule and Verwer 2010; Hasan Ibne et al. 2010) makes one wonder whether search-based
strategies are also beneficial for probabilistic automaton learning. The Probabilistic Au-
tomaton learning Competition (PAUTOMAC) aims to answers these questions by providing
an elaborate test-suite for learning string distributions.

2.4 About previous competitions

There have been in the past competitions related with learning finite state machines or gram-
mars.



Mach Learn (2014) 96:129–154 137

– The first grammatical inference competition was organized in 1999. The participants of
ABBADINGO (http://abbadingo.cs.nuim.ie) had to learn DFA of sizes ranging from 64 to
512 states from positive and negative data, strings over a two letter alphabet.

– A follow-up was system GOWACHIN (http://www.irisa.fr/Gowachin/), developed to gen-
erate new automata for classification tasks: the possibility of having a certain level of
noise was introduced.

– The OMPHALOS competition (http://www.irisa.fr/Omphalos/) involved learning context-
free grammars, given samples which in certain cases contained both positive and negative
strings, and in others, just text.

– In the TENJINNO competition, the contestants had to learn finite state transducers
(http://web.science.mq.edu.au/tenjinno/).

– The GECCO conference organized a competition involving learning DFA from noisy sam-
ples (http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html).

– The STAMINA competition (http://stamina.chefbe.net/), organized in 2010, also involved
learning DFA but new methods were used and permitted to solve even harder problems.

– The ZULU competition (http://labh-curien.univ-st-etienne.fr/zulu/) concerned the task of
actively learning DFA through requests to an oracle.

– The RERS Grey Box Challenge (http://leo.cs.tu-dortmund.de:8100/isola2012) aimed to
discover the complementary values of white-box and black-box software system analysis
techniques, including tools for learning finite state machines.

More generally, a number of other machine learning competitions have been orga-
nized during the past years. A specific effort has been made by the PASCAL network
(http://pascallin2.ecs.soton.ac.uk/Challenges/).

3 An overview of PAUTOMAC

The goal of PAUTOMAC was to provide an overview of which probabilistic automaton
learning techniques work best in which setting and to stimulate the development of new
techniques for learning distributions over strings. In order to stimulate this development,
PAUTOMAC was set up using an oracle server that was able to evaluate the submissions by
participants on-line. Furthermore, in contrast to the traditional methods used to evaluate pre-
dictive machine learning algorithms, the performance in PAUTOMAC was evaluated using
the actual probabilities assigned by a learned distribution.

Two types of data were available: artificial and real-world data donated by researchers
and industries. But we have to admit that the latter were after all of little interest in the
context of the competition. The problem came from the fact that not knowing the targeted
probabilities implies a biased way to evaluate them. We chose to use 3-grams trained on the
complete data sets to fix these probabilities, hoping that the induced bias would be drastically
reduced since the competition sets consisted of less than 10 % of these data. Unfortunately,
this goal was not achieved since the participants who scored the best on these data sets used
n-grams (even when they were using more complex approaches on the artificial data sets).
We will thus not discuss the real-world data sets in the rest of this paper (detailed information
is available on the website).

In this section, we first describe the way the targets automata were generated. We then
turn our attention on how the submissions of the participants were evaluated. Finally we
discuss the choices made all along this process.

http://abbadingo.cs.nuim.ie
http://www.irisa.fr/Gowachin/
http://www.irisa.fr/Omphalos/
http://web.science.mq.edu.au/tenjinno/
http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html
http://stamina.chefbe.net/
http://labh-curien.univ-st-etienne.fr/zulu/
http://leo.cs.tu-dortmund.de:8100/isola2012
http://pascallin2.ecs.soton.ac.uk/Challenges/


138 Mach Learn (2014) 96:129–154

3.1 Generating artificial data

Artificial data was generated by building random probabilistic machines with 5 to 75 states
and with an alphabet consisting of 4 to 24 symbols (both inclusive, and decided uniformly at
random). These machines were subsequently used to generate data sets. Of all possible state-
symbol pairs that could occur in transitions, between 20 and 80 percent (the symbol sparsity)
of them were generated. These pairs were selected by first choosing a state at random, and
subsequently choosing a symbol from the set of symbols that had not yet been selected for
that state. This created a selection without replacement from the set of all possible state-
symbol pairs that was modified to remain uniform over the states. This modification made
it less likely that the resulting symbols were evenly distributed over the states. For every
generated state-symbol pair, one transition was generated to a randomly chosen target state.
Between 0 and 20 percent (the transition sparsity) transitions were generated in addition to
these, selected without replacement from the set of possible transitions, modified to remain
uniform over the source states and transition labels.

Initial and final states were selected without replacement until the percentages of selected
states exceeded the transition and symbol sparsities, respectively. All initial, symbol, and
transition probabilities were drawn from a Dirichlet distribution with concentration param-
eters set to 1 (making every probability distribution equally likely). The final probabilities
were drawn together with the symbol probabilities.

From such a structure, one training set (with repetitions) and one test set (without repeti-
tions) were generated from every target. With probability one out of four, the generated train
set was of size 100 000, it was of size 20 000 otherwise. New test strings were generated us-
ing the target machine until 1 000 unique strings had been generated. The test strings were
allowed to overlap with the strings used for training. If the average length of the generated
strings was less than 5 or greater than 50, a new automaton and new data sets were gener-
ated using the same construction parameters. In total, 150 models and corresponding train
and test sets were generated using this way. We evaluated the difficulty of the generated sets
using a 3-gram baseline algorithm: the problem was considered easy if the baseline output
was close to the target (a perplexity difference of less than 1.0), and difficult otherwise. We
then selected 16 of them, aiming to obtain ranging values for the number of states, the size
of the alphabet, sparsity values, and difficulty. We applied the same procedure for DPFA

but without generating additional transitions; and for HMMs, we generated state-state pairs
instead of state-symbol-state triples.

In total, this results in 48 (16 for every type) artificially generated problems for use in the
competition. The participants were given no other information about the target than the two
files of strings (one for the training set and one for the test set). The format of these files is
given in Fig. 3.

3.2 Evaluation

The evaluation measure was based on perplexity. Given a test set S, it was defined by the
formula:

Score(C,S) = 2−∑
x∈S PT(x)∗log2(PC(x))

where PT(x) is the normalized probability of x in the target and PC(x) is the normalized
candidate probability for x submitted by the participant. The normalization process is the
usual one when perplexity is considered: it consists in modifying the probabilities so that
they sum to 1 on the set S. A consequence of this normalization was that adding probability



Mach Learn (2014) 96:129–154 139

Fig. 3 Format of the files made available to the participants of the PAUTOMAC challenge

to one of the test strings removed probability from the others. Therefore, this perplexity
score measured how well the differences in the assigned probabilities matched with the
target probabilities.

Notice that this measure is equivalent to the well-known Kullback-Leibler (KL) diver-
gence (Kullback and Leibler 1951). Indeed, given two distributions P and Q, the KL di-
vergence is defined as KL(P,Q) = ∑

x P (x) log2(P (x)/Q(x)) which can be rewritten into
KL(P,Q) = (−∑

x P (x) log2 Q(x)) − H(P ) where H(P ) is the entropy of the target dis-
tribution. H(P ) is constant in our case since the aim is to compare various candidate dis-
tributions Q. As we were only interested in the divergence on a given test set S, the only
varying element of the KL divergence is −∑

x∈S P (x) log2 Q(x) which is equivalent to our
measure, up to a monotonous transformation.

To decide the final overall rank of each participant, points were attributed for each data
set: the leader of a problem at the end of the competition scored 5 points, the second 3,
the third 2 and the fourth 1. In case of equality on a problem (based on the first 10 digits
of the perplexity score), the earliest submission won. The winner is the participant whose
overall score was the highest. There was no restriction on the number of submissions a
given participant could provide, but no feedback was given about the resulting perplexity.
To compute the final score of a participant, only the best submission to each problem was
considered.

3.3 Discussion on the design of the competition

When organizing an on-line competition, one has to make various choices about the gen-
eration of data and the evaluation of the participant submissions. We described above what
was done for PAUTOMAC but we feel that the choices that were made have to be discussed.
What follows thus contains arguments about the validity of our approach and therefore of
the results of the competition.

Target generation As already stated, we used a Dirichlet distribution for sampling the out-
put probabilities. The main advantage of this method is that every possible distribution is
equally likely when sampled using a Dirichlet distribution (with concentration parameters



140 Mach Learn (2014) 96:129–154

set to 1). Notice that this does not happen when every output probability is iteratively sam-
pled uniformly at random. Since we did not intend to bias the distribution in PAUTOMAC
towards certain types of distributions, using the Dirichlet distribution seemed the logical
choice.

If we were to sample all output probabilities from a Dirichlet distribution unconstrained,
however, we would obtain a very densely connected PFA with high probability. Such densely
connected automata are uninteresting from a learning perspective: a simple one-gram will
already reach a close to optimal perplexity. We therefore constrained this sampling using
symbol and transition sparsity values. These two values were preselected and the generated
PFA was then forced to match these sparsity values. Afterwards, we sampled the transition
probabilities for every state using a Dirichlet distribution.

The PFA structure generator worked by iteratively adding new transitions until the prese-
lected sparsity values were reached. This selection remained uniform over all states, lower-
ing the probability that every state gets assigned the same number of symbols and transitions.
The generator initialized by adding to every state one random symbol and one random tran-
sition for that symbol. This avoided the generation of states with a final probability of 1.0,
i.e., sink states. This was done because we aimed for the final probability generation to be
independent of the structure generation.

The final probability of each state was handled as the emission of a special symbol: this
allowed a simple normalization process and did not influence the bias over distributions
since their values were sampled together with the output probabilities using a Dirichlet dis-
tribution. Together with the consistency test (see below), this ensured that the generated ma-
chines corresponded to a proper distribution (probabilities over all possible strings summed
to 1). The selection of which states had final probabilities, however, was performed indepen-
dently of the process used to select output transitions. This ensured that having more output
symbols does not lead to lower final probabilities.

An important step took place directly after the generation of a target. It consisted in
checking that all states were reachable from an initial state and that they were all co-
accessible. Indeed, verifying the consistency of the machine ensured that we did not have
a path (and thus a probability mass) that reached a part of the machine that never led to an
accepting state. In addition, we tested whether the generated probability distribution did not
result in giving too much weight to long or short strings. Although this created some bias
in the generation procedure, it was unavoidable because testing the different methods on
instances that are too difficult or uninteresting makes no sense.

Evaluation As already stated, the choice of an evaluation function that does not rely on
a particular type of machine was a fundamental requirement of PAUTOMAC. Using a per-
plexity measure had the interest to be a widely accepted way to compare distributions and its
link with the KL divergence was clearly a plus. Though we did not inform the participants
about it, we also computed two other evaluation functions for each submission: the max-
norm (maximal difference between the submitted probabilities and the target ones) and the
sum-norm (the sum of the differences between the submitted and the target probabilities).
While on a few problems the ranking of the participants was a bit different than the one
obtained with the official perplexity measure, the overall ranking of the teams was the same.

A common issue when dealing with string distributions is smoothing. When using per-
plexity as a measure, smoothing becomes necessary because strings with zero probability
obtain an infinite KL divergence when compared to the target (or any other non-zero assign-
ing distribution) and thus an infinite perplexity. Although smoothing can be very beneficial
in practice, we feel that the standard perplexity measure is too dependent on smoothing



Mach Learn (2014) 96:129–154 141

(compared to the max-norm, for instance) and therefore that a perplexity evaluation based
on an unseen test set does not properly measure the quality of the string distribution. In
PAUTOMAC we therefore decided to provide the participating teams with knowledge of the
actual strings used to compute the perplexity measure. This removed the need for special-
ized smoothing methods since the participants could simply use a minimum value for the
probability assigned to any string.

Collusion A usual problem with on-line competitions is the one of the possibility of col-
lusion. Indeed, a set of test data has to be made available to participants in order to evaluate
the performance of their algorithm with respect to a given target. But if this set contains
information about the target, then it can be used during the learning phase and may bias the
results. In a competition where the targets are not stochastic devices, this problem is usually
tackled by the requirement that elements of the test set do not occur in the train set (though
they are generated by the same process). But this cannot be ensured when the aim is to learn
a distribution as both sets have to be generated using the target: erasing elements of the test
set that occur in the train set generates an important bias in the distribution of the test set.
We therefore chose to keep these elements, expecting that the difference in size between the
train and test sets sufficed to make the information contained in the test set useless.

But collusion can also result from the fact that the test set by itself contains information
about the target distribution: duplicate strings are likely to be frequent in the target distribu-
tion. This is why we decided to remove redundant elements of the test sets, creating a small
bias in the distribution of these sets. However, since the actual target distribution was used
during the evaluation, and thanks to the choices made for this phase, this did not result in a
bias or other problems during evaluation.

4 Results

4.1 Competition activity

38 participants registered to have access to the problem sets and 16 of them submitted at
least one of their solutions to a problem. There were a total number of 2 787 submissions
during the competition. 5 participants managed to score some points, 4 of them were ranked
first at least once (see Fig. 4).

During the competition phase, the website received 724 visits (with a maximum of 54 the
last day of the competition) from 196 unique visitors with an average visit duration of a bit
more than 5 minutes. IPs from 37 countries have been detected, between which 14 countries
corresponded to 5 or more visitors.

4.2 Overall results

The final scores can be seen in Fig. 4 and detailed results are presented in Table 1 (available
in the Appendix). There is a clear winner of PAUTOMAC: team Shibata-Yoshinaka. Of all
participants, they obtained the best perplexity values on most instances and performed well
on all others. This result is validated by the computation of other performance indicators (the
max-norm and sum-norm). From Table 1 it can be observed that the method implemented by
team Shibata-Yoshinaka really works well for all of the competition problems: the difference
between the perplexity values of the solutions and their submissions was never greater than
0.1. Furthermore, this difference was even smaller on the instances with 100 000 strings,
indicating that they made good use of additional data.



142 Mach Learn (2014) 96:129–154

Fig. 4 Overall evolution of the score of the 5 leading teams (artificial data sets). For each problem, 5 points
was given to the team whose best submission had the smallest perplexity, 3 points to the second best team,
2 for the third and 1 for the fourth

4.3 Analysis of the results

In PAUTOMAC, the different approaches were tested on problem instances with a broad
range of parameter values and coming from different probabilistic automaton models (see
Table 2 in the Appendix). This makes it possible to perform some additional analysis of the
results with the goal of discovering when each method works best and trying to understand
why. Tables 1 and 2 (both in the Appendix) clearly show that team Shibata-Yoshinaka is only
outperformed on the (nearly) deterministic ones (DPFA, or PFA/HMM with a small transition
sparsity). On these instances team Llorens performs slightly better. Team Hulden’s method
also manages to obtain the best perplexity values on two instances, and actually beats team
Llorens overall performance by just 2 points (rightmost points in Fig. 4). Their method
seems to perform best on dense instances with few states. The methods used by team Bailly
and team Kepler have some difficulties with very sparse instances (and thus also with DPFA),
and perform well but not best on the other instances.

We further analyzed the results using a standard decision tree learning5 for two prediction
tasks:

(1) Predicting the winner given the problem instance parameter values.
(2) Predicting whether a deterministic distribution was used to generate the problem in-

stance given the winner.

The resulting decision trees are depicted in Fig. 5. Interestingly, although team Shibata-
Yoshinaka performs well on all problem instances, they are outperformed by team Llorens

5rpart, implemented in R.



Mach Learn (2014) 96:129–154 143

Fig. 5 Decision trees predicting the winner given the parameters of a problem instance (left), and whether a
deterministic or non-deterministic generator was used given who won (right)

on sparse problem instances. Sparse instances are generated using an automaton that con-
tains only a tiny fraction of all possible transitions given the number of states and the alpha-
bet size (see Sect. 3.1). Since deterministic automata are fixed to use such a fraction, most
of these automata are deterministic. This is confirmed by the second prediction task, which
indicates that when team Llorens performs best there is an 80 % chance that the generator is
deterministic. This result is very interesting since team Shibata-Yoshinaka and team Hulden
used methods based on non-deterministic automaton models, while team Llorens used de-
terministic models (see Sect. 5). Of course, we cannot be sure that the used model or the
used method is important when predicting the type of generator, but it seems to indicate that
it is best to learn a non-deterministic model when the data is drawn from a non-deterministic
distribution, and that it is best to learn a deterministic model when the data is drawn from a
deterministic distribution. In fact, this result also shows that it is possible to detect whether a
given set of strings is drawn from a deterministic or non-deterministic generator (the second
tree in Fig. 5): use team Shibata-Yoshinaka’s, team Huldens’s, and team Llorens’s methods
to learn a predictor, test their performance on a validation set, return the type of model used
by the best performing method. Such a method has several interesting applications like eval-
uating possible discretization of values coming from an abstract deterministic generator. In
the next section, we provide some detailed descriptions and individual analyses for each of
the methods.

5 The different approaches and individual results

A wide spectrum of learning approaches has been used during the competition. We describe
in this section the ones of the main participants—those who scored at least a point—and
provide a small detailed analysis of their performance in PAUTOMAC. This section is the
result of deep discussions and electronic exchanges the authors had with the different teams.
However, the overview presented here is superficial and the reader is therefore referred to
the original paper describing the team’s work.

5.1 Team Shibata-Yoshinaka

Shibata and Yoshinaka (2012) used a Gibbs sampling method to estimate the probability
Pr(b|a) of a future sentence b given training data a generated by an unknown PFA. The
probability that a PFA generates a sentence a = a1 · · ·aT by passing states z = z0 · · · zT in
this order is given as

Pr(a,z | ξ) =
∏

1≤t≤T

ξzt−1at zt =
∏

i,a,j

ξ
Ciaj

iaj , (1)



144 Mach Learn (2014) 96:129–154

Fig. 6 Decision tree predicting
the performance (perplexity
difference with the solution) of
team Shibata-Yoshinaka given
the parameters of a problem
instance

where ξiaj is the probability of the state change from i to j with a letter a and Ciaj counts
the times when that transition occurs. Applying Gibbs sampling directly to ξ is somewhat
tricky. For instance, it requires one to continuously compute new state sequences, see, e.g.,
Gao and Johnson (2008). Therefore, they first marginalize ξ out from Eq. (1) under the
assumption that the prior of ξ is a Dirichlet distribution. Intuitively, this computes the sum
of all possible values of Eq. (1) for every ξ multiplied by the probability of that ξ . Although
this is a very large sum to compute, under the assumption the ξ is Dirichlet distributed, many
terms cancel out making the resulting computation easy. This technique is called Collapsed
Gibbs Sampling, see, e.g., Blei and Jordan (2006).

Shibata and Yoshinaka sample different values z(1), . . . ,z(S) for z independently from
the resulting distribution by Gibbs sampling, i.e., by iteratively sampling from Pr(zt |
a, z0 · · · zt−1zt+1 · · · zT ). The exact values of ξ̃ (1), . . . , ξ̃ (S) are then simply the expectation
based on the state transition history:

ξ̃
(s)
iaj = E

[
ξiaj |a,z(s)

] = Ciaj + β

Ci + ANβ
,

where N is the (maximum) number of states of the target PFA, A is the size of the letter
alphabet and β is the smoothing parameter (the prior).

In the actual implementation,6 they have fixed the number of iterations of CGS and sam-
pling points a priori. The values of N and β were determined by 10-fold cross validation
amongst a finite number of candidates. Finding good settings for these values required quite
some computational resources.

Analysis The result of learning a decision tree that aims to predict the performance of
team Shibata-Yoshinaka given the problem parameters (unknown to the participants during
the competition) is shown in Fig. 6. In the learned tree, we can clearly observe that the
collapsed Gibbs sampling approach of team Shibata-Yoshinaka performs best when there
are many (100k) strings available for training, or when the target contains few (<21) states.
Moreover, in the other cases, it still finds distributions close to the optimal one (with an
average perplexity difference of 0.0467).

5.2 Team Hulden

The inference approach of Hulden (2012) used three strategies:

(1) A basic “baseline” n-gram strategy with smoothing.
(2) Another “baseline” n-gram strategy without smoothing, but using interpolated test data.

6A version of their algorithm is available at http://www.iip.ist.i.kyoto-u.ac.jp/member/ry/pfai/.

http://www.iip.ist.i.kyoto-u.ac.jp/member/ry/pfai/


Mach Learn (2014) 96:129–154 145

(3) The construction of a fully connected PFA inferred with BAUM-WELCH (EM), each
between 5 and 40 states in size. Training was done using only the original training data,
and separately also using reconstructed training data, as in (2).

In the first strategy, the n-gram counts were extracted from the training data for various
values of n (between 2 and 9). Then, the log likelihood of the training data was calculated
and the n yielding the highest log likelihood was used to issue the probabilities to the test
strings for submission. Witten-Bell smoothing (see, e.g., Chen and Goodman 1996) was
used in all cases.

For the second approach, the n chosen in the first one was used to decide the optimal
window size to use for n-grams. In this strategy, the test data was used for training as well,
and was augmented in an iterative fashion. This because the original test data represented
a skewed distribution as duplicates had been removed. First, the expected number of occur-
rences of each string in the test set was calculated based on the total number of occurrences
of that string in the training and test sets. Based on this expected number, a fractional count
of strings was “added” to the test data, reflecting a guess that the original test data had con-
tained these duplicates. This process was repeated until convergence (when the expected
string count in the test data no longer changed). These counts were then used for calculating
the probabilities of each string in the test data.

For the third strategy, three randomly initialized PFA of 5, 10, 20, and 40 states were
trained with BAUM-WELCH for each problem, after which the one with the highest log like-
lihood was submitted (several results in case of approximate ties). Similarly to the n-gram
case, another three runs for each state size were made using both training and reconstructed
test data. However, contrary to the n-gram strategy, using reconstructed test data for training
failed to ever improve on the basic BAUM-WELCH that used only the PAUTOMAC training
data for training.

The n-gram solutions were submitted early and the EM solutions later. This allowed
the observation, based on the server feedback, that EM outperformed the n-grams in most
cases (roughly 85 % of problems). A notable exception is the two real data problems where
the interpolated n-grams performed best in each case. As mentioned, using reconstructed
test data for training helped in the n-gram strategy, but not with BAUM-WELCH, probably
because of severe over-fitting.

Analysis The tree predicting the performance of team Hulden’s BAUM-WELCH/EM ap-
proach is depicted in Fig. 7. Their method performs best on dense problems (transition
sparsity >0.0215), and excels when the target contains not too many states (<35). Overall,
the performance is close to the one of the winning team. From personal communication, we
discovered that the amount of computing power used by team Shibata-Yoshinaka’s method
is much more than that of team Hulden’s. Unfortunately, the influence on the results of the
computational resources could not be measured, nor was it a criterion for the competition
itself.

Fig. 7 Decision tree predicting
the performance (perplexity
difference with the solution) of
team Hulden given the
parameters of a problem instance



146 Mach Learn (2014) 96:129–154

Fig. 8 Decision tree predicting
the performance (perplexity
difference with the solution) of
team Llorens given the
parameters of a problem instance

5.3 Team Llorens

The approach followed by the Llorens team was two-fold: on one hand, they upgraded the
ALERGIA algorithm (Carrasco and Oncina 1994) by using ideas from evidence-driven ap-
proaches to state merging. Specifically, they computed all possible merges in a red-blue
framework (see Lang et al. 1998), and performed the one that passed the most statistical
tests, which are computed using Hoeffding’s bound as in ALERGIA. The second line they
followed was to work on the fact that the test data was known and that there could be a better
strategy than the simple normalization to make probabilities sum to 1 on the test set.

Analysis The tree predicting the performance of team Llorens’s ALERGIA-based approach
is depicted in Fig. 8. This tree is quite interesting because the state merging approach
adopted by team Llorens is very different from the first two approaches. First of all, the
root decision shows that their method performs best on target distributions with a small al-
phabet (<18). An interesting question is whether this can be linked to the known problems
of state merging methods for non-probabilistic automata on large alphabets (Walkinshaw et
al. 2012). Secondly, from this tree it is very clear that the type of generating distribution has
a large effect on the performance. In particular, it confirms that learning a DPFA works best
when the generating distribution is a DPFA. Interestingly, in the non-DPFA case, it performs
better on dense problems (transition sparsity >0.0795). This seems to indicate that learning
dense non-deterministic distributions is easier (in terms of perplexity) than learning sparse
ones, even when a deterministic model is learned.

5.4 Team Bailly

Team Bailly tackled the competition by using a spectral approach (see Bailly 2011). The
main component which is manipulated is the Hankel matrix (Partington 1988), representing
the counts for every possible prefix-suffix pair. The core of the spectral technique is the
Hankel matrix factorization, from which the parameters of a probabilistic model can be
directly deduced.

Analysis Team Bailly approached the competition using a new and promising method for
learning probability distributions over strings. This emphasizes the interest in determining
when their algorithm performs well. The PAUTOMAC data clearly shows when this is the
case (see Fig. 9). Although their method performed well on many instances (32), and was
leading the competition for a long time (see Sect. 4.2), their performance shows large drops
on sparse problem instances (transition sparsity <0.0428). All methods have some trouble
with sparse problems, but significantly less than team Bailly’s spectral approach. Future



Mach Learn (2014) 96:129–154 147

Fig. 9 Decision tree predicting
the performance (perplexity
difference with the solution) of
team Bailly given the parameters
of a problem instance

Fig. 10 Decision tree predicting
the performance (perplexity
difference with the solution) of
team Kepler given the parameters
of a problem instance

research is needed to try to determine exactly why the spectral approach has so much trouble
with these instances, the PAUTOMAC data and generator remain available for this purpose.

5.5 Team Kepler

The approach applied by Kepler et al. (2012) uses n-gram models with variable length. n-
grams are represented as a context tree that maps the probabilities of sequences of symbols.
To shrink the state space while working with large n-grams, the context tree is pruned based
on the Kullback-Leibler divergence. Experiments showed that this approach almost always
achieves lower perplexity than the fixed 3-gram model on the PAUTOMAC training data.
However, it is not clear how to define the maximum size of the n-gram or the pruning
threshold value.

Analysis Team Kepler’s method shows the same behavior with sparse instances as team
Bailly, see Fig. 10. However, it has in addition trouble learning distributions coming from
generators with a small alphabet. Again, future research will need to point out why this
happens. It is surprising to see that although the relatively simple n-gram based approach
adopted by team Kepler are very popular in practice, it did not perform as well as the other
more complex approaches to learning string distributions on the PAUTOMAC data.

6 Conclusion

We presented an overview of PAUTOMAC, the relevant literature on learning probabilistic
automata, a brief explanation of the methods used during the competition, and an analysis of
their results. The results of PAUTOMAC presented in this paper indicate that the competition
was fruitful:

– There were 5 active participating teams from around the world.
– All participants used different (both old and new) methods and were stimulated to improve

these. All methods performed much better than the provided baseline algorithms.



148 Mach Learn (2014) 96:129–154

– The PAUTOMAC data set provides a detailed comparison of the performance of each of
these methods.

– There is a clear winner, and interestingly, they used a method that is in practice not (yet)
commonly applied when learning PFA.

– The results remain valid using different evaluation criteria.
– Interesting conclusions can be drawn by analyzing the results.

In particular, the observation that team Llorens outperforms the winning team on the de-
terministic instances is very interesting for future research as it could provide a method for
deciding whether a given data sample is drawn from a deterministic distribution or from a
non-deterministic one. This could be very useful during the discretization of data, for in-
stance. Moreover, it would be very interesting to further investigate and hopefully improve
the performance of the spectral and n-gram based approaches developed by team Bailly
and team Kepler on sparse problem instances. Last but not least, new Gibbs sampling and
EM/BAUM-WELCH methods have been developed for PFA by team Shibata-Yoshinaka and
Team Hulden. Based on their excellent performance in PAUTOMAC, we can encourage any-
one interested in learning probability distributions over strings to use one of these methods.
The developed Gibbs sampler performed consistently better in PAUTOMAC, but required
much more computational resources. When the generating distribution is known to be de-
terministic, we advise a state merging approach such as the one developed by team Llorens.

Acknowledgements We are very thankful to the members of the scientific committee for their help in
designing this competition. We want to thank all participants and in particular Raphael Bailly, Cleo Billa,
Mans Hulden, Fabio Kepler, David Llorens, Sergio Mergen, Shihiro Shibata, and Ryo Yoshinaka for their
help during the writing of this paper.

Appendix

Table 1 Perplexity scores of active participants, the 3-gram baseline, and the solutions for all problem in-
stances

Nb Solution Hulden Kepler Bailly Shibata Llorens 3-gram

1 29.898 30.131 30.547 30.147 29.994 30.395 33.415

2 168.331 168.455 174.866 168.429 168.430 168.420 177.950

3 49.956 50.044 55.540 50.174 50.042 50.675 68.248

4 80.818 80.837 85.480 80.844 80.827 80.843 101.161

5 33.235 33.241 33.427 33.237 33.237 33.238 44.616

6 66.985 67.044 82.35 67.059 67.007 67.000 110.059

7 51.224 51.265 52.092 51.264 51.249 51.259 57.134

8 81.375 81.710 85.849 81.799 81.403 81.710 106.194

9 20.840 20.889 26.920 25.229 20.856 20.850 66.094

10 33.303 33.401 34.554 33.724 33.334 34.039 44.986

11 31.811 32.138 33.248 32.138 31.853 32.546 37.909

12 21.655 21.671 21.912 21.671 21.663 21.769 25.086

13 62.806 63.073 120.565 100.681 62.820 62.816 157.789

14 116.792 116.841 118.602 116.914 116.836 116.839 125.827

15 44.242 44.285 45.208 45.285 44.274 44.701 48.155

16 30.711 30.844 31.809 35.586 30.7187 30.7186 41.168

17 47.311 47.354 48.109 48.735 47.352 47.9215 51.804



Mach Learn (2014) 96:129–154 149

Table 1 (Continued)

Nb Solution Hulden Kepler Bailly Shibata Llorens 3-gram

18 57.329 57.339 57.534 76.103 57.3316 57.3320 65.941

19 17.877 17.930 18.816 19.316 17.880 17.919 21.118

20 90.972 91.016 95.304 91.351 90.999 93.504 108.990

21 30.519 30.605 35.578 30.714 30.568 32.217 46.839

22 25.982 26.078 26.136 26.010 25.988 26.080 29.904

23 18.408 18.418 18.720 18.547 18.413 18.447 20.805

24 38.729 38.737 42.366 38.753 38.7317 38.7322 48.068

25 65.735 65.978 67.929 66.069 65.783 67.266 86.387

26 80.743 82.657 111.502 141.082 80.833 80.837 211.986

27 42.427 42.473 43.511 42.712 42.464 42.456 46.825

28 52.744 52.855 53.583 53.084 52.841 53.198 65.570

29 24.031 24.199 28.580 24.817 24.042 24.106 43.389

30 22.926 22.932 23.394 22.960 22.934 23.211 25.291

31 41.214 41.243 42.531 41.417 41.233 41.623 46.323

32 32.613 32.743 41.975 38.300 32.622 32.619 52.932

33 31.865 31.872 32.2194 31.920 31.871 32.030 34.485

34 19.955 20.428 20.581 20.476 19.969 20.542 23.499

35 33.777 34.326 34.714 33.835 33.800 34.295 42.808

36 37.986 38.203 38.206 38.176 38.018 38.405 39.686

37 20.980 21.016 21.025 21.027 21.001 21.016 21.106

38 21.446 21.494 21.650 21.514 21.459 21.596 21.736

39 10.002 10.0029 10.054 10.005 10.0034 10.004 10.262

40 8.201 8.255 8.366 8.496 8.207 8.206 8.847

41 13.912 13.941 13.942 13.932 13.921 13.940 14.0142

42 16.004 16.008 16.080 16.008 16.007 16.005 16.431

43 32.637 32.747 32.841 32.817 32.723 32.777 32.862

44 11.709 11.798 11.920 11.778 11.725 12.041 12.082

45 24.042 24.048 24.252 24.084 24.050 24.045 24.153

46 11.982 11.999 12.136 12.082 11.988 12.106 12.272

47 4.1190 4.124 4.144 4.120 4.1192 4.1191 4.671

48 8.036 8.042 8.183 8.045 8.039 8.191 8.417

Table 2 The parameters of all generated problem instances: number of states, alphabet size, symbol sparsity,
transition sparsity, size of training set, and type of machine

Nb Num states Alphabet size Symbol sparsity Trans. sparsity Size Type

1 63 8 0.3274 0.0872 20k HMM

2 63 18 0.3280 0.0166 20k HMM

3 25 4 0.7900 0.0790 20k PFA

4 12 4 0.4375 0.1508 100k PFA

5 56 6 0.2946 0.0217 20k HMM

6 19 6 0.4825 0.0526 20k DPFA



150 Mach Learn (2014) 96:129–154

Table 2 (Continued)

Nb Num states Alphabet size Symbol sparsity Trans. sparsity Size Type

7 12 13 0.2372 0.0833 20k DPFA

8 49 8 0.3622 0.0645 100k PFA

9 71 4 0.3873 0.0141 20k DPFA

10 49 11 0.6327 0.0221 20k PFA

11 47 20 0.4947 0.0213 20k DPFA

12 12 13 0.3526 0.1116 20k PFA

13 63 4 0.6905 0.0159 100k DPFA

14 15 12 0.4944 0.0800 20k HMM

15 26 14 0.4121 0.0672 20k PFA

16 49 10 0.6184 0.0204 100k DPFA

17 22 13 0.2168 0.1738 20k PFA

18 25 20 0.2260 0.0400 100k DPFA

19 68 7 0.3256 0.0350 100k HMM

20 11 18 0.3939 0.1570 20k HMM

21 56 23 0.2531 0.0497 20k HMM

22 55 21 0.0575 0.2411 100k PFA

23 33 7 0.3810 0.1148 100k HMM

24 6 5 0.5000 0.1666 20k DPFA

25 40 10 0.5775 0.0456 20k HMM

26 73 6 0.5868 0.0137 20k DPFA

27 19 17 0.6378 0.0526 20k DPFA

28 23 6 0.7464 0.1134 20k HMM

29 36 6 0.3750 0.0384 20k PFA

30 9 10 0.6555 0.1751 20k PFA

31 12 5 0.3833 0.1992 20k PFA

32 43 4 0.7733 0.0233 100k DPFA

33 13 15 0.5949 0.1183 20k HMM

34 64 21 0.3705 0.0281 20k PFA

35 47 20 0.3553 0.0213 20k DPFA

36 54 9 0.6317 0.0748 100k HMM

37 69 8 0.5217 0.1825 100k PFA

38 14 10 0.7857 0.1939 20k HMM

39 6 14 0.4167 0.1810 20k PFA

40 65 14 0.6473 0.0154 20k DPFA

41 54 7 0.6931 0.1430 100k HMM

42 6 9 0.5185 0.1667 20k DPFA

43 67 5 0.5970 0.1641 20k PFA

44 73 13 0.6333 0.0561 20k HMM

45 14 19 0.8008 0.0867 20k HMM

46 19 23 0.4851 0.0973 20k PFA

47 61 15 0.3027 0.0164 100k DPFA

48 16 23 0.6957 0.0625 20k DPFA



Mach Learn (2014) 96:129–154 151

References

Abe, N., & Warmuth, M. (1992). On the computational complexity of approximating distributions by proba-
bilistic automata. Machine Learning Journal, 9, 205–260.

Angluin, D. (1988). Identifying languages from stochastic examples (Technical Report Yaleu/Dcs/RR-614).
Yale University.

Bailly, R. (2011). QWA: spectral algorithm. In JMLR—workshop and conference proceedings: Vol. 20. Pro-
ceedings of the Asian conference on machine learning, ACML’11 (pp. 147–163). Cambridge: JMLR.

Bailly, R., Denis, F., & Ralaivola, L. (2009). Grammatical inference as a principal component analysis prob-
lem. In Proceedings of the international conference on machine learning ICML’09 (pp. 33–40). Omni-
press.

Balle, B., Castro, J., & Gavaldà, R. (2012). Bootstrapping and learning PDFA in data streams. In JMLR—
workshop and conference proceedings: Vol. 21. Proceedings of the international conference on gram-
matical inference ICGI’12 (pp. 34–48). Cambridge: JMLR.

Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation for proba-
bilistic functions of Markov processes. Inequalities, 3, 1–8.

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164–
171.

Beimel, A., Bergadano, F., Bshouty, N. H., Kushilevitz, E., & Varricchio, S. (2000). Learning functions
represented as multiplicity automata. Journal of the ACM, 47(3), 506–530.

Bergadano, F., & Varricchio, S. (1996). Learning behaviors of automata from multiplicity and equivalence
queries. SIAM Journal on Computing, 25(6), 1268–1280.

Blei, D. M., & Jordan, M. (2006). Variational inference for Dirichlet process mixtures. Bayesian Analysis,
1(1), 121–143.

Borges, J., & Levene, M. (2000). Data mining of user navigation patterns. In LNCS: Vol. 1836. Web usage
mining and user profiling—WEBKDD’99 workshop (pp. 92–111). Berlin: Springer.

Brill, E., Florian, R., Henderson, J. C., & Mangu, L. (1998). Beyond n-grams: can linguistic sophistication
improve language modeling. In Proceedings of the joint conference of the international committee on
computational linguistics and the association for computational linguistics COLING-ACL’98 (pp. 186–
190). Los Altos: Kaufmann/ACL.

Carrasco, R. C., & Oncina, J. (1994). Learning stochastic regular grammars by means of a state merging
method. In LNAI: Vol. 862. Proceedings of the international colloquium on grammatical inference
ICGI’94 (pp. 139–150). Berlin: Springer.

Carrasco, R. C., Forcada, M., & Santamaria, L. (1996). Inferring stochastic regular grammars with recur-
rent neural networks. In LNAI: Vol. 1147. Proceedings of the international colloquium on grammatical
inference ICGI’96 (pp. 274–281). Berlin: Springer.

Carrasco, R. C., Oncina, J., & Calera-Rubio, J. (2001). Stochastic inference of regular tree languages. Ma-
chine Learning Journal, 44(1), 185–197.

Castro, J., & Gavaldá, R. (2008). Towards feasible PAC-learning of probabilistic deterministic finite automata.
In LNCS: Vol. 5278. Proceedings of the international colloquium on grammatical inference ICGI’08
(pp. 163–174). Berlin: Springer.

Chen, S. F., & Goodman, J. (1996). An empirical study of smoothing techniques for language modeling.
In Proceedings of the meeting of the association for computational linguistics ACL’96 (pp. 310–318).
Stroudsburg: Association for Computational Linguistics.

Clark, A., & Thollard, F. (2004). PAC-learnability of probabilistic deterministic finite state automata. Journal
of Machine Learning Research, 5, 473–497.

Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.
Cruz-Alcázar, P., & Vidal, E. (2008). Two grammatical inference applications in music processing. Applied

Artificial Intelligence, 22(1–2), 53–76.
de la Higuera, C. (2010). Grammatical inference: learning automata and grammars. Cambridge: Cambridge

University Press.
de la Higuera, C., & Oncina, J. (2003). Identification with probability one of stochastic deterministic linear

languages. In LNCS: Vol. 2842. Proceedings of the international conference on algorithmic learning
theory ALT’03 (pp. 134–148). Berlin: Springer.

de la Higuera, C., & Oncina, J. (2004). Learning probabilistic finite automata. In LNAI: Vol. 3264. Proceed-
ings of the international colloquium on grammatical inference ICGI’04 (pp. 175–186). Berlin: Springer.

de la Higuera, C., & Thollard, F. (2000). Identification in the limit with probability one of stochastic determin-
istic finite automata. In LNAI: Vol. 1891. Proceedings of the international colloquium on grammatical
inference ICGI’00 (pp. 15–24). Berlin: Springer.



152 Mach Learn (2014) 96:129–154

Denis, F., & Esposito, Y. (2004). Learning classes of probabilistic automata. In LNCS: Vol. 3120. Proceedings
of the conference on learning theory COLT’04 (pp. 124–139). Berlin: Springer.

Denis, F., Lemay, A., & Terlutte, A. (2000). Learning regular languages using non-deterministic finite au-
tomata. In LNAI: Vol. 1891. Proceedings of the international colloquium on grammatical inference
ICGI’00 (pp. 39–50). Berlin: Springer.

Denis, F., Lemay, A., & Terlutte, A. (2001). Learning regular languages using RFSA. In LNCS: Vol. 2225.
Proceedings of the international conference on algorithmic learning theory ALT’01 (pp. 348–363).
Berlin: Springer.

Denis, F., Esposito, Y., & Habrard, A. (2006). Learning rational stochastic languages. In LNCS: Vol. 4005.
Proceedings of the conference on learning theory COLT’06 (pp. 274–288). Berlin: Springer.

Dupont, P., & Amengual, J.-C. (2000). Smoothing probabilistic automata: an error-correcting approach.
In LNAI: Vol. 1891. Proceedings of the international colloquium on grammatical inference ICGI’00
(pp. 51–62). Berlin: Springer.

Dupont, P., Denis, F., & Esposito, Y. (2005). Links between probabilistic automata and hidden Markov mod-
els: probability distributions, learning models and induction algorithms. Pattern Recognition, 38(9),
1349–1371.

Esposito, Y., Lemay, A., Denis, F., & Dupont, P. (2002). Learning probabilistic residual finite state automata.
In LNAI: Vol. 2484. Proceedings of the international colloquium on grammatical inference ICGI’02
(pp. 77–91). Berlin: Springer.

Gao, J., & Johnson, M. (2008). A comparison of Bayesian estimators for unsupervised hidden Markov model
POS taggers. In Proceedings of the conference on empirical methods in natural language processing
EMNLP’08 (pp. 344–352). Stroudsburg: Association for Computational Linguistics.

Gavaldà, R., Keller, P. W., Pineau, J., & Precup, D. (2006). PAC-learning of Markov models with hidden
state. In LNCS: Vol. 4212. Proceedings of the European conference on machine learning ECML’06
(pp. 150–161). Berlin: Springer.

Gelfand, A., & Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of
the American Statistical Association, 85(410), 398–409.

Gildea, D., & Jurafsky, D. (1996). Learning bias and phonological-rule induction. Computational Linguistics,
22, 497–530.

Goan, T., Benson, N., & Etzioni, O. (1996). A grammar inference algorithm for the world wide web. In Pro-
ceedings of AAAI spring symposium on machine learning in information access, Stanford, CA. Menlo
Park: AAAI Press.

Grünwald, P. (2007). The minimum description length principle. Cambridge: MIT Press.
Guttman, O. (2006). Probabilistic automata and distributions over sequences. PhD thesis, The Australian

National University.
Guttman, O., Vishwanathan, S. V. N., & Williamson, R. C. (2005). Learnability of probabilistic automata

via oracles. In LNCS: Vol. 3734. Proceedings of the international conference on algorithmic learning
theory ALT’05 (pp. 171–182). Berlin: Springer.

Habrard, A., Bernard, M., & Sebban, M. (2003). Improvement of the state merging rule on noisy data in
probabilistic grammatical inference. In LNAI: Vol. 2837. Proceedings of the European conference on
machine learning ECML’03 (pp. 169–180). Berlin: Springer.

Habrard, A., Denis, F., & Esposito, Y. (2006). Using pseudo-stochastic rational languages in probabilistic
grammatical inference. In LNAI: Vol. 4201. Proceedings of the international colloquium on grammatical
inference ICGI’06 (pp. 112–124). Berlin: Springer.

Hasan Ibne, A., Batard, A., de la Higuera, C., & Eckert, C. (2010). PMSA: a parallel algorithm for learning
regular languages. In NIPS workshop on learning on cores, clusters and clouds.

Heule, M., & Verwer, S. (2010). Exact DFA identification using SAT solvers. In LNCS: Vol. 6339. Proceed-
ings of international colloquium on grammatical inference ICGI’10 (pp. 66–79).

Horning, J. J. (1969). A study of grammatical inference. PhD thesis, Stanford University.
Hulden, M. (2012). Treba: efficient numerically stable EM for PFA. In JMLR—workshop and conference

proceedings: Vol. 21. Proceedings of the international conference on grammatical inference ICGI’12
(pp. 249–253). Cambridge: JMLR.

Jelinek, F. (1998). Statistical methods for speech recognition. Cambridge: MIT Press.
Kearns, M. J., & Vazirani, U. (1994). An introduction to computational learning theory. Cambridge: MIT

Press.
Kearns, M. J., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R. E., & Sellie, L. (1994). On the learnabil-

ity of discrete distributions. In Proceedings of the twenty-sixth annual ACM symposium on theory of
computing STOC’94 (pp. 273–282). New York: ACM.

Kepler, F., Mergen, S., & Billa, C. (2012). Simple variable length n-grams for probabilistic automata learning.
In JMLR—workshop and conference proceedings: Vol. 21. Proceedings of the international conference
on grammatical inference ICGI’12 (pp. 254–258). Cambridge: JMLR.



Mach Learn (2014) 96:129–154 153

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics,
22(1), 79–86.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998). Results of the abbadingo one DFA learning competition
and a new evidence-driven state merging algorithm. In LNAI: Vol. 1433. Proceedings of the international
colloquium on grammatical inference ICGI’98 (pp. 1–12). Berlin: Springer.

Lee, D., & Yannakakis, M. (1996). Principles and methods of testing finite state machines—a survey. Pro-
ceedings of the IEEE, 84(8), 1090–1123.

Milani Comparetti, P., Wondracek, G., Kruegel, C., & Kirda, E. (2009). Prospex: protocol specification ex-
traction. In Proceedings of the IEEE symposium on security and privacy (pp. 110–125). Los Alamitos:
IEEE Computer Society.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational Linguistics,
23(3), 269–311.

Neal, R. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Compu-
tational and Graphical Statistics, 9(2), 249–265.

Ney, H., Martin, S., & Wessel, F. (1997). Statistical language modeling using leaving-one-out. In Corpus-
based statiscal methods in speech and language processing (pp. 174–207). Norwell: Kluwer Academic.

Palmer, N., & Goldberg, P. W. (2005). PAC-learnability of probabilistic deterministic finite state automata
in terms of variation distance. In LNCS: Vol. 3734. Proceedings of the international conference on
algorithmic learning theory ALT’05 (pp. 157–170). Berlin: Springer.

Partington, J. R. (1988). An introduction to Hankel operators. London mathematical society student texts.
Cambridge: Cambridge University Press.

Paz, A. (1971). Introduction to probabilistic automata. San Diego: Academic Press.
Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.

Proceedings of the IEEE, 77, 257–286.
Rivest, R. L., & Schapire, R. E. (1993). Inference of finite automata using homing sequences. Information

and Computation, 103, 299–347.
Ron, D., Singer, Y., & Tishby, N. (1994). Learning probabilistic automata with variable memory length. In

Proceedings of the conference on learning theory COLT’94 (pp. 35–46). New York: ACM.
Ron, D., Singer, Y., & Tishby, N. (1995). On the learnability and usage of acyclic probabilistic finite automata.

In Proceedings of the conference on learning theory COLT’95 (pp. 31–40). New York: ACM.
Sakakibara, Y. (2005). Grammatical inference in bioinformatics. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27(7), 1051–1062.
Sanjeev, A., & Boaz, B. (2009). Computational complexity: a modern approach (1st edn.). Cambridge: Cam-

bridge University Press.
Saul, L., & Pereira, F. (1997). Aggregate and mixed-order Markov models for statistical language process-

ing. In Proceedings of the second conference on empirical methods in natural language processing
EMNLP’97 (pp. 81–89). Stroudsburg: Association for Computational Linguistics.

Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: pattern and prediction, structure and
simplicity. Journal of Statistical Physics, 104, 817–879.

Shibata, C., & Yoshinaka, R. (2012). Marginalizing out transition probabilities for several subclasses of PFAs.
In JMLR—workshop and conference proceedings: Vol. 21. Proceedings of the international conference
on grammatical inference ICGI’12 (pp. 259–263).

Stolcke, A. (1994). Bayesian learning of probabilistic language models. Ph.D. dissertation, University of
California.

Sudkamp, A. (2006). Languages and machines: an introduction to the theory of computer science (third edn.).
Reading: Addison-Wesley.

Thollard, F. (2001). Improving probabilistic grammatical inference core algorithms with post-processing
techniques. In Proceedings of the international conference on machine learning ICML’01 (pp. 561–
568). Los Altos: Kauffman.

Thollard, F., & Clark, A. (2004). PAC-learnability of probabilistic deterministic finite state automata. Journal
of Machine Learning Research, 5, 473–497.

Thollard, F., & Dupont, P. (1999). Entropie relative et algorithmes d’inférence grammaticale probabiliste. In
Actes de la conférence CAP’99 (pp. 115–122).

Thollard, F., Dupont, P., & de la Higuera, C. (2000). Probabilistic DFA inference using Kullback-Leibler di-
vergence and minimality. In Proceedings of the international conference on machine learning ICML’00
(pp. 975–982). Los Altos: Kaufmann.

Verwer, S., Weerdt, M., & Witteveen, C. (2010). A likelihood-ratio test for identifying probabilistic deter-
ministic real-time automata from positive data. In LNCS: Vol. 6339. Proceedings of the international
colloquium on grammatical inference ICGI’10 (pp. 203–216). Berlin: Springer.

Verwer, S., de Weerdt, M., & Witteveen, C. (2011). Learning driving behavior by timed syntactic pattern
recognition. In Proceedings of the international joint conference on artificial intelligence IJCAI’11
(pp. 1529–1534).



154 Mach Learn (2014) 96:129–154

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., & Carrasco, R. C. (2005a). Probabilistic finite state
automata—part I. Pattern Analysis and Machine Intelligence, 27(7), 1013–1025.

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., & Carrasco, R. C. (2005b). Probabilistic finite state
automata—part II. Pattern Analysis and Machine Intelligence, 27(7), 1026–1039.

Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., & Dupont, P. (2012). Stamina: a competition to en-
courage the development and assessment of software model inference techniques. In Empirical software
engineering (pp. 1–34).

Wetherell, C. S. (1980). Probabilistic languages: a review and some open questions. Computing Surveys,
12(4), 361–379.

Young, T. Y. (1994). Handbook of pattern recognition and image processing: computer vision (Vol. 2).
San Diego: Academic Press.

Young-Lai, M., & Tompa, F. W. (2000). Stochastic grammatical inference of text database structure. Machine
Learning Journal, 40(2), 111–137.

Zhai, C., & Lafferty, J. (2004). A study of smoothing methods for language models applied to information
retrieval. ACM Transactions on Information Systems, 22, 179–214.


	PAutomaC: a probabilistic automata and hidden Markov models learning competition
	Abstract
	Introduction
	Motivations and history
	Why learn a probabilistic automaton?
	Which probabilistic automata to learn?
	How to learn a probabilistic automaton?
	Parameter estimation
	Bayesian inference
	State-merging
	Other methods

	About previous competitions

	An overview of PAutomaC
	Generating artiﬁcial data
	Evaluation
	Discussion on the design of the competition
	Target generation
	Evaluation
	Collusion


	Results
	Competition activity
	Overall results
	Analysis of the results

	The different approaches and individual results
	Team Shibata-Yoshinaka
	Analysis

	Team Hulden
	Analysis

	Team Llorens
	Analysis

	Team Bailly
	Analysis

	Team Kepler
	Analysis


	Conclusion
	Acknowledgements
	Appendix
	References


