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Abstract Learning is a task that generalizes many of the analyses that are applied to col-
lections of data, in particular, to collections of sensitive individual information. Hence, it
is natural to ask what can be learned while preserving individual privacy. Kasiviswanathan
et al. (in SIAM J. Comput., 40(3):793–826, 2011) initiated such a discussion. They for-
malized the notion of private learning, as a combination of PAC learning and differential
privacy, and investigated what concept classes can be learned privately. Somewhat surpris-
ingly, they showed that for finite, discrete domains (ignoring time complexity), every PAC
learning task could be performed privately with polynomially many labeled examples; in
many natural cases this could even be done in polynomial time.

While these results seem to equate non-private and private learning, there is still a sig-
nificant gap: the sample complexity of (non-private) PAC learning is crisply characterized
in terms of the VC-dimension of the concept class, whereas this relationship is lost in the
constructions of private learners, which exhibit, generally, a higher sample complexity.

Looking into this gap, we examine several private learning tasks and give tight bounds
on their sample complexity. In particular, we show strong separations between sample com-
plexities of proper and improper private learners (such separation does not exist for non-
private learners), and between sample complexities of efficient and inefficient proper private
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learners. Our results show that VC-dimension is not the right measure for characterizing the
sample complexity of proper private learning.

We also examine the task of private data release (as initiated by Blum et al. in STOC,
pp. 609–618, 2008), and give new lower bounds on the sample complexity. Our results
show that the logarithmic dependence on size of the instance space is essential for private
data release.

Keywords Differential privacy · PAC learning · Sample complexity · Private data release

1 Introduction

Consider a scenario in which a survey is conducted among a sample of random individuals
and data mining techniques are applied to learn information on the entire population. If such
information will disclose information on the individuals participating in the survey, then
they will be reluctant to participate in the survey. To address this question, Kasiviswanathan
et al. (2011) introduced the notion of private learning, where a private learner is required
to output a hypothesis that gives accurate classification while protecting the privacy of the
individual samples from which the hypothesis was obtained.

The definition of a private learner is a combination of two qualitatively different notions.
One is that of probably approximately correct (PAC) learning (Valiant 1984), the other of
differential privacy (Dwork et al. 2006). PAC learning, on one hand, is an average case re-
quirement, which requires that the output of the learner on most samples is good. Differential
privacy, on the other hand, is a worst-case requirement. It is a strong notion of privacy that
provides meaningful guarantees in the presents of powerful attackers and is increasingly ac-
cepted as a standard for providing rigorous privacy. Recent research on privacy has shown,
somewhat surprisingly, that it is possible to design differentially private variants of many
analyses. Further discussions on differential privacy can be found in the surveys of Dwork
(2009, 2011).

We next give more details on PAC learning and differential privacy. In PAC learning,
a collection of samples (labeled examples) is generalized into a hypothesis. It is assumed
that the examples are generated by sampling from some (unknown) distribution D and are
labeled according to an (unknown) concept c taken from some concept class C. The learned
hypothesis h should predict with high accuracy the labeling of examples taken from the
distribution D, an average-case requirement. In differential privacy the output of a learner
should not be significantly affected if a particular example is replaced with an arbitrary
example. Concretely, differential privacy considers the collection of samples as a database,
defines that two databases are neighbors if they differ in exactly one sample, and requires
that for every two neighboring databases the output distribution of a private learner should
be similar.

In this paper, we consider private learning of finite, discrete domains. Finite domains
are natural as computers only store information with finite precision. The work of Ka-
siviswanathan et al. (2011) demonstrated that private learning in such domains is feasible—
any concept class that is PAC learnable can be learned privately (but not necessarily effi-
ciently), by a “private Occam’s razor” algorithm, with sample complexity that is logarith-
mic in the size of the hypothesis class.1 Furthermore, taking into account the earlier result

1Chaudhuri and Hsu (2011) prove that this is not true for continuous domains.
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of Blum et al. (2005) (that all concept classes that can be efficiently learned in the statis-
tical queries model can be learned privately and efficiently) and the efficient private parity
learner of Kasiviswanathan et al. (2011), we get that most “natural” computational learning
tasks can be performed privately and efficiently (i.e., with polynomial resources). This is
important as learning problems generalize many of the computations performed by analysts
over collections of sensitive data.

The results of Blum et al. (2005), Kasiviswanathan et al. (2011) show that private learn-
ing is feasible in an extremely broad sense, and hence, one can essentially equate learning
and private learning. However, the costs of the private learners constructed in Blum et al.
(2005), Kasiviswanathan et al. (2011) are generally higher than those of non-private ones
by factors that depend not only on the privacy, accuracy, and confidence parameters of the
private learner. In particular, the well-known relationship between the sample complexity
of PAC learners and the VC-dimension of the concept class (ignoring computational effi-
ciency) (Blumer et al. 1989) does not hold for the above constructions of private learners;
the sample complexity of the algorithms of Blum et al. (2005), Kasiviswanathan et al. (2011)
is proportional to the logarithm of the size of the concept class. Recall that the VC-dimension
of a concept class is bounded by the logarithm of its size, and is significantly lower for many
interesting concept classes, hence, there may exist learning tasks for which “very practical”
non-private learner exists, but any private learner is “impractical” (with respect to the sample
size required).

The focus of this work is on a fine-grain examination of the differences in complexity be-
tween private and non-private learning. The hope is that such an examination will eventually
lead to an understanding of which complexity measure is relevant for the sample complexity
of private learning, similar to the well-understood relationship between the VC-dimension
and sample complexity of PAC learning. Such an examination is interesting also for other
tasks, and a second task we examine is that of releasing a sanitization of a data set that si-
multaneously protects privacy of individual contributors and offers utility to the data analyst.
See the discussion in Sect. 1.1.2.

1.1 Our contributions

We now give a brief account of our results. Throughout this rather informal discussion we
will treat the accuracy, confidence, and privacy parameters as constants (a detailed analysis
revealing the dependency on these parameters is presented in the technical sections). We use
the term “efficient” for polynomial time computations.

Following standard computational learning terminology, we will call learners for a con-
cept class C that only output hypotheses in C proper, and other learners improper. The
original motivation in computational learning theory for this distinction is that there exist
concept classes C for which proper learning is computationally intractable (Pitt and Valiant
1988), whereas it is tractable to learn C improperly (Valiant 1984). As we will see below,
the distinction between proper and improper learning is useful also when discussing private
learning, and for reasons other than making intractable learning tasks tractable. Our results
on private learning are summarized in Table 1.

1.1.1 Proper and improper private learning

It is instructive to look into the construction of the private Occam’s razor algorithm of Ka-
siviswanathan et al. (2011) and see why its sample complexity is proportional to the loga-
rithm of the size of the hypothesis class used. The algorithm uses the exponential mechanism
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Table 1 Our separation results (ignoring dependence on ε,α,β), where �(d) is any function that grows as
ω(logd)

Concept class Sample complexity

POINTd Non-Private Learning
(Proper or Improper)

Improper Private
Learning

Proper Private
Learning

Θ(1) (Blumer et al. 1989; Ehrenfeucht et al. 1989) Θ(1) Θ(d)

̂POINTd Non-Private Learning
(Efficient or Inefficient)

Inefficient Proper
Private Learning

Efficient Proper
Private Learning

a

Θ(1) (Blumer et al. 1989; Ehrenfeucht et al. 1989) Θ(�(d)) Θ(d)

aThese bounds are for a slightly relaxed notion of proper learners as detailed in Sect. 6

of McSherry and Talwar (2007) to choose a hypothesis. The choice is probabilistic, where
the probability mass that is assigned to each of the hypotheses decreases exponentially with
the number of samples that are inconsistent with it. A union-bound argument is used in the
claim that the construction actually yields a learner, and a sample size that is logarithmic in
the size of the hypothesis class is needed for the argument to go through. The question is
whether such sample size is required?

To address the above question, we consider a simple, but natural, class POINT =
{POINTd} containing the concepts cj : {0,1}d → {0,1} where cj (x) = 1 for x = j , and 0
otherwise. The VC-dimension of POINTd is one, and hence, it can be learned (non-privately
and efficiently, properly or improperly) with merely O(1) samples.

In sharp contrast, (when used for properly learning POINTd ) the above-mentioned pri-
vate Occam’s razor algorithm from Kasiviswanathan et al. (2011) requires
O(log(|POINTd |)) = O(d) samples—obtaining the largest possible gap in sample com-
plexity when compared to non-private learners! Our first result is a matching lower bound.
We prove that any proper private learner for POINTd must use Ω(d) samples, therefore,
answering negatively the question (from Kasiviswanathan et al. (2011)) of whether proper
private learners should exhibit sample complexity that is approximately the VC-dimension
(or even a function of the VC-dimension) of the concept class.2

A natural way to improve the sample complexity is to use the private Occam’s razor to
improperly learn POINTd with a smaller hypothesis class that is still expressive enough for
POINTd , reducing the sample complexity to the logarithm of the smaller hypothesis class.
We show that this indeed is possible, as there exists a hypothesis class of size O(d) that
can be used for learning POINTd improperly, yielding an algorithm with sample complex-
ity O(logd). Furthermore, this bound is tight, any hypothesis class for learning POINTd

must contain Ω(d) hypotheses. These bounds are interesting as they give a separation be-
tween proper and improper private learning—proper private learning of POINTd requires
Ω(d) samples, whereas POINTd can be improperly privately learned using O(logd) sam-
ples. Note that such a combinatorial separation does not exist for non-private learning, as
VC-dimension number of samples are needed and sufficient for both proper and improper
non-private learners. Furthermore, the Ω(d) lower bound on the size of the hypothesis class
maps a clear boundary to what can be achieved in terms of sample complexity using the pri-
vate Occam’s razor for POINTd . It might even suggest that any private learner for POINTd

should use Ω(logd) samples.

2Our proof technique yields lower bounds not only on private learning POINTd properly, but on private
learning of any concept class C with various hypothesis classes that we call α-minimal for C.
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It turns out, however, that the intuition expressed in the last sentence is at fault. We
construct an efficient improper private learner for POINTd that uses merely O(1) samples,
hence, establishing the strongest possible separation between proper and improper private
learners. For the construction, we extrapolate on a technique from the efficient private parity
learner of Kasiviswanathan et al. (2011). The construction of Kasiviswanathan et al. (2011)
utilizes a natural non-private proper learner, and hence, results in a proper private learner.
Due to the bounds mentioned above, we cannot use a proper learner for POINTd , and hence,
we construct an improper (rather unnatural) learner to base our construction upon. Our con-
struction utilizes a double-exponential hypothesis class, and hence, is inefficient (even out-
putting a hypothesis requires super-polynomial time). We use a simple compression using
pseudorandom functions (akin to Mishra and Sandler (2006)) to make the algorithm effi-
cient.

The above two improper learning algorithms use “heavy” hypotheses, that is, the hy-
potheses are Boolean functions that return 1 on many inputs (in contrast to a point function
that returns 1 on exactly one input). Informally, each such heavy hypothesis protects the pri-
vacy since it could have been returned on many different concepts. The main technical point
in these algorithms is how to choose a heavy hypothesis with a small error. To complete
the picture, we prove that using heavy hypotheses is unavoidable: Every private learning
algorithm for POINTd that uses o(d) samples must use heavy hypotheses.

Next we look into the concept class INTERVAL = {INTERVALd}, where for T = 2d

we define INTERVALd = {c1, . . . , cT +1} and, for 1 ≤ j ≤ T + 1, the concept cj : {1, . . . ,

T + 1} → {0,1} is defined as follows: cj (x) = 1 for x < j and cj (x) = 0 otherwise. As
with POINTd , it is easy to show that the sample complexity of any proper private learner
for INTERVALd is Ω(d). We give two results regarding the sample complexity of improper
private learning of INTERVALd . The first result shows that if a sublinear (in d) sample
complexity private learner exists for INTERVALd , then it must output, with high probability,
a very “complex looking” hypothesis in the sense that the hypothesis must switch from zero
to one (and vice-versa) exponentially many times, unlike any concept cj ∈ INTERVALd that
switches only once from one to zero at j . The second result considers a generalization of
the technique that yielded the O(1) sample improper private learner for POINTd , and shows
that it alone would not yield a private learner for INTERVALd with sublinear (in d) sample
complexity.

We apply the above lower bound on the number of samples for proper private learning
POINTd to show a separation in the sample complexity of efficient proper private learners
(under a slightly relaxed definition of proper learning) and inefficient proper private learn-
ers. More concretely, assuming the existence of a pseudorandom generator with exponential
stretch, we present a concept class ̂POINTd—a subset of POINTd—such that every efficient
private learner that learns ̂POINTd using POINTd requires Ω(d) samples. In contrast, an
inefficient proper private learner exists that uses only a super-logarithmic number of sam-
ples. This is the first example in private learning where requiring efficiency on top of privacy
comes at a price of larger sample size.

1.1.2 The sample size of non-interactive sanitization mechanisms

Given a database containing a collection of individual information, a sanitization is a release
of information that protects the privacy of the individual contributors while offering utility
to the analyst using the database. The setting is non-interactive if once the sanitization is
released, then the original database and the curator play no further role. Blum et al. (2008)
presented a construction of such non-interactive sanitizers for count queries. Let C be a
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concept class consisting of efficiently computable predicates from a discretized domain X to
{0,1}. Given a collection D of data items taken from X, Blum et al. employ the exponential
mechanism (McSherry and Talwar 2007) to (inefficiently) obtain another collection D′ with
data items from X such that D′ maintains approximately correct count of

∑
d∈D c(d) for all

concepts c ∈ C provided that the size of D is O(log(|X|) · VCDIM(C)). As D′ is generated
using the exponential mechanism, the differential privacy of D is protected. The database D′
is referred to as a synthetic database as it contains data items drawn from the same universe
(i.e., from X) as the original database D.

We provide a new lower bound for non-interactive sanitization mechanisms. We show
that for POINTd every non-interactive sanitization mechanism that is useful3 for POINTd

requires a database of size Ω(d). This lower bound is tight as the sanitization mechanism of
Blum et al. for POINTd uses a database of size O(d ·VCDIM(POINTd)) = O(d). Our lower
bound holds even if the sanitized output is an arbitrary data structure, i.e., not necessarily a
synthetic database.

A preliminary version of this paper appeared in the 7th Theory of Cryptography Con-
ference (TCC), 2010. The TCC paper contained a proof sketch of the results presented in
Sects. 3, 4.2, 6, and 7. The results presented in Sects. 4.1, 4.3, and 5 are new.

1.2 Related work

The notion of PAC learning was introduced by Valiant (1984). The notion of differential
privacy was introduced by Dwork et al. (2006). Private learning was introduced in Ka-
siviswanathan et al. (2011). Beyond proving that (ignoring computation) every concept
class with finite, discrete domain can be PAC learned privately (see Theorem 3.2 below),
Kasiviswanathan et al. proved an equivalence between learning in the statistical queries
model and private learning in the local communication model (a.k.a. randomized response).
The general private data release mechanism we mentioned above was introduced in Blum
et al. (2008) along with a specific construction for halfspace queries. Also as mentioned
above, both Kasiviswanathan et al. (2011) and Blum et al. (2008) use the exponential mecha-
nism of McSherry and Talwar (2007), a generic construction of differential private analyses,
which (in general) does not yield efficient algorithms.

A recent work of Dwork et al. (2009) considered the complexity of non-interactive san-
itization under two settings: (a) sanitized output is a synthetic database, and (b) sanitized
output is some arbitrary data structure. For the task of sanitizing with a synthetic database
they show a separation between efficient and inefficient sanitization mechanisms based on
whether the size of the instance space and the size of the concept class is polynomial in a
(security) parameter or not. For the task of sanitizing with an arbitrary data structure they
show a tight connection between the complexity of sanitization and traitor tracing schemes
used in cryptography. They leave the problem of separating efficient private and inefficient
private learning open.

Following the preliminary version of our paper (Beimel et al. 2010), Chaudhuri and Hsu
(2011) study the sample complexity for private learning infinite concept classes when the
data is drawn from a continuous distribution. Using techniques very similar to ours, they
show that, under these settings, there exists a simple concept class for which any proper
learner that uses a finite number of examples and guarantees differential privacy, fails to
satisfy accuracy guarantee for at least one unlabeled data distribution. This implies that

3Informally, a mechanism is useful for a concept class if for every input, the output of the mechanism main-
tains approximately correct counts for all concepts in the concept class.
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the results of Kasiviswanathan et al. (2011) do not extend to infinite hypothesis classes on
continuous data distributions.

Chaudhuri and Hsu (2011) also study learning algorithms that are only required to protect
the privacy of the labels (and not necessary protect the privacy of the examples themselves).
They prove upper bounds and lower bounds for this scenario. In particular, they prove a
lower bound on the sample complexity using the doubling dimension of the disagreement
metric of the hypothesis class with respect to the unlabeled data distribution. This result
does not imply our results. For example, the class POINTd can be properly learned using
O(1) samples while protecting the privacy of the labels, while we prove that Ω(d) samples
are required to properly learn this class while protecting the privacy of the examples and the
labels. It seems that label privacy may give enough protection in the restricted setting where
the content of the underlying examples is publicly known. However, in many settings this
information is highly sensitive. For example, in a database containing medical records we
wish to protect the identity of the people in the sample (i.e., we do not want to disclose that
they have been to a hospital).

It is well known that for all concept classes C, every learner for C requires Ω(VCDIM(C))

samples (Ehrenfeucht et al. 1989). This lower bound on the sample size also holds for private
learning. Blum et al. (2013) show that this result extends to the setting of private data release.
They show that for all concept classes C, every non-interactive sanitization mechanism that
is useful for C requires Ω(VCDIM(C)) samples (remember that the best upper bound is
O(log(|X|) · VCDIM(C))). We show in Sect. 7 that the lower bound of Ω(VCDIM(C)) is
not tight—there exists a concept class C of constant VC-dimension such that every non-
interactive sanitization mechanism that is useful for C requires a much larger sample size.

Tools for private learning (not in the PAC setting) were studied in a few papers; such
tools include, for example, private logistic regression (Chaudhuri and Monteleoni 2008) and
private empirical risk minimization (Chaudhuri et al. 2011; Kifer et al. 2012).

1.3 Questions for future exploration

The motivation of this work was to study the connection between non-private and private
learning. We believe that the ideas developed in this work are a first step in developing
a general theory of private learning. In particular, we believe that there is a combinato-
rial measure that characterizes private learning (for non-private learning such combinatorial
measure exists—the VC dimension). Such characterization was given recently in Beimel
et al. (2013).

In this paper, the ideas used for lower bounding sample size for proper private learning of
points is also used to establish a lower bound on the sample size for sanitization of databases.
Other connections between private learning and sanitization were explored in (Blum et al.
2008). The open question is there is a deeper connection between the models, i.e., does any
bound for one task imply a similar bound for the other?

1.4 Organization

In Sect. 2, we define private learning. In Sect. 3, we prove lower bounds on proper private
learning, and in Sect. 4, we describe efficient improper private learning algorithms for the
POINT concept class. In Sect. 5, we discuss private learning of the INTERVAL concept
class. In Sect. 6, we show a separation between efficient and inefficient proper private learn-
ing. Finally, in Sect. 7, we prove a lower bound for non-interactive sanitization.
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2 Preliminaries

Notation We use [n] to denote the set {1,2, . . . , n}. The notation Oγ (g(n)) is a shorthand
for O(h(γ ) · g(n)) for some non-negative function h. Similarly, the notation Ωγ (g(n)).
We use negl(·) to denote functions from R

+ to [0,1] that decrease faster than any inverse
polynomial.

2.1 Preliminaries from privacy

A database is a vector D = (d1, . . . , dm) over a domain X, where each entry di ∈ D repre-
sents information contributed by one individual. Databases D and D′ are called neighbors
if they differ in exactly one entry (i.e., the Hamming distance between D and D′ is 1). An
algorithm is private if neighboring databases induce nearby distributions on its outcomes.
Formally:

Definition 2.1 (Differential Privacy (Dwork et al. 2006)) A randomized algorithm A is ε-
differentially private if for all neighboring databases D,D′, and for all sets S of outputs,

Pr
[
A(D) ∈ S

] ≤ exp(ε) · Pr
[
A

(
D′) ∈ S

]
. (1)

The probability is taken over the random coins of A.

An immediate consequence of (1) is that for any two databases D,D′ (not necessarily neigh-
bors) of size m, and for all sets S of outputs, Pr[A(D) ∈ S] ≥ exp(−εm) · Pr[A(D′) ∈ S].

2.2 Preliminaries from learning theory

We consider Boolean classification problems. A concept c : X → {0,1} is a function that
labels examples taken from the domain X by either 0 or 1. The domain X is understood to
be an ensemble X = {Xd}d∈N (typically, Xd = {0,1}d ) and a concept class C is an ensemble
C = {Cd}d∈N where Cd is a class of concepts mapping Xd to {0,1}. In this paper Xd is always
a finite, discrete set. A concept class comes implicitly with a way to represent concepts
and size(c) is the size of the (smallest) representation of the concept c under the given
representation scheme.

PAC learning algorithms are given examples sampled according to an unknown proba-
bility distribution D over Xd , and labeled according to an unknown target concept cd ∈ Cd .
Define the error of a hypothesis h : Xd → {0,1} as

error
D

(c,h) = Pr
x∼D

[
h(x) �= c(x)

]
.

Definition 2.2 (PAC Learning (Valiant 1984)) An algorithm A is an (α,β)-PAC learner of a
concept class Cd over Xd using hypothesis class Hd and sample size n if for all concepts c ∈
Cd , all distributions D on Xd , given an input D = (d1, . . . , dn), where di = (xi, c(xi)) with
xi drawn i.i.d. from D for all i ∈ [n], algorithm A outputs a hypothesis h ∈ Hd satisfying

Pr
[
error

D
(c,h) ≤ α

] ≥ 1 − β.

The probability is taken over the randomness of the learner A and the sample points chosen
according to D.
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An Algorithm A1, whose inputs are d,α,β , and a set of samples (labeled examples) D,
is a PAC learner of a concept class C = {Cd}d∈N over X = {Xd}d∈N using hypothesis class
H = {Hd}d∈N if there exists a polynomial p(·, ·, ·, ·) such that for all d ∈ N and 0 < α,β < 1,
the Algorithm A1 (d,α,β, ·) is an (α,β)-PAC learner of the concept class Cd over Xd using
hypothesis class Hd and sample size n = p(d, size(c),1/α, log(1/β)).4 If A runs in time
polynomial in d, size(c),1/α, log(1/β), we say that it is an efficient PAC learner. Also the
learner is called a proper PAC learner if H = C, otherwise it is called an improper PAC
learner.

A concept class C = {Cd}d∈N over X = {Xd}d∈N is PAC learnable using hypothesis class
H = {Hd}d∈N if there exists a PAC learner A learning C over X using hypothesis class H. If
A is an efficient PAC learner, we say that C is efficiently PAC learnable.

It is well known that improper learning is more powerful than proper learning. For ex-
ample, Pitt and Valiant (1988) show that unless RP = NP, k-term DNF are not efficiently
learnable by k-term DNF, whereas it is possible to learn a k-term DNF efficiently using
k-CNF (Valiant 1984). For more background on learning theory, see (Kearns and Vazirani
1994).

Definition 2.3 (VC-Dimension (Vapnik and Chervonenkis 1971)) Let C = {Cd} be a class
of concepts over X = {Xd}. We say that Cd shatters a point set Y ⊂ Xd if |{c(Y ) : c ∈ Cd}| =
2|Y |, i.e., the concepts in Cd when restricted to Y produce all the 2|Y | possible assignments
on Y . The VC-dimension of Cd (VCDIM(Cd)) is defined as the size of a maximum point set
that is shattered by Cd , as a function of d .

Theorem 2.4 (Blumer et al. 1989) Let Cd be a concept class over Xd . There exists an (α,β)-
PAC learner that learns Cd using Cd using O((VCDIM(Cd) · log( 1

α
) + log( 1

β
))/α) samples.

2.3 Private learning

Definition 2.5 (Private PAC Learning (Kasiviswanathan et al. 2011)) Let d,α,β be as
in Definition 2.2 and ε > 0. A concept class C is privately PAC learnable using H if
there exists a learning Algorithm A1 that takes inputs ε, d,α,β,D, returns a hypothesis
A(ε, d,α,β,D), and satisfies

SAMPLE EFFICIENCY. The number of samples (labeled examples) in D is polynomial in
1/ε, d , size(c), 1/α, and log(1/β);

PRIVACY. For all d and ε,α,β > 0, algorithm A(ε, d,α,β, ·) is ε-differentially private (as
formulated in Definition 2.1);

UTILITY. For all ε > 0, algorithm A(ε, ·, ·, ·, ·) PAC learns C using H (as formulated in
Definition 2.2).

An Algorithm A1 is an efficient private PAC learner if it runs in time polynomial in 1/ε,
d , size(c), 1/α, log(1/β). Also the private learner is called proper if H = C, otherwise it is
called improper.

4The definition of PAC learning usually only requires that the sample complexity is polynomial in 1/β

(rather than log(1/β)). However, these two requirements are equivalent (see, e.g., Kearns and Vazirani 1994,
Sect. 4.2).
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Remark 2.6 The privacy requirement in Definition 2.5 is a worst-case requirement. That
is, Inequality (1) must hold for every pair of neighboring databases D,D′ (even if these
databases are not consistent with any concept in C). In contrast, the utility requirement is
an average-case requirement, where we only require the learner to succeed with high prob-
ability over the distribution of the databases. This qualitative difference between the utility
and privacy of private learners is crucial. A wrong assumption on how samples are formed
that leads to a meaningless outcome can usually be replaced with a better one with very
little harm. No such amendment is possible once privacy is lost due to a wrong assumption.
See Kasiviswanathan et al. (2011) for further discussion.

Note also that each entry di in a database D is a labeled example. That is, we protect the
privacy of both the example and its label.

Observation 2.7 The computational separation between proper and improper learning also
holds when we add the privacy constraint. That is, unless RP = NP, no proper private
learner can learn k-term DNF, whereas there exists an efficient improper private learner
that can learn k-term DNF using a k-CNF. The efficient k-term DNF learner of Valiant
(1984) uses statistical queries (SQ) (Kearns 1998), which can be simulated efficiently and
privately as shown by Blum et al. (2005), Kasiviswanathan et al. (2011).

More generally, such a gap can be shown for any concept class that cannot be properly
PAC learned, but can be efficiently learned (improperly) in the statistical queries model.

2.4 Concentration bounds

Chernoff bounds give exponentially decreasing bounds on the tails of distributions. Specif-
ically, let X1, . . ., Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi =
0] = 1 − p for some 0 < p < 1. Clearly, E[∑i Xi] = pn. Chernoff bounds show that the
sum is concentrated around this expected value: For every 0 < δ ≤ 1,

Pr

[∑

i

Xi ≥ (1 + δ)E

[∑

i

Xi

]]

≤ exp

(

−E

[∑

i

Xi

]

δ2/3

)

,

Pr

[∑

i

Xi ≤ (1 − δ)E

[∑

i

Xi

]]

≤ exp

(

−E

[∑

i

Xi

]

δ2/2

)

, (2)

Pr

[∣
∣
∣
∣

∑

i

Xi −E

[∑

i

Xi

]∣
∣
∣
∣ ≥ δ

]

≤ 2 · exp
(−2δ2/n

)
.

The first two inequalities are known as the multiplicative Chernoff bounds (Chernoff 1952),
and the last inequality is known as the Chernoff-Hoeffding bound (Hoeffding 1963).

3 Proper learning vs. proper private learning

We begin by recalling the upper bound on the sample (database) size for private learning
from Kasiviswanathan et al. (2011). The bound in Kasiviswanathan et al. (2011) is for ag-
nostic learning, and we restate it for (non-agnostic) PAC learning using the following notion
of α-representation:

Definition 3.1 We say that a hypothesis class Hd α-represents a concept class Cd over the
domain Xd if for every c ∈ Cd and every distribution D on Xd there exists a hypothesis
h ∈ Hd such that errorD(c,h) ≤ α.
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Theorem 3.2 (Kasiviswanathan et al. (2011), restated) Assume that there is a hypothesis
class Hd that α/2-represents a concept class Cd . Then, for every 0 < β < 1, there exists a
private PAC learner for Cd using Hd that uses O((log(|Hd |) + log(1/β))/(εα)) samples,
where ε,α, and β are the parameters of the private learner. The learner might not be effi-
cient.

In other words, using Theorem 3.2 the number of samples that suffices for learning a con-
cept class Cd is logarithmic in the size of the smallest hypothesis class that α-represents Cd .
For comparison, the number of samples required for learning Cd non-privately is character-
ized by the VC-dimension of Cd (by the lower bound of Ehrenfeucht et al. (1989) and the
upper bound of Blumer et al. (1989)).

In the following, we will investigate private learning of the following simple concept
class. Let T = 2d and Xd = {1, . . . , T }. Define the concept class POINTd to be the set of
points over {1, . . . , T }:

Definition 3.3 (Concept Class POINTd ) For j ∈ [T ], define cj : [T ] → {0,1} as cj (x) = 1
if x = j , and cj (x) = 0 otherwise. Furthermore, define POINTd = {cj }j∈[T ].

We note that we use the set {1, . . . , T } for notational convenience only—when discussing
the concept class POINTd we never use the fact that the elements in T are integer numbers.

The class POINTd trivially α-represents itself, and hence, we get using Theorem 3.2
that it is (properly) PAC learnable using O((log(|POINTd |) + log(1/β))/(εα)) = O((d +
log(1/β))/(εα)) samples. For completeness, we give an efficient implementation of this
learner.

Lemma 3.4 There is an efficient proper private PAC learner for POINTd that uses O((d +
log(1/β))/εα) samples.

Proof We adapt the learner of Kasiviswanathan et al. (2011). Let POINTd = {c1, . . . , c2d }.
The learner uses the exponential mechanism of McSherry and Talwar (2007). Let D =
((x1, y1), . . . , (xm, ym)) be a database of samples (the labels yi ’s are assumed to be con-
sistent with some concept in POINTd ). Define for every cj ∈ POINTd ,

q(D, cj ) = −∣
∣
{
i : yi �= cj (xi)

}∣
∣,

i.e., q(D, cj ) is negative of the number of points in D misclassified by cj . The private learner
A is defined as follows: output hypothesis cj ∈ POINTd with probability proportional to
exp(ε · q(D, cj )/2). Since the exponential mechanism is ε-differentially private (McSherry
and Talwar 2007), A is ε-differentially private. By Kasiviswanathan et al. (2011), if m =
O((d + log(1/β))/(εα)), then A is also a proper PAC learner.

We now show that A can be implemented efficiently. Implementing the exponential
mechanism requires computing q(D, cj ) for 1 ≤ j ≤ 2d . However, q(D, cj ) is same for
all j /∈ {x1, . . . , xm} and can be computed in O(m) time, that is, q(D, cj ) = qD , where
qD = −|{i : yi = 1}|. Also for any j ∈ {x1, . . . , xm}, the value of q(D, cj ) can be computed
in O(m) time. Let

P =
( ∑

j∈{x1,...,xm}
exp

(
ε · q(D, cj )/2

)
)

+ (
2d − m

)
exp(ε · qD/2).



412 Mach Learn (2014) 94:401–437

The Algorithm A1 can be efficiently implemented as the following sampling procedure:

1. For j ∈ {x1, . . . , xm}, with probability exp(ε · q(D, cj )/2)/P , output cj .
2. With probability (2d −m) ·exp(ε ·qD/2)/P , pick uniformly at random a hypothesis from

POINTd \{cx1 , . . . , cxm} and output it. �

3.1 Separation between proper learning and proper private learning

We now show that private learners may require many more samples than non-private ones.
We prove that for any proper private earner for the concept class POINTd the required num-
ber of samples is at least logarithmic in the size of the concept class, matching Theorem 3.2,
whereas there exists non-private proper learners for POINTd that use only a constant number
of samples.

To prove the lower bound, we show that a large collection of m-record databases
D1, . . . ,DN exists, with the property that every PAC learner has to output a different hy-
pothesis for each of these databases (recall that in our context a database is a collection of
labeled examples, supposedly drawn from some distribution and labeled consistently with
some target concept). As any two databases Da and Db differ on at most m entries, dif-
ferential privacy implies that a private learner must output on input Da the hypothesis that
is accurate for Db (and not accurate for Da) with probability at least (1 − β) · exp(−εm).
Since this holds for every pair of databases, unless m is large enough we get that the private
learner’s output on Da is, with high probability, a hypothesis that is not accurate for Da .

In Theorem 3.6, we prove a general lower bound on the sample complexity of private
learning of a class Cd by a hypothesis classes Hd that is α-minimal for Cd as defined in
Definition 3.5. In Corollary 3.8, we prove that Theorem 3.6 implies the claimed lower bound
for proper private learning of POINTd . In Lemma 3.9, we improve this lower bound for
POINTd by a factor of 1/α.

Definition 3.5 If Hd α-represents Cd , and every H′
d �Hd does not α-represent Cd , then we

say that Hd is α-minimal for Cd .

Theorem 3.6 Let Hd be an α-minimal representation for Cd . Then, any private PAC learner
that learns Cd using Hd requires Ω((log(|Hd |) + log(1/β))/ε) samples, where ε,α, and β

are the parameters of the private learner.

Proof Let Cd be a class of concepts over the domain Xd and let Hd be α-minimal for Cd .
Since for every h ∈ Hd , the class Hd \ {h} does not α-represent Cd , we get that there exists a
concept ch ∈ Cd and a distribution Dh on Xd such that on inputs drawn from Dh and labeled
by ch, every PAC learner (that learns Cd using Hd ) has to output h with probability at least
1 − β .

Let A be a private learner that learns Cd using Hd , and suppose A uses m samples. We
next show that for every h ∈ Hd there exists a database Dh ∈ Xm

d on which A has to output h

with probability at least 1 − β . To see that, note that if A is run on m examples chosen i.i.d.
from the distribution Dh and labeled according to ch, then A outputs h with probability at
least 1 − β (where the probability is taken over the randomness of A and the sample points
chosen according to D). Hence, a collection of m labeled examples over which A outputs h

with probability at least 1 − β exists, and Dh is set to contain these m samples.
Take h,h′ ∈ Hd such that h �= h′ and consider the two corresponding databases Dh and

Dh′ with m entries each. Clearly, they differ in at most m entries, and hence, we get by the
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differential privacy of A that

Pr
[
A(Dh) = h′] ≥ exp(−εm) · Pr

[
A(Dh′) = h′]

≥ exp(−εm) · (1 − β).

Since the above inequality holds for every two databases corresponding to a pair of hypothe-
ses in H, we fix an arbitrary h ∈ H and get,

Pr
[
A(Dh) �= h

] = Pr
[
A(Dh) ∈ Hd \ {h}] =

∑

h′∈Hd\{h}
Pr

[
A(Dh) = h′]

≥ (|Hd | − 1) · exp(−εm) · (1 − β).

On the other hand, we chose Dh such that Pr[A(Dh) = h] ≥ 1−β , equivalently, Pr[A(Dh) �=
h] ≤ β . Therefore, (|Hd | − 1) · exp(−εm) · (1 − β) ≤ β . Solving the last inequality for m,
we get m = Ω((log(|Hd |) + log(1/β))/ε) as required. �

Using Theorem 3.6, we now prove a lower bound on the number of samples needed for
proper private learning concept class POINTd .

Proposition 3.7 POINTd is α-minimal for itself for every α < 1.

Proof Clearly, POINTd α-represents itself. To show minimality, consider a subset H′
d �

POINTd , where ci /∈ H′
d . Under the distribution D that chooses i with probability one,

errorD(ci, cj ) = 1 for all j �= i. Hence, H′
d does not α-represent POINTd . �

The VC-dimension of POINTd is one.5 It is well known that a standard (non-private)
proper learner uses approximately VC-dimension number of samples to learn a concept
class (Blumer et al. 1989). In contrast, we get that far more samples are needed for any
proper private learner for POINTd . The following corollary follows directly from Theo-
rem 3.6 and Proposition 3.7:

Corollary 3.8 Every proper private PAC learner for POINTd requires Ω((d+ log(1/β))/ε)

samples.

We now show that the lower bound for POINTd can be improved by a factor of 1/α,
matching (up to constant factors) the upper bound in Theorem 3.2.

Lemma 3.9 Every proper private PAC learner for POINTd requires Ω((d + log(1/β))/

(εα)) samples.

Proof Define the distributions Di (where 2 ≤ i ≤ T ) on Xd as follows: point 1 is picked
with probability 1 − α and point i is picked with probability α. The support of Di is on
points 1 and i.

We say a database D = (d1, . . . , dm) where dj = (xj , yj ) for all j ∈ [m] is good for
distribution Di if at most 2αm points from x1, . . . , xm equal i. Let Di be a database

5Note that every singleton {j} where j ∈ [T ] is shattered by POINTd as cj (j) = 1 and cj ′ (j) = 0 for all
j ′ �= j . No set of two points {j, j ′} is shattered by POINTd as cj ′′ (j) = cj ′′ (j ′) = 1 for no j ′′ ∈ [T ].
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where x1, . . . , xm are i.i.d. samples from Di with yj = ci(xj ) for all j ∈ [m]. By Cher-
noff bound, the probability that Di is good for distribution Di is at least 1 − exp(−αm/3).
Let A be a proper private learner. On Di , A has to output h = ci with probability at
least 1 − β (otherwise, if A outputs some h = cj , where j �= i, then errorDi

(ci , h) =
errorDi

(ci , cj ) = Prx∼Di
[ci(x) �= cj (x)] > α, thus, violating the PAC learning condition for

accuracy). Hence, the probability that either Di is not good or A fails to return ci on Di is
at most exp(−αm/3) + β . Therefore, with probability at least 1 − β − exp(−αm/3), the
database Di is good and A returns ci on Di . Thus, for every i there exists a database Di

that is good for Di such that A returns ci on Di with probability at least 1 − Γ , where
Γ = β + exp(−αm/3).

Fix such databases D2, . . . ,DT . For every j , the databases D2 and Dj differ in at most
4αm entries (since each of them contains at most 2αm entries that are not 1). Therefore, by
the guarantees of differential privacy,

Pr
[
A(D2) ∈ {c3, . . . , cT }] ≥ (T − 2) exp(−4εαm)(1 −Γ ) = (

2d − 2
)

exp(−4εαm)(1 −Γ ).

Algorithm A1 on input D2 outputs c2 with probability at least 1 − Γ . Therefore,

(
2d − 2

)
exp(−4εαm)(1 − Γ ) ≤ Γ.

Solving for m, we get the claimed bound. �

We conclude this section showing that every hypothesis class H that α-represents
POINTd should have at least d hypotheses. Therefore, if we use Theorem 3.2 to learn
POINTd we need Ω(logd) samples.

Lemma 3.10 Let α < 1/2. |H| ≥ d for every hypothesis class H that α-represents POINTd .

Proof Let H be a hypothesis class with |H| < d . Consider a table whose T = 2d columns
correspond to the possible 2d inputs 1, . . . , T , and whose |H| rows correspond to the hy-
potheses in H. The (i, j)th entry in the table is 0 or 1 depending on whether the ith hy-
pothesis gives 0 or 1 on input j . Since |H| < d = log(T ), at least two columns j �= j ′ are
identical, that is, h(j) = h(j ′) for every h ∈ H. Consider the concept cj ∈ POINTd (defined
as cj (x) = 1 if x = j , and 0 otherwise), and the distribution D with probability mass 1/2 on
both j and j ′. We get that errorD(cj , h) ≥ 1/2 > α for all h ∈ H (since for any hypothesis
h(j) = h(j ′), the hypothesis either errs on j or on j ′). Therefore, H does not α-represent
POINTd . �

4 Proper private learning vs. improper private learning

We now use POINTd to show a separation between proper and improper private PAC learn-
ing. One-way of achieving a smaller sample complexity is to use Theorem 3.2 to improperly
learn POINTd with a hypothesis class H that α-represents POINTd , but is of size smaller
than |POINTd |. By Lemma 3.10, we know that every such H should have at least d hy-
potheses.

In Sect. 4.1, we show that there does exist a H with |H| = O(d) that α-represents
POINTd . This immediately gives a separation—proper private learning POINTd requires
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Ωα,β,ε(d) samples, whereas POINTd can be improperly privately learned using Oα,β,ε(logd)

samples.6

We conclude that α-representing hypothesis classes can, hence, be a natural and power-
ful tool for constructing efficient private learners. One may even be tempted to think that
no better learners exist, and furthermore, that the sample complexity of private learning is
characterized by the size of the smallest hypothesis class that α-represents the concept class.
Our second result, presented in Sect. 4.2, shows that this is not the case, and in fact, other
techniques yield a much more efficient learner using only Oα,β,ε(1) samples, and hence
demonstrating the strongest possible separation between proper and improper private learn-
ers. The reader interested only in the stronger result may choose to skip directly to Sect. 4.2.

4.1 Improper private learning of POINTd using Oα,β,ε(logd) samples

We next construct a private learner applying the construction of Theorem 3.2 to the class
POINTd . For that we (randomly) construct a hypothesis class Hd that α-represents the con-
cept class POINTd , where |Hd | = Oα(d). Lemma 3.10 shows that this is optimal up to con-
stant factors. In the rest of this section, a set A ⊆ [T ] represents the hypothesis hA, where
hA(i) = 1 if i ∈ A and hA(i) = 0 otherwise.

To demonstrate the main idea of our construction, we begin with a construction of a
hypothesis class Hd = {A1, . . . ,Ak} that α-represents POINTd , where k = O(

√
T /α) =

O(
√

2d/α) (this should be compared to the size of POINTd which is 2d ). Every Ai ∈ Hd is
a subset of {1, . . . , T }, such that

(1) For every j ∈ {1, . . . , T } there are more than 1/α sets in H that contain j ; and
(2) For every 1 ≤ i1 < i2 ≤ k, |Ai1 ∩ Ai2 | ≤ 1.

We next argue that the class Hd α-represents POINTd . For every concept cj ∈ POINTd

there are hypotheses A1, . . . ,Ap ∈ Hd that contain j (where p = 
1/α� + 1) and are oth-
erwise disjoint (that is, the intersection between any two sets Ai1 and Ai2 is exactly j ).
Fix a distribution D. For every Ai , errorD(cj ,Ai) = PrD[Ai \ {j}]. Since there are more
than 1/α such sets and the sets Ai \ {j} are disjoint, there exists at least one set such that
errorD(cj ,Ai) ≤ α. Thus, Hd α-represents the concept class POINTd .

We want to show that there is a hypothesis class, whose size is O(
√

T /α), that satisfies
the above two requirements. As an intermediate step, we show a construction of size O(T ).
We consider a projective plane with T points and T lines (each line is a set of points)
such that for any two points there is exactly one line containing them and for any two lines
there is exactly one point contained in both of them. Such projective plane exists whenever
T = q2 + q + 1 for a prime power q (see, e.g., Hughes and Piper 1973). Furthermore, the
number of lines passing through each point is q + 1. If we take the lines as the hypothesis
class for q ≥ 1/α, then they satisfy the above requirements, thus, they α-represent POINTd .
However, the number of hypotheses in the class is T and no progress was made.

We modify the above projective plane construction. We start with a projective plane with
2T points and choose a subset of the lines: We choose each line at random with probabil-
ity O(1/(

√
T α)). Since these lines are part of the projective plane, they satisfy the above

requirement (2). It can be shown that with positive probability for at least half of the j ’s
requirement (1) is satisfied and the number of chosen lines is O(

√
T /α). We choose such

6Remember, the notation Oα,β,ε(g(n)) is a shorthand for O(h(α,β, ε) · g(n)) for some non-negative func-
tion h. Similarly, the notation Ωα,β,ε(g(n)).
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lines, eliminate points that are contained in less than 1/α chosen lines, and get the required
construction with T points and O(

√
T /α) lines. The details of the last steps are omitted. We

next show a much more efficient construction based on the above idea.

Lemma 4.1 For every α < 1, there is a hypothesis class Hd that α-represents POINTd such
that |Hd | = O(d/α2).

Proof We will show how to construct a hypothesis class Hd = {S1, . . . , Sk}, where every
Si ∈ Hd is a subset of {1, . . . , T } and for every j

There are p = logT · (1 + 
1/α�) sets A1, . . . ,Ap in Hd that contain j such that

for every b �= j, the point b is contained in less than logT of the sets A1, . . . ,Ap.
(3)

First we show that Hd α-represents POINTd . Fix a concept cj ∈ POINTd and a distribu-
tion D, and consider hypotheses A1, . . . ,Ap in Hd that contain j . Since every point in these
hypotheses is contained in less than logT sets,

p∑

i=1

Pr
D

[
Ai \ {j}] < logT · Pr

D

[
p⋃

i=1

(
Ai \ {j})

]

≤ logT .

Thus, there exists at least one set Ai such that errorD(cj ,Ai) = PrD[Ai \{j}] ≤ logT/p < α.
This implies that Hd α-represents the concept class POINTd .

We next show how to construct Hd . Let k = 8ep2/ logT (that is, k = O(logT/α2)). We
choose k random subsets of {1, . . . ,2T } of size 4pT/k. We will show that a point j satisfies
(3) with probability at least 3/4. We assume d ≥ 16 (and hence, p ≥ 16 and T ≥ 16).

Fix j . The expected number of sets that contain j is k · (4pT/k)/(2T ) = 2p, thus, by
Chebyshev inequality, the probability that less than p sets contain j is less than 2/p ≤ 1/8.
We call this event BAD1.

Let j be such that there are at least p sets that contain j and let A1, . . . ,Ap be p of
them. Notice that A1 \ {j}, . . . ,Ap \ {j} are random subsets of {1, . . . ,2T } \ {j} of size
(4pT/k) − 1. Now fix b �= j . The probability that a random subset of {1, . . . ,2T } \ {j} of
size (4pT/k) − 1 contains b is (4pT/k − 1)/(2T − 1) < 2p/k. For logT random sets of
size (4pT/k)−1, the probability that all of them contain b is less than (2p/k)logT . Thus, the
probability that there is a b ∈ {1, . . . ,2T }, where b �= j , and logT sets among A1, . . . ,Ap

such that these logT sets contains b is less than

2T ·
(

p

logT

)

(2p/k)logT ≤ 2T · (ep/ logT )logT (2p/k)logT
(
where e = exp(1)

)

= 2T · (2ep2/(k logT )
)logT

.

By the choice of k, 2ep2/(k logT ) = 1/4, thus, the above probability is at most 2T ·
(1/4)logT = 2/T ≤ 1/8. We call this event BAD2.

To conclude, the probability that j does not satisfy (3) is the probability that either BAD1

or BAD2 happens which is at most 1/4. Therefore, the expected number of j ’s that do
not satisfy (3) is less than T/2. By Markov inequality, the probability that more than T

points j do not satisfy (3) is less than 1/2. We take k = O(logT/α2) subsets of {1, . . . ,2T },
denoted S1, . . . , Sk , such that at least T points j satisfy (3). By the probabilistic argument
above, such sets exist. Let V be a set of size T of the points that satisfy (3), and define
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Hd = {S1 ∩ V, . . . , Sk ∩ V }. Finally, by a simple renaming, we can assume that Hd contains
subsets of {1, . . . , T } as required. �

From Lemma 4.1 and Theorem 3.2 we get:

Theorem 4.2 There exists an improper private PAC learner for POINTd that uses
O((logd + log 1

α
+ log 1

β
)/εα) samples, where ε,α, and β are the parameters of the private

learner.

There is a difference between the use of improper learning in Theorem 4.2 and typical
use of improper learning in non-private settings. Typically, a non-private learner uses a hy-
pothesis class that is larger than the size of concept class. This larger class enables learning
in polynomial time. We get an improved sample complexity by learning using a hypothesis
class whose size is smaller than the concept class.

4.2 Improper private learning of POINTd using Oα,β,ε(1) samples

We now show a stronger separation result, namely, that POINTd can be privately (and effi-
ciently) learned by an improper learner using just Oα,β,ε(1) samples. We begin by present-
ing a non-private improper PAC learner A1 for POINTd that succeeds with only constant
probability. Roughly, A1 applies a simple proper learner for POINTd , and then modifies
its outcome by adding random “noise”. We then use sampling to convert A1 into a private
learner A2; like A1 the probability that A2 succeeds in learning POINTd is only a constant.
Later we amplify the success probability of A2 to get a private PAC learner. Both A1 and
A2 are inefficient as they output hypotheses with exponential description length. However,
using a pseudorandom function it is possible to compress the outputs of A1 and A2, and
achieve a private learning algorithms whose running time is efficient. This is explained in
Sect. 4.2.1.

Algorithm A2 described below is ε�-differentially private, where ε� = ln(4) is a fixed
constant. To construct an ε-differentially private algorithm for every ε, we describe a trans-
formation in Lemma 4.4 that takes a bigger sample and replaces some samples with � and
executes A2 on the resulting sample. Therefore, we assume that some of the sample points
given to A1 and A2 are �.

Algorithm A1 Given a sample z1, . . . , zm, where every zi is either a labeled example (xi, yi)

or �, Algorithm A1 performs the following:

1. If z1, . . . , zm is not consistent with any concept in POINTd , return ⊥ (this happens only
if for two indices i, j ∈ [m] such that zi = (xi, yi) and zj = (xj , yj ) either (1) xi �= xj

and yi = yj = 1 or (2) xi = xj and yi �= yj ).
2. If yi = 0 for all i ∈ [m] such that zi �= �, then let c = 0 (the all zero hypothesis); other-

wise, let c be the (unique) hypothesis from POINTd that is consistent with the labeled
examples in the sample.

3. Modify c at random to get a hypothesis h: for each x ∈ [T ] independently let h(x) =
1 − c(x) with probability α/8 and, otherwise let h(x) = c(x). Return h.

We next argue that if the sample z1, . . . , zm contains at least 2 ln(4)/α examples zi =
(xi, yi) such that each xi is drawn i.i.d. according to a distribution D on [T ], and the ex-
amples are labeled consistently according to some cj ∈ POINTd , then Pr[errorD(cj , c) ≥
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α/2] ≤ 1/4. If the examples are labeled consistently according to some cj �= 0, then c �= cj

only if (j,1) is not in the sample and in this case c = 0. If Prx∼D[x = j ] < α/2 and
(j,1) is not in the sample, then c = 0 and errorD(cj ,0) < α/2. Otherwise Prx∼D[x = j ] ≥
α/2; thus, the probability that all examples of the form (xi, yi) are not (j,1) is at most
((1 − α/2)2/α)ln(4) ≤ 1/4 (as there are at least 2 ln(4)/α such examples).

To see that A1 PAC learns POINTd (with confidence at least 1/2) note that,

Eh

[
error

D
(c,h)

] = Eh Ex∼D
[∣
∣h(x) − c(x)

∣
∣
] = Ex∼D Eh

[∣
∣h(x) − c(x)

∣
∣
] = α

8
,

and hence, using Markov’s inequality,

Pr
h

[
error

D
(c,h) ≥ α/2

] ≤ 1/4.

Combining this with Pr[errorD(cj , c) ≥ α/2] ≤ 1/4 and errorD(cj , h) ≤ errorD(cj , c) +
errorD(c,h), implies that Pr[errorD(cj , h) ≥ α] ≤ 1/2.

Algorithm A2 We now modify the learner A1 to get a private learner A2 (a similar idea
was used in Kasiviswanathan et al. (2011) for learning parity functions). Given a sample
z1, . . . , zm′ , where every zi is either a labeled example (xi, yi) or �, Algorithm A2 performs
the following:

1. With probability α/8, return ⊥.
2. Construct a set S ⊆ [m′] by picking each element of [m′] with probability p = α/4.
3. Run the non-private learner A1 on the examples indexed by S.

Claim 4.3 Let α < 1/2, ε� = ln(4), and β� = 3/4. Algorithm A2 is an ε�-differentially
private (α,β�)-PAC learner for the class POINTd provided that it is given a sample which
contains at least 32 ln(4)/α2 labeled examples (i.e., m′ ≥ 32 ln(4)/α2).

Proof We first show that A2 PAC learns POINTd with confidence at least β� = 3/4. Let S

be the set chosen by A2. The expected number of samples is at least p · (32 ln(4))/α2 =
8 ln(4)/α. By Chernoff bound, the probability that the sample indexed by S contains less
than 2 ln(4)/α (in fact, 4 ln(4)/α) samples is less than exp(− ln(4)/α) < 1/16 (since A2

gets at least 32 ln(4)/α2 labeled examples and α < 1/2). Algorithm A2 can err only when
either A1 does not get 2 ln(4)/α labeled examples, or when A1 errs, or when A2 returns ⊥
in Step (1). Therefore, we get that A2 PAC learns POINTd with accuracy parameter α′ = α

and confidence parameter β ′ = 1/16 + 1/2 + α/8 ≤ 3/4.
We next show that A2 is ε�-differentially private. Let D,D′ be two neighboring

databases, and assume that they differ on the ith entry. Recall that after sampling S, one
of them can be consistent with some cj , while the other might not be consistent. First let us
analyze the probability of A2 outputting ⊥:

Pr[A2(D) =⊥]
Pr[A2(D′) =⊥] = p · Pr[A2(D) =⊥ | i ∈ S] + (1 − p) · Pr[A2(D) =⊥ | i /∈ S]

p · Pr[A2(D′) =⊥ | i ∈ S] + (1 − p) · Pr[A2(D′) =⊥ | i /∈ S]

≤ p · 1 + (1 − p) · Pr[A2(D) =⊥ | i /∈ S]
p · 0 + (1 − p) · Pr[A2(D′) =⊥ | i /∈ S]

= p

(1 − p) · Pr[A2(D′) =⊥ | i /∈ S] + 1 ≤ 8p

α(1 − p)
+ 1,
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where the last equality follows by noting that if i /∈ S then A2 is equally likely to output ⊥
on D and D′, and the last inequality follows as ⊥ is returned with probability α/8 in Step (1)
of Algorithm A2.

For the more interesting case, where A2 outputs a hypothesis h, we get:

Pr[A2(D) = h]
Pr[A2(D′) = h] = p · Pr[A2(D) = h | i ∈ S] + (1 − p) · Pr[A2(D) = h | i /∈ S]

p · Pr[A2(D′) = h | i ∈ S] + (1 − p) · Pr[A2(D′) = h | i /∈ S]

≤ p · Pr[A2(D) = h | i ∈ S] + (1 − p) · Pr[A2(D) = h | i /∈ S]
p · 0 + (1 − p) · Pr[A2(D′) = h | i /∈ S]

= p

1 − p
· Pr[A2(D) = h | i ∈ S]

Pr[A2(D) = h | i /∈ S] + 1,

where the last equality uses the fact that if i /∈ S then A2 is equally likely to output h on
D and D′. If in D the ith row is �, then Pr[A2(D) = h | i ∈ S] = Pr[A2(D) = h | i /∈ S] =
Pr[A2(D

′) = h | i /∈ S], and the above ratio is bounded by p/(1 − p) + 1 = 1/(1 − α/4) <

4/3 < eε�
.

To complete the proof, we need to bound the ratio of Pr[A2(D) = h | i ∈ S] to
Pr[A2(D) = h | i /∈ S] when zi = (xi, yi).

Pr[A2(D) = h | i ∈ S]
Pr[A2(D) = h | i /∈ S]

=
∑

R⊆[m′]\{i} Pr[A2(D) = h | S = R ∪ {i}] · Pr[A2 selects R from [m′] \ {i}]
∑

R⊆[m′]\{i} Pr[A2(D) = h | S = R] · Pr[A2 selects R from [m′] \ {i}]

≤ max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h | S = R] . (4)

In the max in (4), we only need to consider sets R such that the sample labeled by the
elements in R is consistent, that is, Pr[A2(D) = h | S = R] > 0. Now having or not having
access to (xi, yi) can only affect the choice of h(xi), and since A1 flips the output with
probability α/8, we get

max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h |S = R] ≤ 1 − α/8

α/8
≤ 8

α
.

Putting everything together, we get

Pr[A2(D) = h]
Pr[A2(D′) = h] ≤ 8p

α(1 − p)
+ 1 = 8

(4 − α)
+ 1 < 3 + 1 = eε�

. �

Algorithm A2 is ε�-differentially private for some fixed ε�. We reduce ε� to any desired
ε using the following lemma (implicit in Kasiviswanathan et al. (2011)). In this lemma,
we assume that the learning algorithm can handle “undefined entries”, i.e., entries of the
form �.7

7These � entries cannot be simply removed as the question if two databases are neighbors depends on the
locations of the �’s.
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Lemma 4.4 Let A be an ε�-differentially private algorithm. Construct an algorithm B that
on input a database D = (d1, . . . , dn) constructs a new database Ds whose ith entry is
di with probability f (ε, ε�) = (exp(ε) − 1)/(exp(ε�) + exp(ε) − exp(ε − ε�) − 1) and �

otherwise, and then runs A on Ds . Then, B is ε-differentially private.

Proof Let D,D′ be neighboring databases, and assume they differ on the ith entry. Let
S ⊆ [n] denote the indices of the random set of entries that are not changed to �. Let q =
f (ε, ε�). Since D and D′ differ in just the ith entry, for any outcome t , Pr[A(Ds) = t |i /∈
S] = Pr[A(D′

s) = t |i /∈ S]. Thus,

Pr[B(D) = t]
Pr[B(D′) = t]

= q · Pr[A(Ds) = t |i ∈ S] + (1 − q) · Pr[A(Ds) = t |i /∈ S]
q · Pr[A(D′

s) = t |i ∈ S] + (1 − q) · Pr[A(Ds) = t |i /∈ S]

=
∑

R⊆[n]\{i} Pr[S \ {i} = R] · (q · Pr[A(Ds) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R])
∑

R⊆[n]\{i} Pr[S \ {i} = R] · (q · Pr[A(D′
s ) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R])

≤ max
R⊆[n]\{i}

q · Pr[A(Ds) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R]
q · Pr[A(D′

s) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R]

≤ max
R⊆[n]\{i}

q · exp(ε�) · Pr[A(Ds) = t |S = R] + (1 − q) · Pr[A(Ds) = t |S = R]
q · exp(−ε�) · Pr[A(Ds) = t |S = R] + (1 − q) · Pr[A(Ds) = t |S = R]

= 1 + q · (exp(ε�) − 1)

1 − q · (1 − exp(−ε�))
= exp(ε).

The last inequality follows because by the guarantees of differential privacy

Pr
[
A(Ds) = t |S = R ∪ {i}] ≤ exp

(
ε�

) · Pr
[
A(Ds) = t |S = R ∪ ∅]

,

and

Pr
[
A

(
D′

s

) = t |S = R ∪ {i}] ≥ exp
(−ε�

) · Pr
[
A

(
D′

s

) = t |S = R ∪ ∅]

= exp
(−ε�

) · Pr
[
A(Ds) = t |S = R ∪ ∅] (

as R ⊆ [n] \ {i}).
Therefore, B is an ε-differentially private algorithm. �

Claim 4.5 Let α < 1/2, 0 < β ≤ 1 and 0 < ε < 1. There exists an ε-differentially pri-
vate (α,β)-PAC learner for the class POINTd which uses a sample of size poly(1/ε,1/α,

log(1/β)).

Proof We first apply the transformation described in Lemma 4.4 on Algorithm A2. Call the
resulting Algorithm A3. In this case ε� = ln(4) and

f
(
ε, ε�

) = exp(ε) − 1

exp(ε�) + exp(ε) − exp(ε − ε�) − 1
> ε/6

for ε < 1 (since exp(ε) − 1 ≥ ε). By Chernoff bound, if we take a sample of size
384 ln(4)/(εα2) and choose each example with probability at least ε/6, then with proba-
bility at least 1 − exp(−32 ln(4)) the resulting sample size is at least 32 ln(4)/α2. Now if
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given 32 ln(4)/α2 samples, A2 returns a hypothesis with error at most α with probability
at least 1/4. Therefore, the total probability that A2 returns a hypothesis with error greater
than α is at most exp(−32 ln(4)) + 3/4 (the first term comes from A2 not getting enough
samples and the second term comes from A2 returning a hypothesis with error greater than
α even after getting enough samples). Thus, the algorithm resulting from the transformation
described in Lemma 4.4 returns a hypothesis with error at most α with probability at least
1 − (exp(−32 ln(4)) + 3/4) > 1/5 (i.e., confidence parameter of the above learner is 4/5).

We next privately boost the confidence parameter of the learner from 4/5 to any value
β > 0 similar to Kasiviswanathan et al. (2011). We execute N = log5/4(5/β) times algo-
rithm A3 with accuracy α/8 and disjoint samples; we get N hypotheses Hyp = {h1, . . . , hN }.
With probability at least 1 − (4/5)N = 1 − β/5 at least one of the hypotheses has error less
than α/8. We need to privately choose such a hypothesis. To achieve this goal we take a
fresh sample of size m = 24 ln(3/β2)/(εα), compute the mistake of each hypothesis on this
sample, and use the exponential mechanism of McSherry and Talwar (2007) to choose the
hypothesis. Specifically, let mi be the number of errors that hypothesis hi has on the sample;
return the hypothesis hi with probability

exp(−εmi/2)
∑N

j=1 exp(−εmj/2)
.

Changing one example can reduce mi by at most 1 and increase mj by at most one for every
i �= j (thus, increasing

∑N

j=1 exp(−εmj/2) by at most exp(−ε/2)); therefore the selection
of the hypothesis is ε-differentially private.

We next argue that with probability at least 1 − β the selected hypothesis hi has error
at most α. With probability at least 1 − β/5, at least one of the hypotheses from Hyp has
error less than α/8; by Chernoff bound with probability at least 1−β2/3 this hypothesis has
empirical error8 at most α/4. Let us call E1 the event that there exists a hypothesis with error
less than α/8 and empirical error less than α/4 in Hyp. Event E1 happens with probability
at least (1 − β/5)(1 − β2/3) > 1 − (β/5 + β2/3).

On the other hand, the probability that a hypothesis hj that has error greater than α has
empirical error ≤ α/2 is less than β2/3. By the union bound, the probability that there is
such hypothesis in Hyp is at most β/3 (since N ≤ 1/β for β ≤ 0.01). Let us call E2 the event
that all hypotheses in Hyp with error greater than α have empirical error greater than α/2.
Event E2 happens with probability at least 1 − β/3.

Conditioned on E1, the probability that a hypothesis with empirical error ≥ α/2 is se-
lected by the exponential mechanism is at most

exp(−εαm/4)
∑N

j=1 exp(−εmj/2)
≤ exp(−εαm/4)

exp(−εαm/8)
= exp(−εαm/8).

The first inequality holds because conditioned on E1 there exists a hypothesis (say, h�) in
Hyp with empirical error less than α/4. Therefore, m� ≤ (α/4)m, and

N∑

j=1

exp(−εmj/2) ≥ exp(−εm�/2) ≥ exp(−εαm/8).

8Given an input D = (d1, . . . , dm) where each di = (xi , c(xi )) is a labeled example, the empirical error of h

is 1
m |{i : h(xi ) �= c(xi )}|.
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Since m = 24 ln(3/β)/(εα), the value of exp(−εαm/8) is at most β3/27. Therefore, con-
ditioned on E1 and E2, the probability that a specific hypothesis with error greater than α is
selected by the exponential mechanism is at most β3/27, and by the union bound, the prob-
ability that a hypothesis with error greater than α is selected by the exponential mechanism
is at most N ·β3/27 ≤ β2/27. By removing all the conditioning, we get that the selected hy-
pothesis has error greater than α with probability at most β/5+β2/3+β/3+β2/27 ≤ β . �

4.2.1 Making the learner efficient

The outcome of A1 (hence, A2) is a hypothesis whose description is exponentially long
(since it contains a list of the indices where the output was flipped). We now complete our
construction by compressing this description using a pseudorandom function. The running
time of the resulting algorithm is polynomial and the hypothesis it returns has a short de-
scription.

We use a slightly non-standard definition of (non-uniform) pseudorandom functions from
binary strings of size d to bits; these pseudorandom functions can be easily constructed given
standard pseudorandom functions (which in turn can be constructed under standard assump-
tions (Goldreich 2001)). Roughly speaking, a collection of functions is pseudorandom if
it cannot be distinguished from truly random functions. We start by defining the random
functions in our definition.

Definition 4.6 Define H
q

d : {0,1}d → {0,1} as a random variable, where each value H
q

d (x)

for x ∈ {0,1}d is selected i.i.d. to be 1 with probability q and 0 otherwise.

We consider a (non-uniform) polynomial-time distinguishing algorithm (represented by a
circuit) Cd that can query a function in polynomially many points. Any such algorithm
should not be able to distinguish if the answers of the function are random or are answered
according to a random function from the pseudorandom family. Formally,

Definition 4.7 Let F = {Fd}d∈N be a function ensemble, where for every d , Fd is a set of
functions from {0,1}d to {0,1}. We say that the function ensemble F is q-biased pseudo-
random if for every family of polynomial-size circuits with oracle access {Cd}d∈N, every
polynomial p(·), and all sufficiently large d’s,

∣
∣Pr

[
C

f

d

(
1d

) = 1
] − Pr

[
C

H
q
d

d

(
1d

) = 1
]∣
∣ <

1

p(d)
. (5)

In the above inequality, the first probability is taken over the random choice of f with uni-
form distribution from Fd , and the second probability is taken over the random variable H

q

d .

For convenience, for d ∈N, we consider Fd as a set of functions from {1, . . . , T } to {0,1},
where T = 2d . We set q = α/4 in the above definition. Using an α/4-biased pseudorandom
function ensemble F (such functions can be constructed from standard pseudorandom func-
tions (Goldreich 2001)), we change Step (3) of Algorithm A1 as follows:

(3)′ If c = 0, let h be a random function from Fd . Otherwise (i.e., c = cj for some j ∈ [T ]),
let h be a random function from Fd subject to h(j) = 1. Return h.

Call the resulting modified Algorithm A4. We next show that A4 is a PAC learner. Note that
there exists a negligible function negl such that for large enough d ,

∣
∣Pr

[
h(x) = 1|h(j) = 1

] − α/4
∣
∣ ≤ negl(d)
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for every x ∈ {1, . . . , T } (as otherwise, we get a non-uniform distinguisher for the ensemble
F ). Thus,

Eh∈Fd

[
error

D
(c,h)

] = Eh∈Fd
Ex∼D

[∣
∣h(x) − c(x)

∣
∣
]

≤ Eh∈Fd
Ex∼D

[
h(x)

] = Ex∼D Eh∈Fd

[
h(x)

] ≤ α

4
+ negl(d).

The first inequality follows as for all x ∈ [T ], h(x) ≥ c(x) by our restriction on the choice
of h. Thus, by the same arguments as for A1, Algorithm A4 is a PAC learner.

We next modify Algorithm A2 by executing the learner A4 instead of the learner A1. Call
the resulting modified Algorithm A5. To see that Algorithm A5 preserves differential privacy
it suffices to give a bound on (4). By comparing the case where S = R with S = R ∪ {i}, we
get that the probability for a hypothesis h can increase only if c = 0 when S = R, and c = ci

when S = R ∪ {i}. Therefore,

max
R⊆[m′]\{i}

Pr[A5(D) = h | S = R ∪ {i}]
Pr[A5(D) = h |S = R] ≤ 1

(α/4) − negl(d)
≤ 1

(α/8)
= 8

α
.

Applying the same steps as in the proof of Claim 4.5, we get the following result.

Theorem 4.8 There exists an efficient improper private PAC learner for POINTd that uses
Oα,β,ε(1) samples, where ε,α, and β are the parameters of the private learner.

Lemma 3.9 and Theorem 4.8 give the following separation:

Theorem 4.9 Every proper private PAC learner for POINTd requires Ω((d + log(1/β))/

(εα)) samples, whereas there exists an efficient improper private PAC learner that can learn
POINTd using Oα,β,ε(1) samples. Here, ε,α, and β are the parameters of the private learn-
ers.

4.3 Restrictions on the hypothesis class of private learners with low sample complexity

We conclude this section by showing that every (improper) private learner for POINTd us-
ing o(d) samples must return hypotheses that evaluate to one on many points (in contrast,
every hypothesis in POINTd returns the value one on just one input). This explains why our
algorithms for POINTd that use o(d) samples return “complex” hypotheses.

Definition 4.10 (weight) The weight of a hypothesis h is the number of points for which it
returns the value one, i.e., |{i : h(i) = 1}|.

Theorem 4.11 There exists no private PAC learner for POINTd with sample complexity
oα,β,ε(d) that for every distribution returns, with probability at least half, hypotheses with
weight 2oα,β,ε (d) (where the probability is taken over the randomness of the learner and the
sample points chosen according to the distribution). Here, ε,α, and β are the parameters of
the private learner.

Proof In the proof assume the contrary, i.e., there exists a private learner that for every
distribution returns hypotheses with weight 2oα,β,ε (d) with probability at least half. We prove



424 Mach Learn (2014) 94:401–437

that, under this assumption, there is a proper private learning algorithm for POINTd with
sample complexity oα,β,ε(d), in contradiction with Lemma 3.9.

Let ct ∈ POINTd be the target concept. Assume for contradiction that there exists an ε-
differentially private (α,β)-PAC learner A′ for POINTd with sample complexity oα,β,ε(d)

that for every distribution returns, with probability at least 1/2, hypotheses of weight less
than z, for z = 2oα,β,ε (d) (where the probability is taken over the randomness of A′ and the
sample points chosen according to the distribution).

Let D denote the underlying sample distribution. Construct a proper learner A (for
POINTd ) which on input ε, d,α,β does the following:

1. Let k = ln(β/2)/ ln(3/4).
2. Invoke k times the algorithm A′ with parameters ε, d,α/2, β ′ = 1/4, each time on a fresh

log z sized i.i.d. sample drawn from D and labeled by ct . Let h1, . . . , hk′ (where k′ ≤ k)
be the hypotheses returned in these executions with weight less than z.

3. If k′ = 0 halt with failure, otherwise set Hd = {cj : hi(j) = 1 for some i ∈ [k′]}.
4. Invoke the proper private learner of Lemma 3.4 with parameters ε,α,β/2 and hypothesis

class Hd on a fresh � = O((log(|Hd |) + log(1/β))/(εα)) sized i.i.d. sample drawn from
D and labeled by ct . Output the hypothesis returned by the learner.

Note that � = O((log(|Hd |)+ log(1/β))/(εα)) = oα,β,ε(d), and that the sample complex-
ity of A is k log z + � = oα,β,ε(d). Furthermore, A always returns a hypothesis in POINTd

(note that Hd ⊂ POINTd ). Hence, if A is a private learner for POINTd , we get a contradic-
tion to Lemma 3.9.

Note that A is ε-differentially private (follows since A′ is ε-differentially private and
in Step (4), we invoke the ε-differentially private algorithm from Lemma 3.4 on a fresh
sample).

To conclude the proof we show that A is indeed a learner for POINTd . Note that for each
of the hypotheses hi returned by A′ in Step (2), we have that

Condition 1: Pr
[
error

D
(ct , hi) ≤ α/2

] ≥ 1 − β ′ = 3

4
,

and

Condition 2: Pr[hi has weight less than z] ≥ 1

2
,

where the probability is taken over the randomness of A′ and the sample points chosen
according to D. We get that hi satisfies both the above conditions with probability at least
1/4, and the probability that none of the hypotheses A′ outputs satisfy both these conditions
is at most (3/4)k = β/2.

We henceforth assume that a hypothesis, hi , returned by A′ in Step (2) is of weight less
than z and errorD(ct , hi) ≤ α/2. We claim that in this case Hd contains a hypothesis cj ∈ Hd

for which errorD(ct , cj ) ≤ α/2, as if hi(t) = 1 then we can set j = t , and otherwise, j can
be any point such that hi(j) = 1, as

error
D

(ct , cj ) = Pr
x∼D

[x = t] + Pr
x∼D

[x = j ] ≤ Pr
x∼D

[x = t] + Pr
x∼D

[
hi(x) = 1

]

= error
D

(ct , hi) ≤ α/2.

In other words, Hd α/2-represents {ct }.
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To conclude the proof, we observe that having Hd α/2-represent {ct } suffices for the
proof of Theorem 3.2, and hence, the hypothesis (in Step (4)) returned by the learner of
Theorem 3.2 is with probability at least 1 − β/2 within error α from ct .

To summarize, we get that A is a proper private learner for POINTd under distribution D
with sample complexity oα,β,ε(d). Since this holds for every D this leads to a contradiction
to Lemma 3.9 (the lemma shows that there exists a distribution for which there is no proper
private learner for POINTd with sample complexity oα,β,ε(d)). �

5 Private learning of intervals (partial results)

In this section, we examine INTERVALd , a concept class that like POINTd is very nat-
ural and simple and has VC-dimension 1. By Theorem 3.6, any proper private learner
for INTERVALd requires Ωα,β,ε(d) samples (as INTERVALd is α-minimal for itself), and
we ask whether stronger separation results than we showed for POINTd can be proved
forINTERVALd . Specifically, we ask if we can prove a lower bound of ωα,β,ε(1) for any
private learner forINTERVALd (i.e., also for improper private learners).

We give partial results towards answering this question. In Sect. 5.1, we show that if there
exists an Oα,β,ε(1) sample sized improper private learner for INTERVALd , then it must
use hypotheses that are very unlike intervals, and in fact must switch exponentially many
times between zero and one (this is similar to the result presented for POINTd in Sect. 4.3).
Then, in Sect. 5.2, we take a deeper look into improper private learning of INTERVALd ,
and prove that the technique from Sect. 4.2 that yielded the efficient private learner for
POINTd with sample complexity Oα,β,ε(1) cannot yield an algorithm for INTERVALd with
sample complexity oα,β,ε(d). In other words, the technique of adding independent noise
from Sect. 4.2, even with exponentially many switch points, does not yield a learner for
INTERVALd with oα,β,ε(d) sample complexity.

Before proving the above results, let us first formally define INTERVALd and establish
a sample complexity lower bound for proper private learning this concept class.

Definition 5.1 The concept class INTERVALd is {cj : j ∈ {1, . . . , T + 1}} where T = 2d

and the concept cj : [T ] → {0,1} maps all x < j to 1 and all x ≥ j to 0.

Unlike the concept class POINTd , the values of elements of Xd are significant in the sense
that the geometric relation of which point is to the left of the other is meaningful. Note that
the cardinality of INTERVALd is 2d + 1, and that it is α-minimal for itself (for all α < 1/2),
and hence, we can use Theorem 3.6 and get a lower bound on the sample complexity of
proper private learners for INTERVALd .

Lemma 5.2 Every proper private PAC learner for INTERVALd requires Ω((d + (1/β))/ε)

samples.

5.1 Restrictions on the hypothesis class of private learners with low sample complexity

We give an insight on the structure of the hypothesis class of an improper private learner
for INTERVALd with sample complexity oα,β,ε(d). We show that if such a learner for
INTERVALd exists, then it must return, with high probability, a hypothesis that switches
frequently between zero and one. Therefore, the hypothesis outputted by the learner has
a very different structure compared to the concepts in INTERVALd , which switch exactly
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once from 1 to 0. This result resembles Theorem 4.11, where we proved a similar structural
statement for private learning POINT class.

Definition 5.3 (Switching Point) We say that j is a switching point in hypothesis h if h(j) �=
h(j − 1). If h(j − 1) = 1 we say that j is a decreasing switching point. Otherwise, we say
the switching point is increasing. The points 1 and T + 1 are also referred to as switching
points. The point 1 is a increasing switching point if h(1) = 1 and decreasing otherwise. The
point T + 1 is a increasing switching point if h(T ) = 0 and decreasing otherwise.

We next prove that every private learner with sample complexity oα,β,ε(d) returns with
high probability a hypothesis with an exponential number of switching points. We prove this
using a method similar to the proof of the previous theorem. We assume that a learner exists
which returns with constant probability a hypothesis with too little switching points. We
then show that a proper private learner can be reconstructed from this hypothesis. For the
reconstruction, we use a simplified version of the exponential mechanism of McSherry and
Talwar (2007). Existence of a proper private learner for the class INTERVALd with sample
complexity oα,β,ε(d) leads to a contradiction to Lemma 5.2.

Theorem 5.4 There exists no private PAC learner for INTERVALd with sample complex-
ity oα,β,ε(d) that for every distribution returns, with probability at least half, hypotheses
with 2oα,β,ε (d) switching points (where the probability is taken over the randomness of the
learner and the sample points chosen according to the distribution). Here, ε,α, and β are
the parameters of the private learner.

Proof Let D denote the underlying sample distribution. Every concept c ∈ INTERVALd

consists of exactly one decreasing switching point. Discovering this point is discovering the
accurate concept. Assume first that the target concept is ct for some 1 ≤ t ≤ T + 1 and we
have a hypothesis h such that errorD(ct , h) ≤ α. Let j and k be two consecutive switching
points in h such that j ≤ t ≤ k.9 Assume first that the switching point j is decreasing (and,
thus, k is increasing). Note that cj (x) = ct (x) = 1 for every x < j and cj (x) = ct (x) = 0 for
every x ≥ t . Therefore, cj is a hypothesis which only errs on {j, . . . , t − 1}. Also cj (x) =
h(x) = 0 for every x ∈ {j, . . . , t − 1}.

Therefore, we can refer to cj as a concept which is reconstructed from h (it is chosen
from h’s switching points) and which fixes all of h’s errors in {1, . . . , j − 1} ∪ {t, . . . , T }.
On the other hand, h errs on every point in {j, . . . , t − 1}, so cj does not introduce new
errors to h. We get that

error
D

(ct , cj ) ≤ error
D

(ct , h) ≤ α.

Similarly, if j is an increasing switching point, then k is decreasing, then ck is such that

error
D

(ct , ck) ≤ error
D

(ct , h) ≤ α.

Define

SWITCH(h) = {cj : j is a switching point in h}.

9The switching points j and k exist as points 1 and T + 1 are always switching points.
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Note that SWITCH(h) �= ∅ by construction. By our discussion above, if h is such that
errorD(ct , h) ≤ α then so is the case for at least one concept in SWITCH(h). Clearly,
|SWITCH(h)| is bounded by the number of switching points in h.

Remark 5.5 Note that if the empirical error of h on some sample database D is less than α,
then using same arguments as above there exists a concept in SWITCH(h) whose empirical
error on D is also less than α.

As in Kasiviswanathan et al. (2011), we use the exponential mechanism in order to
choose a hypothesis out of SWITCH(h) (we used the same mechanism in the proof of
Claim 4.5).

We now have enough tools for the proof. Assume that A′ is an ε-differentially pri-
vate (α,β)-PAC learner for the class INTERVALd with a sample complexity oα,β,ε(d)

that on every distribution returns, with probability at least 1/2, hypotheses with at most
z = z(α,β, ε, d) = 2oα,β,ε (d) switching points. Let s = 8 ln( 12

β
)/(α2) + 8 ln(

(6−β)z

β
)/(αε) +

K( 1
α

log 1
β

+ 1
α

log 1
α
) for some constant K to be set below.

Construct a proper private learner A as follows:

1. Let α′ = α
4 ;β ′ = β

6 .
2. For i in {1, . . . , log 1

β ′ }:
(a) Draw oα,β,ε(d) new samples from D and label it by ct . Let D′ denote these labeled

examples.
(b) Apply A′ with parameters ε,α′, β ′ on D′. Let hi be the returned hypothesis.

3. Let ĥ denote the first hypothesis in {h1, . . . , hlog(1/β ′)} such that |SWITCH(hi)| ≤ z. If no
such ĥ exists, return “FAIL”.

4. Draw s additional samples according to D and label it by ct . Let Ds denote these labeled
examples.

5. Choose a concept c out of SWITCH(ĥ) using the exponential mechanism on Ds with
parameter ε and return it.

We now show that A is a proper private (α,β)-PAC learner with sample complexity
oα,β,ε(d). This is a contradiction to Lemma 5.2.

First, note that according to the assumption, Step (2a) is given enough samples. Also ac-
cording to the assumption, for every i we have that Pr[|SWITCH(hi)| ≥ z] ≤ 1/2. Therefore,
Step (3) fails with probability at most (1/2)log(1/β ′) = β ′. Since the chosen hypothesis ĥ is a
uniformly distributed hypothesis conditioned on |SWITCH(ĥ)| ≤ z (an event with probabil-
ity at least half), the probability that errorD(ct , ĥ) ≥ α′ is at most 2β ′ +β ′ = 3β ′ (2β ′ comes
from the Step (2b) and β ′ from Step (3)).

In our next analysis, we assume that errorD(ct , ĥ) < α′. Denote by êrrorDs (h
′) the

empirical error of a hypothesis h′ on the samples Ds , and let Q = êrrorDs (ĥ). Clearly,
EDs [Q] = errorD(ct , ĥ) ≤ α′, where the expectation is over the drawing of the samples
Ds in Step (4). We can bound Q with high probability using Chernoff-Hoeffding bound
(Inequality (2)) and get

Pr
[∣
∣Q −EDs [Q]∣∣ ≥ α′] ≤ 2 exp

(−2sα′2).

Since s > 8 ln( 12
β

)/(α2) = ln( 2
β ′ )/(2α′2), we have

Pr
[∣
∣Q −EDs [Q]∣∣ ≥ α′] ≤ β ′.
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Since EDs [Q] ≤ α′, we now have Pr[Q ≥ 2α′] ≤ β ′. For the analysis of the last step we
assume that indeed

êrrorDs (ĥ) ≤ 2α′.

Next, we analyze the complexity and accuracy of the exponential mechanism step. Let

good(Ds, ĥ) = {
cj ∈ SWITCH(ĥ) : êrrorDs (cj ) ≤ 3α′}.

That is, good(Ds, ĥ) contains the concepts in SWITCH(ĥ) that are inconsistent with less
than 3α′s samples, i.e., concepts such that mcj

≤ 3α′s. Let bad(Ds, ĥ) be all the other con-

cepts in SWITCH(ĥ). Let Egood (resp. Ebad) be the event that a concept in good(Ds, ĥ)

(resp. bad(Ds, ĥ)) is chosen by the exponential mechanism in Step (5). Remember, we
assumed êrrorDs (ĥ) ≤ 2α′. Also remember that if êrrorDs (ĥ) ≤ 2α′, then, according to ob-
servations mentioned in Remark 5.5 there is at least one concept c� ∈ SWITCH(ĥ) whose
empirical error is also bounded by 2α′ (therefore, c� ∈ good(Ds, ĥ)). So in Step (5),

Pr[Egood]
Pr[Ebad] =

∑
cj ∈good(Ds ,ĥ) exp(−ε · mcj

/2)
∑

cj ∈bad(Ds ,ĥ) exp(−ε · mcj
/2)

≥ exp(−ε · mc�/2)
∑

cj ∈bad(Ds ,ĥ) exp(−ε · mcj
/2)

≥ exp(−α′sε)
∑

cj ∈bad(Ds ,ĥ) exp(−3α′sε/2)

≥ exp(−α′sε)
|SWITCH(ĥ)| · exp(−3α′sε/2)

= exp(α′sε/2)

|SWITCH(ĥ)|

≥ exp(α′sε/2)

z
.

Since s > 8 ln(
(6−β)z

β
)/(αε) = 2 ln(

(1−β ′)z
β ′ )/(α′ε), we get that

Pr[Egood]
1 − Pr[Egood] = Pr[Egood]

Pr[Ebad] ≥ 1 − β ′

β ′

and, thus, Pr[Egood] ≥ 1 − β ′. Therefore, if ĥ satisfies êrrorDs (ĥ) ≤ 2α′ and it has less
than z switching points, then Step (5) returns with probability at least 1 − β ′ a concept
c ∈ INTERVALd such that êrrorDs (c) ≤ 3α′. For our last analysis, we assume that indeed a
concept with empirical error bounded by 3α′ was chosen in Step (5).

Finally, we show that c, the concept returned by A, has indeed errorD(c, ct ) ≤ α with
high probability. As the VC-dimension of INTERVALd is 1, by Blumer et al. (1989),
there exists a constant � such that whenever more than �( 1

α′ log 1
β ′ + 1

α′ log 1
α′ ) samples

are drawn from some distribution D, then Pr[|errorD(ct , c) − êrrorDs (c)| ≥ α′] ≤ β ′. Re-
member that s > K( 1

α
log 1

β
+ 1

α
log 1

α
) for some constant K (depending on �). As we as-

sumed êrrorDs (c) ≤ 3α′, we finally have that errorD(ct , c) ≤ 4α′ = α with probability at
least 1 − β ′.

Next we analyze the confidence parameter of A. We now list the bad events. As said
before, the probability of errorD(ct , ĥ) ≥ α′ at the end of Step (3) is bounded by 3β ′. After
this ĥ is chosen in Step (3), its empirical error on the samples Ds is too high with probability
bounded by β ′. The exponential mechanism fails to return a concept c with low empirical
error on Ds with probability bounded by β ′. Finally, if the exponential mechanism success-
fully returned a concept with low empirical error, then the misclassification error of c is too
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high with probability bounded by β ′. Using the union bound, we get that the probability of
any of the above bad events happening is bounded by 6β ′. Therefore,

Pr
[
error

D
(ct , c) ≥ α

] ≤ 6β ′ = β.

We now calculate the sample complexity. Note that samples are drawn in Step (4) and
many times in Step (2a). As we assumed the sample complexity of A′ is oα,β,ε(d) and it is ex-
ecuted log(1/β ′) times, we get that the total sample complexity of this step is oα,β,ε(d). (Re-
member that α′ and β ′ are of the same order as α and β .) Also note that since z = 2oα,β,ε (d),
the sample complexity of Step (4) is s = oα,β,ε(d). Therefore, the sample complexity of A
is log(1/β ′) · oα,β,ε(d) + s = oα,β,ε(d).

Finally, note that we assumed A′ maintains ε-differential privacy. Also the exponential
mechanism maintains ε-differential privacy. Since any execution of the inner algorithms is
on different independently drawn samples of the whole sample set, the learner A maintains
ε-differential privacy.

Combining all the above statements we have that if there is an ε-differentially private
(α/4, β)-PAC learner for INTERVALd with sample complexity oα,β,ε(d) that for every dis-
tribution returns, with probability at least half, a hypotheses with 2Ωα,β,ε (d) switching points,
then there is a proper ε-differentially private (α,β)-PAC learner for INTERVALd with sam-
ple complexity oα,β,ε(d). This contradicts Lemma 5.2. �

5.2 Impossibility of private independent noise learners with low sample complexity

We next show that the ideas used to construct in Sect. 4.2 a private learner for POINTd with
sample complexity Oα,β,ε(1) cannot be used for INTERVALd . We begin by formalizing a
class of independent noise learners that generalizes the construction in Sect. 4.2. We note
that independent noise learners are allowed to output hypotheses whose description is ex-
ponential in d (recall that this issue was resolved for POINTd by using compression with
pseudorandom functions).

Definition 5.6 (Private Independent Noise Learner) A private independent noise learner for
a concept class Cd over Xd using sample size m′ and parameters α′, β ′, ε is a pair of algo-
rithms (Aouter,Ainner), called the outer and inner learners respectively, that for all concepts
c ∈ Cd , all distributions D on Xd , given an input D = (d1, . . . , dm′), where di = (xi, c(xi))

with xi drawn i.i.d. from D for all i ∈ [m′], does the following:

1. The outer learner Aouter is a private PAC learner (as defined in Definition 2.5) for Cd

using the class of all 2|Xd | functions Xd → {0,1}. Furthermore, Aouter(ε, d,α′, β ′,D) is
restricted to execute as follows:
(a) Select parameters α� ≤ α′, β� ≤ β ′, and a noise rate μ as a (deterministic) function

of ε,α′, β ′.
(b) Run Ainner(d,α�,β�,D). Denote the output hypothesis c�.
(c) If c� /∈ Cd then output “fail” and halt. Otherwise, produce a hypothesis h by addition

of noise to all entries of c� independently, i.e., for all x ∈ Xd set h(x) = 1 − c�(x)

with probability μ, and h(x) = c�(x) otherwise.
2. The inner learner Ainner outputs with probability at least 1 − β� (over the random-

ness of Ainner and the sampling of D according to D) a hypothesis c� ∈ Cd such that
errorD(c�, c) ≤ α�.
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Example 5.7 We show that Algorithm A2, described in Sect. 4.2, is a private independent
noise learner for POINTd . In order to do this, we describe Algorithm A2 in a different way
than the description in Sect. 4.2.10 The outer learner is the learner defined in Definition 5.6
selecting parameters α� = α′/2, β ′ = 3/4, β� = 1/2, and a noise rate μ = α′/8. The inner
learner does the following:

1. Set α = α′.
2. Get a sample (x1, y1), . . . , (xm′ , ym′), where xi ’s are chosen according to D and m′ =

32 ln(4)/α2.
3. With probability α/8, return ⊥.
4. Construct a set S ⊆ [m′] by picking each element of [m′] with probability α/4.
5. If ((xi, yi))i∈S is not consistent with any concept in POINTd , return ⊥.
6. If yi = 0 for all i ∈ S, then let c = 0 (the all zero hypothesis); otherwise, let c

be the (unique) hypothesis from POINTd that is consistent with the labeled example
((xi, yi))i∈S .

As analyzed in Sect. 4.2, Algorithm A2 is ln(4)-differentially private. It is also (α′, β ′)-
PAC learner. To construct an algorithm that is ε-differentially private for smaller values of ε,
we use a transformation described in Lemma 4.4. It can be seen that the resulting algorithm
is also a private independent noise learner.

Furthermore, in the above description of A2, the confidence parameter is β ′ = 3/4. In
Sect. 4.2, we boosted the confidence parameter by using the exponential mechanism. The
resulting learning algorithm is not a private independent noise learner. However, for any
constant β ′, we can modify A2 such that the resulting algorithm has confidence β ′ and is a
private independent noise learner; however, the sample complexity of the resulting algorithm
is not polynomial in log(1/β ′).

We next show that there is no private independent noise learner for INTERVALd using
only oα,β,ε(d) samples. We will show that in this case, we can essentially recover the out-
come of the inner learner (with probability at least 1 −β a hypothesis in INTERVALd ) from
the outcome of the outer learner. It follows then that the existence of a private independent
noise learner for INTERVALd that uses oα,β,ε(d) samples implies a proper private learner
for INTERVALd that uses oα,β,ε(d) samples, in contradiction with Lemma 5.2.

Theorem 5.8 There is no private independent noise learner for INTERVALd for β ′ < 1/4
and α′ < β ′/100 that learns using m′ = oα′,β ′,ε(d) samples.

Proof Assume towards a contradiction that a private independent noise learner (Aouter,Ainner)

exists for INTERVALd . Let D denote the underlying sample distribution and ct ∈
INTERVALd denote the target concept. Consider an execution of Aouter when invoked with
parameters α′, β ′ where β ′ < 1/2 (we will further restrict α′, β ′ below). We first show a
simple bound on the noise rate μ = μ(α′, β ′) selected by Aouter. Denote by α� ≤ α′, β� ≤ β ′
the parameters that Aouter selects for the inner learner. Denote by c� the concept returned by
Ainner and by h the concept returned by Aouter (or ⊥ if Aouter halts without an output).

Note that by the definition of a private independent noise learner, Ainner outputs c� ∈
INTERVALd satisfying errorD(ct , c

�) ≤ α� with probability at least 1 − β�. Similarly, since
Aouter is a learner, we get that Aouter outputs h satisfying errorD(ct , h) ≤ α′ with probability

10For simplicity of the description, we ignore the fact that some of the sample points can be �.
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at least 1−β ′. In both cases, the probability is taken over the randomness in the execution of
the learner (for Aouter this includes the randomness of Ainner) and the sample points chosen
according to D. We, hence, define the event

E : A
inner outputs c� ∈ INTERVALd satisfying errorD(ct , c

�) ≤ α�; and
Aouter outputs h satisfying errorD(ct , h) ≤ α′

and conclude that Pr[E] ≥ 1 − β ′ − β� > 0.
In the following, we bound Eh[errorD(ct , h)] � Eh Ex∼D[|h(x) − ct (x)|], assuming E .

This will yield an upper bound on μ.

Eh

[
error

D
(ct , h) |E] = Eh Ex∼D

[∣
∣h(x) − ct (x)

∣
∣ |E]

≥ Eh

[
Ex∼D

[∣
∣h(x) − c�(x)

∣
∣ |E] −Ex∼D

[∣
∣ct (x) − c�(x)

∣
∣ |E]]

(6)

≥ Eh Ex∼D
[∣
∣h(x) − c�(x)

∣
∣ |E] − α� (7)

= Ex∼D Eh

[∣
∣h(x) − c�(x)

∣
∣ |E] − α� = μ − α�. (8)

Inequality (6) follows from the triangle inequality, i.e., |h(x) − c�(x)| ≤ |h(x) − ct (x)| +
|ct (x) − c�(x)|, and Inequality (7) follows from errorD(ct , c

�) ≤ α�. On the other hand, by
the definition of E

Eh

[
error

D
(ct , h) |E]

< α′. (9)

Noting that the setting of μ is deterministic (and, hence, the setting of μ does not depend
on whether the event E holds), we get from Inequalities (8) and (9) that α′ ≥ μ − α�, and
hence, μ ≤ 2α′. It follows that by choosing α′ to be small enough, we restrict μ to be small.

We now show how to reconstruct c� from h. The reconstruction algorithm is as follows:

1. For every t ∈ {1, . . . , T + 1} define mismatch(t, h) = |{x < t : h(x) = 0}| + |{x ≥ t :
h(x) = 1}|.

2. Find � for which mismatch(�,h) is the lowest and return c�.
3. If no such unique point exists, return “FAIL”.

We now bound the probability that c� �= c�. We call a point x for which noise was added
by Aouter (i.e., h(x) �= c�(x)) dirty, otherwise we call x clean. Let j be such that cj = c�.
Then, mismatch(j, h) is the number of dirty points. The reconstruction algorithm fails to
return c� if and only if there is some point k such that mismatch(k,h) ≤ mismatch(j, h).
In this case, we say that k is bad. We show that for small enough μ, such a bad point exists
only with constant probability. In the following, we assume that k > j (the case k < j

is symmetric). First note that cj and ck disagree agree only on points in {j, . . . , k − 1}
(i.e., mismatch(j, h) and mismatch(k,h) have the same contribution from points not
between j and k). Now every dirty point in {j, . . . , k − 1} contributes 1 to mismatch(j, h)

and nothing to mismatch(k,h), and similarly each clean point between {j, . . . , k − 1}
contributes 1 to mismatch(k,h) and nothing to mismatch(j, h). Since we assumed that
mismatch(k,h) ≤ mismatch(j, h), it should be the case that at least half the entries in
{j, . . . , k − 1} are dirty.

We consider the case where there is a bad point bigger than j (the case where it is smaller
than j is handled analogously). Let k > j be the smallest bad point which is bigger than j ,
that is, k is the smallest such that the number of dirty points in {j, . . . , k − 1} is at least
the number of clean points. Hence, k = j + 1 if and only if j is a dirty point; if k > j + 1
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then for all j < � < k the number of clean entries in {j, . . . , � − 1} exceeds the number
of dirty points (otherwise � is a bad point smaller than k). From the above arguments it
follows that the number of clean points in {j, . . . , k − 1} equals the number of dirty points
in {j, . . . , k − 1}.

Let noisej be a sequence starting from j which indicates which entries in c� were
flipped by Aouter, i.e., every dirty point bigger than j is marked by 1 in noisej , and every
clean point is marked by 0. According to the above analysis, we get that there exists a bad
point k > j only if

• noisej begins with 1 (this if the case when k = j + 1), or
• noisej begins with some Dyck word, where a Dyck word is a balanced string of “paren-

theses” in the sense that it consists of n zeros and n ones, and in every prefix the number
of ones does not exceed the number of zeros (this is the case when k > j + 1).

The probability of noisej to begin with 1 is μ. The probability of noisej to start with
a specific Dyck word of length 2n is μn(1 − μ)n. The number of Dyck words of length 2n

is the nth Catalan number, Cn = 1
n+1

(2n

n

)
, and we get that the probability of a bad k > j is

bounded by

μ +
∞∑

n=1

Cn · μn(1 − μ)n.

Note that this is a loose bound because as every Dyck word is a prefix of longer Dyck words,
and so we over count many possibilities of bad noise. Using the Stirling approximation,
Cn �

4n

n3/2√
π

≤ 4n

n
√

π
for every n ≥ 1. Therefore, the probability of failure to reconstruct cj

from h due a bad k > j is bounded by

μ +
∞∑

n=1

Cn · μn(1 − μ)n ≤ μ +
∞∑

n=1

Cn · μn

≤ μ +
∞∑

n=1

(4μ)n

n
√

π
= μ + 1√

π

∞∑

n=1

(4μ)n

n

= μ + 1√
π

(− ln (1 − 4μ)
)
.

The last equality follows from the Taylor series of ln(x). As (− ln (1 − 4μ)) < 5μ for every
μ ≤ 0.09, the probability of failure to reconstruct c� out of h due to a bad k > j is bounded
by μ + 1√

π
· 5μ < 4μ. Due to symmetry, the probability of failing because of a bad k < j

is also bounded by 4μ. Thus, for small enough values of μ, the probability of failure to
reconstruct Ainner’s original output c� (i.e., the probability that c� �= c�) from h is bounded
by 8μ.

To conclude the proof, we construct A, a proper private learner for INTERVALd , using
Aouter. Learner A executes as follows:

1. Let β ′ = β

4 and α′ = min(α,β)

100 .
2. Apply Aouter with parameters ε, d,α′, β ′ to improperly learn INTERVALd using

oα′,β ′,ε(d) samples. Let h be the output of Aouter. If Aouter fails then halt.
3. Reconstruct a concept c� ∈ INTERVALd out of the noisy hypothesis h (as described in

the reconstruction algorithm above) and return it.
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Note that the sample complexity of A is oα′,β ′,ε(d) = oα,β,ε(d). Also note that the recon-
struction step does not access D, but only the output of Aouter. As Aouter is ε-differentially
private, so is A. Finally, note that the probability that A fails to output c� ∈ INTERVALd

such that errorD(c�, c) ≤ α is bounded by the probability that the reconstruction algorithm
fails, (i.e., c� �= c�) and the probability that Ainner fails to output c� ∈ INTERVALd such that
errorD(c�, c) ≤ α� ≤ α′ ≤ α. Remember that μ ≤ 2α′. Since 2α′ ≤ 0.02 (for α ≤ 1) this
implies that μ ≤ 0.02 and the above condition μ ≤ 0.09 is satisfied, and hence,

Pr
[
error

D
(c�, ct ) ≥ α

] ≤ β� + 8μ ≤ β ′ + 8 · 2α′ ≤ β

4
+ 16 · β

100
≤ β.

Note that β� ≤ β ′ from the definition of private independent noise learner. Thus, the
algorithm A returns a concept c� = c� ∈ INTERVALd such that Pr[errorD(c�, ct ) ≥ α] ≤ β ,
and so it is a proper ε-differentially private (α,β)-PAC learner for INTERVALd with sample
complexity oα,β,ε(d), in contradiction to Lemma 5.2. �

6 Separation between efficient and inefficient proper private PAC learning

In this section, we use the sample size lower bound for proper private learning POINTd

(Corollary 3.8) to obtain a separation between the sample complexities of efficient and inef-
ficient proper private PAC learning. In the case of efficient proper private learning, we use a
slightly relaxed notion of proper learning for reasons explained below.

In our separation we use pseudorandom generators, which we now define. Let Ur

represent a uniformly random string from {0,1}r . Let �(d) : N → N be a function and
G = {Gd}d∈N be a deterministic algorithm such that on input from {0,1}�(d) it returns an
output from {0,1}d . Informally, we say that G is pseudorandom generator if on �(d) truly
random bits it outputs d bits that are indistinguishable from d random bits. Formally, for
every probabilistic polynomial time algorithm B there exists a negligible function negl(d)

(i.e., a function that is asymptotically smaller than 1/dc for all c > 0) such that
∣
∣Pr

[
B
(
Gd(U�(d))

) = 1
] − Pr

[
B(Ud) = 1

]∣
∣ ≤ negl(d). (10)

Pseudorandom generators G with �(d) = ω(logd) exist under various strong hardness as-
sumptions (Goldreich 2001). The difference d − �(d) is defined as the stretch of the pseu-
dorandom generator. Let POINTd = {c1, . . . , c2d }. To an efficient (polynomially bounded)
private learner, the concept cGd(U�(d)) would appear as a uniformly random concept picked
from POINTd . Define concept class

̂POINTd = {
cGd(r) | r ∈ {0,1}�(d)

}
.

First, we show that, assuming G is a pseudorandom generator, there exists no efficient
proper learner for ̂POINTd (note that this statement holds even without the privacy con-
straint). Assume Ap is an efficient proper learner for ̂POINTd . We use Ap to construct a
distinguisher for the pseudorandom generator as follows: Given j ∈ {1, . . . ,2d}, we con-
struct the database D with m entries (j,1). If Ap(D) = cj , then the distinguisher returns 1,
otherwise it returns 0.

(1) If j is in the image of Gd , then by the utility guarantee of the proper learner, Ap has
to return cj on D with probability at least 1 − β . Thus, the distinguisher returns 1 with
probability at least 1 − β when j is chosen from Gd(U�(d)).
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(2) If j is not in the image of Gd , then the database D is not labeled consistently by any
concept in ̂POINTd . Consider any such j , a proper learner that returns a hypothesis from
̂POINTd implies a distinguisher that never returns 1 (i.e., always returns 0). Therefore,

the probability that the distinguisher returns 1 when j = Ud is at most the probability
that j is in the image of Gd , which is at most �(d)/2d = negl(d).

To summarize, assuming Ap is an efficient proper learner for ̂POINTd , the distinguisher
will return 1 with probability at least 1−β when j = Gd(U�(d)), and with probability at most
negl(d) when j = Ud , in contradiction to (10). We conclude that no efficient proper learner
exists for ̂POINTd and, therefore, we relax in the following our notion of proper private
learners for ̂POINT to allow outputting hypothesis from POINT. We show that under this
liberal relaxation, efficient proper learning of ̂POINTd with sample complexity o(d) is not
possible. However, we show that inefficient proper private learning of ̂POINTd with sample
complexity o(d) is possible under the strict definition of proper learning.

Sample complexity of efficiently private learning ̂POINTd using POINTd Consider an ef-
ficient private learner Aeff that learns ̂POINTd using POINTd and has sample complexity
m. We now show that either a distinguisher exists for the pseudorandom generator Gd or
m = Ωβ,ε(d). Assume β < 1/4.

We use Aeff to construct a distinguisher for the pseudorandom generator as follows:
Given j ∈ {1, . . . ,2d}, we construct the database D with m entries (j,1). If Aeff(D) = cj ,
then the distinguisher returns 1, otherwise it returns 0.

If for at least a 3/4th fraction of the values j ∈ [2d ], algorithm Aeff, when applied to
a database with m entries (j,1), does not return cj with probability at least 3/4, then the
distinguisher succeeds in breaking the pseudorandom generator. This is because if the above
statement is not true then the distinguisher returns 1 with probability at most 3/4 when
j = Ud , and the distinguisher will return 1 with probability at least 1 − β > 3/4 when
j = Gd(U�(d)).11

However, arguments similar as in the proof of Theorem 3.6 show that it is not possible to
have a learner that on 3/4th fraction of the values j ∈ [2d ], when applied to a database with
m = o((d + log(1/β))/ε) entries (j,1), returns cj with probability at least 3/4. This means
that either we have a distinguisher for the pseudorandom generator or the sample complexity
of Aeff is at least Ωβ,ε(d). So, assuming the existence of a pseudorandom generator, we
get that there exists no efficient private learner that learns ̂POINTd using POINTd and has
o((d + log(1/β))/ε) sample complexity.12

Sample complexity of inefficient proper private learners for ̂POINTd If the learner is not
polynomially bounded, then it can use the algorithm from Theorem 3.2 to privately learn
̂POINTd . Since | ̂POINTd | = 2�(d), the private learner from Theorem 3.2 uses O((�(d) +

log(1/β))/(εα)) samples.
We get the following separation between efficient and inefficient proper private learning:

Theorem 6.1 Let �(d) be any function that grows as ω(logd). Assuming the existence
of a pseudorandom generator Gd : {0,1}�(d) → {0,1}d , there exists no efficient proper

11If j is in the image of Gd , then the analysis is same as (1) above. By utility guarantees, Aeff has to return
cj on D with probability at least 1 −β . Thus, the distinguisher returns 1 with probability at least 1 −β when
j chosen from Gd(U�(d)).
12An almost matching upper bound of O((d + log(1/β))/εα) on the sample complexity for efficiently private

learning ̂POINTd using POINTd can be obtained as in Lemma 3.4.
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PAC learner for ̂POINTd and every efficient (polynomial-time) private PAC learner that
learns ̂POINTd using POINTd requires Ω((d + log(1/β))/ε) samples, whereas there ex-
ists an inefficient proper private PAC learner that can learn ̂POINTd using O((�(d) +
log(1/β))/(εα)) samples.

Remark 6.2 In the non-private setting, there exists an efficient proper learner that can learn
̂POINTd using POINTd with O((log(1/α) + log(1/β))/α) samples (as

VCDIM( ̂POINTd) = 1). In the non-private setting, we also know that even inefficient learn-
ers require Ω(log(1/β)/α) samples (Ehrenfeucht et al. 1989; Kearns and Vazirani 1994).
Therefore, for ̂POINTd the sample complexity difference that we observe in Theorem 6.1
does not exist without the privacy constraint.

7 Lower bounds for non-interactive sanitization

We now prove a lower bound on the database size (or sample size) needed to privately
release an output that is useful for all concepts in a concept class. We start by recalling a
definition and a result of Blum et al. (2008).

Let X = {Xd}d∈N be some discretized domain and consider a class of predicates C over
X. A database D contains points taken from Xd . A predicate query Qc for c : Xd → {0,1}
in C is defined as

Qc(D) = |{di ∈ D : c(di) = 1}|
|D| .

A sanitizer (or data release mechanism) is a differentially private algorithm A that gets as
input a database D and outputs another database D̂ with entries taken from Xd . An algorithm
A is (α,β)-useful for predicates in the class C if for every database D with probability at
least 1 − β the algorithm A(D) returns a database D̂ such that for every c ∈ C,

∣
∣Qc(D) − Qc(D̂)

∣
∣ < α.

Theorem 7.1 (Blum et al. 2008) For any class of predicates C, and any database D ∈ Xm
d ,

such that

m ≥ O

(
log(|Xd |) · VCDIM(C) log(1/α)

α3ε
+ log(1/β)

εα

)

,

there exists an (α,β)-useful mechanism A that preserves ε-differential privacy. The algo-
rithm might not be efficient.

We show that the dependency on log(|Xd |) in Theorem 7.1 is essential: there exists a
class of predicates C with VC-dimension O(1) that requires |D| = Ωα,β,ε(log(|Xd |)). For
our lower bound, the sanitized output D̂ could be any arbitrary data structure (not necessarily
a synthetic database). Remember that a synthetic database contains data drawn from the
same domain as the original database and Theorem 7.1 outputs a synthetic database. For
simplicity, however, here we focus on the case where the output is a synthetic database. The
proof of this lower bound uses ideas from Sect. 3.1.

Theorem 7.2 Every ε-differentially private non-interactive mechanism that is (α,β)-useful
for POINTd requires an input database of size Ω((d + log(1/β))/(εα)).
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Proof Let T = 2d and Xd = [T ] be the domain. Consider the class POINTd . For every
i ∈ [T ], construct a database Di ∈ Xm

d by setting (1 − 3α)m entries as 1 and the remaining
3αm entries as i (for i = 1 all entries of D1 are 1). For i ∈ [T ] \ {1}, we say that a database
D̂ is α-useful for Di if 2α < Qci

(D̂) < 4α and 1 − 4α < Qc1(D̂) < 1 − 2α. We say that D̂

is α-useful for D1 if 1 − α < Qc1(D̂) ≤ 1. It follows that for i �= j , if D̂ is α-useful for Di

then it is not α-useful for Dj .
Let D̂i be the set of all databases that are α-useful for Di . Note that for all i �= 1, databases

D1 and Di differ on 3αm entries, and by our previous observation, D̂1 ∩ D̂i = ∅. Let A be
an (α,β)-useful private release mechanism for POINTd . For all i, on input Di mechanism
A should pick an output from D̂i with probability at least 1 − β . We get by the differential
privacy of A that

Pr
[
A(D1) ∈ D̂i

] ≥ exp(−3εαm)Pr
[
A(Di) ∈ D̂i

] ≥ exp(−3εαm) · (1 − β).

Hence,

Pr
[
A(D1) /∈ D̂1

] ≥ Pr

[

A(D1) ∈
⋃

i �=1

D̂i

]

=
∑

i �=1

Pr
[
A(D1) ∈ D̂i

]
(sets D̂i are disjoint)

≥ (T − 1) exp(−3εαm) · (1 − β).

On the other hand, since A is (α,β)-useful, Pr[A(D1) /∈ D̂1] < β , and hence, we get that
m = Ω((d + log(1/β))/(εα)). �
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